WO2011061942A1 - 内径測定装置、そのプライミング方法 - Google Patents

内径測定装置、そのプライミング方法 Download PDF

Info

Publication number
WO2011061942A1
WO2011061942A1 PCT/JP2010/006792 JP2010006792W WO2011061942A1 WO 2011061942 A1 WO2011061942 A1 WO 2011061942A1 JP 2010006792 W JP2010006792 W JP 2010006792W WO 2011061942 A1 WO2011061942 A1 WO 2011061942A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
fluid
path member
inner diameter
balloon
Prior art date
Application number
PCT/JP2010/006792
Other languages
English (en)
French (fr)
Inventor
橋戸 宏明
池田 昌夫
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to EP10831341A priority Critical patent/EP2502559A1/en
Priority to JP2011541818A priority patent/JP5692088B2/ja
Priority to CN201080052412XA priority patent/CN102612341A/zh
Priority to US13/505,565 priority patent/US20120220902A1/en
Publication of WO2011061942A1 publication Critical patent/WO2011061942A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/267Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12027Type of occlusion
    • A61B17/1204Type of occlusion temporary occlusion
    • A61B17/12045Type of occlusion temporary occlusion double occlusion, e.g. during anastomosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1076Measuring physical dimensions, e.g. size of the entire body or parts thereof for measuring dimensions inside body cavities, e.g. using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6852Catheters
    • A61B5/6853Catheters with a balloon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1018Balloon inflating or inflation-control devices
    • A61M25/10181Means for forcing inflation fluid into the balloon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B13/00Measuring arrangements characterised by the use of fluids
    • G01B13/08Measuring arrangements characterised by the use of fluids for measuring diameters
    • G01B13/10Measuring arrangements characterised by the use of fluids for measuring diameters internal diameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1018Balloon inflating or inflation-control devices
    • A61M25/10184Means for controlling or monitoring inflation or deflation
    • A61M25/10185Valves

