WO2011064949A1 - 撮像装置及び露光制御方法 - Google Patents

撮像装置及び露光制御方法 Download PDF

Info

Publication number
WO2011064949A1
WO2011064949A1 PCT/JP2010/006540 JP2010006540W WO2011064949A1 WO 2011064949 A1 WO2011064949 A1 WO 2011064949A1 JP 2010006540 W JP2010006540 W JP 2010006540W WO 2011064949 A1 WO2011064949 A1 WO 2011064949A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
image area
effective image
area
lens
Prior art date
Application number
PCT/JP2010/006540
Other languages
English (en)
French (fr)
Inventor
藤田真継
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011064949A1 publication Critical patent/WO2011064949A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/71Circuitry for evaluating the brightness variation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/76Circuitry for compensating brightness variation in the scene by influencing the image signals

Definitions

  • the present invention relates to an imaging apparatus and an exposure control method, and in particular, an imaging apparatus in which an effective image area where imaging light received by a lens is incident on an imaging area of an imaging element and an invalid image area where no imaging light is incident appear.
  • the present invention relates to a technique for controlling exposure.
  • an imaging apparatus such as a wide-angle lens camera including a fisheye lens is generally provided with an AE (Automatic Exposure) function for automatically adjusting an exposure (exposure) amount.
  • the exposure control is performed by measuring the amount of light in the field of view, and adjusting the aperture of the lens, the shutter speed, and the gain of the imaging signal output from the imaging device based on the photometric result.
  • an area consisting of a pixel screen of an image sensor (hereinafter referred to as an “imaging area”) is divided into N blocks, and the average luminance of pixels included in each block is divided into blocks. And the average luminance of the N blocks is obtained as the luminance of the frame. Then, the shutter speed or gain is adjusted according to the luminance.
  • FIG. 1 shows an example in which the imaging area is divided into 12 blocks.
  • an imaging apparatus such as a wide-angle lens camera including a fisheye lens is generally provided with a peripheral light amount drop correction function.
  • the drop in the amount of peripheral light refers to a characteristic that the light amount level of the image pickup signal becomes darker as the distance from the center portion becomes larger than the light amount level of the image pickup signal near the center portion of the lens due to the characteristics of the lens.
  • FIG. 2A shows a state in which the peripheral light amount is reduced.
  • the peripheral light amount drop correction is a correction that increases the gain of the imaging signal around the lens.
  • FIG. 2B shows an example of gain-up characteristics used for peripheral light amount drop correction.
  • the horizontal axis is the distance r from the pixel region where the imaging light from the center of the lens is incident, and the vertical axis indicates the gain.
  • an imaging device such as a wide-angle lens camera
  • an area where light from the lens reaches the imaging area of the imaging device and the imaging light received by the lens is incident (hereinafter referred to as “effective image area”), and from the lens
  • an image region where the light does not reach and the imaging light received by the lens is not incident.
  • FIG. 3 is a diagram illustrating an example of a positional relationship between an imaging region and an effective image region when a wide-angle lens is used.
  • a rectangular area indicates an imaging area (which may be referred to as an imaging element or an imaging surface), and a circular area indicates a light receiving area for imaging light on the imaging surface.
  • the white area indicates an effective image area, and the black area indicates an invalid image area.
  • an imaging device having a wide angle of view such as a wide-angle lens camera including a fisheye lens
  • all imaging light is set to be incident on an imaging region (imaging element). Therefore, as can be seen from FIG. 3, in the imaging apparatus using the wide-angle lens, an invalid image area exists in the imaging area.
  • FIG. 4 is a diagram showing an example of the positional relationship between the imaging region and the effective image region when a standard lens (or a telephoto lens) is used.
  • a rectangular area indicates an imaging area (which may be referred to as an imaging element or an imaging surface), and a circular area indicates a light receiving area for imaging light on the imaging surface.
  • imaging light is incident on the entire imaging surface, and therefore there is no invalid image area in the imaging area.
  • the effective image area is different between the case where a wide-angle lens having a wide angle of view is used and the case where a standard lens having a narrow angle of view is used compared to a wide-angle lens.
  • Patent Document 1 it is determined whether or not the attached lens is a fish-eye lens having a wide angle of view. If the attached lens is a fish-eye lens, luminance is calculated using the central area of the imaging area as an effective image area. How to do is described.
  • Patent Document 1 describes a luminance calculation method in a case where an effective image area is in contact with the upper side and the lower side of the imaging area and exists in the center of the imaging area.
  • the effective image area is different from the image pickup area of the image sensor due to individual differences between the lens and the image sensor, or the size of the image sensor, the correspondence relationship between the lens and the image sensor, May vary.
  • FIG. 5A, FIG. 5B, FIG. 5C, and FIG. 5D are diagrams showing examples of the relationship of the invalid image area to the imaging area.
  • An object of the present invention is to provide an imaging apparatus and an exposure control method capable of performing optimal exposure control even when an invalid image area where the imaging light received by the lens does not enter the imaging area of the imaging element appears. It is.
  • One aspect of the imaging apparatus of the present invention is an imaging apparatus in which an imaging area of an imaging device includes an effective image area where imaging light received by a lens is incident and an invalid image area where the imaging light is not incident, Detecting means for detecting the effective image area; brightness calculating means for calculating the brightness of the detected effective image area; and gain adjusting means for adjusting the gain of the effective image area according to the calculated brightness.
  • the structure to comprise is taken.
  • One aspect of the imaging apparatus of the present invention includes a wide-angle lens, an imaging element having an effective image area in which imaging light received by the wide-angle lens is incident, and an invalid image area in which the imaging light is not incident
  • a detection unit that detects the effective image area on which the imaging light received by the wide-angle lens is incident; a luminance calculation unit that calculates a luminance of the detected effective image area; and according to the calculated luminance, And a gain adjusting means for adjusting the gain of the effective image area.
  • One aspect of the exposure control method of the present invention is used in an imaging apparatus in which an imaging area of an imaging device includes an effective image area in which imaging light received by a lens is incident and an invalid image area in which the imaging light is not incident.
  • a detection step for detecting the effective image region; a luminance calculation step for calculating the luminance of the detected effective image region; and a gain adjustment step for adjusting the gain of the effective image region according to the calculated luminance; was included.
  • optimal exposure control can be performed even when an invalid image area where the imaging light received by the lens is not incident appears in the imaging area of the imaging device.
  • FIG. 2A is a diagram illustrating a state in which the peripheral light amount is reduced
  • FIG. 2B is a diagram illustrating a gain-up characteristic used for the peripheral light amount correction.
  • region at the time of using a wide angle lens The figure which shows an example of the positional relationship of an imaging area and an effective image area
  • yen detected in the string detection part The figure for demonstrating the calculation method of the center and radius of the circle of an effective image area
  • FIG. 6 shows a configuration of the imaging apparatus according to the embodiment of the present invention.
  • the imaging apparatus 100 includes an imaging unit 110, a correction unit 120, an effective image area detection unit 130, a luminance calculation unit 140, and an image processing unit 150.
  • the imaging unit 110 includes a lens 111 and an imaging element 112.
  • the configuration of the imaging unit 110 may be a known configuration.
  • the imaging unit 110 includes an aperture control mechanism, a shutter speed control mechanism, a focus control mechanism, and the like in order to adjust input light.
  • the imaging unit 110 performs aperture control and the like according to the luminance fed back from the luminance calculation unit 140 described later.
