WO2011064879A1 - 送電装置および電力伝送装置 - Google Patents

送電装置および電力伝送装置 Download PDF

Info

Publication number
WO2011064879A1
WO2011064879A1 PCT/JP2009/070026 JP2009070026W WO2011064879A1 WO 2011064879 A1 WO2011064879 A1 WO 2011064879A1 JP 2009070026 W JP2009070026 W JP 2009070026W WO 2011064879 A1 WO2011064879 A1 WO 2011064879A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
coil
resonance
transmission
power transmission
Prior art date
Application number
PCT/JP2009/070026
Other languages
English (en)
French (fr)
Inventor
昭嘉 内田
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2011543056A priority Critical patent/JPWO2011064879A1/ja
Priority to CN200980162477.7A priority patent/CN102668324B/zh
Priority to PCT/JP2009/070026 priority patent/WO2011064879A1/ja
Publication of WO2011064879A1 publication Critical patent/WO2011064879A1/ja
Priority to US13/444,581 priority patent/US20120194000A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0044Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction specially adapted for holding portable devices containing batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • This case relates to a power transmission device and a power transmission device that supply power wirelessly.
  • a power transmission resonance coil having a resonance frequency fr1 is provided in the power transmission device
  • a power reception resonance coil having a resonance frequency fr2 is provided in the power reception device.
  • wireless power supply using magnetic field resonance has a problem in that transmission power decreases as the distance between the power transmission resonance coil of the power transmission device and the power reception resonance coil of the power reception device approaches.
  • the present invention has been made in view of such points, and an object thereof is to provide a power transmission device and a power transmission device that increase the transmission power as the distance between the power transmission coil of the power transmission device and the power reception resonance coil of the power reception device is shorter. To do.
  • the power transmission device includes a power transmission coil having a resonance point different from that of the power reception resonance coil that transmits power supplied from a power supply unit as magnetic field energy to a power reception resonance coil that resonates at a resonance frequency causing magnetic field resonance.
  • the power transmission device includes a power transmission coil having a resonance point different from that of the power reception resonance coil that transmits power supplied from a power source as magnetic field energy to a power reception resonance coil that resonates at a resonance frequency that causes magnetic field resonance. And a power reception device having the power reception resonance coil that receives the magnetic field energy transmitted from the power transmission coil at the resonance frequency.
  • the transmission power can be increased as the distance between the power transmission coil and the power reception resonance coil is shorter.
  • FIG. 5 is a diagram showing a magnetic resonance system.
  • the magnetic field resonance system includes a power transmission device 100 including a power supply unit 101, a power supply coil 102, and a power transmission resonance coil 103, and a power reception including a power reception resonance coil 111, a power extraction coil 112, and a load 113.
  • Device 110 the power transmission device 100 including a power supply unit 101, a power supply coil 102, and a power transmission resonance coil 103, and a power reception including a power reception resonance coil 111, a power extraction coil 112, and a load 113.
  • Device 110 includes a power transmission device 100 including a power supply unit 101, a power supply coil 102, and a power transmission resonance coil 103, and a power reception including a power reception resonance coil 111, a power extraction coil 112, and a load 113.
  • the power supply unit 101 supplies power to the power supply coil 102.
  • the power supply unit 101 is a Colpitts oscillation circuit, for example, and oscillates at the resonance frequency of the power transmission resonance coil 103 and the power reception resonance coil 111.
  • a power supply unit 101 is connected to the power supply coil 102.
  • the power supply coil 102 supplies power from the power supply unit 101 to the power transmission resonance coil 103 by electromagnetic induction.
  • the power transmission resonance coil 103 is, for example, a helical coil having an inductance L whose both ends are released.
  • the power transmission resonance coil 103 has a capacitance due to stray capacitance. Thereby, the power transmission resonance coil 103 becomes an LC resonance circuit. In FIG. 5, a capacitance due to stray capacitance is assumed, but a capacitor element may be inserted into the power transmission resonance coil 103.
  • the power reception resonance coil 111 is, for example, a helical coil having an inductance L with both ends open. Similarly to the power transmission resonance coil 103, the power reception resonance coil 111 has a capacitance due to stray capacitance, or a capacitor element may be inserted. Thereby, the power receiving resonance coil 111 becomes an LC resonance circuit.
  • the resonance frequencies of the power transmission resonance coil 103 and the power reception resonance coil 111 are set to be the same. Thereby, electric power is transmitted from the power transmission resonance coil 103 to the power reception resonance coil 111 as magnetic field energy using magnetic field resonance.
  • the power receiving resonance coil 111 supplies power to the power extraction coil 112 by electromagnetic induction.
  • a load 113 such as a battery is connected to the power extraction coil 112, and the received power can be charged.
  • FIG. 6 is a diagram showing an equivalent circuit of the power transmission resonance coil and the reception resonance coil.
  • the power transmission resonance coil 103 and the power reception resonance coil 111 have the capacitance L due to the inductance L and the stray capacitance.
  • a capacitor element may be connected to the power transmission resonance coil 103 and the power reception resonance coil 111.