Definitions

  • the present invention relates to an inner diameter measuring device for measuring the inner diameter of a conduit, and more particularly to an inner diameter measuring device used for measuring the inner diameter of a bronchus in pulmonary emphysema treatment, and a priming method thereof.
  • a valve in the bronchi as a treatment method for emphysema.
  • a valve is formed, for example, in a structure in which a balloon is integrated inside an umbrella, and closes the bronchus to be treated by opening and closing like the umbrella.
  • Patent Documents 1 and 2 various proposals have been made as devices for blocking the bronchi as described above (see, for example, Patent Documents 1 and 2).
  • Various proposals have also been made for catheters using one-way valves (see, for example, Patent Documents 3 to 6).
  • An inner diameter measuring instrument for measuring an inner diameter by being inserted into the lumen includes a tubular sheath inserted into the lumen, a balloon that is attached to the distal end side of the sheath and is supplied with fluid therein and is expandable.
  • a linear indicator member whose first end is fixed to the distal end side of the sheath or the balloon, and the second end moves to the distal end side of the sheath in conjunction with the expansion of the balloon, and a proximal end side of the sheath
  • a measurement unit that can confirm the position of the second end of the indicator member (see, for example, Patent Document 7).
  • JP 2005-505355 A Japanese Patent Laid-Open No. 2004-024864 Japanese Utility Model Publication No. 63-022939 Japanese Patent Laid-Open No. 03-109065 Japanese Patent Laid-Open No. 05-049597 Japanese Patent Laid-Open No. 08-019655 JP 2009-165608 A
  • valves of various sizes are used corresponding to the bronchi to be treated. Therefore, in order to select an optimal valve for treatment, it is necessary to confirm in advance the inner diameter of the bronchus at the site to be occluded.
  • the present invention has been made in view of the above-described problems, and provides an inner diameter measuring device capable of easily measuring the inner diameter of a conduit such as a bronchus and a priming method thereof.
  • An inner diameter measuring device of the present invention is an inner diameter measuring device for measuring the inner diameter of a conduit, and a balloon member inserted at a position for measuring the inner diameter of the conduit and a first flow path individually communicating with the balloon member A member and a second channel member, a fluid injection mechanism for injecting an incompressible fluid into the balloon member through the first channel member or the second channel member, and one of the first channel member or the second channel member From the state where the balloon member, the first flow path member and the second flow path member are filled with fluid, and one of the first flow path member and the second flow path member is closed by the outflow sealing mechanism.
  • Volume measuring means for measuring the volume of the incompressible measurement fluid further injected by the fluid injection mechanism through the other of the one channel member or the second channel member.
  • the incompressible measurement fluid is further injected from the priming state in which the inside of the inner diameter measuring device is filled with the incompressible fluid, the volume of the injected measurement fluid is accurately set to the inflated volume of the balloon member. It will correspond.
  • the fluid injection mechanism injects the fluid and the measurement fluid from the end portion into the first flow path member
  • the outflow sealing mechanism has the first flow path member and the balloon member filled with the fluid.
  • the end portions of the two flow path members are closed so as to be openable and closable, and the volume measuring means may measure the volume of the measurement fluid injected from the fluid injection mechanism into the first flow path member with the outflow sealing mechanism closed.
  • such an inner diameter measuring device may be referred to as a first inner diameter measuring device.
  • the volume of the fluid corresponding to the inner diameter of the conduit is measured in a priming state where the inside of the inner diameter measuring device is filled with an incompressible fluid.
  • the priming for filling the inside of the inner diameter measuring device with a fluid and the measurement of the inner diameter are performed by a fluid injection mechanism.
  • the fluid injection mechanism includes a first injection mechanism that injects fluid from the end portion into the first flow path member, and a measurement fluid that is detachably connected to the end portion of the second flow path member.
  • a second injecting mechanism for injecting fluid, and the outflow sealing mechanism includes a first member for blocking back flow of fluid from the first channel member filled with fluid together with the balloon member and the second channel member to the first injecting mechanism.
  • the second injection mechanism injects the measurement fluid into the end portion of the second flow path member in a state in which the backflow is blocked by the first cutoff mechanism, and the volume measuring means receives the second fluid from the second injection mechanism.
  • the volume of the measurement fluid injected into the flow path member may be measured.
  • such an inner diameter measuring device may be referred to as a second inner diameter measuring device.
  • the volume of the fluid corresponding to the inner diameter of the conduit is measured in a priming state where the inside of the inner diameter measuring device is filled with an incompressible fluid. Priming for filling the inside of the inner diameter measuring device with a fluid is performed by the first injection mechanism, and measurement of the inner diameter is performed by the second injection mechanism.
  • the fluid injection mechanism includes a first injection mechanism that injects fluid from the end portion into the first flow path member, and a second injection mechanism that injects measurement fluid into the end section of the first flow path member.
  • the outflow sealing mechanism closes the end portion of the second flow path member filled with the fluid together with the balloon member and the first flow path member so as to be openable and closable, and the fluid together with the balloon member and the second flow path member.
  • the back flow of the fluid from the first flow path member filled with is blocked to the first injection mechanism, and the second injection mechanism is measured at the end portion of the first flow path member with the back flow to the first injection mechanism blocked.
  • the fluid may be injected, and the volume measuring unit may measure the volume of the measurement fluid injected from the second injection mechanism into the first flow path member.
  • an inner diameter measuring device may be referred to as a third inner diameter measuring device.
  • the volume of the fluid corresponding to the inner diameter of the conduit is measured in a priming state in which the inside of the inner diameter measuring device is filled with an incompressible fluid. Priming for filling the inside of the inner diameter measuring device with a fluid is performed by the first injection mechanism, and measurement of the inner diameter is performed by the second injection mechanism. Furthermore, since the attachment / detachment of members does not occur in the entire work process, the inner diameter measurement work is executed simply and hygienically.
  • the inner diameter measuring apparatus as described above may further include a reverse flow blocking mechanism that is provided in the measurement fluid flow path and allows the measurement fluid to flow from the fluid injection mechanism toward the balloon member to block the reverse flow. Good.
  • the backflow blocking mechanism may allow the backflow of the measurement fluid by manual operation.
  • the backflow blocking mechanism includes a one valve that is displaced between an open state that allows the injection of the measurement fluid and a closed state that blocks the backflow, and a pressing portion that is provided across the one valve. And by pressing the pressing part, the one valve is opened and the back flow of the measurement fluid is allowed.
  • the fluid injection mechanism may inject the measurement fluid in small amounts from the fluid.
  • the fluid injection mechanism includes a first syringe for injecting a fluid and a second syringe for injecting a measurement fluid, and the unit of scale of the capacity of the second syringe is the first syringe. It may be finer than the scale unit of the capacity.
  • the outflow sealing mechanism includes a valve body that closes the end portion of the second flow path member, and an elastic member that biases the valve body in a closed state; and And a clamp that is detachably attached to the valve mechanism and opens the valve body.
  • the outflow sealing mechanism is a manual valve mechanism that opens and closes communication between the first flow path member and the first injection mechanism, or injects fluid from the first injection mechanism to the first flow path member.
  • One valve may be included to allow backflow and block backflow.
  • the inner diameter measuring apparatus as described above may further include inner diameter detecting means for detecting the inner diameter of the conduit as the outer diameter of the balloon member that expands from the volume of the measured fluid to be measured.
  • the first opening or the second opening formed on one side may be formed more distally than the second opening or the first opening formed on the other side.
  • the first flow path member and the second flow path member are resin materials adjacent to the distal side further than the first opening or the second opening formed on the distal side. May be filled.
  • a priming method is a priming method for an inner diameter measuring device in which an incompressible fluid is filled in a balloon member of an inner diameter measuring device that measures the inner diameter of a conduit using a balloon member.
  • a fluid is injected into the balloon member through the first flow path member among the first flow path member and the second flow path member in communication, and the injected fluid is allowed to flow out through the second flow path member.
  • the second flow path member is closed in a state where the one flow path member and the second flow path member are filled with fluid.
  • the fluid is injected from the end portion of the first flow path member, and the fluid is allowed to flow out from the end portion of the second flow path member, so that the first flow path member, the balloon member, and the second flow path
  • the member may be filled with fluid, and the end portion of the second flow path member filled with fluid together with the first flow path member and the balloon member may be closed.
  • the fluid is injected from the end portion of the first flow path member, and the fluid is allowed to flow out from the end portion of the second flow path member, so that the first flow path member, the balloon member, and the second flow path
  • the member may be filled with fluid, and the backflow of fluid from the end portion of the first flow path member filled with fluid together with the balloon member and the second flow path member may be blocked.
  • the end portion of the first flow path member is branched into a plurality of flow paths, and a fluid is injected from one flow path into the balloon member, and the first flow path member, the balloon member,
  • the two flow path members are filled with fluid, the back flow of the fluid from one flow path of the first flow path member filled with the balloon member and the second flow path member is blocked, and the balloon member and the first flow path are blocked. You may close the terminal part of the 2nd flow path member with which the fluid was filled with the path member.
  • a plurality of components are formed as a single member, and a single component is formed of a plurality of members. It may be that a certain component is a part of another component, a part of a certain component overlaps with a part of another component, or the like.
  • the inner diameter of the conduit is set based on the volume of the measurement fluid measured by the volume measuring means. It can be measured accurately.
  • an incompressible fluid is injected from the end portion of the first flow path member communicating with the balloon member inserted at the position for measuring the inner diameter of the conduit by the fluid injection mechanism. Then, the fluid flows out from the end portion of the second flow path member communicating with the balloon member, and the end portion of the second flow path member filled with the fluid together with the first flow path member and the balloon member is closed by the outflow sealing mechanism. Is done. The volume of the measurement fluid injected from the fluid injection mechanism into the first flow path member in the state where the outflow sealing mechanism is closed is measured by the volume measuring means.
  • the measurement fluid is further injected into the first flow path member, thereby increasing the internal pressure of the balloon member.
  • the balloon member is expanded until it has the same diameter as the inner diameter of the conduit, the inner diameter of the conduit can be measured. Therefore, since a compressible fluid such as air does not intervene in the priming and the inner diameter measurement, the balloon member can be prevented from rapidly expanding, and the inner diameter of the conduit can be measured safely and accurately.
  • incompressible fluid is injected by the first injection mechanism from the end portion of the first flow path member communicating with the balloon member inserted at the position for measuring the inner diameter of the conduit. . Then, the fluid is allowed to flow out from the end portion of the second flow path member communicating with the balloon member, and the fluid from the first flow path member filled with the fluid together with the balloon member and the second flow path member to the first injection mechanism. The reverse flow is blocked by the first blocking mechanism. With the backflow blocked by the first shut-off mechanism, the measurement fluid is injected by detachably connecting the second injection mechanism to the end portion of the second flow path member, and injected from the second injection mechanism to the second flow path member. The volume of the measured fluid is measured by the volume measuring means.
  • the measurement fluid is injected into the second flow path member to inflate the balloon member and measure the inner diameter of the conduit.
  • a compressible fluid such as air does not intervene in the priming and the inner diameter measurement
  • the balloon member can be prevented from rapidly expanding, and the inner diameter of the conduit can be measured safely and accurately.
  • the priming for filling the inside of the inner diameter measuring device with a fluid can be performed by the first injection mechanism, and the measurement of the inner diameter can be performed by the second injection mechanism. For this reason, the measurement of the inner diameter can be performed directly by the second injection mechanism.
  • incompressible fluid is injected by the first injection mechanism from the end portion of the first flow path member connected to the balloon member inserted at the position for measuring the inner diameter of the conduit. . Then, the fluid is allowed to flow out from the end portion of the second flow path member communicating with the balloon member, and the fluid from the first flow path member filled with the fluid together with the balloon member and the second flow path member to the first injection mechanism. Backflow is blocked by the outflow sealing mechanism. The end portion of the second flow path member filled with fluid together with the balloon member and the first flow path member is closed by the outflow sealing mechanism.
  • the measurement fluid is injected by the second injection mechanism into the end portion of the first flow path member where the back flow to the first injection mechanism is blocked, and the volume of the measurement fluid injected from the second injection mechanism to the first flow path member is measured. Measured by means. Therefore, in the priming state in which the inside of the inner diameter measuring device is filled with an incompressible fluid, the balloon member is inflated by further injecting the measuring fluid into the first flow path member, thereby measuring the inner diameter of the conduit. it can. Therefore, since a compressible fluid such as air does not intervene in the priming and the inner diameter measurement, the balloon member can be prevented from rapidly expanding, and the inner diameter of the conduit can be measured safely and accurately.
  • the priming for filling the inside of the inner diameter measuring device with a fluid can be performed by the first injection mechanism, and the measurement of the inner diameter can be performed by the second injection mechanism. For this reason, the measurement of the inner diameter can be performed directly by the second injection mechanism. Furthermore, since the attachment / detachment of members does not occur in the entire work process, the inner diameter measurement work can be executed simply and hygienically.
  • FIG. 1 It is a schematic diagram which shows the external appearance of the internal diameter measuring apparatus of 1st embodiment of this invention. It is a typical vertical side view which shows the internal structure of the principal part of an internal diameter measuring device. It is a flowchart which shows the priming method and internal diameter measuring method by an internal diameter measuring apparatus. It is a characteristic view which shows the relationship between the injection
  • (A) is a top view of a backflow interruption
  • (b) is the left view.
  • the inner diameter measuring apparatus 100 of this embodiment measures an arbitrary inner diameter of a conduit (not shown) such as a bronchus in emphysema treatment.
  • the inner diameter measuring device 100 of this embodiment includes a balloon member 110, a first flow path member 120 and a second flow path member 140, a fluid injection mechanism 130, an outflow sealing mechanism 150, and a capacity measurement means 160.
  • the balloon member 110 is inserted at a position for measuring the inner diameter of the conduit.
  • the first flow path member 120 and the second flow path member 140 are individually communicated with the balloon member 110.
  • the fluid injection mechanism 130 injects an incompressible fluid into the balloon member 110 through the first flow path member 120 or the second flow path member 140 (in this embodiment, the first flow path member 120).
  • the outflow sealing mechanism 150 closes one of the first flow path member 120 and the second flow path member 140 (second flow path member 140 in the present embodiment).
  • the volume measuring means 160 is filled with fluid in the balloon member 110, the first flow path member 120, and the second flow path member 140, and one of the first flow path member 120 and the second flow path member 140 (this embodiment) by the outflow sealing mechanism 150.
  • the fluid is injected further by the fluid injection mechanism 130 through the first channel member 120 or the other of the second channel members 140 (the first channel member 120 in the present embodiment) from the closed state of the second channel member 140). Measure the volume of the incompressible measurement fluid.
  • the first flow path member 120 and the second flow path member 140 are in communication with the balloon member 110.
  • the fluid injection mechanism 130 injects an incompressible fluid and a measurement fluid into the first flow path member 120 from the end portion.
  • the outflow sealing mechanism 150 of the present embodiment closes the end portion of the second flow path member 140 filled with fluid together with the first flow path member 120 and the balloon member 110 so as to be freely opened and closed.
  • the capacity measuring unit 160 measures the capacity of the measurement fluid injected from the fluid injection mechanism 130 into the first flow path member 120 in a state where the outflow sealing mechanism 150 is closed.
  • the balloon member 110 is formed so as to have a diameter sufficiently smaller than the conduit to be measured in an initial state where the balloon member 110 is not inflated.
  • the first flow path member 120 and the second flow path member 140 are long portions inserted into a human body (not shown), and are integrally formed as a balloon catheter 112.
  • a first injection channel 121 and a second outflow channel 141 are formed inside the balloon catheter 112, respectively.
  • the first flow path member 120 communicates with the first injection flow path 121 of the balloon catheter 112 via a connector.
  • the second flow path member 140 communicates with the second outflow path 141 of the balloon catheter 112 via a connector.
  • the first injection flow path 121 of the first flow path member 120 and the second outflow flow path 141 of the second flow path member 140 are open at the tips.
  • the cap member 111 is closed.
  • first injection flow path 121 of the first flow path member 120 and the second outflow flow path 141 of the second flow path member 140 communicate with each other inside the cap member 111. Further, the first injection flow path 121 of the first flow path member 120 and the second outflow flow path 141 of the second flow path member 140 communicate with each other inside the balloon member 110 through the through holes 122 and 142.
  • the first injection of the first flow path member 120 is performed as shown in FIG. 2 in order to reduce the driving force of the fluid injection mechanism 130 for press-fitting the fluid into the balloon member 110.
  • the channel 121 is formed with a smaller diameter than the second outflow channel 141 of the second channel member 140.
  • the second outflow channel 141 of the second channel member 140 is not the same as that of the first channel member 120 in order to satisfactorily prevent air from remaining inside as a bubble due to priming.
  • the first injection channel 121 is formed with a larger diameter.
  • the fluid injection mechanism 130 includes a so-called syringe, and injects fluid into the first flow path member 120 by manual operation.
  • the fluid is made of pure water or physiological saline, for example.
  • the fluid injection mechanism 130 is a mechanism for injecting fluid into the balloon member 110 at atmospheric pressure (atmospheric pressure).
  • the fluid injection mechanism 130 is a mechanism for inflating the balloon member 110 by further pressing the measurement fluid toward the balloon member 110 in a state where the inner diameter measuring device 100 is closed to prevent the fluid from flowing out. .
  • the liquid that is preliminarily filled with the atmospheric pressure in the first flow path member 120, the balloon member 110, and the second flow path member 140 (these may be collectively referred to as “measurement system”) is referred to as “fluid. ".
  • pre-filling filling the measuring system with the atmospheric pressure prior to measuring the inner diameter of the conduit
  • primary injection filling the measuring system with the atmospheric pressure prior to measuring the inner diameter of the conduit
  • measurement fluid The liquid that is additionally injected into the measurement system filled with the fluid and elastically bulges the balloon member 110 is referred to as “measurement fluid”.
  • the fluid and the measurement fluid are mixed with each other by being injected into the measurement system.
  • pressing the measurement fluid into the prefilled measurement system may be referred to as “additional injection”.
  • the fluid and the measurement fluid may be injected into the measurement system from a common syringe.
  • the fluid and the measurement fluid may be liquids contained in one syringe without being distinguished from each other. Further, the fluid and the measurement fluid may be individually accommodated in different syringes and injected into the measurement system.
  • injecting the measurement fluid into the balloon member 110 means that the measurement fluid reaches the inside of the balloon member 110 through the first flow path member 120 or the second flow path member 140, or that the fluid is reserved in the measurement system. It includes both of injecting the fluid into the balloon member 110 by injecting the measurement fluid into the first flow path member 120 or the second flow path member 140 in the filled state.