  • the configuration and method for these control mechanisms in the imaging unit 110 are not particularly limited, and various conventionally proposed configurations and methods may be applied.
  • the lens 111 receives a subject image (not shown) and causes the received imaging light to be received as an imaged image on the imaging area of the image sensor 112.
  • the lens 111 may be an interchangeable lens that can be removed / attached.
  • the image sensor 112 photoelectrically converts the captured image.
  • a CCD Charge-Coupled Device
  • CMOS Complementary Metal-oxide Semiconductor
  • the imaging element 112 outputs the imaging signal after photoelectric conversion to the correction unit 120.
  • the correction unit 120 includes a gain adjustment unit 121 and a peripheral light amount drop correction unit 122.
  • the gain adjusting unit 121 adjusts the gain of the imaging signal after photoelectric conversion according to the luminance fed back from the luminance calculating unit 140. Thereby, the entire exposure of the imaging region is collectively controlled. A method for adjusting the gain will be described later.
  • the gain adjustment unit 121 outputs the image signal after gain adjustment to the peripheral light amount drop correction unit 122.
  • the peripheral light amount drop correction unit 122 receives an image signal after gain adjustment and information on an effective image region notified from an effective image region detection unit 130 described later, and performs imaging after gain adjustment based on the information on the effective image region. Corrects the peripheral light loss of the signal. A method for correcting the peripheral light amount drop will be described later.
  • the peripheral light amount drop correction unit 122 outputs the imaging signal after the peripheral light amount drop correction to the effective image region detection unit 130.
  • the effective image area detection unit 130 receives an imaging signal and detects an effective image area in the imaging area. Specifically, the effective image area detection unit 130 calculates the center coordinates and radius of the circle of the effective image area assuming that the effective image area is a circle. A method for calculating the center coordinates and radius of the circle of the effective image area will be described later. The effective image area detection unit 130 outputs the calculated center coordinate and radius information of the circle of the effective image area to the luminance calculation unit 140 and the peripheral light amount drop correction unit 122.
  • the image processing unit 150 performs other general camera signal processing ( ⁇ correction, knee correction, white balance, etc.) including image processing such as adjustment of recording resolution, frame rate, and image quality on the imaging signal.
  • the correction unit 120 may perform these processes without providing the image processing unit 150.
  • the clock supply unit 160 controls each unit by supplying a clock to each unit of the imaging apparatus 100 or stopping the supply of the clock to each unit.
  • the clock supply unit 160 can stop the imaging of the imaging unit 110 by stopping the supply of the clock to the imaging unit 110.
  • the clock supply unit 160 can supply a low-rate clock to the imaging unit 110, thereby reducing the frame rate or resolution of the captured image.
  • FIG. 7 is a block diagram illustrating an example of an internal configuration of the effective image area detection unit 130.
  • the binary image generation unit 131 binarizes the imaging signal by threshold processing, and generates a binary image. As a result, a frame of two-dimensional information (binary image) binarized to “1” in the pixels where the subject image is received and “0” in the other pixels is generated.
  • the noise removing unit 132 removes noise from the binary image.
  • a noise removal method for example, an expansion / contraction process using a median filter is performed.
  • the string detection unit 133 detects a circular string forming an effective image area from the binary image after noise removal.
  • a method of detecting a circular chord for example, the following method # 1 or method # 2 using the binarization of the imaging signal of the pixels included in the effective image area to “1” is used. it can.
  • the string detection unit 133 sequentially scans the imaging region of the imaging element 112 in the horizontal direction (pixel direction) and the vertical direction (line direction). Then, the string detection unit 133 has (1) an upper part of the imaging region, (2) a lower part of the imaging region, (3) a left part of the imaging region, and (4) a predetermined number of pixels or a predetermined line in the right part of the imaging region. Detect a string of “1” that is more than a few consecutive. That is, the string detection unit 133 continuously receives the subject image from the binary image obtained by binarizing the imaging light into a pixel in which the subject image is received and a pixel in which the subject image is not received by threshold processing. A string composed of the processed pixels is detected.
  • FIG. 8A and 8B are examples in which the string detection unit 133 detects a string of “1” that is continuous for 20 pixels and 20 lines or more.
  • FIG. 8A is an example in which the number of strings of pixels and the number of lines is 20
  • FIG. 8B is an example in which the numbers of strings of strings are 25 and 30, and the number of lines is 20.
  • the string detection unit 133 scans pixels of the image sensor 112 in a predetermined pixel row and a predetermined line, and detects a circular string. Then, the string detection unit 133 reduces the number of strings in which the number of pixels or lines in which “1” continues among the detected strings is equal to or greater than a predetermined threshold, respectively in the horizontal direction (pixel direction) and the vertical direction (line direction). 2 are also extracted.
  • the string detection unit 133 assumes that the effective image area is a circle, and is a circular string having a length equal to or greater than a predetermined threshold, and a combination of parallel strings. At least two sets are detected and the following coordinates at the time of detection are held.
  • the string detection unit 133 detects a string in which “1” continues for a predetermined number of pixels and a predetermined number of lines in the horizontal direction (pixel direction) and the vertical direction (line direction) of the imaging region, Holds information on the coordinates of the chords of the circle.
  • the string detection unit 133 outputs information on the coordinates of the detected circular chords to the region calculation unit 134.
  • the region calculation unit 134 calculates the center coordinates and radius of the circle of the effective image region using the information on the string of the circle detected by the string detection unit 133. A method for calculating the center coordinates and radius of the circle will be described with reference to FIG.
  • FIG. 9 is a diagram showing the coordinates of four circular chords detected by the chord detector 133. As shown in FIG. 9, in the string detection unit 133, the coordinates of the strings are detected in the horizontal direction (pixel direction) and the vertical direction (line direction) of the imaging region as follows.
  • the area calculation unit 134 calculates the center coordinates (x0, y0) based on the coordinates, the expressions (1-1) and (1-2).
  • the area calculation unit 134 calculates the radius r0 of the circle using Expression (2). Specifically, the region calculation unit 134 calculates the eight radii r by substituting the coordinates of the eight points of the chord of the circle into (x, y) of Equation (2), and calculates the eight radii. The average value of r is the radius of the effective image area.
  • the area calculation unit 134 may take an average of a plurality of frames and increase the calculation accuracy of the center coordinates and radius of the circle.
  • the area calculation unit 134 calculates (x0, y0) from a combination of two different points, determines the reliability according to the variation of (x0, y0), and includes the average calculation when the variation is large. You may perform the process of not having.
  • the region calculation unit 134 outputs the calculated center coordinate and radius information of the circle of the effective image region to the luminance calculation unit 140 and the peripheral light amount drop correction unit 122 as information of the effective image region.
  • the luminance calculation unit 140 calculates the luminance of the effective image area calculated by the effective image area detection unit 130. For example, the luminance calculation unit 140 divides the effective screen area into a plurality of blocks, obtains the average luminance of the block, and sets it as the average luminance of the frame. The luminance calculation unit 140 outputs information on the calculated luminance to the imaging unit 110. In the imaging unit 110, aperture control and shutter speed control according to luminance are performed. In addition, the luminance calculation unit 140 outputs the calculated luminance to the gain adjustment unit 121.
  • the gain adjusting unit 121 adjusts the gain of the imaging signal output from the imaging element 112 according to the luminance notified from the luminance calculating unit 140.
  • the gain of the imaging signal in the effective image area is adjusted by adjusting the overall gain of the captured image according to the luminance. The exposure is adjusted well.