  • the equivalent circuit of the power transmission resonance coil 103 and the power reception resonance coil 111 becomes an LC resonance circuit as shown in FIG. 6, and the resonance frequency f is expressed by the following equation (1).
  • FIG. 7 is a diagram showing the relationship between the transmission frequency and the transmission power when the distance between the power transmission resonance coil and the power reception resonance coil is optimal.
  • the horizontal axis indicates the frequency
  • the vertical axis indicates the transmission power (dB).
  • the transmission frequency is the resonance frequency of the power transmission resonance coil 103 and the power reception resonance coil 111.
  • the transmission power is as shown by a waveform W101 in FIG. That is, the transmission power changes according to the change of the transmission frequency, and the transmission power becomes maximum when the transmission frequency is in the vicinity of the resonance frequency f.
  • the shape near the vertex of the waveform W101 is slightly distorted. This depends on various conditions other than the resonance frequency in the power transmission resonance coil 103 and the power reception resonance coil 111. For this reason, in FIG. 7, when the transmission frequency is the resonance frequency f, the transmission power is not maximized. However, ideally, the transmission power may be considered to be maximum when the transmission frequency is the resonance frequency f as indicated by the dotted line.
  • FIG. 8 is a diagram showing the relationship between the transmission frequency and the transmission power when the distance between the power transmission resonance coil and the power reception resonance coil is shorter than the optimum distance.
  • the horizontal axis indicates the frequency
  • the vertical axis indicates the transmission power (dB).
  • FIG. 8 also shows a waveform W101 at the optimum distance shown in FIG.
  • the transmission power is as shown by a waveform W102 in FIG. That is, the magnitude of the transmission power in the waveform W102 of FIG. 8 has two peaks, which is a so-called split state. Accordingly, when the distance between the power transmission resonance coil 103 and the power reception resonance coil 111 is shorter than the optimum distance, the transmission power is reduced when the transmission frequency is the resonance frequency f.
  • FIG. 9 is a diagram showing the relationship between the distance between the power transmission resonance coil and the power reception resonance coil and the transmission power.
  • the horizontal axis indicates the distance between the power transmission resonance coil 103 and the power reception resonance coil 111
  • the vertical axis indicates the normalized transmission power (%).
  • the transmission frequency is constant at the resonance frequency f, and the supply of power to the power transmission resonance coil 103 is constant at 100%.
  • the transmission power changes according to a change in coil distance, which is a distance between the power transmission resonance coil 103 and the power reception resonance coil 111. That is, the transmission power becomes maximum when the coil distance is the optimum distance d0. That is, the coil distance when the transmission power is maximum is the optimum distance d0 at the resonance frequency f between the power transmission resonance coil 103 and the power reception resonance coil 111.
  • the transmission power decreases.
  • the transmission power of the power decreases.
  • FIG. 1 is a diagram showing a power transmission device according to the present embodiment.
  • the power transmission device includes a power transmission device 10 including a power supply unit 11 and a power transmission coil 12, and a power reception device 20 including a power reception resonance coil 21, a power extraction coil 22, and a load 23.
  • the power receiving resonance coil 21, the power extraction coil 22, and the load 23 of the power reception device 20 are the same as the power reception resonance coil 111, the power extraction coil 112, and the load 113 of the power reception device 110 illustrated in FIG. The detailed explanation is omitted.
  • the power supply unit 11 supplies power to the power transmission coil 12.
  • the power supply unit 11 is a Colpitts oscillation circuit, for example, and oscillates at the resonance frequency of the power reception resonance coil 21.
  • a power supply unit 11 is connected to the power transmission coil 12.
  • the power transmission coil 12 supplies the power of the power supply unit 11 to the power receiving resonance coil 21 by magnetic field energy.
  • the power receiving resonance coil 21 is an LC resonance circuit due to stray capacitance or insertion of a capacitor element. Therefore, for example, if the resonance frequency of the power reception resonance coil 21 is set to be the same as that of the power transmission resonance coil 103 of the power transmission device 100 illustrated in FIG. 5, magnetic resonance occurs and power is received from the power transmission device 100 with high transmission efficiency. can do.
  • the power transmission coil 12 ideally has only an inductor component and is not an LC resonance circuit.
  • the power transmission coil 12 actually has a very small stray capacitance, and the capacitance is included by the connected power supply unit 11, it is an LC resonance circuit.
  • the power transmission coil 12 has a resonance frequency different from that of the power reception resonance coil 21 that actively uses the stray capacitance or has a capacitor element inserted therein to form an LC resonance circuit.
  • the power transmission coil 12 and the power reception resonance coil 21 transmit and receive electric power without using the magnetic field resonance shown in FIG.
  • the resonance circuit that exists within the optimum distance d0 (region a shown in FIG. 9) from the power transmission coil 12 and resonates with the magnetic field energy transmitted from the power transmission coil 12.
  • the resonance circuit is only the power reception resonance coil 21.
  • the resonance circuit is designed so that there is one resonance circuit within a range within the distance between the solid line and the broken line shown in FIG. Is desirable.