  • fluid and “measuring fluid” are both incompressible fluids, and may be the same or different from each other.
  • physiological saline may be used as the fluid and pure water may be used as the measurement fluid, or pure water or physiological saline may be commonly used as the fluid and the measurement fluid.
  • the inflated shape of the balloon member 110 is substantially circular and has reproducibility.
  • a correlation between the volume of the measurement fluid additionally injected into the balloon member 110 and the outer diameter of the balloon member 110 is associated in advance. Therefore, the outer diameter of the balloon member 110 can be obtained by measuring the volume of the measurement fluid additionally injected into the measurement system preliminarily filled with the fluid.
  • the pressure required to inject the measurement fluid increases discontinuously when the outer diameter of the balloon member 110 becomes equal to the inner diameter of the conduit. Therefore, the operator can calculate the inner diameter of the conduit by measuring the volume of the measurement fluid additionally injected up to that time.
  • the fluid injection mechanism 130 may be a single injection mechanism (for example, a syringe), or may be provided with a mechanism for prefilling the fluid and a mechanism for additionally injecting the measurement fluid, respectively. .
  • the fluid injection mechanism 130 of this embodiment is a combination of a first injection mechanism (first syringe 131) that pre-fills fluid and a second injection mechanism (second syringe 132) that additionally injects a measurement fluid.
  • the first syringe 131 and the second syringe 132 are selectively used with respect to a backflow blocking mechanism 123 described later.
  • the inner diameter measuring apparatus 100 of the present embodiment includes a first syringe 131 that injects a fluid and a second syringe 132 that injects a measurement fluid.
  • the scale unit of the capacity of the second syringe 132 is finer than the scale unit of the capacity of the first syringe 131.
  • the first syringe 131 may not have a scale.
  • the scale unit of the capacity of the first syringe 131 means the total capacity of the first syringe 131.
  • the second syringe 132 may have a smaller capacity than the first syringe 131.
  • the fluid injection mechanism 130 can inject the measurement fluid in small amounts from the fluid.
  • the syringe inner diameter of the second syringe 132 is thinner than the syringe inner diameter of the first syringe 131, and the capacity discharged from the second syringe 132 when the piston stroke is made common is discharged from the first syringe 131. Smaller than the capacity to be. As a result, the pre-filling operation of the fluid can be performed quickly, and the additional injection of the measurement fluid for measuring the inner diameter of the conduit can be performed finely.
  • the outflow sealing mechanism 150 is a mechanism that prevents the prefilled fluid from flowing out of the measurement system. In other words, it is a mechanism that closes the flow path other than the flow path (the first flow path member 120 in the present embodiment) into which the measurement fluid is injected in the measurement system of the inner diameter measuring apparatus 100.
  • the outflow sealing mechanism 150 maintains the inner diameter measuring device 100 in a state where the measurement system is prefilled with a fluid, that is, the inner diameter of the conduit can be measured by additionally filling the measurement fluid.
  • the flow path for pre-filling the fluid and the flow path for additionally injecting the measurement fluid are common (first flow path member 120). (Second flow path member 140).
  • first flow path member 120 the flow path for prefilling the fluid
  • second flow path member 140 the flow path for additionally injecting the measurement fluid
  • the outflow sealing mechanism 150 of this embodiment is an existing manual valve mechanism, and closes the end portion of the second flow path member 140 so as to be opened and closed by a manual operation.
  • the volume measuring means 160 is a means for measuring the volume of the additionally injected measurement fluid.
  • Various methods can be used for measuring the volume of the measurement fluid, but in the present embodiment, it is realized as a syringe scale 161 attached to the second injection mechanism (second syringe 132). That is, in the inner diameter measuring device 100 of the present embodiment, the first syringe 131 and the small second syringe 132 are interchangeably mounted on the first flow path member 120, and priming described later with the first syringe 131 is performed.
  • the measurement of the inner diameter of the conduit is performed by measuring the press-fitting amount of the measurement fluid with a syringe scale (capacitance measuring means 160).
  • a volumetric flow meter (not shown) disposed on the flow path of the first flow path member 120 may be used as the capacity measuring unit 160.
  • the inner diameter measuring apparatus 100 performs exchange from the first syringe 131 to the second syringe 132 in a state where the end portion of the second flow path member 140 is closed by the outflow sealing mechanism 150. Therefore, the first flow path member 120 may be provided with a mechanism for preventing the backflow of the injected fluid so that the fluid does not flow out of the measurement system during the replacement operation.
  • the first flow path member 120 is provided with a mechanism for preventing the back flow of the injected fluid (measurement fluid).
  • the inner diameter measuring apparatus 100 of the present embodiment includes a backflow blocking mechanism 123 that is provided in the flow path of the measurement fluid and that allows the measurement fluid to flow from the fluid injection mechanism 130 toward the balloon member 110 and blocks the backflow.
  • the backflow blocking mechanism 123 includes a one-way valve that unilaterally allows the flow toward the balloon member 110 inside the first flow path member 120.
  • FIG. 5 (a) is a plan view of the backflow blocking mechanism 123 of the present embodiment
  • FIG. 5 (b) is a left side view thereof.
  • the fluid injection mechanism 130 (the first syringe 131 and the second syringe 132) is mounted on the right side of the figure (a), and the first flow path member 120 and the balloon member 110 are mounted on the left side.
  • the backflow blocking mechanism 123 of this embodiment allows the backflow of the measurement fluid (fluid) by manual operation.
  • the reverse flow blocking mechanism 123 includes a one-way valve 124 that is displaced between an open state that allows the injection of the measurement fluid and a closed state that blocks the reverse flow, and a pressing portion 125 that is provided across the one valve 124.
  • the one valve 124 is opened by pressing the pressing portion 125, and the back flow of the measurement fluid is allowed.
  • valve 124 is accommodated in a cylindrical housing 126.
  • outer diameter of the valve 124 substantially matches the inner diameter of the housing 126.
  • the end portion of the housing 126 is held by a pushing member 129.
  • the pushing member 129 is a member that allows the housing 126 and the fluid injection mechanism 130 to communicate with each other.
  • the pushing member 129 includes a pair of arm portions 127 extending along the housing 126 and an annular holding portion 128 into which an end portion of the housing 126 is fitted and attached.
  • a pressing portion 125 is formed to protrude inward at the tip of the arm portion 127.
  • the pressing portion 125 of this embodiment has a semicircular plate shape.
  • the tip of the valve 124 (opening end 124 a that restricts the back flow of the measurement fluid) and the pressing portion 125 are both located in the middle portion of the housing 126.
  • the housing 126 and the one-way valve 124 are made of a soft resin material.
  • the pushing member 129 is made of a hard resin material or a metal material.
  • the pressing part 125 of this embodiment is provided with the one-way valve 124 interposed therebetween.
  • the pressing part 125 sandwiches the one-way valve 124 when the plurality of pressing parts 125 are arranged opposite to each other around the one-way valve 124 and when the annular or semi-annular pressing part 125 is the one-way valve 124. And the case where it is installed around.
  • the one-way valve 124 of the present embodiment is a duckbill valve having a slit-like opening end 124a.
  • the pressing portions 125 are disposed on both sides of the opening end 124a in the slit direction. Accordingly, when the operator presses the pair of arm portions 127 of the pressing member 129 from the outside, the pressing portion 125 presses the one valve 124 to bend and deform, and the opening end 124a is forcibly opened. For this reason, in the inner diameter measuring apparatus 100 of the present embodiment, the measurement fluid (fluid) flows (backflow) from the first flow path member 120 to the fluid injection mechanism 130 only when the operator activates the backflow blocking mechanism 123. Is acceptable.
  • the internal pressure of the measurement system is higher than the atmospheric pressure. It flows backward from the one flow path member 120 to the second syringe 132. Thereby, the inflated balloon member 110 is restored to the initial state.
  • the operator can freely repeat the operation of operating the second syringe 132 to additionally inject the measurement fluid into the measurement system and the operation of operating the backflow blocking mechanism 123 to return the measurement fluid to the second syringe 132. Can do.
  • the balloon member 110 is returned to the initial state by a simple manual operation of the backflow blocking mechanism 123, and the conduit The inner diameter can be measured again. Further, when the inner diameter of the conduit is measured a plurality of times, it is not necessary to discharge the prefilled fluid each time.
  • Priming method (hereinafter also referred to as the present method) for filling the inner diameter measuring device 100 of the present embodiment with a fluid in the configuration as described above and an inner diameter measuring method for measuring the inner diameter of the conduit will be sequentially described below.
  • the present method relates to a fluid pre-filling method for the inner diameter measuring device 100.
  • a fluid is injected into the balloon member 110 through the first flow path member 120 out of the first flow path member 120 and the second flow path member 140 that are individually communicated with the balloon member 110.
  • the fluid is caused to flow out through the second flow path member 140, and the second flow path member 140 is closed while the balloon member 110, the first flow path member 120, and the second flow path member 140 are filled with the fluid.
  • the first flow path member 120 and the second flow path member 140 communicate with the balloon member 110, respectively. Syringes are connected to the end portions of the first flow path member 120 and the second flow path member 140 or opened so as to be closeable.
  • the fluid is injected from the end portion of the first flow path member 120 and the fluid is allowed to flow out from the end portion of the second flow path member 140 so that the first flow path member 120, the balloon member 110, and the second flow path member 140 are discharged.
  • the flow path member 140 is filled with fluid. Further, the end portion of the second flow path member 140 filled with the fluid together with the first flow path member 120 and the balloon member 110 is closed.
  • the balloon member 110 is inserted at a position where the inner diameter of a conduit such as the bronchus of the lungs of emphysema is measured (step S1).
  • This insertion is performed, for example, by inserting a portion of the balloon catheter 112 into a forceps hole of a bronchoscope (not shown).
  • step S2 an incompressible fluid is injected by the fluid injection mechanism 130 (first syringe 131) from the end portion of the first flow path member 120 communicating with the balloon member 110 (step S2).
  • the fluid injected in this way flows from the first flow path member 120 into the cap member 111 and the balloon member 110 and flows out from the second flow path member 140. Therefore, when the fluid flows out from the end portion of the second flow path member 140 (step S3-Y), the first flow path member 120 and the balloon member 110 together with the first flow path member 140 and the end portion of the second flow path member 140 filled with the fluid flow out. It closes with the sealing mechanism 150 (step S4). As a result, the measurement system is prefilled with fluid under atmospheric pressure.
  • the first syringe 131 is removed from the first flow path member 120, and the second syringe 132 is attached (step S5). Then, the measurement fluid is injected into the first flow path member 120 in a state where the outflow sealing mechanism 150 is closed by the second syringe 132 formed of the small volume syringe (step S6).
  • the degree of expansion of the balloon member 110 in the bronchus is directly viewed with a bronchoscope (not shown), and the measurement is performed when the outer peripheral surface of the balloon member 110 is in close contact with the inner peripheral surface of the bronchus (step S7-Y).
  • the fluid injection is stopped (step S8).
  • the volume of the measurement fluid injected (additionally injected) with the second syringe 132 is measured with the scale 161 (step S9).
  • the volume of the measurement fluid is converted into the inner diameter of the conduit that is the outer diameter of the inflated balloon member 110 (step S10).
  • This conversion is executed by an inner diameter detecting means such as a conversion table (not shown) in which the relative relationship between the capacity and the inner diameter is written in advance.
  • the volume of the measurement fluid injected from the second syringe 132 into the first flow path member 120 is measured in a state where the entire interior is primed with the fluid as described above.
  • the balloon member 110 can be inflated with the measurement fluid to be injected to measure the inner diameter of the conduit.
  • the balloon member 110 can be prevented from suddenly expanding as shown in FIG.
  • the inner diameter of the conduit can be measured.
  • the first injection channel 121 of the first channel member 120 is formed with a smaller diameter than the second outlet channel 141 of the second channel member 140. ing. For this reason, the force applied to the second syringe 132 in order to inject the measurement fluid into the balloon member 110 can be reduced.
  • the second outflow channel 141 of the second channel member 140 is formed with a larger diameter than the first injection channel 121 of the first channel member 120. For this reason, it is possible to satisfactorily prevent air from remaining as bubbles in the inner diameter measuring apparatus 100 due to priming.
  • the present invention is not limited to the present embodiment, and various modifications are allowed without departing from the scope of the present invention.
  • the internal diameter of the 1st injection flow path 121 of the 1st flow path member 120 and the 2nd outflow flow path 141 of the 2nd flow path member 140 may be the same.
  • the structure of the inner diameter measuring device is simplified and productivity can be improved (not shown).
  • the fluid when performing priming for filling the inside of the apparatus with fluid, the fluid is press-fitted from the first channel member 120 with the first syringe 131 while the end portion of the second channel member 140 is opened.
  • a negative pressure pump (not shown) or the like is attached to the end portion of the second flow path member 140 and the fluid inside the apparatus is positively sucked from the end portion of the second flow path member 140 with a negative pressure. Good.
  • the balloon member 110 is inflated to the inner diameter of the bronchus by directly viewing the expansion state of the balloon member 110 in the bronchus with a bronchoscope.
  • a pressure gauge (not shown) is installed in the first flow path member 120, the second flow path member 140, etc., and the pressure of the fluid is measured to confirm whether the balloon member 110 has expanded to the inner diameter of the bronchus. You can also
  • another bronze sealing mechanism (not shown) is added to the first flow path member 120, and the balloon member 110 is inflated by injecting the measurement fluid from the second syringe 132, so that the bronchi and the balloon When the member 110 is in close contact, the other outflow sealing mechanism may be closed.
  • the inner diameter of the bronchus can be reliably measured as the outer diameter of the inflated balloon member 110.
  • an inner diameter detecting means such as a conversion table in which the relative relationship between the volume of the measurement fluid and the outer diameter of the balloon member 110 is calibrated in advance, the fluid volume is set to the inner diameter of the conduit. Exemplified conversion.
  • the second syringe 132 is a syringe in which the inner diameter of the conduit, which is the outer diameter of the balloon member 110 that is inflated, is directly indicated as the scale 161 (volume measuring means 160). (See the conversion scale 241 in FIGS. 6 and 8).
  • a human lung bronchus is assumed as a conduit.
  • the inner diameter measuring device 100 of the present embodiment can be used for measuring inner diameters of various conduits and may be applied to conduits other than the human body.
  • the first flow path member 120 and the second flow path member 140 are in communication with the balloon member 110.
  • the fluid injection mechanism 130 includes a first injection mechanism 210 that injects fluid from the end portion into the first flow path member 120, and a second injection that is detachably connected to the end section of the second flow path member 140 and injects the measurement fluid.
  • the outflow sealing mechanism 150 includes a first blocking mechanism 220 that blocks back flow of fluid from the first flow path member 120 filled with fluid together with the balloon member 110 and the second flow path member 140 to the first injection mechanism 210.
  • the second injection mechanism 240 injects the measurement fluid into the end portion of the second flow path member 140 in a state where the back flow of the fluid is blocked by the first blocking mechanism 220.
  • the capacity measuring unit 160 measures the capacity of the measurement fluid injected from the second injection mechanism 240 into the second flow path member 140.
  • the outflow sealing mechanism 150 is a mechanism that prevents the prefilled fluid from flowing out of the measurement system due to additional injection of the measurement fluid.
  • the outflow sealing mechanism 150 of this embodiment includes a first blocking mechanism 220.
  • the outflow sealing mechanism 150 (first blocking mechanism 220) of the present embodiment is a manual valve mechanism that opens and closes communication between the first flow path member 120 and the first injection mechanism 210, or the first flow path member 120 from the first injection mechanism 210.
  • a one-way valve is included that allows the fluid to flow into and blocks backflow.
  • blocking mechanism 220 of this embodiment is a manual valve mechanism which closes the 1st flow path member 120 so that opening and closing is possible by manual operation.
  • the inner diameter measuring apparatus 200 of the present embodiment is not an essential component, but closes the end portion of the second flow path member 140 filled with fluid together with the first flow path member 120 and the balloon member 110 so as to be freely opened and closed.
  • a second blocking mechanism 230 is included.
  • a second injection mechanism 240 that stores a measurement fluid is connected to the second blocking mechanism 230.
  • the second blocking mechanism 230 is also a manual valve mechanism that closes the second flow path member 140 so as to be opened and closed by manual operation.
  • the first injection mechanism 210 and the second injection mechanism 240 are composed of syringes for manually injecting fluid, as with the fluid injection mechanism 130 described above. However, as described above, the first injection mechanism 210 is a large-capacity syringe, and the second injection mechanism 240 is a small-capacity syringe. The second injection mechanism 240 injects fluid in smaller amounts than the first injection mechanism 210.
  • the volume measuring means 160 of the present embodiment is represented on the outer peripheral surface of the second injection mechanism 240 as an inner diameter detecting means for detecting the inner diameter of the conduit as the outer diameter of the balloon member 110 that expands from the volume of the measured fluid to be measured. This is realized by a conversion scale 241.
  • the tip of the balloon catheter 112 is closed by the cap member 111.
  • the tip of the balloon catheter 112 is closed without using the cap member 111 and is formed in a hemispherical shape.
  • the priming method (this method) and the inner diameter measuring method of the inner diameter measuring apparatus 200 of the present embodiment will be sequentially described below.
  • the fluid is injected from the end portion of the first flow path member 120 and the fluid is allowed to flow out from the end portion of the second flow path member 140, so that the first flow path member 120, the balloon member 110, and the second flow path member 140 Fill with fluid. Further, the reverse flow of the fluid from the end portion of the first flow path member 120 filled with the fluid together with the balloon member 110 and the second flow path member 140 is blocked.
  • the balloon member 110 is inserted at a position where the inner diameter of the conduit is measured, as in the case of the inner diameter measuring apparatus 100 described above (step T1).
  • the second blocking mechanism 230 is open, and the second injection mechanism 240 is not connected.
  • an incompressible fluid is injected by the first injection mechanism 210 from the end portion of the first flow path member 120 communicating with the balloon member 110 (step T2).
  • the fluid is caused to flow out from the end portion of the second flow path member 140 communicating with the balloon member 110 (step T3-Y).
  • the measurement system is prefilled with fluid under atmospheric pressure.
  • the first blocking mechanism 220 is manually operated to close the end of the first flow path member 120. Thereby, the reverse flow of the fluid from the first flow path member 120 preliminarily filled with the balloon member 110 and the second flow path member 140 to the first injection mechanism 210 is blocked by the first blocking mechanism 220 (step T4).
  • step T5 the second blocking mechanism 230 of the second flow path member 140 is also closed, and the priming of the inner diameter measuring device 200 is completed.
  • the second injection mechanism 240 is connected to the second blocking mechanism 230 of the second flow path member 140 closed as described above (step T5).
  • the second blocking mechanism 230 connected to the second injection mechanism 240 is opened, and the first blocking mechanism 220 is connected to the end portion of the second flow path member 140 in a state where the back flow of the fluid is blocked.
  • the measurement fluid is additionally injected little by little by the two injection mechanism 240 (step T6).
  • the inflation state of the balloon member 110 in the bronchus is also viewed directly with a bronchoscope (not shown), and when the outer peripheral surface of the balloon member 110 is in close contact with the inner peripheral surface of the bronchus (step T7-Y), The additional injection of the measurement fluid is stopped (step T8). At this time, when the close contact state between the balloon member 110 and the bronchus is maintained, the second blocking mechanism 230 is closed.
  • the second injection mechanism 240 the outer diameter of the balloon member 110 that expands in accordance with the volume of the measurement fluid to be injected as described above is written as the conversion scale 241. Therefore, the second injection mechanism 240 is expanded by the conversion scale 241. The inner diameter of the conduit is measured as the outer diameter of the balloon member 110 (step T9).
  • the inner diameter of the conduit can be measured by inflating the balloon member 110 with the additionally injected measurement fluid in a priming state in which the inside is pre-filled with an incompressible fluid. .