  • the gain adjustment unit 121 outputs the image signal after gain adjustment to the peripheral light amount drop correction unit 122.
  • the peripheral light amount drop correction unit 122 receives the image signal after gain adjustment and information on the effective image region as input, and corrects the peripheral light amount drop in the image signal after gain adjustment based on the information on the effective image region. Specifically, the peripheral light amount drop correction unit 122 corrects the gain-up characteristic held inside based on the center locus amount and the radius of the circle of the effective image area. A gain-up characteristic correction method will be described with reference to FIG.
  • a solid line (S11) indicates a reference gain-up characteristic held by the peripheral light amount drop correction unit 122
  • a broken line (S12) indicates a corrected gain-up characteristic.
  • the horizontal axis represents the distance r from the pixel region where the imaging light from the central part of the reference lens is incident
  • the vertical axis represents the gain.
  • the peripheral light amount drop correction unit 122 has the center coordinate of the gain-up characteristic S11 illustrated in FIG. 10 (x0, y0). ) To increase the gain-up characteristic. Further, the peripheral light amount drop correction unit 122 corrects the gain-up characteristic S11 like the gain-up characteristic S12 so that the gain is increased in the peripheral region having the radius r0 from the center (x0, y0).
  • the peripheral light amount drop correction unit 122 corrects the peripheral gain of the imaging signal by using the corrected gain-up characteristic S12. As a result, even when the center of the effective image region fluctuates, the peripheral light amount drop can be corrected well.
  • the peripheral light amount drop correction unit 122 outputs the corrected imaging signal to the image processing unit 150.
  • the effective image area detection unit 130 detects the effective image area in which the imaging light received by the lens 111 is incident on the imaging area of the imaging element 112, and calculates the luminance.
  • the unit 140 calculates the luminance of the effective image region, and the gain adjusting unit 121 adjusts the gain of the effective image region according to the luminance.
  • the binary image generation unit 131 binarizes the imaging signal by threshold processing to generate a binary image, and the string detection unit 133 continuously receives the subject image. Detects a string composed of the selected pixels. At this time, the string detection unit 133 detects at least two combinations of parallel strings of circles that are effective image areas. Then, the area calculation unit 134 calculates the center coordinates and the radius of the circle of the effective image area using the information on the string of the circle detected by the string detection unit 133. In this way, the effective image area detection unit 130 detects the effective image area based on the binary image obtained by binarizing the pixel in which the subject image is received and the pixel in which the subject image is not received. An effective image area can be detected with a relatively small amount of calculation.
  • peripheral light amount drop correction unit 122 corrects the peripheral light amount drop in the effective image region based on the effective image region, the light amount drop occurs even when the position or size of the effective image region in the imaging region changes.
  • the surrounding area can be corrected optimally.
  • the effective image area detection unit 130 is operated only during the first few frames. Also good. That is, the clock supply unit 160 may supply the clock to the effective image region detection unit 130 only for the first several frames, and stop supplying the clock after the period. Thereby, power saving can be achieved.
  • the lens replacement operation may be detected by contact input or the like, and the effective image area detection unit 130 may be operated only when the power is turned on or when the contact is input. . That is, the clock supply unit 160 may supply the clock only when the power is turned on and when the contact is input.
  • the effective image area varies with respect to the imaging area of the image sensor 112 due to individual differences between the lens 111 and the image sensor 112, the size of the image sensor 112, the arrangement correspondence between the lens 111 and the image sensor 112, or the like. In this case, since an effective image area can be specified at any time, good exposure control can be performed.
  • the peripheral light amount drop correction unit 122 may be provided at the front stage of the gain adjustment unit 121.
  • the peripheral light amount drop correction unit 122 receives the imaging signal after photoelectric conversion and the information on the effective image region notified from the effective image region detection unit 130, and after photoelectric conversion based on the information on the effective image region. Corrects the peripheral light loss in the imaging signal. Then, the gain adjusting unit 121 adjusts the gain of the imaging signal after correcting the decrease in the amount of peripheral light, according to the luminance fed back from the luminance calculating unit 140.
  • the effective image area detection unit 130 inputs the imaging signal after gain adjustment and peripheral light amount drop correction, but the present invention is not limited thereto. That is, the effective image area detection unit 130 receives an imaging signal before gain adjustment correction and an image signal before marginal light loss correction, an imaging signal before gain adjustment correction, or an imaging signal before marginal light loss correction, and inputs these imaging signals. Based on this, an effective image area may be detected. Further, the imaging signal used by the effective image area detection unit 130 is any one of the imaging signal before the gain adjustment correction and the peripheral light amount drop correction, the imaging signal before the gain adjustment correction, or the imaging signal before the peripheral light amount drop correction. You may make it provide the selector for switching to.
  • the luminance calculation unit 140 has been described with respect to the case where the imaging signal after gain adjustment and peripheral light amount drop correction is input, but the present invention is not limited to this. That is, the luminance calculation unit 140 receives the imaging signal before the gain adjustment correction and before the peripheral light amount drop correction, the imaging signal before the gain adjustment correction, or the imaging signal before the peripheral light amount correction, and based on these imaging signals. The luminance of the effective image area may be calculated. Furthermore, the imaging signal used by the luminance calculation unit 140 is switched to any of an imaging signal before gain adjustment correction and an image signal before gain correction correction, an imaging signal before the gain adjustment correction, or an imaging signal before the marginal light loss correction. A selector may be provided.
  • the correction unit 120 includes the gain adjustment unit 121 and the peripheral light amount decrease correction unit 122. However, the correction unit 120 includes only one of the gain adjustment unit 121 and the peripheral light amount decrease correction unit 122. You may have.
  • the correction unit 120 includes only the gain adjustment unit 121, the effective image area detection unit 130 and the luminance calculation unit 140 may receive the image signal after gain adjustment.
  • the correction unit 120 includes only the peripheral light amount drop correction unit 122, the effective image region detection unit 130 and the luminance calculation unit 140 may receive the imaging signal after the peripheral light amount drop correction.
  • the string detection unit 133 sequentially scans the imaging area of the imaging element 112 in the horizontal direction (pixel direction) and the vertical direction (line direction), and the imaging signal is “ A set of pixels binarized to “1” may be detected as an effective image area. Even when the shape of the effective image region does not become a circle due to the shape of the lens or the like, optimal exposure control can be performed.
  • each unit other than the imaging unit 110 in the imaging apparatus 100 can be realized by software.
  • an algorithm of the exposure control method according to the present invention is described in a program language, and this program is stored in a memory and executed by an information processing means, thereby realizing the same function as the imaging apparatus according to the present invention. be able to.
  • the imaging apparatus of the present invention is not limited to the above-described embodiment, and can be implemented with various modifications based on the description of the present specification and well-known techniques.
  • the present invention can perform optimum exposure control even when the effective image area where the imaging light received by the lens is incident on the imaging area of the imaging element changes, for example, the subject image received by the lens This is useful in an imaging apparatus or the like in which an invalid image area where no is displayed appears.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Exposure Control For Cameras (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