  • the optimum range is a range in which the transmission power is larger when there is one resonance coil than when there are two resonance coils.
  • the number of resonance coils referred to here is the number of resonance circuits that resonate with the magnetic field energy of one frequency sent from the transmission coil.
  • FIG. 2 is a diagram showing the relationship between the distance between the power transmission coil and the power reception resonance coil and the transmission power.
  • the horizontal axis indicates the distance between the power transmission coil 12 and the power receiving resonance coil 21, and the vertical axis indicates the normalized transmission power (%).
  • the transmission frequency is constant at the resonance frequency f of the power reception resonance coil 21, and the supply of power to the power transmission coil 12 is constant.
  • the relationship between the coil distance and the transmission power when the power receiving device 20 in FIG. 1 receives power from the power transmitting device 100 in FIG. 5 is indicated by a dotted line.
  • the transmission power changes according to a change in the coil distance, which is the distance between the power transmission coil 12 and the power reception resonance coil 21. That is, the transmission power of the power transmission device of FIG. 1 is maximized when the coil distance is zero. And transmission power falls as coil distance becomes long.
  • the power transmission device 10 transmits power supplied from the power supply unit 11 as magnetic field energy to the power reception resonance coil 21 that resonates at a resonance frequency that causes magnetic field resonance, and the resonance point is different from that of the power reception resonance coil 21.
  • a power transmission coil 12 is included.
  • the transmission power of electric power improves, so that the coil distance of the power transmission coil 12 and the power receiving resonance coil 21 is near.
  • FIG. 3 is a diagram illustrating an application example of the power transmission device.
  • FIG. 3 shows a charger 30 and an electronic device 40.
  • the electronic device 40 is, for example, a mobile phone or a notebook computer.
  • the charger 30 has a charging stand 31 on which the electronic device 40 is placed.
  • the charging stand 31 has the power transmission device 10 shown in FIG. Although only the power transmission coil 12 of FIG. 1 is shown in the charging stand 31 of FIG.
  • the electronic device 40 has the power receiving device 20 shown in FIG.
  • the electronic device 40 in FIG. 3 shows only the power receiving resonance coil 21 and the power extraction coil 22 in FIG. 1, but also has a load 23.
  • the load 23 of the electronic device 40 will be described as a battery.
  • the electronic device 40 To charge the battery of the electronic device 40, the electronic device 40 is placed on the charging stand 31 of the charger 30. Thereby, the distance between the power transmission coil 12 of the charger 30 and the power receiving resonance coil 21 of the electronic device 40 is, for example, a short distance of several millimeters, and the transmission power of the power is increased as described with reference to FIG. Therefore, the battery of the electronic device 40 can be charged by sufficient power transmission.
  • the resonance frequency of the power reception resonance coil 21 of the electronic device 40 is set to the same resonance frequency as that of the power transmission resonance coil 103 of FIG. Thereby, the electronic device 40 can also receive electric power from the charger having the power transmission device 100 of FIG. 5 as described below.
  • FIG. 4 is a diagram illustrating another application example of the power transmission device.
  • FIG. 4 shows a charger 50 and an electronic device 40.
  • the electronic device 40 is the same as that in FIG. 3, and a detailed description thereof will be omitted.
  • the charger 50 has the power transmission device 100 shown in FIG.
  • the charger 50 in FIG. 4 includes only the power supply coil 102 and the power transmission resonance coil 103 in FIG. 5, but also includes a power supply unit 101.
  • the resonance frequency of the power reception resonance coil 21 of the electronic device 40 is set to be the same as the resonance frequency of the power transmission resonance coil 103 of the charger 50. Therefore, as described with reference to FIG. 9, the transmission power becomes maximum at the optimum distance d0. That is, in the power transmission device of FIG. 4, for example, power transmission at a distance of several hundred mm is possible.
  • the chargers 30 and 50 transmit the power supplied from the power supply unit 11 as magnetic field energy to the power receiving resonance coil 21 of the electronic device 40 that resonates at a resonance frequency that causes magnetic field resonance.
  • the power transmission coil 12 has a resonance point different from that of the power transmission coil 21.
  • the electronic device 40 can be placed on the charging base 31 of the charger 30 (at a short distance) as shown in FIG. 3, for example, without modifying or changing the power receiving device 20 that can receive power by magnetic field resonance.
  • the battery can be charged and, for example, the battery can be charged away (at a long distance) from the charger 50 as shown in FIG.
  • the electronic device 40 that can receive power by magnetic field resonance does not need to be modified or changed in order to correspond to the charger of FIG. 3, and it is not necessary to provide a circuit corresponding to the power transmission devices 10 and 100. , Cost increase can be suppressed. Further, the power receiving device 20 can be reduced in weight.
  • the charging stand 31 was horizontal and it demonstrated that the electronic device 40 was placed on it, it is not restricted to this.
  • the charging stand 31 may be vertical and the electronic device 40 may be held in contact with the charging stand 31. That is, the power transmission coil 12 of the power transmission device 10 and the power reception resonance coil 21 of the power reception device 20 need only be as close as possible.