  • the balloon member 110 can be prevented from rapidly expanding, and the inner diameter of the conduit can be measured safely and accurately.
  • priming for prefilling the inside of the inner diameter measuring device 200 with a fluid can be performed at high speed by the first injection mechanism 210, and measurement of the inner diameter can be performed finely by the second injection mechanism 240.
  • the flow rate of the additional measurement fluid to be injected corresponds one-to-one with the outer diameter of the expansion of the balloon member 110.
  • the outer diameter of the balloon member 110 that expands in accordance with the volume of the additional measurement fluid to be injected can be expressed as a conversion scale 241.
  • the conversion scale 241 allows the expansion.
  • the outer diameter of the balloon member 110 the inner diameter of the conduit can be measured at a glance.
  • the present invention is not limited to this embodiment, and various modifications are allowed without departing from the scope of the present invention.
  • the first flow path member 120 and the balloon member 110 and the end portion of the second flow path member 140 preliminarily filled with fluid are closed by the second blocking mechanism 230 so as to be opened and closed.
  • the second blocking mechanism 230 can be omitted.
  • the second blocking mechanism 230 may be the backflow blocking mechanism 123 shown in FIGS. 5 (a) and 5 (b).
  • the second injection mechanism 240 may be attached to the pushing member 129 of the backflow blocking mechanism 123 so that the measurement fluid flows from the one-way valve 124 into the second flow path member 140.
  • the arm portion 127 is pressed to forcibly open the open end 124a of the one-way valve 124.
  • the second injection mechanism 240 is connected to the pushing member 129 to perform additional injection of the measurement fluid, even when the measurement fluid press-fit amount becomes excessive, the one-way valve 124 is simply opened manually. Since the balloon member 110 returns to the initial state, the second measurement can be performed quickly.
  • the first blocking mechanism 220 for blocking the back flow of the fluid from the first flow path member 120 preliminarily filled with the balloon member 110 and the second flow path member 140 to the first injection mechanism 210 is manually operated.
  • An example is that it includes a manual valve mechanism that closes the first flow path member 120 so that it can be opened and closed by operation.
  • such a first blocking mechanism may include a one-way valve that blocks the backflow while allowing the fluid to be injected from the first injection mechanism 210 to the first flow path member 120 (not shown).
  • the tip of the balloon catheter 112 is illustrated as being closed without using the cap member 111 and formed in a hemispherical shape.
  • the tip of the balloon catheter 112 of the inner diameter measuring apparatus 200 as described above may be closed by the cap member 111 (not shown).
  • the outer diameter of the balloon member 110 that expands corresponding to the volume of the measurement fluid injected into the measurement system by the second injection mechanism 240 is described as a conversion scale 241, and the expansion is performed by the conversion scale 241.
  • the outer diameter of the balloon member 110 the inner diameter of the conduit can be measured at a glance.
  • the volume of the measurement fluid may be converted into the inner diameter of the conduit, which is the outer diameter of the balloon member 110 that is inflated, using inner diameter detection means such as a conversion table in which the relationship is written.
  • the first flow path member 120 and the second flow path member 140 are in communication with the balloon member 110.
  • the fluid injection mechanism 130 includes a first injection mechanism 210 that injects a fluid from the end portion into the first flow path member 120, and a second injection mechanism 240 that injects a measurement fluid into the end portion of the first flow path member 120.
  • the outflow sealing mechanism 150 includes a second blocking mechanism 230 that opens and closes the end portion of the second flow path member 140 filled with the fluid together with the balloon member 110 and the first flow path member 120.
  • the outflow sealing mechanism 150 includes a first blocking mechanism 310 that blocks back flow of fluid from the first flow path member 120 filled with fluid together with the balloon member 110 and the second flow path member 140 to the first injection mechanism 210. .
  • the second injection mechanism 240 injects the measurement fluid into the end portion of the first flow path member 120 in a state where the back flow of the fluid to the first injection mechanism 210 is blocked.
  • the volume measuring unit 160 measures the volume of the measurement fluid injected from the second injection mechanism 240 into the first flow path member 120.
  • the outflow sealing mechanism 150 is a mechanism that prevents the prefilled fluid from flowing out of the measurement system due to additional injection of the measurement fluid.
  • the outflow sealing mechanism 150 of this embodiment includes a first blocking mechanism 310.
  • the outflow sealing mechanism 150 (first blocking mechanism 310) of the present embodiment is a one-way valve that allows the injection of fluid from the first injection mechanism 210 to the first flow path member 120 and blocks backflow.
  • the inner diameter measuring device 300 of the present embodiment also includes a backflow blocking mechanism 320 that allows fluid injection from the second injection mechanism 240 to the first flow path member 120 and blocks backflow.
  • the reverse flow blocking mechanism 320 is formed of, for example, a duckbill valve that allows reverse flow by manual operation.
  • the first injection mechanism 210 and the second injection mechanism 240 are connected to one first flow path member 120 by a Y connector 330 which is a kind of bifurcated connector.
  • the volume measuring means 160 serves as the inner diameter detecting means for detecting the inner diameter of the conduit as the outer diameter of the balloon member 110 that expands from the volume of the fluid to be measured. This is realized by a conversion scale 241 written on the outer peripheral surface of the.
  • the inner diameter measuring device 300 includes a second blocking mechanism 230 that closes an end portion of the second flow path member 140 filled with fluid together with the first flow path member 120 and the balloon member 110 so as to be freely opened and closed.
  • blocking mechanism 230 is a manual valve mechanism which closes the 2nd flow path member 140 so that opening and closing is possible by manual operation.
  • the priming method (this method) and the inner diameter measuring method of the inner diameter measuring apparatus 300 of the present embodiment will be sequentially described below.
  • the end portion of the first flow path member 120 is branched into a plurality of flow paths, and a fluid is injected from one flow path into the balloon member 110 so that the first flow path member 120, the balloon member 110, and the second flow path.
  • a fluid is filled into the path member 140.
  • the backflow of the fluid from one flow path of the 1st flow path member 120 with which the fluid was filled with the balloon member 110 and the 2nd flow path member 140 is interrupted
  • the end portion of the second flow path member 140 filled with is closed.
  • the balloon member 110 is inserted at a position where the inner diameter of the conduit is measured, as in the case of the inner diameter measuring devices 100 and 200 described above (step E1).
  • the second blocking mechanism 230 is opened.
  • an incompressible fluid is injected by the first injection mechanism 210 from the end portion of the first flow path member 120 communicating with the balloon member 110 (step E2).
  • step E3-Y the fluid is caused to flow out from the end portion of the second flow path member 140 communicating with the balloon member 110.
  • the measurement system is prefilled with fluid under atmospheric pressure.
  • the second blocking mechanism 230 of the second flow path member 140 is closed (step E4), and thus the priming of the inner diameter measuring device 300 is completed.
  • the measurement fluid is additionally injected little by little by the injection mechanism 240 (step E5).
  • the inflation state of the balloon member 110 in the bronchus is also viewed directly with a bronchoscope (not shown), and when the outer peripheral surface of the balloon member 110 is in close contact with the inner peripheral surface of the bronchus (step E6-Y), The additional injection of the measurement fluid is stopped (step E7).
  • the outer diameter of the balloon member 110 that expands in accordance with the volume of the measurement fluid that is additionally injected as described above is written as the conversion scale 241.
  • the inner diameter of the conduit is measured as the outer diameter of the balloon member 110 (step E8).
  • the inner diameter of the conduit can be measured by inflating the balloon member 110 with the additionally injected measurement fluid in a priming state in which the inside is prefilled with an incompressible fluid.
  • the balloon member 110 can be prevented from rapidly expanding, and the inner diameter of the conduit can be measured safely and accurately.
  • priming for prefilling the inside of the inner diameter measuring device 300 with a fluid can be executed at high speed by the first injection mechanism 210, and measurement of the inner diameter can be executed finely by the second injection mechanism 240.
  • the flow rate of the additional measurement fluid to be injected corresponds one-to-one with the outer diameter of the expansion of the balloon member 110.
  • the outer diameter of the balloon member 110 that expands in accordance with the volume of the additional measurement fluid to be injected can be expressed as a conversion scale 241.
  • the conversion scale 241 allows the expansion.
  • the outer diameter of the balloon member 110 the inner diameter of the conduit can be measured at a glance.
  • the inner diameter measuring work can be executed simply and hygienically.
  • the first blocking mechanism 310 that blocks the reverse flow of the fluid from the first injection mechanism 210 to the first flow path member 120 is from a one-valve that allows the injection of fluid from the first injection mechanism 210 to the first flow path member 120. Become. For this reason, it is not necessary to manually operate the first blocking mechanism 310 when priming is completed.
  • the inner diameter measuring device 300 of the present embodiment also includes a backflow blocking mechanism 320 that allows additional injection of the measurement fluid from the second injection mechanism 240 to the first flow path member 120 and blocks the backflow. For this reason, the backflow of the measurement fluid due to the pressure acting on the inflating balloon member 110 can be prevented, and the contact state between the balloon member 110 and the bronchus can be maintained.
  • the backflow blocking mechanism 320 is a duckbill valve that allows backflow by manual operation. For this reason, the backflow of the fluid from the 1st flow path member 120 to the 2nd injection mechanism 240 can also be permitted if needed.
  • the backflow blocking mechanism 123 shown in FIGS. 5A and 5B may be used as the backflow blocking mechanism 320.
  • the second injection mechanism 240 may be attached to the pushing member 129 of the backflow blocking mechanism 123 so that the measurement fluid flows from the one-way valve 124 into the first flow path member 120.
  • the one-way valve 124 is closed during preliminary fluid filling by the first injection mechanism 210.
  • the balloon member 110 is returned to the initial state only by manually opening the one valve 124 by operating the arm portion 127 even when the measurement fluid press-fit amount becomes excessive. Since it returns, it can measure again quickly.
  • the present invention is not limited to this embodiment, and various modifications are allowed without departing from the scope of the present invention.
  • the first blocking mechanism 310 that blocks back flow of fluid from the first channel member 120 filled with the fluid together with the balloon member 110 and the second channel member 140 to the first injection mechanism 210 in the above mode
  • An example is shown in which the injection of fluid from the first injection mechanism 210 to the first flow path member 120 is allowed and the reverse flow is blocked.
  • the first blocking mechanism 310 may include a manual valve mechanism that closes the first flow path member 120 so as to be opened and closed by manual operation (not shown).
  • the backflow blocking mechanism 320 that allows the flow of fluid from the second injection mechanism 240 to the first flow path member 120 and blocks the backflow is exemplified by a duckbill valve that is a one-way valve.
  • the backflow blocking mechanism 320 may be a simple one-way valve or a manual valve mechanism (not shown).
  • the above-described reverse flow blocking mechanism 320 is Since it is not an essential component, it can be omitted.
  • the tip of the balloon catheter 112 is illustrated as being closed without using the cap member 111 and formed in a hemispherical shape.
  • the tip of the balloon catheter 112 of the inner diameter measuring device 300 as described above may be closed by the cap member 111 (not shown).
  • first injection mechanism 210 and the second injection mechanism 240 are connected to one first flow path member 120 by the Y connector 330.
  • a connection can be realized by various connectors having a bifurcated structure, and for example, a T connector or the like can be used (not shown).
  • the outflow sealing mechanism that closes the end portion of the second flow path member 140 filled with the fluid together with the first flow path member 120 and the balloon member 110 so as to be freely opened and closed.
  • blocking mechanism 230 illustrated that it consists of an opening-and-closing valve operated with fingers.
  • an outflow sealing mechanism includes a valve body (not shown) for closing the end portion of the second flow path member 140 and a closed state of the valve body as in the first modification shown in FIG.
  • a valve mechanism 151 including an elastic member (not shown) for biasing, and a clamp 152 that is detachably mounted on the valve mechanism 151 and opens the valve body may be included.
  • the valve mechanism 151 is a spring-type one-way valve, and is configured such that an elastic member (spring) is compressed and the valve body is maintained in an open state by attaching an M-type clamp 152 to the tip.
  • FIG. 10A in the valve mechanism 151, when the clamp 152 is removed, the valve body closes the flow path with a built-in elastic member (spring).
  • FIG. 10 (b) when the clamp 152 is mounted on the valve mechanism 151, the built-in valve body is pressed to open the flow path.
  • the outer diameter of the balloon member 110 that expands corresponding to the volume of fluid injected into the second injection mechanism 240 is expressed as a conversion scale 241, and the balloon member 110 that expands by the conversion scale 241
  • the ability to measure the inner diameter of the conduit as an outer diameter at a glance was exemplified.
  • the volume of the measurement fluid corresponds to the outer diameter of the balloon member 110 as in the first embodiment described above.
  • the volume of the measurement fluid may be converted into the inner diameter of the conduit using the inner diameter detecting means.
  • FIG. 11 is a schematic longitudinal side view showing the internal structure of the main part of the inner diameter measuring apparatus according to the second modification.
  • the first flow path member 120 and the second flow path member 140 are from a first opening or a second opening (through hole 122 in the present modification) formed on the distal side of the inner diameter measuring device 100.
  • the resin material 113 is filled adjacent to the distal side.
  • the leading ends of the first inlet channel 121 of the first channel member 120 and the second outlet channel 141 of the second channel member 140 are respectively closed, and the first channel only through the through holes 122 and 142 and the balloon member 110.
  • the member 120 and the second flow path member 140 are in communication.
  • This modification is formed on one of the first flow path member 120 and the second flow path member 140 into which fluid is injected toward the balloon member 110 by the fluid injection mechanism 130 (the first flow path member 120 in this modification).
  • the first opening (through hole 122) is formed on the distal side (tip side) from the second opening (through hole 142) formed in the other (second flow path member 140 in this modification). This is different from the first embodiment.
  • the through holes 122 and 142 are formed at different positions in the axial direction, buckling deformation of the tip of the inner diameter measuring device (measuring system) is prevented, so the inner diameter measuring device is inserted into the conduit.
  • the workability at the time is good.
  • the through hole 122 corresponding to the upstream side where the fluid flows into the balloon member 110 is disposed on the distal side, and the resin material 113 is liquid-tightly filled on the further adjacent distal side thereof. Has been. For this reason, bubbles do not remain in the vicinity of the through hole 122.
  • An inner diameter measuring device for measuring the inner diameter of a conduit, A balloon member inserted at a position for measuring the inner diameter of the conduit; A first flow path member having a tip portion connected to the balloon member; A fluid injection mechanism for injecting an incompressible fluid from the end portion into the first flow path member; A second flow path member having a tip portion connected to the balloon member and allowing the fluid to be injected to flow out from the end portion; An outflow sealing mechanism for opening and closing the end portion of the second flow path member filled with the fluid together with the first flow path member and the balloon member; and Capacity measuring means for measuring the volume of the fluid injected from the fluid injection mechanism into the first flow path member in a state where the outflow sealing mechanism is closed; An inner diameter measuring device.
  • An inner diameter measuring device for measuring the inner diameter of a conduit, A balloon member inserted at a position for measuring the inner diameter of the conduit; A first flow path member having a tip portion connected to the balloon member; A first injection mechanism for injecting an incompressible fluid from the end portion into the first flow path member; A second flow path member having a tip portion connected to the balloon member and allowing the fluid to be injected to flow out from the end portion; A first blocking mechanism for blocking back flow of the fluid from the first flow path member filled with the fluid together with the balloon member and the second flow path member to the first injection mechanism; A second injection mechanism for injecting the fluid by being detachably connected to an end portion of the second flow path member in a state where the backflow is blocked by the first blocking mechanism; Volume measuring means for measuring the volume of the fluid injected into the second flow path member from the second injection mechanism; An inner diameter measuring device.
  • An inner diameter measuring device for measuring the inner diameter of a conduit, A balloon member inserted at a position for measuring the inner diameter of the conduit; A first flow path member having a tip portion connected to the balloon member; A first injection mechanism for injecting an incompressible fluid from the end portion into the first flow path member; A second flow path member having a tip portion connected to the balloon member and allowing the fluid to be injected to flow out from the end portion; A first blocking mechanism for blocking back flow of the fluid from the first flow path member filled with the fluid together with the balloon member and the second flow path member to the first injection mechanism; An outflow sealing mechanism for opening and closing the end portion of the second flow path member filled with the fluid together with the balloon member and the first flow path member; A second injection mechanism for injecting the fluid into an end portion of the first flow path member in which the backflow to the first injection mechanism is blocked; Volume measuring means for measuring the volume of the fluid injected into the second flow path member from the second injection mechanism; An inner diameter measuring device.
  • the inner diameter measurement apparatus further including a backflow blocking mechanism that allows the fluid to be injected from the second injection mechanism into the first flow path member and blocks backflow.
  • the inner diameter measuring device further including a backflow blocking mechanism that allows the fluid to be injected from the second injection mechanism into the first flow path member and blocks backflow.
  • the inner diameter measuring device further including a backflow blocking mechanism that allows the fluid to be injected from the second injection mechanism into the first flow path member and blocks backflow.
  • the backflow blocking mechanism allows the backflow by manual operation.
  • the inner diameter measurement apparatus according to any one of (2) to (5), wherein the second injection mechanism injects the fluid in a smaller amount than the first injection mechanism.
  • the first shut-off mechanism includes any one of the above-described (2) to (6), which includes a manual valve mechanism that manually opens and closes communication between the first flow path member and the first injection mechanism.
  • An inner diameter measuring device according to claim 1.
  • the first shut-off mechanism comprises a one-way valve that allows the fluid to be injected from the first injection mechanism into the first flow path member and shuts back flow.
  • the inner diameter measuring device according to any one of the above. (9) In any one of the above items (1) to (8), further comprising an inner diameter detecting means for detecting an inner diameter of the conduit as an outer diameter of the balloon member that is inflated from the volume of the fluid to be measured. The inner diameter measuring device described.
  • a priming method for filling the inner diameter measuring device according to the above (1) with the fluid Injecting an incompressible fluid from the end portion of the first flow path member having a tip portion connected to the balloon member by the fluid injection mechanism, Causing the fluid to flow out from the end portion of the second flow path member having a tip portion connected to the balloon member;
  • a priming method for filling the inner diameter measuring device according to (2) with the fluid Injecting an incompressible fluid from the end portion of the first flow path member having a tip portion connected to the balloon member by the first injection mechanism, Causing the fluid to flow out from the end portion of the second flow path member having a tip portion connected to the balloon member;
  • a priming method for filling the inner diameter measuring device according to the above (3) with the fluid Injecting an incompressible fluid from the end portion of the first flow path member having a tip portion connected to the balloon member by the first injection mechanism, Causing the fluid to flow out from the end portion of the second flow path member having a tip portion connected to the balloon member; Blocking back flow of the fluid from the first channel member filled with the fluid together with the balloon member and the second channel member to the first injection mechanism by the first blocking mechanism, A priming method in which an end portion of the second flow path member filled with the fluid together with the balloon member and the first flow path member is closed by the outflow sealing mechanism.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Pulmonology (AREA)
  • Physiology (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Vascular Medicine (AREA)
  • Dentistry (AREA)
  • Reproductive Health (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Otolaryngology (AREA)
  • Hematology (AREA)
  • Anesthesiology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Endoscopes (AREA)
  • Measuring Arrangements Characterized By The Use Of Fluids (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