 撮像素子の撮像領域にレンズにより受光された撮像光が入射されない無効画像領域が現れる場合においても、最適な露光制御を行うことができる撮像装置を開示する。この撮像装置(100)において、有効画像領域検出部(130)は、撮像素子(112)の撮像領域にレンズ(111)により受光された撮像光が入射される有効画像領域を検出し、輝度算出部(140)は、有効画像領域の輝度を算出し、利得調整部(121)は、当該輝度に応じて、有効画像領域のゲインを調整する。また、周辺光量落ち補正部(122)は、有効画像領域に基づいて、有効画像領域の周辺光量落ちを補正する。

Description

撮像装置及び露光制御方法
 本発明は、撮像装置及び露光制御方法に関し、特に、撮像素子の撮像領域にレンズにより受光された撮像光が入射される有効画像領域と、撮像光が入射されない無効画像領域と、が現れる撮像装置において露光を制御する技術に関する。
 従来、魚眼レンズを含む広角レンズカメラ等の撮像装置には、一般に、自動的に露出(露光)量を調整するAE(Automatic Exposure:自動露出)機能が設けられている。露光制御は、視野内の光量を測光し、その測光結果に基づき、レンズの開口度、シャッタ速度及び撮像素子から出力される撮像信号の利得を調整することにより行われる。
 一般的な、露光制御方法としては、まず、撮像素子の画素画面からなる領域(以下「撮像領域」という)をN個のブロックに分割し、ブロック毎にそれぞれのブロックに含まれる画素の平均輝度を求め、N個のブロックの平均輝度をフレームの輝度として求める。そして、この輝度に応じて、シャッタ速度又は利得を調整する。図1は、撮像領域を12個のブロックに分割した例である。
 また、従来、魚眼レンズを含む広角レンズカメラ等の撮像装置には、一般に、周辺光量落ち補正機能が設けられている。周辺光量落ちとは、レンズの特性により、レンズの中心部付近の撮像信号の光量レベルに対して、中心部から距離が離れるに従って撮像信号の光量レベルが暗くなる特性をいう。図2Aに、周辺光量落ちの様子を示す。
 周辺光量落ち補正とは、レンズ周辺の撮像信号の利得を上げる補正をいう。図2Bは、周辺光量落ち補正に用いるゲインアップ特性の一例を示している。図2Bにおいて、横軸は、レンズの中心部からの撮像光が入射される画素領域からの距離rであり、縦軸は、ゲインを示している。図2Bに示すゲインアップ特性を用いることにより、レンズ周辺の撮像信号の光量を上げることができる。
 ところで、広角レンズカメラ等の撮像装置においては、撮像素子の撮像領域に、レンズから光が届き、レンズにより受光された撮像光が入射される領域(以下「有効画像領域」という)と、レンズから光が届かず、レンズにより受光された撮像光が入射されない領域(以下「無効画像領域」という)とが発生する。
 図3は、広角レンズを用いた場合の撮像領域と有効画像領域との位置関係の一例を示す図である。図3において、長方形の領域は撮像領域(撮像素子または撮像面と呼んでもよい)を示し、円形の領域は撮像面での撮像光の受光領域を示す。また、白塗りの領域は有効画像領域を示し、黒塗りの領域は無効画像領域を示している。特に、魚眼レンズを含む広角レンズカメラ等の広い画角を有する撮像装置では、広範囲の視野画像を得るために、撮像光全てが撮像領域(撮像素子)に入射されるように設定されている。そのため、図3からも分かるように、広角レンズを用いた撮像装置では、撮像領域に無効画像領域が存在する。
 一方、図4は、標準レンズ(又は望遠レンズ)を用いた場合の撮像領域と有効画像領域との位置関係の一例を示す図である。図4において、長方形の領域は撮像領域(撮像素子または撮像面と呼んでもよい)、円形の領域は撮像面での撮像光の受光領域を示す。図4に示すように、標準レンズ(又は望遠レンズ)の場合には、撮像面全体に撮像光が入射されるため、撮像領域に無効画像領域が存在しない。
 このように、レンズの画角が広い広角レンズ等を用いた場合と、広角レンズに比べ画角が狭い標準レンズ等を用いた場合とでは、有効画像領域が異なる。
 特許文献1には、装着されたレンズが、画角が広い魚眼レンズか否か判定し、装着されたレンズが魚眼レンズの場合には、撮像領域の中央領域を有効画像領域として利用して輝度を算出する方法が記載されている。
 また、特許文献1には、図3に示すように、有効画像領域が撮像領域の上辺及び下辺に接し、かつ、撮像領域の中央に存在する場合の輝度算出方法が記載されている。
特開昭63-154921号公報
 しかしながら、広角レンズカメラ等の撮像装置においては、レンズ及び撮像素子の個体差、或いは、撮像素子のサイズ、レンズと撮像素子との配置対応関係等により、撮像素子の撮像領域に対し有効画像領域が変動する場合がある。
 図5A、図5B、図5C、図5Dは、撮像領域に対する無効画像領域の関係の例を示した図である。
 図5A、図5Bに示すように、有効画像領域が、撮像領域の上辺及び下辺に接していないような場合には、特許文献1に記載の輝度算出方法を適用しただけでは、無効画像領域における輝度も算出結果に含まれてしまう。そのため、無効画像領域が大きい場合に、良好な輝度調整を行うことが難しい。
 また、図5A、図5Bに示すように、有効画像領域の中心が撮像領域の中心に一致している場合においても、有効画像領域が、撮像領域の上辺及び下辺に接しておらず、有効画像領域の大きさが変わる場合には、単に周辺光量落ち補正を行っても、不整合が生じ、良好に補正できない場合がある。
 また、図5C、図5Dに示すように、有効画像領域が、撮像領域の上辺及び下辺に接していても、有効画像領域の中心と撮像領域の中心とが一致しないような場合には、単に周辺光量落ち補正を行っても、不整合が生じ、良好に補正できない場合がある。
 このように、特許文献1に記載の方法では、不特定のレンズと不特定の撮像素子との画角に対応するのが困難である。
 本発明の目的は、撮像素子の撮像領域にレンズにより受光された撮像光が入射されない無効画像領域が現れる場合においても、最適な露光制御を行うことができる撮像装置及び露光制御方法を提供することである。
 本発明の撮像装置の一つの態様は、撮像素子の撮像領域に、レンズにより受光された撮像光が入射される有効画像領域と前記撮像光が入射されない無効画像領域がある撮像装置であって、前記有効画像領域を検出する検出手段と、検出した前記有効画像領域の輝度を算出する輝度算出手段と、算出した前記輝度に応じて、前記有効画像領域のゲインを調整する利得調整手段と、を具備する構成を採る。