Abstract

 送電装置の送電コイルと受電装置の受電共振コイルの距離が近い状態においても必要な伝送電力を実現する。  送電装置(10)は、磁界共鳴を生じる共振周波数において共振する受電共振コイル(21)に対し、電源部(11)から供給された電力を磁界エネルギーとして送電する、受電共振コイル(21)と共振点が異なる送電コイル(12)を有している。受電装置(20)は、共振周波数において送電コイル(12)から送電される、磁界エネルギーを受電する受電共振コイル(21)を有している。

Description

送電装置および電力伝送装置
 本件は、無線で電力を供給する送電装置および電力伝送装置に関する。
 無線による電力供給技術としては、一般的に、電磁誘導を利用した技術、電波を利用した技術が知られている。これに対し、近年、磁界共鳴を利用した技術が提案されている(例えば、特許文献1参照)。
 磁界共鳴による無線電力供給技術では、例えば、送電装置に共振周波数fr1を有する送電共振コイルが設けられると共に、受電装置に共振周波数fr2を有する受電共振コイルが設けられる。これらのコイルの共振周波数fr1,fr2を同調させ、サイズや配置を適切に調整することにより、送電装置と受電装置との間に磁界共鳴によるエネルギー転送可能な磁界の結合状態が生じる。これにより、送電装置の送電共振コイルから受電装置の受電共振コイルへ、無線により電力が伝送される。このような無線電力供給技術によれば、電力の伝送効率(エネルギー転送効率)を数十%程度とすることができ、送電装置と受電装置との間の距離を比較的大きく、例えば、数十cm程度の共振器に対して数十cm以上とすることができる。
特表2009-501510号公報
 しかし、磁界共鳴による無線電力供給では、送電装置の送電共振コイルと受電装置の受電共振コイルとの間の距離が近づくと伝送電力が低下するという問題点があった。
 本件はこのような点に鑑みてなされたものであり、送電装置の送電コイルと受電装置の受電共振コイルの距離が近いほど伝送電力を大きくする送電装置および電力伝送装置を提供することを目的とする。
 上記課題を解決するために、送電装置が提供される。この送電装置は、磁界共鳴を生じる共振周波数において共振する受電共振コイルに対し、電源部から供給された電力を磁界エネルギーとして送電する前記受電共振コイルと共振点が異なる送電コイル、を有する。
 また、上記課題を解決するために、電力伝送装置が提供される。この電力伝送装置は、磁界共鳴を生じる共振周波数において共振する受電共振コイルに対し、電源部から供給された電力を磁界エネルギーとして送電する前記受電共振コイルと共振点が異なる送電コイル、を有する送電装置と、前記共振周波数において前記送電コイルから送電される前記磁界エネルギーを受電する前記受電共振コイル、を有する受電装置と、を有する。
 開示の送電装置および電力伝送装置によれば、送電コイルと受電共振コイルとの距離が近いほど伝送電力を大きくすることができる。
 本発明の上記および他の目的、特徴および利点は本発明の例として好ましい実施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。
本実施の形態に係る電力伝送装置を示した図である。 送電コイルと受電共振コイルとの間の距離と伝送電力との関係を示した図である。 電力伝送装置の適用例を示した図である。 電力伝送装置の別の適用例を示した図である。 磁界共鳴システムを示した図である。 送電共振コイルと受信共振コイルの等価回路を示した図である。 送電共振コイルと受電共振コイルとの間の距離が最適である場合における伝送周波数と伝送電力との関係を示した図である。 送電共振コイルと受電共振コイルとの間の距離が最適距離よりも短い場合における伝送周波数と伝送電力との関係を示した図である。 送電共振コイルと受電共振コイルとの間の距離と伝送電力との関係を示した図である。
 まず、磁界共鳴による無線電力供給において、送電共振コイルと受電共振コイルとの間の距離と伝送電力との関係について説明する。その後、本実施の形態を、図面を参照して詳細に説明する。
 図5は、磁界共鳴システムを示した図である。図5に示すように磁界共鳴システムは、電源部101、電力供給コイル102、および送電共振コイル103を備えた送電装置100と、受電共振コイル111、電力取出コイル112、および負荷113を備えた受電装置110とを有している。
 電源部101は、電力供給コイル102に電力を供給する。電源部101は、例えば、コルピッツ発振回路であり、送電共振コイル103と受電共振コイル111の共振周波数で発振する。
 電力供給コイル102には、電源部101が接続されている。電力供給コイル102は、電源部101の電力を電磁誘導により送電共振コイル103に供給する。
 送電共振コイル103は、例えば、両端が解放されたインダクタンスLを有するヘリカル型コイルである。送電共振コイル103は、浮遊容量による容量を有している。これにより、送電共振コイル103は、LC共振回路となる。なお、図5では、浮遊容量による容量を想定しているが、コンデンサ素子を送電共振コイル103に挿入する場合もある。
 受電共振コイル111も送電共振コイル103と同様に、例えば、両端が解放されたインダクタンスLを有するヘリカル型コイルである。受電共振コイル111も送電共振コイル103と同様に浮遊容量による容量を有し、または、コンデンサ素子を挿入する場合もある。これにより、受電共振コイル111は、LC共振回路となる。
 送電共振コイル103と受電共振コイル111の共振周波数は、同一となるように設定する。これにより、電力は、送電共振コイル103から受電共振コイル111へ、磁界共鳴を用いて磁界エネルギーとして送電される。
 受電共振コイル111は、電磁誘導により電力取出コイル112に電力を供給する。電力取出コイル112には、例えば、バッテリなどの負荷113が接続され、受信した電力を充電することができる。