 導管の内径を測定する内径測定装置(100)は、バルーン部材(110)に対して個別に連通している第一流路部材(120)および第二流路部材(140)、流体注入機構(130)、流出密閉機構(150)、および容量測定手段(160)を有する。流体注入機構(130)は、第一流路部材(120)または第二流路部材(140)を通じてバルーン部材(110)の内部に非圧縮性の流体を注入する。流出密閉機構(150)は、第一流路部材(120)または第二流路部材(140)の一方を閉止する。容量測定手段(160)は、バルーン部材(110)、第一流路部材(120)および第二流路部材(140)に流体が充填され、流出密閉機構(150)により第一流路部材(120)または第二流路部材(140)の一方を閉止した状態から、他方を通じて流体注入機構(130)によりさらに注入される非圧縮性の測定流体の容量を測定する。

Description

内径測定装置、そのプライミング方法
 本発明は、導管の内径を測定する内径測定装置に関し、特に、肺気腫治療における気管支の内径の測定に利用される内径測定装置、そのプライミング方法、に関する。
 現在、肺気腫の治療方法として、気管支にバルブを留置する手法がある。このようなバルブは、例えば、傘の内部にバルーンを一体化したような構造に形成されており、傘と同様に開閉することで治療する気管支を閉塞する。
 現在、上述のような気管支を閉塞する装置として各種の提案がある(例えば、特許文献1,2参照)。また、一方弁などを利用したカテーテルなども各種の提案がある(例えば、特許文献3~6参照)。
 さらに、対象の管路等の寸法に関わらず正確な測定を行うことができる内径測定具の提案もある。その管腔に挿入されて内径を測定するための内径測定具は、管腔内に挿入される管状のシースと、シースの先端側に取り付けられ、内部に流体が供給されて拡張可能なバルーンと、第1の端部がシースの先端側又はバルーンに固定され、バルーンの拡張と連動して第2の端部がシースの先端側に移動する線状の指標部材と、シースの基端側に設けられ、指標部材の第2の端部の位置を確認可能な測定部とを備える(例えば、特許文献7参照)。
特表2005-505355号公報 特開2004-024864号公報 実開昭63-022939号公報 特開平03-109065号公報 特開平05-049597号公報 特開平08-019605号公報 特開2009-165608号公報
 気管支は内径が一律ではないため、治療する気管支に対応させて各種サイズのバルブが利用されている。そこで、治療に最適なバルブを選定するため、閉塞する部位の気管支の内径を事前に確認する必要がある。
 本発明は上述のような課題に鑑みてなされたものであり、気管支などの導管の内径を簡単に測定することができる内径測定装置、そのプライミング方法を提供するものである。
 本発明の内径測定装置は、導管の内径を測定する内径測定装置であって、導管の内径を測定する位置に挿入されるバルーン部材と、バルーン部材に対して個別に連通している第一流路部材および第二流路部材と、第一流路部材または第二流路部材を通じてバルーン部材の内部に非圧縮性の流体を注入する流体注入機構と、第一流路部材または第二流路部材の一方を閉止する流出密閉機構と、バルーン部材、第一流路部材および第二流路部材に流体が充填され、流出密閉機構により第一流路部材または第二流路部材の一方を閉止した状態から、第一流路部材または第二流路部材の他方を通じて流体注入機構によりさらに注入される非圧縮性の測定流体の容量を測定する容量測定手段と、を有する。
 したがって、内径測定装置の内部が非圧縮性の流体で充填されたプライミング状態から、さらに非圧縮性の測定流体が注入されるため、注入された測定流体の容量がバルーン部材の膨張体積に正確に対応することとなる。
 また、本発明の内径測定装置において、流体注入機構は、第一流路部材に末端部分から流体および測定流体を注入し、流出密閉機構は、第一流路部材とバルーン部材とともに流体が充填された第二流路部材の末端部分を開閉自在に閉止し、容量測定手段は、流出密閉機構が閉止された状態で流体注入機構から第一流路部材に注入される測定流体の容量を測定してもよい。以下、かかる内径測定装置を第一の内径測定装置という場合がある。
 第一の内径測定装置によれば、内径測定装置の内部が非圧縮性の流体で充填されたプライミング状態で、導管の内径に対応した流体の容量が測定される。内径測定装置の内部を流体で充填するプライミングおよび内径の測定は流体注入機構により実行される。
 また、本発明の内径測定装置において、流体注入機構は、第一流路部材に末端部分から流体を注入する第一注入機構と、第二流路部材の末端部分に着脱自在に連結されて測定流体を注入する第二注入機構と、を含み、流出密閉機構は、バルーン部材と第二流路部材とともに流体が充填された第一流路部材から第一注入機構への流体の逆流を遮断する第一遮断機構を含み、第二注入機構は、第一遮断機構で逆流が遮断された状態で第二流路部材の末端部分に測定流体を注入し、容量測定手段は、第二注入機構から第二流路部材に注入される測定流体の容量を測定してもよい。以下、かかる内径測定装置を第二の内径測定装置という場合がある。
 第二の内径測定装置によれば、内径測定装置の内部が非圧縮性の流体で充填されたプライミング状態で、導管の内径に対応した流体の容量が測定される。内径測定装置の内部を流体で充填するプライミングは第一注入機構により実行され、内径の測定は第二注入機構により実行される。
 また、本発明の内径測定装置において、流体注入機構は、第一流路部材に末端部分から流体を注入する第一注入機構と、第一流路部材の末端部分に測定流体を注入する第二注入機構と、を含み、流出密閉機構は、バルーン部材と第一流路部材とともに流体が充填された第二流路部材の末端部分を開閉自在に閉止し、かつ、バルーン部材と第二流路部材とともに流体が充填された第一流路部材から第一注入機構への流体の逆流を遮断し、第二注入機構は、第一注入機構への逆流が遮断された状態で第一流路部材の末端部分に測定流体を注入し、容量測定手段は、第二注入機構から第一流路部材に注入される測定流体の容量を測定してもよい。以下、かかる内径測定装置を第三の内径測定装置という場合がある。
 第三の内径測定装置によれば、内径測定装置の内部が非圧縮性の流体で充填されたプライミング状態で、導管の内径に対応した流体の容量が測定される。内径測定装置の内部を流体で充填するプライミングは第一注入機構により実行され、内径の測定は第二注入機構により実行される。さらに、作業工程の全体で部材の着脱が発生しないので、簡単かつ衛生的に内径測定作業が実行される。
 また、上述のような内径測定装置において、測定流体の流路に設けられて流体注入機構からバルーン部材に向かう測定流体の注入を許容して逆流を遮断する逆流遮断機構を、さらに有してもよい。
 また、上述のような内径測定装置において、逆流遮断機構は、手動操作により測定流体の逆流を許容してもよい。
 また、上述のような内径測定装置において、逆流遮断機構は、測定流体の注入を許容する開状態と逆流を遮断する閉状態とに変位する一方弁と、一方弁を挟んで設けられた押圧部と、を備え、押圧部を押圧することで一方弁が開状態となり測定流体の逆流が許容されるようにしてもよい。
 また、上述のような内径測定装置において、流体注入機構は、測定流体を流体よりも少量ずつ注入してもよい。
 また、上述のような内径測定装置において、流体注入機構は、流体を注入する第一シリンジと、測定流体を注入する第二シリンジと、を含み、第二シリンジの容量の目盛単位が第一シリンジの容量の目盛単位よりも精細であってもよい。
 また、上述のような内径測定装置において、流出密閉機構が、第二流路部材の末端部分を閉止する弁体と、弁体を閉状態に付勢する弾性部材と、を備える弁機構と、弁機構に着脱可能に装着されて弁体を開状態とするクランプと、を含んでもよい。
 また、上述のような内径測定装置において、流出密閉機構が、第一流路部材と第一注入機構との連通を開閉する手動バルブ機構、または第一注入機構から第一流路部材への流体の注入を許容して逆流を遮断する一方弁を含んでもよい。
 また、上述のような内径測定装置において、測定される測定流体の容量から膨張するバルーン部材の外径として導管の内径を検出する内径検出手段を、さらに有してもよい。
 また、上述のような内径測定装置において、バルーン部材の内部に、第一流路部材の先端部分に形成された第一開口と、第二流路部材の先端部分に形成された第二開口と、がそれぞれ形成され、第一開口と第二開口とはバルーン部材を介して互いに連通しており、流体注入機構により流体がバルーン部材に向けて注入される第一流路部材または第二流路部材の一方に形成された第一開口または第二開口が、他方に形成された第二開口または第一開口よりも遠位側に形成されていてもよい。
 また、上述のような内径測定装置において、第一流路部材および第二流路部材は、遠位側に形成されている第一開口または第二開口よりもさらに遠位側に隣接して樹脂材料が充填されていてもよい。
 本発明のプライミング方法は、バルーン部材により導管の内径を測定する内径測定装置のバルーン部材の内部に非圧縮性の流体を充填する内径測定装置のプライミング方法であって、バルーン部材に対して個別に連通している第一流路部材および第二流路部材のうち第一流路部材を通じてバルーン部材の内部に流体を注入し、注入された流体を、第二流路部材を通じて流出させ、バルーン部材、第一流路部材および第二流路部材に流体が充填された状態で第二流路部材を閉止することを特徴とする。
 また、本発明のプライミング方法においては、第一流路部材の末端部分から流体を注入し、第二流路部材の末端部分から流体を流出させて、第一流路部材、バルーン部材および第二流路部材に流体を充填し、第一流路部材とバルーン部材とともに流体が充填された第二流路部材の末端部分を閉止してもよい。
 また、本発明のプライミング方法においては、第一流路部材の末端部分から流体を注入し、第二流路部材の末端部分から流体を流出させて、第一流路部材とバルーン部材と第二流路部材とに流体を充填し、バルーン部材と第二流路部材とともに流体が充填された第一流路部材の末端部分からの流体の逆流を遮断してもよい。
 また、本発明のプライミング方法においては、第一流路部材の末端部分が複数の流路に分岐しており、一の流路からバルーン部材に流体を注入して第一流路部材とバルーン部材と第二流路部材とに流体を充填し、バルーン部材と第二流路部材とともに流体が充填された第一流路部材の一の流路からの流体の逆流を遮断し、かつ、バルーン部材と第一流路部材とともに流体が充填された第二流路部材の末端部分を閉止してもよい。
 また、本発明の各種の構成要素は、必ずしも個々に独立した存在である必要はなく、複数の構成要素が一個の部材として形成されていること、一つの構成要素が複数の部材で形成されていること、ある構成要素が他の構成要素の一部であること、ある構成要素の一部と他の構成要素の一部とが重複していること、等でもよい。
 本発明の内径測定装置によれば、流体注入機構により注入される測定流体の容量がバルーン部材の膨張体積に対応するため、容量測定手段で測定された測定流体の容量に基づいて導管の内径を正確に測定することができる。
 特に、第一の内径測定装置では、導管の内径を測定する位置に挿入されたバルーン部材に連通している第一流路部材の末端部分から非圧縮性の流体が流体注入機構で注入される。そして、バルーン部材に連通している第二流路部材の末端部分から流体を流出させ、第一流路部材とバルーン部材とともに流体が充填された第二流路部材の末端部分が流出密閉機構で閉止される。流出密閉機構が閉止された状態で流体注入機構から第一流路部材に注入される測定流体の容量が容量測定手段で測定される。内径測定装置の内部が非圧縮性の流体で充填されたプライミング状態で、さらに測定流体を第一流路部材に注入することにより、バルーン部材の内圧が上昇する。これにより、バルーン部材が導管の内径と同径になるまで膨張するため、導管の内径を測定することができる。従って、プライミングと内径測定とに空気などの圧縮性の流体が介在しないので、バルーン部材の急激な膨張を防止することができ、安全かつ正確に導管の内径を測定することができる。
 また、第二の内径測定装置では、導管の内径を測定する位置に挿入されたバルーン部材に連通している第一流路部材の末端部分から非圧縮性の流体が第一注入機構で注入される。そして、バルーン部材に連通している第二流路部材の末端部分から流体を流出させ、バルーン部材と第二流路部材とともに流体が充填された第一流路部材から第一注入機構への流体の逆流が第一遮断機構で遮断される。第一遮断機構で逆流が遮断された状態で第二流路部材の末端部分に第二注入機構を着脱自在に連結して測定流体が注入され、第二注入機構から第二流路部材に注入される測定流体の容量が容量測定手段で測定される。このため、内径測定装置の内部が非圧縮性の流体で充填されたプライミング状態で、さらに測定流体を第二流路部材に注入することで、バルーン部材を膨張させて導管の内径を測定することができる。従って、プライミングと内径測定とに空気などの圧縮性の流体が介在しないので、バルーン部材の急激な膨張を防止することができ、安全かつ正確に導管の内径を測定することができる。しかも、内径測定装置の内部を流体で充填するプライミングは第一注入機構により実行することができ、内径の測定は第二注入機構により実行することができる。このため、内径の測定は第二注入機構により直接的に実行することができる。
 また、第三の内径測定装置では、導管の内径を測定する位置に挿入されるバルーン部材に連結している第一流路部材の末端部分から非圧縮性の流体が第一注入機構で注入される。そして、バルーン部材に連通している第二流路部材の末端部分から流体を流出させ、バルーン部材と第二流路部材とともに流体が充填された第一流路部材から第一注入機構への流体の逆流が流出密閉機構で遮断される。バルーン部材と第一流路部材とともに流体が充填された第二流路部材の末端部分は流出密閉機構で閉止される。第一注入機構への逆流が遮断された第一流路部材の末端部分に測定流体が第二注入機構で注入され、第二注入機構から第一流路部材に注入される測定流体の容量が容量測定手段で測定される。このため、内径測定装置の内部が非圧縮性の流体で充填されたプライミング状態で、さらに測定流体を第一流路部材に注入することで、バルーン部材を膨張させて導管の内径を測定することができる。従って、プライミングと内径測定とに空気などの圧縮性の流体が介在しないので、バルーン部材の急激な膨張を防止することができ、安全かつ正確に導管の内径を測定することができる。しかも、内径測定装置の内部を流体で充填するプライミングは第一注入機構により実行することができ、内径の測定は第二注入機構により実行することができる。このため、内径の測定は第二注入機構により直接的に実行することができる。さらに、作業工程の全体で部材の着脱が発生しないので、簡単かつ衛生的に内径測定作業を実行することができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施形態、およびそれに付随する以下の図面によってさらに明らかになる。
本発明の第一実施形態の内径測定装置の外観を示す模式図である。 内径測定装置の要部の内部構造を示す模式的な縦断側面図である。 内径測定装置によるプライミング方法および内径測定方法を示すフローチャートである。 流体が空気の場合と純水の場合との注入容量とバルーン部材の膨張外径との関係を示す特性図である。 (a)は逆流遮断機構の平面図であり、(b)はその左側面図である。 本発明の第二実施形態の内径測定装置の外観を示す模式図である。 内径測定装置によるプライミング方法および内径測定方法を示すフローチャートである。 本発明の第三実施形態の内径測定装置の外観を示す模式図である。 内径測定装置によるプライミング方法および内径測定方法を示すフローチャートである。 (a)および(b)は第一変形例の流出密閉機構である弁機構およびクランプの外観を示す模式図である。 第二変形例にかかる内径測定装置の要部の内部構造を示す模式的な縦断側面図である。
<第一実施形態:第一の内径測定装置>
 本発明の第一実施形態を図1ないし図4を参照して以下に説明する。本実施形態の内径測定装置100は、肺気腫治療における気管支などの導管(図示せず)の任意の内径を測定する。
 本実施形態の内径測定装置100は、バルーン部材110、第一流路部材120および第二流路部材140、流体注入機構130、流出密閉機構150、および容量測定手段160を有する。バルーン部材110は、導管の内径を測定する位置に挿入される。第一流路部材120および第二流路部材140は、バルーン部材110に対して個別に連通している。流体注入機構130は、第一流路部材120または第二流路部材140(本実施形態では第一流路部材120)を通じてバルーン部材110の内部に非圧縮性の流体を注入する。流出密閉機構150は、第一流路部材120または第二流路部材140の一方(本実施形態では第二流路部材140)を閉止する。容量測定手段160は、バルーン部材110、第一流路部材120および第二流路部材140に流体が充填され、流出密閉機構150により第一流路部材120または第二流路部材140の一方(本実施形態では第二流路部材140)を閉止した状態から、第一流路部材120または第二流路部材140の他方(本実施形態では第一流路部材120)を通じて流体注入機構130によりさらに注入される非圧縮性の測定流体の容量を測定する。
 本実施形態の内径測定装置100は、図1および図2に示すように、バルーン部材110に第一流路部材120および第二流路部材140が連通している。
 流体注入機構130は、第一流路部材120に末端部分から非圧縮性の流体および測定流体を注入する。本実施形態の流出密閉機構150は、第一流路部材120とバルーン部材110とともに流体が充填された第二流路部材140の末端部分を開閉自在に閉止する。そして、容量測定手段160は、流出密閉機構150が閉止された状態で、流体注入機構130から第一流路部材120に注入される測定流体の容量を測定する。
 より具体的には、バルーン部材110は、膨張していない初期状態で、測定される導管より充分に小径となるよう形成されている。第一流路部材120と第二流路部材140とは、図1および図2に示すように、人体(図示せず)に挿入される長尺の部分であり、バルーンカテーテル112として一体に形成されており、バルーンカテーテル112の内部にそれぞれ第一注入流路121および第二流出流路141が形成されている。第一流路部材120は、コネクタを介してバルーンカテーテル112の第一注入流路121と連通している。第二流路部材140は、コネクタを介してバルーンカテーテル112の第二流出流路141と連通している。
 図2に示すように、本実施形態の内径測定装置100では、第一流路部材120の第一注入流路121と第二流路部材140の第二流出流路141とは先端が開口しており、例えば、キャップ部材111で閉塞されている。
 このため、第一流路部材120の第一注入流路121と第二流路部材140の第二流出流路141とは、キャップ部材111の内部で連通している。さらに、第一流路部材120の第一注入流路121と第二流路部材140の第二流出流路141とは、貫通孔122,142によりバルーン部材110の内部でも連通している。
 なお、本実施形態の内径測定装置100では、バルーン部材110に流体を圧入するための流体注入機構130の駆動力を低減するため、図2に示すように、第一流路部材120の第一注入流路121は第二流路部材140の第二流出流路141より小径に形成されている。
 一方、本実施形態の内径測定装置100では、プライミングで内部に空気が気泡として残留することを良好に防止するため、第二流路部材140の第二流出流路141は第一流路部材120の第一注入流路121より大径に形成されている。
 流体注入機構130は、いわゆるシリンジからなり、手動操作により流体を第一流路部材120に注入する。その流体は、例えば、純水や生理食塩水からなる。
 流体注入機構130は、流体をバルーン部材110に雰囲気圧(大気圧)で注入する機構である。また、流体注入機構130は、内径測定装置100を閉止して流体が流出することを防止した状態で、さらに測定流体をバルーン部材110に向かって圧入してバルーン部材110を膨出させる機構である。
 本実施形態においては、第一流路部材120、バルーン部材110および第二流路部材140(これらをあわせて「測定系」という場合がある)に雰囲気圧で予備的に充填される液体を「流体」と呼称する。以下、導管の内径測定に先だって測定系に流体を雰囲気圧で充填することを、「予備充填」または「プライミング」という場合がある。
 そして、流体が充填された測定系にさらに追加的に注入されてバルーン部材110を弾性的に膨出させる液体を「測定流体」と呼称する。流体と測定流体とは、測定系に注入されることで互いに混合される。以下、予備充填された測定系に対して測定流体を圧入することを「追加注入」という場合がある。
 流体と測定流体とは、共通のシリンジから測定系に注入されてもよい。言い換えると、流体と測定流体とは互いに区別なくひとつのシリンジに収容された液体であってもよい。また、流体と測定流体とは、異なるシリンジに個別に収容されて、それぞれ測定系に注入されてもよい。
 また、「測定流体をバルーン部材110に注入する」とは、第一流路部材120または第二流路部材140を通じて測定流体をバルーン部材110の内部まで到達させること、または、測定系に流体が予備充填された状態で測定流体を第一流路部材120または第二流路部材140に注入することで流体をバルーン部材110に押し込むこと、の両方を含む。
 ここで、「流体」と「測定流体」とは、ともに非圧縮性の流体であって、互いに同種でも異種でもよい。たとえば流体として生理食塩水を用い、測定流体として純水を用いてもよく、または、流体および測定流体として純水または生理食塩水を共通に用いてもよい。