 本発明の撮像装置の一つの態様は、広角レンズと、撮像領域が、前記広角レンズにより受光された撮像光が入射される有効画像領域と前記撮像光が入射されない無効画像領域からなる撮像素子と、前記広角レンズにより受光された撮像光が入射された前記有効画像領域を検出する検出手段と、検出した前記有効画像領域の輝度を算出する輝度算出手段と、算出した前記輝度に応じて、前記有効画像領域のゲインを調整する利得調整手段と、を具備する構成を採る。
 本発明の露光制御方法の一つの態様は、撮像素子の撮像領域に、レンズにより受光された撮像光が入射される有効画像領域と前記撮像光が入射されない無効画像領域がある撮像装置に用いられ、前記有効画像領域を検出する検出ステップと、検出した前記有効画像領域の輝度を算出する輝度算出ステップと、算出した前記輝度に応じて、前記有効画像領域のゲインを調整する利得調整ステップと、を含むようにした。
 本発明によれば、撮像素子の撮像領域にレンズにより受光された撮像光が入射されない無効画像領域が現れる場合においても、最適な露光制御を行うことができる。
撮像領域における輝度の算出方法を説明するための図 図2Aは、周辺光量落ちの様子を示す図であり、図2Bは、周辺光量落ち補正に用いるゲインアップ特性を示す図 広角レンズを用いた場合の撮像領域と有効画像領域との位置関係の一例を示す図 標準レンズを用いた場合の撮像領域と有効画像領域との位置関係の一例を示す図 広角レンズを用いた場合の撮像領域と有効画像領域との位置関係の別の例を示す図 本発明の実施の形態に係る撮像装置の構成を示すブロック図 有効画像領域検出部の内部構成の一例を示すブロック図 弦検出部において検出された円の弦の一例を示す図 有効画像領域の円の中心及び半径の算出方法を説明するための図 ゲインアップ特性の補正方法を説明するための図
 以下、本発明の実施の形態について図面を参照して詳細に説明する。
 (実施の形態)
 図6に、本発明の実施の形態に係る撮像装置の構成を示す。撮像装置100は、大きく分けて、撮像部110と、補正部120と、有効画像領域検出部130と、輝度算出部140と、画像処理部150とを有する。
 撮像部110は、レンズ111及び撮像素子112を有する。なお、撮像部110の構成は、公知の構成を用いればよい。例えば、撮像部110は、入力光を調整するために、絞り制御機構、シャッタ速度制御機構及び焦点制御機構などを有する。ここで、撮像部110は、後述の輝度算出部140からフィードバックされる輝度に応じて、絞り制御等を行う。なお、本発明においては、撮像部110内でのこれら制御機構のための構成及び方法は特に限定されるものではなく、従来提案されている種々の構成及び方法を適用してよい。
 レンズ111は、被写体像(図示せぬ)を受光し、受光した撮像光を撮像素子112の撮像領域上に撮像画像として受光させる。なお、レンズ111は、取り外し/装着可能な交換レンズであってもよい。
 撮像素子112は、撮像画像を光電変換する。撮像素子112としては、CCD(Charge Coupled Device)やCMOS(Complementary Metal-oxide Semiconductor)センサ等を用いることができる。撮像素子112は、光電変換後の撮像信号を補正部120に出力する。
 補正部120は、利得調整部121及び周辺光量落ち補正部122を有する。
 利得調整部121は、輝度算出部140からフィードバックされる輝度に応じて、光電変換後の撮像信号のゲインを調整する。これにより、撮像領域の全体の露光が一括制御される。ゲインの調整方法については、後述する。利得調整部121は、ゲイン調整後の撮像信号を周辺光量落ち補正部122に出力する。
 周辺光量落ち補正部122は、ゲイン調整後の撮像信号及び後述の有効画像領域検出部130から通知される有効画像領域の情報を入力とし、有効画像領域の情報に基づいて、ゲイン調整後の撮像信号の周辺光量落ちを補正する。周辺光量落ち補正の方法については、後述する。周辺光量落ち補正部122は、周辺光量落ち補正後の撮像信号を有効画像領域検出部130に出力する。
 有効画像領域検出部130は、撮像信号を入力とし、撮像領域のうち有効画像領域を検出する。具体的には、有効画像領域検出部130は、有効画像領域が円と仮定して、有効画像領域の円の中心座標及び半径を算出する。なお、有効画像領域の円の中心座標及び半径の算出方法については、後述する。有効画像領域検出部130は、算出した有効画像領域の円の中心座標及び半径の情報を、輝度算出部140及び周辺光量落ち補正部122に出力する。
 画像処理部150は、撮像信号に対し、記録解像度、フレームレート、画質の調整等の画像処理を含むその他の一般的なカメラ信号処理(γ補正、Knee補正、ホワイトバランス等)を行う。なお、画像処理部150を設けず、補正部120がこれら処理を行うようにしてもよい。
 クロック供給部160は、撮像装置100の各部にクロックを供給したり、各部へのクロックの提供を停止したりして、各部を制御する。例えば、クロック供給部160が、撮像部110へのクロックの供給を停止することにより、撮像部110の撮像を停止させることができる。また、クロック供給部160が、撮像部110に低レートのクロックを供給することにより、撮像画像のフレームレート或いは解像度を下げることができる。
 図7は、有効画像領域検出部130の内部構成の一例を示すブロック図である。
 2値画像生成部131は、撮像信号を閾値処理により2値化して、2値画像を生成する。これにより、被写体像が受光された画素では「1」に、それ以外の画素では「0」に2値化された2次元情報(2値画像)のフレームが生成される。
 ノイズ除去部132は、2値画像のノイズを除去する。ノイズ除去方法としては、例えば、メディアンフィルタを用いた膨張収縮処理により行う。
 弦検出部133は、ノイズ除去後の2値画像から有効画像領域を形成する円の弦を検出する。円の弦の検出方法としては、例えば、有効画像領域に含まれる画素の撮像信号が「1」に2値化されることを利用した以下のような方法#1又は方法#2を用いることができる。
 [円の弦の検出方法#1]
 弦検出部133は、水平方向(画素方向)及び垂直方向(ライン方向)に、撮像素子112の撮像領域を順次走査する。そして、弦検出部133は、(1)撮像領域の上部、(2)撮像領域の下部、(3)撮像領域の左部、(4)撮像領域の右部において、所定画素数以上又は所定ライン数以上連続した「1」の弦を検出する。すなわち、弦検出部133は、撮像光を閾値処理により、被写体像が受光された画素と被写体像が受光されない画素とに2値化して得た2値画像のうち、連続して被写体像が受光された画素から構成される弦を検出する。