 図6は、送電共振コイルと受信共振コイルの等価回路を示した図である。送電共振コイル103と受電共振コイル111は、上述したように、インダクタンスLと浮遊容量による容量Cを有する。または、送電共振コイル103と受電共振コイル111には、コンデンサ素子が接続される場合もある。これにより、送電共振コイル103と受電共振コイル111の等価回路は、図6に示すようなLC共振回路となり、共振周波数fは、次の式(1)で示される。
 f=1/{2π(LC)1/2} …(1)
 従って、送電共振コイル103と受電共振コイル111の共振周波数を合わせるには、それぞれのコイルのLとCの積を同じになるようにする。
 図7は、送電共振コイルと受電共振コイルとの間の距離が最適である場合における伝送周波数と伝送電力との関係を示した図である。図7において、横軸は周波数を示し、縦軸は伝送電力(dB)を示す。伝送周波数は、送電共振コイル103と受電共振コイル111の共振周波数である。
 送電共振コイル103と受電共振コイル111との間の距離が最適である場合、伝送電力は、図7の波形W101に示すようになる。すなわち、伝送電力は、伝送周波数の変化に応じて変化し、伝送周波数が共振周波数fの近傍において伝送電力が最大となる。
 なお、図7においては、波形W101の頂点の近傍の形状がやや歪んでいる。これは、送電共振コイル103と受電共振コイル111における共振周波数以外の種々の条件に依存するものである。このため、図7では、伝送周波数が共振周波数fである場合に、伝送電力が最大となっていない。しかし、理想的には、伝送電力は、点線で示すように伝送周波数が共振周波数fである場合に最大となると考えてよい。
 図8は、送電共振コイルと受電共振コイルとの間の距離が最適距離よりも短い場合における伝送周波数と伝送電力との関係を示した図である。図8において、横軸は周波数を示し、縦軸は伝送電力(dB)を示す。なお、図8には、図7に示した最適距離時の波形W101も示している。
 送電共振コイル103と受電共振コイル111との間の距離が最適距離よりも短い場合、伝送電力は、図8の波形W102に示すようになる。すなわち、図8の波形W102における伝送電力の大きさは、2つのピークを持つようになり、いわゆるスプリットの状態となる。従って、送電共振コイル103と受電共振コイル111との間の距離が最適距離よりも短い場合において、伝送周波数が共振周波数fであると伝送電力が低下する。
 図9は、送電共振コイルと受電共振コイルとの間の距離と伝送電力との関係を示した図である。図9において、横軸は送電共振コイル103と受電共振コイル111との間の距離を示し、縦軸は規格化伝送電力(%)を示す。なお、伝送周波数は、共振周波数fで一定であり、送電共振コイル103への電力の供給は100%で一定である。
 伝送電力は、図9に示すように送電共振コイル103と受電共振コイル111との間の距離であるコイル距離の変化に応じて変化する。すなわち、伝送電力は、コイル距離が最適距離d0である場合に最大となる。つまり、伝送電力が最大となるときのコイル距離が、送電共振コイル103と受電共振コイル111の共振周波数fにおける最適距離d0である。
 コイル距離が最適距離d0より短い場合、すなわち、図9に示す領域aにおいては、伝送電力は、コイル距離が最適距離d0より短くなるにつれて低下する。これは、図8に示す波形W102の場合に相当する。また、コイル距離が最適距離d0より長い場合、すなわち、領域bにおいては、伝送電力は、コイル距離が最適距離d0より長くなるにつれて低下する。これは、図7に示す波形W101の場合に相当する。
 以上より、磁界共鳴による無線電力供給システムにおいて、送電共振コイル103と受電共振コイル111とのコイル距離が最適距離d0から変動した場合、伝送電力が低下する。例えば、図9に示すように、送電共振コイル103と受電共振コイル111のコイル距離が近づくと電力の伝送電力は低下する。
 図1は、本実施の形態に係る電力伝送装置を示した図である。図1に示すように、電力伝送装置は、電源部11および送電コイル12を備えた送電装置10と、受電共振コイル21、電力取出コイル22、および負荷23を備えた受電装置20とを有している。なお、受電装置20の受電共振コイル21、電力取出コイル22、および負荷23は、図5で示した受電装置110の受電共振コイル111、電力取出コイル112、および負荷113と同様であり、その詳細な説明は省略する。
 電源部11は、送電コイル12に電力を供給する。電源部11は、例えば、コルピッツ発振回路であり、受電共振コイル21の共振周波数で発振する。
 送電コイル12には、電源部11が接続されている。送電コイル12は、電源部11の電力を磁界エネルギーにより受電共振コイル21に供給する。
 受電共振コイル21は、図5で説明したように、浮遊容量によりまたはコンデンサ素子の挿入によりLC共振回路となっている。従って、受電共振コイル21は、例えば、図5に示した送電装置100の送電共振コイル103と共振周波数が同じに設定されていれば磁界共鳴を生じ、送電装置100から高い伝送効率で電力を受電することができる。
 一方、送電コイル12は、理想的にはインダクタ成分のみを有し、LC共振回路とはなっていない。しかし、送電コイル12は、実際は非常に小さな浮遊容量が存在し、また、接続される電源部11によって容量が含まれるため、LC共振回路となっている。このため、送電コイル12は、浮遊容量を積極的に利用し、またはコンデンサ素子が挿入されてLC共振回路を形成する受電共振コイル21とは、異なる共振周波数を有している。これにより、送電コイル12と受電共振コイル21は、図5に示す磁界共鳴を利用せずに電力を送受信している。