 バルーン部材110の膨張形状は略円形であり、また再現性がある。そして、バルーン部材110に追加注入される測定流体の容量とバルーン部材110の外径寸法との相関関係は予め対応づけられている。このため、流体が予備充填された測定系に対して追加注入された測定流体の容量を測定することでバルーン部材110の外径寸法を知得することができる。そして、導管の内部に配置されたバルーン部材110を膨張させていくと、バルーン部材110の外径が導管の内径と等しくなったところで測定流体の注入に要する圧力が不連続に増大する。このため操作者は、当該時点までに追加注入された測定流体の容量を測定することで、導管の内径を算出することができる。
 流体注入機構130は、ひとつの注入機構(たとえばシリンジ)であってもよく、または、流体を予備充填するための機構と、測定流体を追加注入するための機構とをそれぞれ個別に備えてもよい。本実施形態の流体注入機構130は、流体を予備充填する第一注入機構(第一シリンジ131)と、測定流体を追加注入する第二注入機構(第二シリンジ132)と、を組み合わせてなる。
 第一シリンジ131と第二シリンジ132は、後述する逆流遮断機構123に対して選択的に付け替えて用いられる。
 すなわち、本実施形態の内径測定装置100は、流体を注入する第一シリンジ131と、測定流体を注入する第二シリンジ132と、を含む。第二シリンジ132の容量の目盛単位は、第一シリンジ131の容量の目盛単位よりも精細である。これにより、導管の内径を詳細に測定することができる。
 なお、第一シリンジ131には目盛が付されていなくてもよい。この場合、第一シリンジ131の容量の目盛単位は第一シリンジ131の全容量を意味する。第二シリンジ132は第一シリンジ131よりも小容量でよい。
 また、流体注入機構130は、測定流体を流体よりも少量ずつ注入することができる。具体的には、第二シリンジ132のシリンジ内径は第一シリンジ131のシリンジ内径よりも細く、ピストンのストロークを共通とした場合に第二シリンジ132から排出される容量は、第一シリンジ131から排出される容量よりも小さい。これにより、流体の予備充填の操作を迅速に行い、かつ導管の内径測定のための測定流体の追加注入を精細に行うことができる。
 流出密閉機構150は、予備充填された流体が測定系から流出することを防止する機構である。言い換えると、内径測定装置100の測定系のうち、測定流体が注入される流路(本実施形態では第一流路部材120)以外の流路を閉止する機構である。流出密閉機構150は、測定系に流体が予備充填された状態、すなわち測定流体を追加充填することで導管の内径測定が可能となる状態の内径測定装置100を維持する。
 本実施形態の内径測定装置100は、流体を予備充填する流路と測定流体を追加注入する流路とが共通(第一流路部材120)であるため、流出密閉機構150は、他の流路(第二流路部材140)に設けられている。一方、後述する第二実施形態で説明するように、流体を予備充填する流路(第一流路部材120)と、測定流体を追加注入する流路(第二流路部材140)とが異なる場合には、流体を予備充填する流路に流出密閉機構150を設けて、流体の流出(逆流)を防止するとよい。
 本実施形態の流出密閉機構150は、既存の手動バルブ機構からなり、手動操作により第二流路部材140の末端部分を開閉自在に閉止する。
 容量測定手段160は、追加注入された測定流体の容量を測定するための手段である。測定流体の容量を測定する方法は種々を採りうるが、本実施形態では第二注入機構(第二シリンジ132)に付されたシリンジの目盛161として実現されている。つまり、本実施形態の内径測定装置100では、第一流路部材120に大容量の第一シリンジ131と小容量の第二シリンジ132とが交換自在に装着され、第一シリンジ131で後述するプライミングが実行され、測定流体の圧入量をシリンジ目盛(容量測定手段160)により目測することで導管の内径測定が実行される。このほか、容量測定手段160としては、第一流路部材120の流路上に配置された容積流量計(図示せず)を用いてもよい。
 本実施形態の内径測定装置100は、流出密閉機構150により第二流路部材140の末端部分が閉止された状態で、第一シリンジ131から第二シリンジ132への交換を行う。したがって、かかる交換作業の途中で測定系から流体が流出することがないよう、第一流路部材120には、注入された流体の逆流を防止する機構を設けるとよい。
 また、導管の内径測定にあたり、第二シリンジ132から測定系に圧入された測定流体が第二シリンジ132に逆流すると、測定流体の容量が過小に測定され、導管の内径測定値が低く誤計測されるおそれがある。かかる観点からも、第一流路部材120には、注入された流体(測定流体)の逆流を防止する機構を設けることが好ましい。
 そこで本実施形態の内径測定装置100は、測定流体の流路に設けられて流体注入機構130からバルーン部材110に向かう測定流体の注入を許容して逆流を遮断する逆流遮断機構123を備えている。より具体的には、逆流遮断機構123は、第一流路部材120の内部をバルーン部材110に向かう流れを一方的に許容する一方弁を備えている。
 図5(a)は本実施形態の逆流遮断機構123の平面図であり、同図(b)はその左側面図である。同図(a)の右方に流体注入機構130(第一シリンジ131および第二シリンジ132)が装着され、左方に第一流路部材120およびバルーン部材110が装着される。
 本実施形態の逆流遮断機構123は、手動操作により測定流体(流体)の逆流を許容する。具体的には、逆流遮断機構123は、測定流体の注入を許容する開状態と逆流を遮断する閉状態とに変位する一方弁124と、この一方弁124を挟んで設けられた押圧部125と、を備え、押圧部125を押圧することで一方弁124が開状態となり測定流体の逆流が許容される。
 一方弁124は、筒状のハウジング126に収容されている。一方弁124の外径はハウジング126の内径と略一致している。ハウジング126の端部は押込部材129により保持されている。押込部材129は、ハウジング126と流体注入機構130とを連通させる部材である。
 押込部材129は、ハウジング126に沿って延在する一対のアーム部127と、ハウジング126の端部を嵌め込んで装着する環状の保持部128とを備えている。アーム部127の先端には押圧部125が内向きに突出形成されている。本実施形態の押圧部125は半円形の板状をなしている。
 一方弁124の先端(測定流体の逆流を規制する開口端124a)と押圧部125は、ともにハウジング126の中間部に位置している。ハウジング126および一方弁124は軟質の樹脂材料からなる。一方、押込部材129は硬質の樹脂材料や金属材料からなる。
 本実施形態の押圧部125は一方弁124を挟んで設けられている。ここで、押圧部125が一方弁124を挟んでいるとは、複数の押圧部125が一方弁124の周囲に対向配置されている場合と、環状または半円環状の押圧部125が一方弁124に周設されている場合とを含む。
 一方弁124には種々の弁構造を用いることができる。本実施形態の一方弁124は、スリット状の開口端124aを備えるダックビル弁である。押圧部125は、この開口端124aのスリット方向の両側に配置されている。これにより、操作者が押込部材129の一対のアーム部127を外側から押圧することで、押圧部125は一方弁124を押圧して撓み変形させ、開口端124aを強制的に開放する。
 このため、本実施形態の内径測定装置100は、操作者が逆流遮断機構123を作動させたときのみ、測定流体(流体)が第一流路部材120から流体注入機構130に流動(逆流)することが許容される。そして、逆流遮断機構123に第二シリンジ132を連結して測定流体を追加注入した場合、測定系の内圧は雰囲気圧よりも高くなっているため、逆流遮断機構123を作動させると測定流体は第一流路部材120から第二シリンジ132に逆流する。これにより、膨張していたバルーン部材110は初期状態に回復する。
 よって、操作者は、第二シリンジ132を操作して測定流体を測定系に追加注入する操作と、逆流遮断機構123を操作して測定流体を第二シリンジ132に戻す操作とを自在に繰り返すことができる。これにより、第二シリンジ132の操作を誤って測定流体を測定系に過剰に注入してしまった場合も、逆流遮断機構123の簡易な手動操作によりバルーン部材110を初期状態に戻して、導管の内径測定をやり直すことができる。また、複数回に亘って導管の内径測定を行う場合も、予備充填された流体をその都度排出する必要がない。
 上述のような構成において、本実施形態の内径測定装置100を流体で充填するプライミング方法(以下、本方法という場合がある)および導管の内径を測定する内径測定方法を以下に順次説明する。本方法は、内径測定装置100に対する流体の予備充填方法に関する。
 はじめに本方法の概要を説明する。
 本方法は、バルーン部材110に対して個別に連通している第一流路部材120および第二流路部材140のうち第一流路部材120を通じてバルーン部材110の内部に流体を注入し、注入された流体を、第二流路部材140を通じて流出させ、バルーン部材110、第一流路部材120および第二流路部材140に流体が充填された状態で、第二流路部材140を閉止するものである。第一流路部材120と第二流路部材140はバルーン部材110とそれぞれ連通している。第一流路部材120と第二流路部材140の末端部分にはシリンジが接続されるか、または閉止可能に開放される。
 より具体的に、本方法では、第一流路部材120の末端部分から流体を注入し、第二流路部材140の末端部分から流体を流出させて第一流路部材120、バルーン部材110および第二流路部材140に流体を充填する。さらに、第一流路部材120とバルーン部材110とともに流体が充填された第二流路部材140の末端部分を閉止する。
 以下、本方法を詳細に説明する。
 まず、図3に示すように、気腫の肺の気管支などの導管の内径を測定する位置にバルーン部材110を挿入する(ステップS1)。この挿入は、例えば、気管支鏡の鉗子孔にバルーンカテーテル112の部分を挿入することとして実行される(図示せず)。
 このとき、流出密閉機構150は開放されている。このような状態で、バルーン部材110に連通している第一流路部材120の末端部分から非圧縮性の流体が流体注入機構130(第一シリンジ131)で注入される(ステップS2)。
 このように注入される流体は、第一流路部材120からキャップ部材111とバルーン部材110との内部に流入し、第二流路部材140から流出することになる。そこで、この第二流路部材140の末端部分から流体が流出したら(ステップS3-Y)、第一流路部材120とバルーン部材110とともに流体が充填された第二流路部材140の末端部分を流出密閉機構150で閉止する(ステップS4)。これにより、測定系に雰囲気圧下で流体が予備充填される。
 これで内径測定装置100の内部全体が流体で充填されたプライミングが完了する。前述のように、第一シリンジ131は大容量のシリンジからなるので、このプライミングは迅速に完了する。
 このプライミングが完了した後、第一流路部材120から第一シリンジ131が取り外されて第二シリンジ132が装着される(ステップS5)。そして、この小容量のシリンジからなる第二シリンジ132により、流出密閉機構150が閉止された状態で第一流路部材120に測定流体が注入される(ステップS6)。
 このとき、気管支内でのバルーン部材110の膨張具合が気管支鏡で直視され(図示せず)、バルーン部材110の外周面が気管支の内周面に密着したときに(ステップS7-Y)、測定流体の注入を停止する(ステップS8)。そして、第一シリンジ131でのプライミング(予備充填)が完了してから第二シリンジ132により注入(追加注入)された測定流体の容量が目盛161で測定される(ステップS9)。
 さらに、その測定流体の容量が、膨張したバルーン部材110の外径である導管の内径に換算される(ステップS10)。この換算は、例えば、事前に容量と内径との相対関係が表記されている換算テーブル(図示せず)などの内径検出手段で実行される。
 本実施形態の内径測定装置100では、上述のように内部全体が流体でプライミングされた状態で、第二シリンジ132から第一流路部材120に注入される測定流体の容量が測定される。
 このため、内径測定装置100の内部が非圧縮性の流体で充填されたプライミング状態で、注入される測定流体でバルーン部材110を膨張させて導管の内径を測定することができる。
 従って、プライミングと内径測定との間に空気などの圧縮性の流体が測定系に侵入しないので、図4に示すように、バルーン部材110の急激な膨張を防止することができ、安全かつ正確に導管の内径を測定することができる。
 しかも、本実施形態の内径測定装置100では、図2に示すように、第一流路部材120の第一注入流路121は第二流路部材140の第二流出流路141より小径に形成されている。このため、バルーン部材110に測定流体を注入するために第二シリンジ132に加える力を低減することができる。
 さらに、第二流路部材140の第二流出流路141は第一流路部材120の第一注入流路121より大径に形成されている。このため、プライミングで内径測定装置100の内部に空気が気泡として残留することを良好に防止することができる。
 なお、本発明は本実施形態に限定されるものではなく、その要旨を逸脱しない範囲で各種の変形を許容する。上記形態では第一流路部材120の第一注入流路121と第二流路部材140の第二流出流路141との内径が相違することを例示した。しかし、当然ながら、これらの内径が同一でもよい。その場合、内径測定装置の構造が簡単となり生産性を向上させることができる(図示せず)。
 さらに、上記形態では装置内部を流体で充填させるプライミングを実行するとき、第二流路部材140の末端部分を開放したまま第一シリンジ131で流体を第一流路部材120から圧入することを例示した。しかし、第二流路部材140の末端部分に負圧ポンプ(図示せず)などを装着し、積極的に装置内部の流体を第二流路部材140の末端部分から負圧で吸引してもよい。
 また、上記形態では気管支内でのバルーン部材110の膨張具合を気管支鏡で直視することにより、バルーン部材110が気管支の内径まで膨張したかを確認することを例示した。
 しかし、第一流路部材120や第二流路部材140などに圧力計(図示せず)を設置し、流体の圧力を計測することにより、バルーン部材110が気管支の内径まで膨張したかを確認することもできる。
 さらに、必須ではないが、第一流路部材120に、他の流出密閉機構(図示せず)を追加して、第二シリンジ132からの測定流体の注入によるバルーン部材110の膨張により、気管支とバルーン部材110とが密着したときに、当該他の流出密閉機構を閉止してもよい。
 この場合、気管支とバルーン部材110とが密着した状態を確実に維持できるので、膨張したバルーン部材110の外径として気管支の内径を確実に測定することができる。
 また、上記形態では測定流体の容量とバルーン部材110の外径との相対関係が事前に較正されて表記された換算テーブルなどの内径検出手段を利用することにより、流体の容量を導管の内径に換算することを例示した。
 しかし、後述する第二/第三実施形態のように、膨張するバルーン部材110の外径である導管の内径が目盛161(容量測定手段160)として直接的に表記されたシリンジを第二シリンジ132として利用してもよい(図6および図8の換算目盛241を参照)。
 さらに、上記形態では導管として人体の肺の気管支を想定した。しかし、本実施形態の内径測定装置100は各種の導管の内径測定に利用することができ、人体以外の導管に適用してもよい。
<第二実施形態:第二の内径測定装置>
 つぎに、本発明の第二実施形態を図6および図7を参照して以下に説明する。なお、本実施形態の内径測定装置200において、上述した内径測定装置100と同一の部分は、同一の名称および符号を使用して詳細な説明は省略する。
 本実施形態の内径測定装置200は、図6に示すように、バルーン部材110に第一流路部材120および第二流路部材140が連通している。
 流体注入機構130は、第一流路部材120に末端部分から流体を注入する第一注入機構210と、第二流路部材140の末端部分に着脱自在に連結されて測定流体を注入する第二注入機構240と、を含む。
 流出密閉機構150は、バルーン部材110と第二流路部材140とともに流体が充填された第一流路部材120から第一注入機構210への流体の逆流を遮断する第一遮断機構220を含む。
 第二注入機構240は、第一遮断機構220で流体の逆流が遮断された状態で第二流路部材140の末端部分に測定流体を注入する。
 そして、容量測定手段160は、第二注入機構240から第二流路部材140に注入される測定流体の容量を測定する。
 第一実施形態と同様に、流出密閉機構150は、予備充填された流体が測定流体の追加注入によって測定系から流出することを防止する機構である。本実施形態の流出密閉機構150は第一遮断機構220を含んでいる。
 本実施形態の流出密閉機構150(第一遮断機構220)は、第一流路部材120と第一注入機構210との連通を開閉する手動バルブ機構、または第一注入機構210から第一流路部材120への流体の注入を許容して逆流を遮断する一方弁を含んでいる。このうち、本実施形態の第一遮断機構220は、手動操作により開閉自在に第一流路部材120を閉止する手動バルブ機構である。
 さらに、本実施形態の内径測定装置200は、必須の構成要素ではないが、第一流路部材120とバルーン部材110とともに流体が充填された第二流路部材140の末端部分を開閉自在に閉止する第二遮断機構230を有する。第二遮断機構230には、測定流体が収容された第二注入機構240が連結される。第二遮断機構230もまた、手動操作により開閉自在に第二流路部材140を閉止する手動バルブ機構である。
 第一注入機構210と第二注入機構240は、前述の流体注入機構130と同様に、手動操作で流体を注入するシリンジからなる。ただし、上述のように第一注入機構210は大容量のシリンジからなり、第二注入機構240は小容量のシリンジからなる。第二注入機構240は、第一注入機構210よりも少量ずつ流体を注入する。
 本実施形態の容量測定手段160は、測定される測定流体の容量から膨張するバルーン部材110の外径として導管の内径を検出する内径検出手段として、第二注入機構240の外周面に表記された換算目盛241で実現されている。
 なお、前述した第一実施形態の内径測定装置100では、バルーンカテーテル112の先端がキャップ部材111で閉止されていた。しかし、本実施形態の内径測定装置200では、図6に示すように、バルーンカテーテル112の先端はキャップ部材111を使用することなく閉止されて半球状に形成されている。
 上述のような構成において、本実施形態の内径測定装置200のプライミング方法(本方法)および内径測定方法を以下に順次説明する。
 本方法は、第一流路部材120の末端部分から流体を注入し、第二流路部材140の末端部分から流体を流出させて第一流路部材120とバルーン部材110と第二流路部材140とに流体を充填する。さらに、バルーン部材110と第二流路部材140とともに流体が充填された第一流路部材120の末端部分からの流体の逆流を遮断する。
 以下、本方法をより詳細に説明する。まず、図7に示すように、前述の内径測定装置100の場合と同様に、導管の内径を測定する位置にバルーン部材110が挿入される(ステップT1)。
 このとき、第二遮断機構230は開放されており、第二注入機構240は連結されていない。このような状態で、バルーン部材110に連通している第一流路部材120の末端部分から非圧縮性の流体が第一注入機構210で注入される(ステップT2)。
 そして、バルーン部材110に連通している第二流路部材140の末端部分から流体を流出させる(ステップT3-Y)。これにより、測定系に雰囲気圧下で流体が予備充填される。この流出を確認したのち、第一遮断機構220を手動操作して第一流路部材120の末端を閉止する。これにより、バルーン部材110と第二流路部材140とともに流体が予備充填された第一流路部材120から第一注入機構210への流体の逆流が第一遮断機構220で遮断される(ステップT4)。
 さらに、第二流路部材140の第二遮断機構230も閉止させ、これで内径測定装置200のプライミングが完了する。つぎに、上述のように閉止された第二流路部材140の第二遮断機構230に第二注入機構240が連結される(ステップT5)。
 そして、この第二注入機構240が連結された第二遮断機構230を開放し、第一遮断機構220で流体の逆流が遮断された状態で第二流路部材140の末端部分に連結された第二注入機構240により測定流体が少量ずつ追加注入される(ステップT6)。
 このとき、やはり気管支内でのバルーン部材110の膨張具合が気管支鏡で直視され(図示せず)、バルーン部材110の外周面が気管支の内周面に密着したときに(ステップT7-Y)、測定流体の追加注入を停止する(ステップT8)。このとき、バルーン部材110と気管支との密着状態を維持する場合には、第二遮断機構230を閉止する。
 この第二注入機構240には、前述のように注入される測定流体の容量に対応して膨張するバルーン部材110の外径が換算目盛241として表記されているので、この換算目盛241により膨張するバルーン部材110の外径として導管の内径が測定される(ステップT9)。
 本実施形態の内径測定装置200でも、その内部が非圧縮性の流体で予備充填されたプライミング状態で、追加注入される測定流体でバルーン部材110を膨張させて導管の内径を測定することができる。
 従って、プライミングと内径測定とに空気などの圧縮性の流体が介在しないので、バルーン部材110の急激な膨張を防止することができ、安全かつ正確に導管の内径を測定することができる。
 しかも、内径測定装置200の内部を流体で予備充填するプライミングは第一注入機構210により高速に実行することができ、内径の測定は第二注入機構240により緻密に実行することができる。
 特に、第二注入機構240はプライミングが完了した状態から測定流体の追加注入を開始するので、その追加注入される測定流体の流量はバルーン部材110の膨張の外径と一対一に対応する。