 なお、図8A及び図8Bは、弦検出部133が、20画素及び20ライン以上連続した「1」の弦を検出した例である。図8Aは、弦の画素数及びライン数が20の例であり、図8Bは、弦の画素数が25、30であり、ライン数が20の例である。
 [円の弦の検出方法#2]
 弦検出部133は、所定の画素列及び所定のラインにおける撮像素子112の画素を走査し、円の弦を検出する。そして、弦検出部133は、検出した弦のうち、「1」が連続する画素数又はライン数が所定の閾値以上の弦を、水平方向(画素方向)及び垂直方向(ライン方向)それぞれ少なくても2個抽出する。
 このように、本実施の形態では、弦検出部133は、有効画像領域が円であると仮定して、所定の閾値以上の長さの円の弦であって、平行な弦の組み合わせを、少なくとも2組み検出し、検出時の以下の座標を保持する。
 ・該当弦の画素及びラインの座標
 ・該当弦において「1」が開始する画素及びラインの座標
 ・該当弦において「1」が連続する画素数及びライン数
 このようにして、弦検出部133は、撮像領域の水平方向(画素方向)及び垂直方向(ライン方向)のそれぞれに、所定画素数及び所定ライン数以上「1」が連続した弦を検出し、上記円の弦の座標の情報を保持する。
 弦検出部133は、検出した円の弦の座標の情報を領域算出部134に出力する。
 領域算出部134は、弦検出部133において検出された円の弦の情報を用いて、有効画像領域の円の中心座標及び半径を算出する。図9を用いて、円の中心座標及び半径の算出方法について説明する。
 図9は、弦検出部133において検出された4つの円の弦の座標を示した図である。図9に示すように、弦検出部133において、撮像領域の水平方向(画素方向)及び垂直方向(ライン方向)のそれぞれに、弦の座標がそれぞれ以下のように検出された例である。
 水平方向の弦:(x1,y1)、(x1+w1,y1)
 水平方向の弦:(x2,y2)、(x2+w2,y2)
 垂直方向の弦:(x3,y3)、(x3+h1,y3)
 垂直方向の弦:(x4,y4)、(x4+h2,y4)
 領域算出部134は、上記座標、式(1-1)及び式(1-2)により、中心座標(x0,y0)を算出する。
Figure JPOXMLDOC01-appb-M000001
 さらに、領域算出部134は、式(2)を用いて、円の半径r0を算出する。具体的には、領域算出部134は、式(2)の(x,y)に、円の弦の上記8点の座標をそれぞれ代入して8個の半径rを算出し、8個の半径rの平均値を、有効画像領域の半径とする。
Figure JPOXMLDOC01-appb-M000002
 なお、走査において誤差が生じる可能性もあるため、領域算出部134は、複数フレームの平均をとり、円の中心座標及び半径の算出精度を上げるようにしてもよい。
 また、領域算出部134は、異なる2点の組み合わせから(x0,y0)を算出し、(x0,y0)のばらつきに応じて信頼性を判定し、ばらつきが大きい場合には平均演算には含めないという処理を行ってもよい。
 領域算出部134は、算出した有効画像領域の円の中心座標及び半径の情報を、有効画像領域の情報として、輝度算出部140及び周辺光量落ち補正部122に出力する。
 輝度算出部140は、有効画像領域検出部130において算出された有効画像領域の輝度を算出する。例えば、輝度算出部140は、有効画面領域を複数のブロックに分割し、ブロックの平均輝度を求め、フレームの平均輝度とする。輝度算出部140は、算出した輝度の情報を撮像部110に出力する。撮像部110では、輝度に応じた絞り制御及びシャッタ速度制御が行われる。また、輝度算出部140は、算出した輝度を利得調整部121に出力する。
 利得調整部121は、輝度算出部140から通知される輝度に応じて、撮像素子112から出力される撮像信号のゲインを調整する。ここで、輝度算出部140から通知される輝度は、有効画像領域内の輝度であるため、当該輝度に応じて、撮像画像の全体のゲインを調整することにより、有効画像領域内の撮像信号の露光が良好に調整されるようになる。利得調整部121は、ゲイン調整後の撮像信号を周辺光量落ち補正部122に出力する。
 周辺光量落ち補正部122は、ゲイン調整後の撮像信号及び有効画像領域の情報を入力とし、有効画像領域の情報に基づいて、ゲイン調整後の撮像信号の周辺光量落ちを補正する。具体的には、周辺光量落ち補正部122は、有効画像領域の円の中心座量及び半径に基づいて、内部に保持しているゲインアップ特性を補正する。図10を用いて、ゲインアップ特性の補正方法について説明する。
 図10において、実線(S11)は周辺光量落ち補正部122が内部に保持する基準のゲインアップ特性を示し、破線(S12)は補正後のゲインアップ特性を示している。なお、図10において、横軸は、基準となるレンズの中心部から入射されたからの撮像光が入射される画素領域からの距離rであり、縦軸は、ゲインを示している。
 周辺光量落ち補正部122は、例えば、有効画面領域の円の中心座標が(x0,y0)であり、半径がr0の場合、図10に示したゲインアップ特性S11の中心座標が(x0,y0)になるよう、ゲインアップ特性をシフトさせる。更に、周辺光量落ち補正部122は、中心(x0,y0)から半径r0の周辺領域でゲインがアップされるよう、ゲインアップ特性S11をゲインアップ特性S12のように補正する。
 そして、周辺光量落ち補正部122は、補正後のゲインアップ特性S12を用いて、撮像信号の周辺のゲインを補正する。これにより、有効画像領域の中心が変動するような場合においても、周辺光量落ちを良好に補正することができるようになる。周辺光量落ち補正部122は、補正後の撮像信号を画像処理部150に出力する。
 以上説明したように、本実施の形態によれば、有効画像領域検出部130は、撮像素子112の撮像領域にレンズ111により受光された撮像光が入射される有効画像領域を検出し、輝度算出部140は、有効画像領域の輝度を算出し、利得調整部121は、当該輝度に応じて、有効画像領域のゲインを調整する。これにより、撮像素子112の撮像領域にレンズ111により受光された撮像光が入射される有効画像領域が変動する場合においても、最適な露光制御を行うことができる。