 また、図1の電力伝送装置で、送電コイル12から最適距離d0以内(図9に示す領域a)に存在し、送電コイル12から送出される磁界エネルギーに共鳴する共振回路は1つであり、その共振回路は、受電共振コイル21のみである。領域aに存在する共振回路を受電共振コイル21のみとすることで、図8で示すような、共振周波数での伝送電力の減少を防ぐことができる。また、領域aに存在する共振回路を受電共振コイル21とすることで、電磁誘導よりも伝送電力が高くなると共に、電磁誘導よりも位置や姿勢の自由度が広がる。さらに好適には、領域aよりも近い領域である、図2で示す実線と破線が交差する距離以内の範囲(以下、最適範囲と言う)に、共振回路が1つになるように設計することが望ましい。最適範囲は、言い換えると、共振コイルが2つある状態よりも、共振コイルが1つである方が、伝送電力が多くなる範囲である。ここで言う、共振コイルの個数とは、送信コイルから送出される1つの周波数の磁界エネルギーに共鳴する共振回路の個数である。
 図2は、送電コイルと受電共振コイルとの間の距離と伝送電力との関係を示した図である。図2において、横軸は送電コイル12と受電共振コイル21との間の距離を示し、縦軸は規格化伝送電力(%)を示す。なお、伝送周波数は、受電共振コイル21の共振周波数fで一定であり、送電コイル12への電力の供給は一定である。また、図2には、図1の受電装置20が、図5の送電装置100から電力を受電した場合のコイル距離と伝送電力の関係を点線で示している。
 伝送電力は、図2の波形W1に示すように、送電コイル12と受電共振コイル21との間の距離であるコイル距離の変化に応じて変化する。すなわち、図1の電力伝送装置の伝送電力は、コイル距離が0である場合に最大となる。そして、伝送電力は、コイル距離が長くなるにつれて低下する。
 このように、送電装置10は、磁界共鳴を生じさせる共振周波数において共振する受電共振コイル21に対し、電源部11から供給された電力を磁界エネルギーとして送電する、受電共振コイル21と共振点が異なる送電コイル12を有する。これにより、受電装置20は、送電コイル12と受電共振コイル21のコイル距離が近いほど電力の伝送電力が向上する。
 図3は、電力伝送装置の適用例を示した図である。図3には、充電器30と電子機器40が示してある。電子機器40は、例えば、携帯電話やノートパソコンである。
 充電器30は、電子機器40を乗せる充電台31を有している。充電台31は、図1で示した送電装置10を有している。図3の充電台31には、図1の送電コイル12しか示していないが、電源部11も有している。
 電子機器40は、図1で示した受電装置20を有している。図3の電子機器40には、図1の受電共振コイル21と電力取出コイル22しか示していないが、負荷23も有している。以下では、電子機器40の負荷23は、バッテリとして説明する。
 電子機器40のバッテリを充電するには、電子機器40を充電器30の充電台31に置く。これにより、充電器30の送電コイル12と電子機器40の受電共振コイル21の距離は、例えば、数mmと近距離となり、電力の伝送電力は、図2で説明したように大きくなる。よって、十分な電力伝送によって電子機器40のバッテリを充電することができる。
 また、電子機器40の受電共振コイル21の共振周波数は、図5の送電共振コイル103と同一の共振周波数に設定されている。これによって、電子機器40は、以下で説明するように、図5の送電装置100を有する充電器からも電力を受信することができる。
 図4は、電力伝送装置の別の適用例を示した図である。図4には、充電器50と電子機器40が示してある。電子機器40は、図3と同様であり、その詳細な説明は省略する。
 充電器50は、図5で示した送電装置100を有している。図4の充電器50には、図5の電力供給コイル102と送電共振コイル103しか示していないが、電源部101も有している。
 上述したように、電子機器40の受電共振コイル21の共振周波数は、充電器50の送電共振コイル103の共振周波数と同一に設定されている。従って、図9で説明したように、伝送電力は、最適距離d0のとき最大となる。すなわち、図4の電力伝送装置では、例えば、数100mmの離れた距離での電力送電が可能である。
 このように、充電器30,50は、磁界共鳴を生じさせる共振周波数において共振する電子機器40の受電共振コイル21に対し、電源部11から供給された電力を磁界エネルギーとして送電する、受電共振コイル21と共振点が異なる送電コイル12を有する。これにより、電子機器40は、磁界共鳴により電力を受電できる受電装置20を改造または変更することなく、例えば、図3に示したように充電器30の充電台31に置いて(近距離で)バッテリを充電することができ、また、例えば、図4で示したように充電器50から離れて(遠距離で)バッテリを充電することができる。
 また、磁界共鳴により電力を受電できる電子機器40は、図3の充電器に対応するために改造または変更をしなくて済み、また、送電装置10,100に応じた回路を備えずに済むので、コストの上昇を抑制することができる。また、受電装置20の軽量化を図ることができる。
 なお、図3では、充電台31は水平であり、その上に電子機器40を置くように説明したが、これに限るものではない。例えば、充電台31が垂直であり、電子機器40を充電台31に接触して保持できるようにしてもよい。すなわち、送電装置10の送電コイル12と受電装置20の受電共振コイル21ができる限り近距離となっていればよい。
 上記については単に本発明の原理を示すものである。さらに、多数の変形、変更が当業者にとって可能であり、本発明は上記に示し、説明した正確な構成および応用例に限定されるものではなく、対応するすべての変形例および均等物は、添付の請求項およびその均等物による本発明の範囲とみなされる。
 10 送電装置
 11 電源部
 12 送電コイル
 20 受電装置
 21 受電共振コイル
 22 電力取出コイル
 23 負荷