 このため、第二注入機構240には、追加注入される測定流体の容量に対応して膨張するバルーン部材110の外径を換算目盛241として表記しておくことができ、この換算目盛241により膨張するバルーン部材110の外径として導管の内径を一目で測定することができる。
 なお、本発明は本実施形態に限定されるものでもなく、その要旨を逸脱しない範囲で各種の変形を許容する。例えば、上記実施形態では第一流路部材120とバルーン部材110とともに流体が予備充填された第二流路部材140の末端部分を第二遮断機構230で開閉自在に閉止することを例示した。しかし、この第二遮断機構230を省略することも可能である。
 また、第二遮断機構230は、図5(a)、(b)で示した逆流遮断機構123でもよい。すなわち、逆流遮断機構123の押込部材129に第二注入機構240を装着して測定流体を一方弁124から第二流路部材140に流入させる構成としてもよい。かかる場合、流体の予備充填時には、アーム部127を押圧して一方弁124の開口端124aを強制的に開状態とする。そして、押込部材129に第二注入機構240を連結して測定流体の追加注入を行う場合には、かりに測定流体の圧入量が過剰となったときも、一方弁124を手動で開放するだけでバルーン部材110が初期状態に戻るため、再度の測定を迅速に行うことができる。
 また、上記実施形態ではバルーン部材110と第二流路部材140とともに流体が予備充填された第一流路部材120から第一注入機構210への流体の逆流を遮断する第一遮断機構220が、手動操作により開閉自在に第一流路部材120を閉止する手動バルブ機構からなることを例示した。しかし、このような第一遮断機構が、第一注入機構210から第一流路部材120への流体の注入を許容して逆流を遮断する一方弁からなってもよい(図示せず)。
 さらに、上記形態ではバルーンカテーテル112の先端はキャップ部材111を使用することなく閉止されて半球状に形成されていることを例示した。しかし、上述のような内径測定装置200のバルーンカテーテル112の先端がキャップ部材111で閉止されていてもよい(図示せず)。
 また、上記形態では第二注入機構240により測定系に注入される測定流体の容量に対応して膨張するバルーン部材110の外径が換算目盛241として表記されており、この換算目盛241により膨張するバルーン部材110の外径として導管の内径を一目で測定できることを例示した。
 しかし、第二注入機構240として一般的な目盛のみ表記されたシリンジを利用し(図1の第二シリンジ132を参照)、前述の第一実施形態のように、事前に容量と内径との相対関係が表記されている換算テーブルなどの内径検出手段を利用して、測定流体の容量を、膨張するバルーン部材110の外径である導管の内径に換算してもよい。
<第三実施形態:第三の内径測定装置>
 つぎに、本発明の第三実施形態を図8および図9を参照して以下に説明する。なお、本実施形態の内径測定装置300において、上述した内径測定装置100,200と同一の部分は、同一の名称および符号を使用して詳細な説明は省略する。
 本実施形態の内径測定装置300は、図8に示すように、バルーン部材110に第一流路部材120および第二流路部材140が連通している。
 流体注入機構130は、第一流路部材120に末端部分から流体を注入する第一注入機構210と、第一流路部材120の末端部分に測定流体を注入する第二注入機構240と、を含む。
 流出密閉機構150は、バルーン部材110と第一流路部材120とともに流体が充填された第二流路部材140の末端部分を開閉自在に閉止する第二遮断機構230を含む。また、流出密閉機構150は、バルーン部材110と第二流路部材140とともに流体が充填された第一流路部材120から第一注入機構210への流体の逆流を遮断する第一遮断機構310を含む。
 第二注入機構240は、第一注入機構210への流体の逆流が遮断された状態で第一流路部材120の末端部分に測定流体を注入する。
 そして、容量測定手段160は、第二注入機構240から第一流路部材120に注入される測定流体の容量を測定する。
 第一および第二実施形態と同様に、流出密閉機構150は、予備充填された流体が測定流体の追加注入によって測定系から流出することを防止する機構である。本実施形態の流出密閉機構150は第一遮断機構310を含んでいる。
 本実施形態の流出密閉機構150(第一遮断機構310)は、第一注入機構210から第一流路部材120への流体の注入を許容して逆流を遮断する一方弁からなる。
 さらに、本実施形態の内径測定装置300は、第二注入機構240から第一流路部材120への流体の注入を許容して逆流を遮断する逆流遮断機構320も有する。この逆流遮断機構320は、例えば、手動操作により逆流を許容するダックビル弁からなる。
 なお、第一注入機構210と第二注入機構240とは、二股コネクタの一種であるYコネクタ330により一つの第一流路部材120に連結されている。そして、本実施形態の内径測定装置300でも、容量測定手段160は、測定される流体の容量から膨張するバルーン部材110の外径として導管の内径を検出する内径検出手段として、第二注入機構240の外周面に表記された換算目盛241で実現されている。
 本実施形態の内径測定装置300は、第一流路部材120とバルーン部材110とともに流体が充填された第二流路部材140の末端部分を開閉自在に閉止する第二遮断機構230を有している。第二遮断機構230は、手動操作により開閉自在に第二流路部材140を閉止する手動バルブ機構である。
 上述のような構成において、本実施形態の内径測定装置300のプライミング方法(本方法)および内径測定方法を以下に順次説明する。
 本方法は、第一流路部材120の末端部分が複数の流路に分岐しており、一の流路からバルーン部材110に流体を注入して第一流路部材120とバルーン部材110と第二流路部材140とに流体を充填する。そして、バルーン部材110と第二流路部材140とともに流体が充填された第一流路部材120の一の流路からの流体の逆流を遮断し、かつ、バルーン部材110と第一流路部材120とともに流体が充填された第二流路部材140の末端部分を閉止する。
 以下、本方法をより詳細に説明する。まず、図9に示すように、前述の内径測定装置100,200の場合と同様に、導管の内径を測定する位置にバルーン部材110が挿入される(ステップE1)。
 このとき、第二遮断機構230は開放されている。このような状態で、バルーン部材110に連通している第一流路部材120の末端部分から非圧縮性の流体が第一注入機構210で注入される(ステップE2)。
 そして、バルーン部材110に連通している第二流路部材140の末端部分から流体を流出させる(ステップE3-Y)。これにより、測定系に雰囲気圧下で流体が予備充填される。この流出を確認した後で第二流路部材140の第二遮断機構230を閉止し(ステップE4)、これで内径測定装置300のプライミングが完了する。
 つぎに、分岐した第一流路部材120の末端部分のうち第一注入機構210が接続された一の流路の逆流が第一遮断機構310で遮断された状態で、他の流路から第二注入機構240により測定流体が少量ずつ追加注入される(ステップE5)。このとき、やはり気管支内でのバルーン部材110の膨張具合が気管支鏡で直視され(図示せず)、バルーン部材110の外周面が気管支の内周面に密着したときに(ステップE6-Y)、測定流体の追加注入を停止する(ステップE7)。
 この第二注入機構240には、前述のように追加注入される測定流体の容量に対応して膨張するバルーン部材110の外径が換算目盛241として表記されているので、この換算目盛241により膨張するバルーン部材110の外径として導管の内径が測定される(ステップE8)。
 本実施形態の内径測定装置300でも、その内部が非圧縮性の流体で予備充填されたプライミング状態で、追加注入される測定流体でバルーン部材110を膨張させて導管の内径を測定することができる。
 従って、プライミングと内径測定とに空気などの圧縮性の流体が介在しないので、バルーン部材110の急激な膨張を防止することができ、安全かつ正確に導管の内径を測定することができる。
 しかも、内径測定装置300の内部を流体で予備充填するプライミングは第一注入機構210により高速に実行することができ、内径の測定は第二注入機構240により緻密に実行することができる。
 特に、第二注入機構240はプライミングが完了した状態から測定流体の追加注入を開始するので、その追加注入される測定流体の流量はバルーン部材110の膨張の外径と一対一に対応する。
 このため、第二注入機構240には、追加注入される測定流体の容量に対応して膨張するバルーン部材110の外径を換算目盛241として表記しておくことができ、この換算目盛241により膨張するバルーン部材110の外径として導管の内径を一目で測定することができる。
 さらに、本実施形態の内径測定装置300では、作業工程の全体で部材の着脱が発生しないので、簡単かつ衛生的に内径測定作業を実行することができる。
 しかも、第一注入機構210から第一流路部材120への流体の逆流を遮断する第一遮断機構310は、第一注入機構210から第一流路部材120への流体の注入を許容する一方弁からなる。このため、プライミングが完了したときに第一遮断機構310を手動操作する必要もない。
 また、本実施形態の内径測定装置300は、第二注入機構240から第一流路部材120への測定流体の追加注入を許容して逆流を遮断する逆流遮断機構320も有する。このため、膨張するバルーン部材110に作用する圧力による測定流体の逆流を防止し、バルーン部材110と気管支との密着状態を維持することができる。
 しかも、この逆流遮断機構320は、手動操作により逆流を許容するダックビル弁からなる。このため、必要により第一流路部材120から第二注入機構240への流体の逆流を許容することもできる。具体的には、逆流遮断機構320として、図5(a)、(b)に示した逆流遮断機構123を用いるとよい。すなわち、逆流遮断機構123の押込部材129に第二注入機構240を装着して測定流体を一方弁124から第一流路部材120に流入させる構成としてもよい。かかる場合、第一注入機構210による流体の予備充填時には、一方弁124を閉状態とする。そして、測定流体の追加注入を行う場合には、かりに測定流体の圧入量が過剰となったときも、アーム部127の操作により一方弁124を手動で開放するだけでバルーン部材110が初期状態に戻るため、再度の測定を迅速に行うことができる。
 なお、本発明は本実施形態に限定されるものでもなく、その要旨を逸脱しない範囲で各種の変形を許容する。例えば、上記形態では上記形態ではバルーン部材110と第二流路部材140とともに流体が充填された第一流路部材120から第一注入機構210への流体の逆流を遮断する第一遮断機構310が、第一注入機構210から第一流路部材120への流体の注入を許容して逆流を遮断する一方弁からなることを例示した。しかし、このような第一遮断機構310が手動操作により開閉自在に第一流路部材120を閉止する手動バルブ機構からなってもよい(図示せず)。
 同様に、第二注入機構240から第一流路部材120への流体の注入を許容して逆流を遮断する逆流遮断機構320が一方弁であるダックビル弁からなることを例示した。しかし、この逆流遮断機構320が単純な一方弁や手動バルブ機構からなってもよい(図示せず)。
 また、もしもYコネクタ330と第二注入機構240とを連通している第一流路部材120を手指で圧迫することなどで充分に閉止できるならば(図示せず)、上述の逆流遮断機構320は必須の構成要素ではないため、省略することも可能である。
 さらに、上記形態でもバルーンカテーテル112の先端はキャップ部材111を使用することなく閉止されて半球状に形成されていることを例示した。しかし、上述のような内径測定装置300のバルーンカテーテル112の先端がキャップ部材111で閉止されていてもよい(図示せず)。
 また、上記形態では一つの第一流路部材120に第一注入機構210と第二注入機構240とがYコネクタ330で連結されていることを例示した。しかし、このような連結は二股構造の各種コネクタで実現することができ、例えば、Tコネクタなども利用できる(図示せず)。
 また、上記した各種形態の内径測定装置100,200,300では、第一流路部材120とバルーン部材110とともに流体が充填された第二流路部材140の末端部分を開閉自在に閉止する流出密閉機構150や第二遮断機構230が、手指で操作する開閉バルブからなることを例示した。
 しかし、このような流出密閉機構が、図10に示す第一変形例のように、第二流路部材140の末端部分を閉止する弁体(図示せず)と、この弁体を閉状態に付勢する弾性部材(図示せず)と、を備える弁機構151と、この弁機構151に着脱可能に装着されて弁体を開状態とするクランプ152と、を含んでもよい。弁機構151は、バネ式の一方弁であり、M型のクランプ152を先端部に装着することで、弾性部材(スプリング)が圧縮されて弁体が開状態を維持するよう構成されている。この弁機構151は、図10(a)に示すように、クランプ152が取り外されていると、内蔵されている弾性部材(スプリング)で弁体が流路を閉止する。一方、図10(b)に示すように、クランプ152が弁機構151に装着されると内蔵されている弁体が押圧されて流路が開放される。
 さらに、上記形態でも第二注入機構240に注入される流体の容量に対応して膨張するバルーン部材110の外径が換算目盛241として表記されており、この換算目盛241により膨張するバルーン部材110の外径として導管の内径を一目で測定できることを例示した。
 しかし、第二注入機構240として一般的な目盛のみ表記されたシリンジを利用し(図示せず)、前述の第一実施形態のように、測定流体の容量とバルーン部材110の外径とを対応づける内径検出手段を利用して、測定流体の容量を導管の内径に換算してもよい。
 図11は、第二変形例にかかる内径測定装置の要部の内部構造を示す模式的な縦断側面図である。本変形例においては、第一流路部材120および第二流路部材140は、内径測定装置100の遠位側に形成されている第一開口または第二開口(本変形例では貫通孔122)よりもさらに遠位側に隣接して樹脂材料113が充填されている。第一流路部材120の第一注入流路121と第二流路部材140の第二流出流路141との先端はそれぞれ閉塞されており、貫通孔122,142およびバルーン部材110を通じてのみ第一流路部材120と第二流路部材140とが連通している。これにより、第一注入流路121を通じて流体を予備充填(プライミング)するにあたり、バルーン部材110の内部に気泡が残留することが防止される。また、第一流路部材120や第二流路部材140などの各部に、必要により空気抜き弁(図示せず)を設置してもよい。
 本変形例は、バルーン部材110の内部に、第一流路部材120の先端部分に形成された第一開口(貫通孔122)と、第二流路部材140の先端部分に形成された第二開口(貫通孔142)と、がそれぞれ形成され、第一開口(貫通孔122)と第二開口(貫通孔142)とがバルーン部材110を介して互いに連通している点で第一実施形態(図2を参照)と共通する。そして本変形例は、流体注入機構130により流体がバルーン部材110に向けて注入される第一流路部材120または第二流路部材140の一方(本変形例では第一流路部材120)に形成された第一開口(貫通孔122)が、他方(本変形例では第二流路部材140)に形成された第二開口(貫通孔142)よりも遠位側(先端側)に形成されている点で第一実施形態と相違する。
 このように、貫通孔122と142とを軸方向の異なる位置に形成することで、内径測定装置(測定系)の先端部の座屈変形が防止されるため、内径測定装置を導管に挿入する際の作業性が良好である。さらに、貫通孔122と142のうち、バルーン部材110に流体が流入する上流側にあたる貫通孔122が遠位側に配置されるとともに、その隣接する更に遠位側に樹脂材料113が液密に充填されている。このため、貫通孔122の近傍に気泡が残留することがない。一方、流体がバルーン部材110から流出する下流側にあたる貫通孔142の近傍に関しては、流出する流体により負圧が生じるため気泡が排出される。このため、貫通孔142と樹脂材料113との間の空隙に気泡が残留することはない。以上より、本変形例によれば、内径測定装置の先端部の剛性の向上と、流体の予備充填時の残留気泡の低減とがともに達成される。
 なお、当然ながら、上述した実施形態および複数の変形例は、その内容が相反しない範囲で組み合わせることができる。また、上述した実施形態および変形例では、各部の構造などを具体的に説明したが、その構造などは本願発明を満足する範囲で各種に変更することができる。
 上記実施形態は、以下の技術的思想を包含する。
(1)導管の内径を測定する内径測定装置であって、
 前記導管の内径を測定する位置に挿入されるバルーン部材と、
 前記バルーン部材に先端部分が連結されている第一流路部材と、
 前記第一流路部材に末端部分から非圧縮性の流体を注入する流体注入機構と、
 前記バルーン部材に先端部分が連結されていて注入される前記流体を末端部分から流出させる第二流路部材と、
 前記第一流路部材と前記バルーン部材とともに前記流体が充填された前記第二流路部材の末端部分を開閉自在に閉止する流出密閉機構と、
 前記流出密閉機構が閉止された状態で前記流体注入機構から前記第一流路部材に注入される前記流体の容量を測定する容量測定手段と、
を有する内径測定装置。
(2)導管の内径を測定する内径測定装置であって、
 前記導管の内径を測定する位置に挿入されるバルーン部材と、
 前記バルーン部材に先端部分が連結されている第一流路部材と、
 前記第一流路部材に末端部分から非圧縮性の流体を注入する第一注入機構と、
 前記バルーン部材に先端部分が連結されていて注入される前記流体を末端部分から流出させる第二流路部材と、
 前記バルーン部材と前記第二流路部材とともに前記流体が充填された前記第一流路部材から前記第一注入機構への前記流体の逆流を遮断する第一遮断機構と、
 前記第一遮断機構で前記逆流が遮断された状態で前記第二流路部材の末端部分に着脱自在に連結されて前記流体を注入する第二注入機構と、
 前記第二注入機構から前記第二流路部材に注入される前記流体の容量を測定する容量測定手段と、
を有する内径測定装置。
(3)導管の内径を測定する内径測定装置であって、
 前記導管の内径を測定する位置に挿入されるバルーン部材と、
 前記バルーン部材に先端部分が連結されている第一流路部材と、
 前記第一流路部材に末端部分から非圧縮性の流体を注入する第一注入機構と、
 前記バルーン部材に先端部分が連結されていて注入される前記流体を末端部分から流出させる第二流路部材と、
 前記バルーン部材と前記第二流路部材とともに前記流体が充填された前記第一流路部材から前記第一注入機構への前記流体の逆流を遮断する第一遮断機構と、
 前記バルーン部材と前記第一流路部材とともに前記流体が充填された前記第二流路部材の末端部分を開閉自在に閉止する流出密閉機構と、
 前記第一注入機構への逆流が遮断された前記第一流路部材の末端部分に前記流体を注入する第二注入機構と、
 前記第二注入機構から前記第二流路部材に注入される前記流体の容量を測定する容量測定手段と、
を有する内径測定装置。
(4)前記第二注入機構から前記第一流路部材への前記流体の注入を許容して逆流を遮断する逆流遮断機構を、さらに有する上記(3)項に記載の内径測定装置。
(5)前記逆流遮断機構は、手動操作により前記逆流を許容する上記(4)項に記載の内径測定装置。
(6)前記第二注入機構は、前記流体を前記第一注入機構よりも少量ずつ注入する上記(2)項ないし(5)項の何れか一項に記載の内径測定装置。
(7)前記第一遮断機構は、手動操作により前記第一流路部材と前記第一注入機構との連通を開閉する手動バルブ機構からなる上記(2)項ないし(6)項の何れか一項に記載の内径測定装置。
(8)前記第一遮断機構は、前記第一注入機構から前記第一流路部材への前記流体の注入を許容して逆流を遮断する一方弁からなる上記(2)項ないし(6)項の何れか一項に記載の内径測定装置。
(9)測定される前記流体の容量から膨張する前記バルーン部材の外径として前記導管の内径を検出する内径検出手段を、さらに有する上記(1)項ないし(8)項の何れか一項に記載の内径測定装置。
(10)上記(1)項に記載の内径測定装置を前記流体で充填するプライミング方法であって、
 前記バルーン部材に先端部分が連結されている前記第一流路部材の末端部分から非圧縮性の流体を前記流体注入機構で注入し、
 前記バルーン部材に先端部分が連結されている前記第二流路部材の末端部分から前記流体を流出させ、
 前記第一流路部材と前記バルーン部材とともに前記流体が充填された前記第二流路部材の末端部分を前記流出密閉機構で閉止するプライミング方法。
(11)上記(2)項に記載の内径測定装置を前記流体で充填するプライミング方法であって、
 前記バルーン部材に先端部分が連結されている前記第一流路部材の末端部分から非圧縮性の流体を前記第一注入機構で注入し、
 前記バルーン部材に先端部分が連結されている前記第二流路部材の末端部分から前記流体を流出させ、
 前記バルーン部材と前記第二流路部材とともに前記流体が充填された前記第一流路部材から前記第一注入機構への前記流体の逆流を前記第一遮断機構で遮断するプライミング方法。
(12)上記(3)項に記載の内径測定装置を前記流体で充填するプライミング方法であって、
 前記バルーン部材に先端部分が連結されている前記第一流路部材の末端部分から非圧縮性の流体を前記第一注入機構で注入し、
 前記バルーン部材に先端部分が連結されている前記第二流路部材の末端部分から前記流体を流出させ、
 前記バルーン部材と前記第二流路部材とともに前記流体が充填された前記第一流路部材から前記第一注入機構への前記流体の逆流を前記第一遮断機構で遮断し、
 前記バルーン部材と前記第一流路部材とともに前記流体が充填された前記第二流路部材の末端部分を前記流出密閉機構で閉止するプライミング方法。
 この出願は、2009年11月20日に出願された日本出願特願2009-264718を基礎とする優先権を主張し、その開示の総てをここに取り込む。