 また、有効画像領域検出部130において、2値画像生成部131は、撮像信号を閾値処理により2値化して、2値画像を生成し、弦検出部133は、連続して被写体像が受光された画素から構成される弦を検出する。このとき、弦検出部133は、有効画像領域である円の平行な弦の組み合わせを、少なくとも2組み検出する。そして、領域算出部134は、弦検出部133において検出された円の弦の情報を用いて、有効画像領域の円の中心座標及び半径を算出する。このようにして、有効画像領域検出部130は、被写体像が受光された画素と被写体像が受光されない画素とに2値化して得た2値画像に基づいて、有効画像領域を検出するため、比較的少ない演算量で、有効画像領域を検出することができる。
 また、周辺光量落ち補正部122は、有効画像領域に基づいて、有効画像領域の周辺光量落ちを補正するので、撮像領域における有効画像領域の位置又は大きさが変動した場合においても、光量落ちしている周辺を最適に補正することができる。
 なお、電源切断(OFF)時にのみレンズ111を交換し、電源投入(ON)後はレンズ111を交換しない場合には、最初の数フレームの期間のみ有効画像領域検出部130を動作させるようにしてもよい。すなわち、クロック供給部160は、最初の数フレームの期間のみ有効画像領域検出部130にクロックを供給し、当該期間経過後にはクロックの供給を停止するようにしてもよい。これにより、省電力化を図ることができる。
 また、電源投入後にレンズ111を交換するような場合には、レンズ交換動作を接点入力等により検知し、電源投入時及び接点入力時にのみ、有効画像領域検出部130を動作させるようにしてもよい。すなわち、電源投入時及び接点入力時にのみ、クロック供給部160がクロックを供給するようにしてもよい。これにより、レンズ111及び撮像素子112の個体差、或いは、撮像素子112のサイズ、レンズ111と撮像素子112との配置対応関係等により、撮像素子112の撮像領域に対し有効画像領域が変動する場合においても、有効画像領域を随時特定することができるので、良好な露光制御を行うことができる。
 なお、以上の説明は、本発明の好適な実施の形態の例証であり、本発明の範囲はこれに限定されることはない。例えば、周辺光量落ち補正部122が、利得調整部121の後段に設けられる場合について説明したが、周辺光量落ち補正部122が、利得調整部121の前段に設けられるようにしてもよい。この場合、周辺光量落ち補正部122は、光電変換後の撮像信号及び有効画像領域検出部130から通知される有効画像領域の情報を入力とし、有効画像領域の情報に基づいて、光電変換後の撮像信号の周辺光量落ちを補正する。そして、利得調整部121は、輝度算出部140からフィードバックされる輝度に応じて、周辺光量落ちを補正後の撮像信号のゲインを調整する。
 また、以上の説明では、有効画像領域検出部130が、利得調整後及び周辺光量落ち補正後の撮像信号を入力とする場合について説明したが、これに限られない。すなわち、有効画像領域検出部130は、利得調整補正前及び周辺光量落ち補正前の撮像信号、利得調整補正前の撮像信号、又は、周辺光量落ち補正前の撮像信号を入力とし、これら撮像信号に基づいて、有効画像領域を検出するようにしてもよい。更には、有効画像領域検出部130が用いる撮像信号を、利得調整補正前及び周辺光量落ち補正前の撮像信号、利得調整補正前の撮像信号、又は、周辺光量落ち補正前の撮像信号のいずれかに切り替えるためのセレクタを設けるようにしてもよい。
 また、以上の説明では、輝度算出部140が、利得調整後及び周辺光量落ち補正後の撮像信号を入力とする場合について説明したが、これに限られない。すなわち、輝度算出部140は、利得調整補正前及び周辺光量落ち補正前の撮像信号、利得調整補正前の撮像信号、又は、周辺光量落ち補正前の撮像信号を入力とし、これら撮像信号に基づいて、有効画像領域の輝度を算出するようにしてもよい。更には、輝度算出部140が用いる撮像信号を、利得調整補正前及び周辺光量落ち補正前の撮像信号、利得調整補正前の撮像信号、又は、周辺光量落ち補正前の撮像信号のいずれかに切り替えるためのセレクタを設けるようにしてもよい。
 また、以上の説明では、補正部120が、利得調整部121及び周辺光量落ち補正部122を有する場合について説明したが、補正部120が、利得調整部121又は周辺光量落ち補正部122の一方のみを有していてもよい。そして、補正部120が、利得調整部121のみを有する場合には、有効画像領域検出部130及び輝度算出部140は、利得調整後の撮像信号を入力とすればよい。また、補正部120が、周辺光量落ち補正部122のみを有する場合には、有効画像領域検出部130及び輝度算出部140は、周辺光量落ち補正後の撮像信号を入力とすればよい。
 また、有効画像領域が円でない場合においても、例えば、弦検出部133が、水平方向(画素方向)及び垂直方向(ライン方向)に、撮像素子112の撮像領域を順次走査し、撮像信号が「1」に2値化された画素の集合を有効画像領域として検出するようにしてもよい。レンズの形状等により、有効画像領域の形状が円とならないような場合においても、最適な露光制御を行うことができる。
 また、撮像装置100における撮像部110を除いた各部の処理は、ソフトウェアで実現することも可能である。例えば、本発明に係る露光制御方法のアルゴリズムをプログラム言語によって記述し、このプログラムをメモリに記憶しておいて情報処理手段によって実行させることにより、本発明に係る撮像装置と同様の機能を実現することができる。このように、本発明の撮像装置は、上記実施の形態に限定されず、本明細書の記載、並びに周知の技術に基づいて、種々変更して実施することが可能である。
 2009年11月26日出願の特願2009-269117に含まれる明細書、図面及び要約書の開示内容は、すべて本願に援用される。
 本発明は、撮像素子の撮像領域にレンズにより受光された撮像光が入射される有効画像領域が変動する場合においても、最適な露光制御を行うことができ、例えば、レンズにより受光された被写体像が表示されない無効画像領域が現れる撮像装置等において有用である。
 100 撮像装置
 110 撮像部
 111 レンズ
 112 撮像素子
 120 補正部
 121 利得調整部
 122 周辺光量落ち補正部
 130 有効画像領域検出部
 131 2値画像生成部
 132 ノイズ除去部
 133 弦検出部
 134 領域算出部
 140 輝度算出部
 150 画像処理部