Claims (5)

  1.  磁界共鳴を生じる共振周波数において共振する受電共振コイルに対し、電源部から供給された電力を磁界エネルギーとして送電する前記受電共振コイルと共振点が異なる送電コイル、
     を有することを特徴とする送電装置。
  2.  前記送電コイルは、前記電源部が接続されて前記電力が供給されることを特徴とする請求の範囲第1項記載の送電装置。
  3.  磁界共鳴を生じる共振周波数において共振する受電共振コイルに対し、電源部から供給された電力を磁界エネルギーとして送電する前記受電共振コイルと共振点が異なる送電コイル、を有する送電装置と、
     前記共振周波数において前記送電コイルから送電される前記磁界エネルギーを受電する前記受電共振コイル、を有する受電装置と、
     を有することを特徴とする電力伝送装置。
  4.  前記送電コイルは、前記電源部が接続されて前記電力が供給されることを特徴とする請求の範囲第3項記載の電力伝送装置。
  5.  前記送電コイルから送出される磁界エネルギーと共鳴するコイルは一つであることを特徴とする請求の範囲第3項記載の電力伝送装置。
PCT/JP2009/070026 2009-11-27 2009-11-27 送電装置および電力伝送装置 WO2011064879A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011543056A JPWO2011064879A1 (ja) 2009-11-27 2009-11-27 送電装置および電力伝送装置
CN200980162477.7A CN102668324B (zh) 2009-11-27 2009-11-27 送电装置以及电力传送装置
PCT/JP2009/070026 WO2011064879A1 (ja) 2009-11-27 2009-11-27 送電装置および電力伝送装置
US13/444,581 US20120194000A1 (en) 2009-11-27 2012-04-11 Power transmitting device and power transmitting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/070026 WO2011064879A1 (ja) 2009-11-27 2009-11-27 送電装置および電力伝送装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/444,581 Continuation US20120194000A1 (en) 2009-11-27 2012-04-11 Power transmitting device and power transmitting apparatus

Publications (1)

Publication Number Publication Date
WO2011064879A1 true WO2011064879A1 (ja) 2011-06-03

Family

ID=44065998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070026 WO2011064879A1 (ja) 2009-11-27 2009-11-27 送電装置および電力伝送装置

Country Status (4)

Country Link
US (1) US20120194000A1 (ja)
JP (1) JPWO2011064879A1 (ja)
CN (1) CN102668324B (ja)
WO (1) WO2011064879A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013081331A (ja) * 2011-10-05 2013-05-02 Hitachi Maxell Ltd 非接触電力伝送装置
JP2013085436A (ja) * 2011-09-29 2013-05-09 Hitachi Maxell Ltd 非接触電力伝送装置及び非接触電力伝送方法
JPWO2012090700A1 (ja) * 2010-12-28 2014-06-05 Tdk株式会社 ワイヤレス給電装置、ワイヤレス受電装置、ワイヤレス伝送システム
JPWO2012132841A1 (ja) * 2011-03-29 2014-07-28 ソニー株式会社 給電装置、給電システムおよび電子機器
JP2016195537A (ja) * 2012-03-28 2016-11-17 富士通株式会社 無線電力伝送システムおよび無線電力伝送方法
WO2018131261A1 (ja) * 2017-01-13 2018-07-19 オムロン株式会社 非接触給電装置
DE112016005777T5 (de) 2015-12-18 2018-09-20 Omron Corporation Berührungsloses Energieversorgungsgerät und Steuerverfahren dafür
KR20190079640A (ko) * 2017-03-02 2019-07-05 오므론 가부시키가이샤 비접촉 급전 장치

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5616496B1 (ja) 2013-07-08 2014-10-29 日東電工株式会社 受給電装置及び携帯機器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998034319A1 (fr) * 1997-02-03 1998-08-06 Sony Corporation Equipement et procede pour le transfert d'energie electrique
WO2007008646A2 (en) * 2005-07-12 2007-01-18 Massachusetts Institute Of Technology Wireless non-radiative energy transfer