Claims (18)

  1.  導管の内径を測定する内径測定装置であって、
     前記導管の内径を測定する位置に挿入されるバルーン部材と、
     前記バルーン部材に対して個別に連通している第一流路部材および第二流路部材と、
     前記第一流路部材または前記第二流路部材を通じて前記バルーン部材の内部に非圧縮性の流体を注入する流体注入機構と、
     前記第一流路部材または前記第二流路部材の一方を閉止する流出密閉機構と、
     前記バルーン部材、前記第一流路部材および前記第二流路部材に前記流体が充填され、前記流出密閉機構により前記第一流路部材または前記第二流路部材の前記一方を閉止した状態から、前記第一流路部材または前記第二流路部材の他方を通じて前記流体注入機構によりさらに注入される非圧縮性の測定流体の容量を測定する容量測定手段と、
    を有する内径測定装置。
  2.  前記流体注入機構は、前記第一流路部材に末端部分から前記流体および前記測定流体を注入し、
     前記流出密閉機構は、前記第一流路部材と前記バルーン部材とともに前記流体が充填された前記第二流路部材の末端部分を開閉自在に閉止し、
     前記容量測定手段は、前記流出密閉機構が閉止された状態で前記流体注入機構から前記第一流路部材に注入される前記測定流体の容量を測定する請求項1に記載の内径測定装置。
  3.  前記流体注入機構は、前記第一流路部材に末端部分から前記流体を注入する第一注入機構と、前記第二流路部材の末端部分に着脱自在に連結されて前記測定流体を注入する第二注入機構と、を含み、
     前記流出密閉機構は、前記バルーン部材と前記第二流路部材とともに前記流体が充填された前記第一流路部材から前記第一注入機構への前記流体の逆流を遮断する第一遮断機構を含み、
     前記第二注入機構は、前記第一遮断機構で前記逆流が遮断された状態で前記第二流路部材の前記末端部分に前記測定流体を注入し、
     前記容量測定手段は、前記第二注入機構から前記第二流路部材に注入される前記測定流体の容量を測定する請求項1に記載の内径測定装置。
  4.  前記流体注入機構は、前記第一流路部材に末端部分から前記流体を注入する第一注入機構と、前記第一流路部材の前記末端部分に前記測定流体を注入する第二注入機構と、を含み、
     前記流出密閉機構は、前記バルーン部材と前記第一流路部材とともに前記流体が充填された前記第二流路部材の末端部分を開閉自在に閉止し、かつ、前記バルーン部材と前記第二流路部材とともに前記流体が充填された前記第一流路部材から前記第一注入機構への前記流体の逆流を遮断し、
     前記第二注入機構は、前記第一注入機構への前記逆流が遮断された状態で前記第一流路部材の前記末端部分に前記測定流体を注入し、
     前記容量測定手段は、前記第二注入機構から前記第一流路部材に注入される前記測定流体の容量を測定する請求項1に記載の内径測定装置。
  5.  前記測定流体の流路に設けられて前記流体注入機構から前記バルーン部材に向かう前記測定流体の注入を許容して逆流を遮断する逆流遮断機構を、さらに有する請求項1から4のいずれかに記載の内径測定装置。
  6.  前記逆流遮断機構は、手動操作により前記測定流体の前記逆流を許容する請求項5に記載の内径測定装置。
  7.  前記逆流遮断機構は、前記測定流体の前記注入を許容する開状態と前記逆流を遮断する閉状態とに変位する一方弁と、前記一方弁を挟んで設けられた押圧部と、を備え、前記押圧部を押圧することで前記一方弁が開状態となり前記測定流体の前記逆流が許容されることを特徴とする請求項6に記載の内径測定装置。
  8.  前記流体注入機構は、前記測定流体を前記流体よりも少量ずつ注入する請求項1から7のいずれかに記載の内径測定装置。
  9.  前記流体注入機構は、前記流体を注入する第一シリンジと、前記測定流体を注入する第二シリンジと、を含み、
     前記第二シリンジの容量の目盛単位が前記第一シリンジの容量の目盛単位よりも精細である請求項8に記載の内径測定装置。
  10.  前記流出密閉機構が、
      前記第二流路部材の前記末端部分を閉止する弁体と、前記弁体を閉状態に付勢する弾性部材と、を備える弁機構と、
      前記弁機構に着脱可能に装着されて前記弁体を開状態とするクランプと、
    を含む請求項2または4に記載の内径測定装置。
  11.  前記流出密閉機構が、前記第一流路部材と前記第一注入機構との連通を開閉する手動バルブ機構、または前記第一注入機構から前記第一流路部材への前記流体の注入を許容して逆流を遮断する一方弁を含む請求項3または4に記載の内径測定装置。
  12.  測定される前記測定流体の容量から膨張する前記バルーン部材の外径として前記導管の内径を検出する内径検出手段を、さらに有する請求項1から11のいずれかに記載の内径測定装置。
  13.  前記バルーン部材の内部に、前記第一流路部材の先端部分に形成された第一開口と、前記第二流路部材の先端部分に形成された第二開口と、がそれぞれ形成され、
     前記第一開口と前記第二開口とは前記バルーン部材を介して互いに連通しており、
     前記流体注入機構により前記流体が前記バルーン部材に向けて注入される前記第一流路部材または前記第二流路部材の一方に形成された前記第一開口または前記第二開口が、他方に形成された前記第二開口または前記第一開口よりも遠位側に形成されていることを特徴とする請求項1から12のいずれかに記載の内径測定装置。
  14.  前記第一流路部材および前記第二流路部材は、遠位側に形成されている前記第一開口または前記第二開口よりもさらに遠位側に隣接して樹脂材料が充填されている請求項13に記載の内径測定装置。
  15.  バルーン部材により導管の内径を測定する内径測定装置の前記バルーン部材の内部に非圧縮性の流体を充填する前記内径測定装置のプライミング方法であって、
     前記バルーン部材に対して個別に連通している第一流路部材および第二流路部材のうち第一流路部材を通じて前記バルーン部材の内部に前記流体を注入し、
     注入された前記流体を、前記第二流路部材を通じて流出させ、
     前記バルーン部材、前記第一流路部材および前記第二流路部材に前記流体が充填された状態で前記第二流路部材を閉止することを特徴とするプライミング方法。
  16.  前記第一流路部材の末端部分から前記流体を注入し、前記第二流路部材の末端部分から前記流体を流出させて、前記第一流路部材、前記バルーン部材および前記第二流路部材に前記流体を充填し、
     前記第一流路部材と前記バルーン部材とともに前記流体が充填された前記第二流路部材の前記末端部分を閉止する請求項15に記載のプライミング方法。
  17.  前記第一流路部材の末端部分から前記流体を注入し、前記第二流路部材の末端部分から前記流体を流出させて、前記第一流路部材と前記バルーン部材と前記第二流路部材とに前記流体を充填し、
     前記バルーン部材と前記第二流路部材とともに前記流体が充填された前記第一流路部材の前記末端部分からの前記流体の逆流を遮断する請求項15に記載のプライミング方法。
  18.  前記第一流路部材の前記末端部分が複数の流路に分岐しており、一の前記流路から前記バルーン部材に前記流体を注入して前記第一流路部材と前記バルーン部材と前記第二流路部材とに前記流体を充填し、
     前記バルーン部材と前記第二流路部材とともに前記流体が充填された前記第一流路部材の前記一の流路からの前記流体の逆流を遮断し、かつ、前記バルーン部材と前記第一流路部材とともに前記流体が充填された前記第二流路部材の前記末端部分を閉止する請求項16に記載のプライミング方法。
PCT/JP2010/006792 2009-11-20 2010-11-19 内径測定装置、そのプライミング方法 WO2011061942A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10831341A EP2502559A1 (en) 2009-11-20 2010-11-19 Inner diameter measuring device and method for priming same
JP2011541818A JP5692088B2 (ja) 2009-11-20 2010-11-19 内径測定装置
CN201080052412XA CN102612341A (zh) 2009-11-20 2010-11-19 内径测定装置及其起动加注方法
US13/505,565 US20120220902A1 (en) 2009-11-20 2010-11-19 Inner diameter measurement instrument and priming method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009264718 2009-11-20
JP2009-264718 2009-11-20

Publications (1)

Publication Number Publication Date
WO2011061942A1 true WO2011061942A1 (ja) 2011-05-26

Family

ID=44059428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006792 WO2011061942A1 (ja) 2009-11-20 2010-11-19 内径測定装置、そのプライミング方法

Country Status (6)

Country Link
US (1) US20120220902A1 (ja)
EP (1) EP2502559A1 (ja)
JP (1) JP5692088B2 (ja)
KR (1) KR20120096518A (ja)
CN (1) CN102612341A (ja)
WO (1) WO2011061942A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114636367A (zh) * 2022-05-17 2022-06-17 欧璧医药包装科技(中国)有限公司 一种西林瓶瓶口内外径同步检测设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103292751B (zh) * 2013-06-19 2016-01-20 镇江东艺机械有限公司 一种气动量仪内径测量头及其制造方法
KR101730426B1 (ko) * 2016-09-02 2017-04-26 전북대학교산학협력단 마개가 구비된 소변배출용 카테터
CN111528808B (zh) * 2020-05-29 2022-12-23 重庆高铂瑞骐科技开发有限公司 一种医用仿生检测探头及其制备方法
KR102531638B1 (ko) * 2020-12-15 2023-05-10 인제대학교 산학협력단 어깨관절 내 공간유지 및 약물주입용 벌룬장치

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6322939U (ja) 1986-07-31 1988-02-15
JPH02283379A (ja) * 1989-01-27 1990-11-20 C R Bard Inc バルーン拡張カテーテルおよびその使用方法
JPH03109065A (ja) 1989-05-05 1991-05-09 Bristol Myers Squibb Co 失禁制御装置付き留置型尿道カテーテル
JPH0549597A (ja) 1991-08-21 1993-03-02 Olympus Optical Co Ltd 医療器具用弁装置
JPH0819605A (ja) 1994-07-05 1996-01-23 Terumo Corp 吐出機能付微量液体注入装置
JPH08215303A (ja) * 1995-02-10 1996-08-27 Nippon Zeon Co Ltd 腸管用カテーテル
JP2000292108A (ja) * 1999-04-05 2000-10-20 Olympus Optical Co Ltd 測長具
JP2003514626A (ja) * 1999-11-29 2003-04-22 エイジーエイ メディカル コーポレイション 心血管構造を測定するためのサイジングカテーテル
JP2003275213A (ja) * 2002-03-26 2003-09-30 Senko Medical Instr Mfg Co Ltd 経食道超音波エコー診断装置及びバルーンカテーテル
JP2004024864A (ja) 2002-06-13 2004-01-29 Novatech Sa 気管の閉塞材
JP2005505355A (ja) 2001-10-11 2005-02-24 エンファシス・メディカル・インコーポレイテッド 気管支流れ制御装置及び該装置の使用方法
JP2009165608A (ja) 2008-01-15 2009-07-30 Olympus Medical Systems Corp 内径測定具

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US274447A (en) * 1883-03-20 William-kentish
US5100385A (en) * 1989-01-27 1992-03-31 C. R. Bard, Inc. Fast purge balloon dilatation catheter
AU669864B2 (en) * 1991-12-06 1996-06-27 Nagao Kajiwara Apparatus for monitoring bronchial electrocardiogram
US5275169A (en) * 1992-01-15 1994-01-04 Innovation Associates Apparatus and method for determining physiologic characteristics of body lumens
US5997515A (en) * 1995-05-19 1999-12-07 General Surgical Innovations, Inc. Screw-type skin seal with inflatable membrane
US6964669B1 (en) * 2000-04-12 2005-11-15 Ams Research Corporation Linear delivery system for deployment of a detachable balloon at a target site in vivo
US20040059263A1 (en) * 2002-09-24 2004-03-25 Spiration, Inc. Device and method for measuring the diameter of an air passageway

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6322939U (ja) 1986-07-31 1988-02-15
JPH02283379A (ja) * 1989-01-27 1990-11-20 C R Bard Inc バルーン拡張カテーテルおよびその使用方法
JPH03109065A (ja) 1989-05-05 1991-05-09 Bristol Myers Squibb Co 失禁制御装置付き留置型尿道カテーテル
JPH0549597A (ja) 1991-08-21 1993-03-02 Olympus Optical Co Ltd 医療器具用弁装置
JPH0819605A (ja) 1994-07-05 1996-01-23 Terumo Corp 吐出機能付微量液体注入装置
JPH08215303A (ja) * 1995-02-10 1996-08-27 Nippon Zeon Co Ltd 腸管用カテーテル
JP2000292108A (ja) * 1999-04-05 2000-10-20 Olympus Optical Co Ltd 測長具
JP2003514626A (ja) * 1999-11-29 2003-04-22 エイジーエイ メディカル コーポレイション 心血管構造を測定するためのサイジングカテーテル
JP2005505355A (ja) 2001-10-11 2005-02-24 エンファシス・メディカル・インコーポレイテッド 気管支流れ制御装置及び該装置の使用方法
JP2003275213A (ja) * 2002-03-26 2003-09-30 Senko Medical Instr Mfg Co Ltd 経食道超音波エコー診断装置及びバルーンカテーテル
JP2004024864A (ja) 2002-06-13 2004-01-29 Novatech Sa 気管の閉塞材
JP2009165608A (ja) 2008-01-15 2009-07-30 Olympus Medical Systems Corp 内径測定具

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114636367A (zh) * 2022-05-17 2022-06-17 欧璧医药包装科技(中国)有限公司 一种西林瓶瓶口内外径同步检测设备

Also Published As

Publication number Publication date
JPWO2011061942A1 (ja) 2013-04-04
CN102612341A (zh) 2012-07-25
EP2502559A1 (en) 2012-09-26
KR20120096518A (ko) 2012-08-30
JP5692088B2 (ja) 2015-04-01
US20120220902A1 (en) 2012-08-30

Similar Documents

Publication Publication Date Title
JP5692088B2 (ja) 内径測定装置
US7112177B2 (en) Apparatus for monitoring intra-abdominal pressure
JP4328213B2 (ja) バルーンカテーテル用の予め校正された膨らませ装置
WO2010077886A3 (en) Dual aspiration line fluidic cassette
CN103379933A (zh) 用于使气囊导管充气和放气的设备和方法
US9144668B1 (en) Expandable device for independently inflating, deflating, supplying contrast media to and monitoring up to two balloon catheters for angioplasty
US9855409B2 (en) Device for independently inflating, deflating, supplying contrast media to and monitoring up to two balloon catheters for angioplasty
KR20230051190A (ko) 주사기용 프라임 튜브 구성
JP2000070376A (ja) 動脈穿刺針のハブ
US20140012194A1 (en) Three way valve for medical device
JP2007516822A (ja) 泡を送り出す装置
KR101874558B1 (ko) 요도 카테터
CN215194881U (zh) 一种输卵管通液器接头
EP3508111B1 (en) Flow restrictor for szerilizing an endoscope
CN102028516A (zh) 内窥镜下结扎用套件
JP7301291B2 (ja) カテーテル、及び酸素分圧測定方法
CN202235605U (zh) 带有压力表的输卵管注液疏通器
CN220898772U (zh) 一种输尿管鞘
CN205597882U (zh) 导丝式生殖内镜
CN214907552U (zh) 一种可以显示气囊状态的封堵器及手术设备
CN215690470U (zh) 一种储液滴注连接管
KR102649853B1 (ko) 카테터
WO2020050364A1 (ja) 子宮止血用バルーンユニット
CN102370514A (zh) 带有压力表的输卵管注液疏通器
CN201930048U (zh) 一次性输卵管通液器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080052412.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831341

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011541818

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13505565

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010831341

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127015860

Country of ref document: KR

Kind code of ref document: A