Claims (8)

  1.  撮像素子の撮像領域に、レンズにより受光された撮像光が入射される有効画像領域と前記撮像光が入射されない無効画像領域がある撮像装置であって、
     前記有効画像領域を検出する検出手段と、
     検出した前記有効画像領域の輝度を算出する輝度算出手段と、
     算出した前記輝度に応じて、前記有効画像領域のゲインを調整する利得調整手段と、
     を具備する撮像装置。
  2.  前記有効画像領域に基づいて、前記レンズの周辺光量落ちを補正する補正手段、を更に具備する、
     請求項1に記載の撮像装置。
  3.  前記検出手段は、
     前記有効画像領域である円の平行な弦の組み合わせを、少なくとも2組み検出し、前記組み合わせに含まれる弦の座標に基づいて、前記有効画像領域の中心及び半径を算出する、
     請求項1または請求項2に記載の撮像装置。
  4.  前記検出手段は、
     前記撮像光を閾値処理により、被写体像が受光された画素と被写体像が受光されない画素とに2値化して得た2値画像に基づいて、前記有効画像領域の中心及び半径を算出する、
     請求項3に記載の撮像装置。
  5.  前記レンズは、画角が広い広角レンズである、
     請求項1ないし請求項4のいずれかに記載の撮像装置。
  6.  広角レンズと、
     撮像領域が、前記広角レンズにより受光された撮像光が入射される有効画像領域と前記撮像光が入射されない無効画像領域からなる撮像素子と、
     前記広角レンズにより受光された撮像光が入射された前記有効画像領域を検出する検出手段と、
     検出した前記有効画像領域の輝度を算出する輝度算出手段と、
     算出した前記輝度に応じて、前記有効画像領域のゲインを調整する利得調整手段と、
     を具備する撮像装置。
  7.  前記広角レンズは、魚眼レンズである請求項6記載の撮像装置。
  8.  撮像素子の撮像領域に、レンズにより受光された撮像光が入射される有効画像領域と前記撮像光が入射されない無効画像領域がある撮像装置に用いられ、
     前記有効画像領域を検出する検出ステップと、
     検出した前記有効画像領域の輝度を算出する輝度算出ステップと、
     算出した前記輝度に応じて、前記有効画像領域のゲインを調整する利得調整ステップと、
     を含む露光制御方法。
PCT/JP2010/006540 2009-11-26 2010-11-08 撮像装置及び露光制御方法 WO2011064949A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009269117A JP2011114581A (ja) 2009-11-26 2009-11-26 撮像装置及び撮像方法
JP2009-269117 2009-11-26

Publications (1)

Publication Number Publication Date
WO2011064949A1 true WO2011064949A1 (ja) 2011-06-03

Family

ID=44066064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006540 WO2011064949A1 (ja) 2009-11-26 2010-11-08 撮像装置及び露光制御方法

Country Status (2)

Country Link
JP (1) JP2011114581A (ja)
WO (1) WO2011064949A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013232738A (ja) * 2012-04-27 2013-11-14 Dainippon Printing Co Ltd 画像処理装置、画像処理方法、および、画像処理用プログラム
JP2018004663A (ja) * 2016-06-27 2018-01-11 株式会社シグマ 撮像装置
JP6904560B2 (ja) * 2017-08-01 2021-07-21 株式会社シグマ 信号処理装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003333582A (ja) * 2002-05-14 2003-11-21 Canon Inc 全方位画像撮像装置及び全方位画像撮像装置の制御方法及びプログラム及び記憶媒体
JP2007134903A (ja) * 2005-11-09 2007-05-31 Sharp Corp 周辺光量補正装置、周辺光量補正方法、電子情報機器、制御プログラムおよび可読記録媒体
JP2007300360A (ja) * 2006-04-28 2007-11-15 Sony Corp シェーディング補正回路、シェーディング補正方法およびカメラシステム
JP2008160561A (ja) * 2006-12-25 2008-07-10 Auto Network Gijutsu Kenkyusho:Kk 撮像システム及び撮像装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003333582A (ja) * 2002-05-14 2003-11-21 Canon Inc 全方位画像撮像装置及び全方位画像撮像装置の制御方法及びプログラム及び記憶媒体
JP2007134903A (ja) * 2005-11-09 2007-05-31 Sharp Corp 周辺光量補正装置、周辺光量補正方法、電子情報機器、制御プログラムおよび可読記録媒体
JP2007300360A (ja) * 2006-04-28 2007-11-15 Sony Corp シェーディング補正回路、シェーディング補正方法およびカメラシステム
JP2008160561A (ja) * 2006-12-25 2008-07-10 Auto Network Gijutsu Kenkyusho:Kk 撮像システム及び撮像装置

Also Published As

Publication number Publication date
JP2011114581A (ja) 2011-06-09

Similar Documents

Publication Publication Date Title
US8547451B2 (en) Apparatus and method for obtaining high dynamic range image
US8462234B2 (en) Image pickup apparatus and dark current correction method therefor
US7830428B2 (en) Method, apparatus and system providing green-green imbalance compensation
US20100295932A1 (en) Image obtaining apparatus, image synthesis method and microscope system
JP2007110486A (ja) 撮像装置
JP6351231B2 (ja) 撮像装置、撮像システム、撮像装置の制御方法、プログラム、および、記憶媒体
JP2006013988A (ja) イメージセンサ
US20110149095A1 (en) Image pickup apparatus and method of picking up image
JP2006245784A (ja) 固体撮像装置及びその駆動方法並びに撮像システム
JP5572700B2 (ja) 撮像装置及び撮像方法
JP2003304548A5 (ja)
JP4679174B2 (ja) 画像処理装置およびこの画像処理装置を備えたデジタルカメラ
WO2011064949A1 (ja) 撮像装置及び露光制御方法
JP2007174032A (ja) 撮像装置
JP4523629B2 (ja) 撮像装置
JP2008230464A (ja) 車載カメラ用自動露出装置
JP2007189298A (ja) 画像処理装置、画像処理方法および撮像装置
JP2011101158A (ja) 撮像装置
JP2017098790A (ja) 撮像装置及びその制御方法、プログラム、記憶媒体
JP2010056817A (ja) 撮像装置
JP6659163B2 (ja) フラッシュバンド判定装置、その制御方法、およびプログラム
JP5316098B2 (ja) 撮像装置、撮像方法、および、プログラム
JP2010273147A (ja) 撮像信号特定状態検出装置、撮像装置、撮像信号特定状態検出方法、プログラムおよび集積回路
JP2006157344A (ja) 撮像装置
JP2003179809A (ja) カメラ装置及びその信号処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10832805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10832805

Country of ref document: EP

Kind code of ref document: A1