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19812728A1 (de) * 1998-03-24 1999-09-30 Philips Patentverwaltung Anordnung für einen Antennenschwingkreis für kontaktlose Übertragungssysteme
JP4089778B2 (ja) * 2002-11-07 2008-05-28 株式会社アイデンビデオトロニクス エネルギー供給装置
US8169185B2 (en) * 2006-01-31 2012-05-01 Mojo Mobility, Inc. System and method for inductive charging of portable devices
US7952322B2 (en) * 2006-01-31 2011-05-31 Mojo Mobility, Inc. Inductive power source and charging system
JP4930093B2 (ja) * 2007-02-21 2012-05-09 セイコーエプソン株式会社 送電制御装置、受電制御装置、無接点電力伝送システム、送電装置、受電装置および電子機器
JP4453741B2 (ja) * 2007-10-25 2010-04-21 トヨタ自動車株式会社 電動車両および車両用給電装置
JP4911148B2 (ja) * 2008-09-02 2012-04-04 ソニー株式会社 非接触給電装置
JP5308127B2 (ja) * 2008-11-17 2013-10-09 株式会社豊田中央研究所 給電システム
JP5135204B2 (ja) * 2008-12-26 2013-02-06 株式会社日立製作所 非接触電力伝送システム、および該非接触電力伝送システムにおける負荷装置
JP2010193598A (ja) * 2009-02-17 2010-09-02 Nippon Soken Inc 非接触給電設備および非接触給電システム
JP4849142B2 (ja) * 2009-02-27 2012-01-11 ソニー株式会社 電力供給装置および電力伝送システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998034319A1 (fr) * 1997-02-03 1998-08-06 Sony Corporation Equipement et procede pour le transfert d'energie electrique
WO2007008646A2 (en) * 2005-07-12 2007-01-18 Massachusetts Institute Of Technology Wireless non-radiative energy transfer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QIAOWEI YUAN ET AL.: "Wireless Power Transfer Efficiency between Helical Coils", PROCEEDINGS OF THE 2008 IEICE GENERAL CONFERENCE, vol. B-1-14, - 5 March 2008 (2008-03-05), pages 14, XP008149228 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012090700A1 (ja) * 2010-12-28 2014-06-05 Tdk株式会社 ワイヤレス給電装置、ワイヤレス受電装置、ワイヤレス伝送システム
JPWO2012132841A1 (ja) * 2011-03-29 2014-07-28 ソニー株式会社 給電装置、給電システムおよび電子機器
JP2013085436A (ja) * 2011-09-29 2013-05-09 Hitachi Maxell Ltd 非接触電力伝送装置及び非接触電力伝送方法
US9172436B2 (en) 2011-09-29 2015-10-27 Hitachi Maxell, Ltd. Wireless power transfer device and wireless power transfer method
JP2013081331A (ja) * 2011-10-05 2013-05-02 Hitachi Maxell Ltd 非接触電力伝送装置
JP2016195537A (ja) * 2012-03-28 2016-11-17 富士通株式会社 無線電力伝送システムおよび無線電力伝送方法
US9953763B2 (en) 2012-03-28 2018-04-24 Fujitsu Limited Wireless power transmission system and wireless power transmission method
DE112016005777T5 (de) 2015-12-18 2018-09-20 Omron Corporation Berührungsloses Energieversorgungsgerät und Steuerverfahren dafür
WO2018131261A1 (ja) * 2017-01-13 2018-07-19 オムロン株式会社 非接触給電装置
JP2018113831A (ja) * 2017-01-13 2018-07-19 オムロン株式会社 非接触給電装置
KR20190079640A (ko) * 2017-03-02 2019-07-05 오므론 가부시키가이샤 비접촉 급전 장치
KR102180371B1 (ko) 2017-03-02 2020-11-18 오므론 가부시키가이샤 비접촉 급전 장치

Also Published As

Publication number Publication date
CN102668324B (zh) 2015-09-23
JPWO2011064879A1 (ja) 2013-04-11
CN102668324A (zh) 2012-09-12
US20120194000A1 (en) 2012-08-02

Similar Documents

Publication Publication Date Title
WO2011064879A1 (ja) 送電装置および電力伝送装置
JP5365306B2 (ja) 無線電力供給システム
CN102113195B (zh) 用于包含寄生谐振储能电路的电子装置的无线功率发射
JP5698626B2 (ja) ワイヤレス受電装置、ワイヤレス給電装置およびワイヤレス給電システム
JP5798455B2 (ja) 給電装置
JP5947534B2 (ja) 非接触給電システム
EP2587613A2 (en) Wireless power receiver for adjusting magnitude of wireless power
WO2011093292A1 (ja) 非接触送電システム、および非接触送電装置
US11798737B2 (en) Charging pad and a method for charging one or more receiver devices
JP2010233442A (ja) 非接触電力供給装置及び方法
US9626009B2 (en) Coordinate indicating device and coordinate measuring device for measuring input coordinates of coordinate indicating device
JP2012010586A (ja) ワイヤレス受電装置およびワイヤレス給電システム
US20140035386A1 (en) Wireless power supply system
JP2011155733A (ja) 非接触送電システム、および非接触送電装置
US20140167524A1 (en) Wireless power transmission device and method thereof
US20160141098A1 (en) Electronic device and wireless power receiver equipped in the same
US20120119587A1 (en) Wireless power transfer device
JP2013102593A (ja) 磁気結合装置および磁気結合システム
JP2013042564A (ja) 電力伝送システムおよび電力伝送装置
KR20150090668A (ko) 무선 전력 중계 장치, 무선 전력 송신 장치, 및 무선 전력 전송 시스템
KR20140128469A (ko) 무선 전력 송신 장치, 무선 전력 수신 장치, 및 무선 전력 전송 시스템
JP2012034524A (ja) 無線電力伝送装置
Zable et al. Performance evaluation of WPT circuit suitable for wireless charging
KR20150028132A (ko) 거치대
KR20160048468A (ko) 무선 전력 송신 장치 및 무선 전력 전송 시스템

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980162477.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851670

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011543056

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09851670

Country of ref document: EP

Kind code of ref document: A1