WO2011060640A1 - 吊钩姿态检测装置和起重机 - Google Patents

吊钩姿态检测装置和起重机 Download PDF

Info

Publication number
WO2011060640A1
WO2011060640A1 PCT/CN2010/074471 CN2010074471W WO2011060640A1 WO 2011060640 A1 WO2011060640 A1 WO 2011060640A1 CN 2010074471 W CN2010074471 W CN 2010074471W WO 2011060640 A1 WO2011060640 A1 WO 2011060640A1
Authority
WO
WIPO (PCT)
Prior art keywords
hook
axis
coordinate system
coordinate
angle
Prior art date
Application number
PCT/CN2010/074471
Other languages
English (en)
French (fr)
Inventor
唐修俊
杨得志
周斌
Original Assignee
湖南三一智能控制设备有限公司
三一汽车制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南三一智能控制设备有限公司, 三一汽车制造有限公司 filed Critical 湖南三一智能控制设备有限公司
Priority to EP10831056.6A priority Critical patent/EP2436637B1/en
Priority to BR112012003465A priority patent/BR112012003465A2/pt
Priority to US13/380,554 priority patent/US8627575B2/en
Priority to RU2012107154/11A priority patent/RU2516812C2/ru
Publication of WO2011060640A1 publication Critical patent/WO2011060640A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/46Position indicators for suspended loads or for crane elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/06Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
    • B66C13/063Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads electrical

Definitions

  • the present invention relates to a crane control technology, and more particularly to a hook attitude detecting device, and to a crane including the hook posture detecting device.
  • cranes are widely used in construction, manufacturing and port transportation.
  • a crane it includes a chassis, a slewing mechanism, a boom, a hook, and a hoisting mechanism.
  • the lower part of the boom is connected to the chassis by a slewing mechanism, and the hook is suspended by the wire rope from the upper part of the boom, and the wire rope is connected to the hoisting mechanism by the pulley block;
  • the hoisting mechanism drives the hook by the wire rope to perform the actions of ascending, stopping and descending;
  • the boom can be rotated about a vertical axis by the slewing mechanism to move the hook in a horizontal plane.
  • the crane When lifting, the crane needs to go through multiple steps, generally including the steps of hooking, lifting, traversing, and hooking.
  • the hoisting cylinder of the hoisting mechanism rotates in one direction, and the hook moves under the force of gravity to drive the wire rope to move downwards until it reaches the appropriate position above the hoisted cargo, and then the hook and the hoisted cargo are lifted.
  • the hoisting cylinder of the hoisting mechanism rotates in the opposite direction, and the hook is pulled by the wire rope to move upward together with the cargo to make the cargo leave the ground; after the cargo leaves the ground, the slewing mechanism runs and enters the traverse The process, the boom rotates laterally, the hook moves laterally together with the cargo to bring the cargo over the predetermined position; the hook, after the cargo reaches the predetermined position, the hoisting cylinder rotates in the opposite direction, the cargo and the hook are downward Move, the goods arrive at the predetermined position, and the goods are transported.
  • the hook not only has to move vertically but also moves laterally; due to inertia or external force, the hook and cargo suspended from the upper part of the boom by the wire rope will form a corresponding swing, especially in the case of inertia or external force.
  • the hooks carry the goods to start moving laterally, or when the goods arrive at the predetermined position to stop the lateral movement, the swing of the hooks and the cargo will also increase.
  • the swing of the hook affects the efficiency of the lifting operation of the crane.
  • the hook in order to fix the hook to the cargo and avoid the hook colliding with the cargo, it is necessary to wait for an appropriate time to stop the hook from swinging; when the cargo is moved laterally, the collision is prevented in order to avoid the cargo swinging. Also, the hook and the cargo are required to move at a small speed; after the lifted cargo arrives at the predetermined position, in order to accurately place the lifted cargo in the predetermined position, it is necessary to wait for the cargo to stop swinging and then hook. In the field of existing cranes, there is a widespread problem of prolonging the lifting operation due to the swinging of the hooks, thereby lowering the crane lifting efficiency.
  • the swinging amplitude of the hook is mainly reduced by the anti-swinging stable hooking measure, so that the hook stops swinging more quickly, so as to reduce the adverse effect of the hook swing on the lifting work efficiency.
  • the anti-swinging hooking measure is generally based on the amplitude, frequency and direction of the hook swing, and the control device is used to move the hook at an appropriate frequency, amplitude and in the opposite direction of the swing, so that the hook is stationary in a shorter time.
  • the anti-swinging stabilization measures mainly rely on the operator with more experience to properly control the hooks.
  • the European patent document EP 1 757 554 discloses a control technique for crane anti-swing.
  • the technical solution disclosed in the patent document predetermines the posture parameters of the hook and the cargo by means of a preset mode, and according to the predetermined attitude parameter, the control system adopts an appropriate anti-swinging measure to reduce the j, and the swing is caused by the lifting operation. Negative Effects.
  • One core of the technical solution is to predetermine the movement state of the hook during the lifting process, that is, the attitude parameter of the hook, and determine the control strategy according to the predetermined hook posture parameter, so that the hook moves in a predetermined manner to reduce
  • the swinging amplitude of the small hook causes the hook to stop swinging faster, and reduces the adverse effect of the hook swing on the efficiency of the lifting operation.
  • the predetermined hook attitude parameter is consistent with the actual attitude parameter of the hook. Therefore, the technical solution can only meet the occasion where the lifting working environment is relatively stable, without prior determination.
  • the above technical solution cannot achieve the purpose of improving the efficiency of the crane lifting operation.
  • a first object of the present invention is to provide a hook posture detecting device for determining an actual attitude parameter of a hook, which provides a premise for controlling the hook action.
  • a second object of the present invention is to provide a crane having the above-described hook posture detecting device for understanding the movement state of the hook according to the actual posture parameter of the hook, and implementing the hooking measure to improve the efficiency of the crane lifting operation.
  • the hook posture detecting apparatus comprises: an angle measuring instrument for real-time obtaining an angle between a coordinate axis of the second coordinate system and a corresponding coordinate axis in the first coordinate system;
  • An accelerometer for obtaining an acceleration of the hook in a predetermined direction in real time, the predetermined direction having a predetermined angle with a coordinate axis of the second coordinate system;
  • a processor configured to establish the first coordinate system and the second coordinate system, where the first coordinate system is relatively fixed with a predetermined position, and the second coordinate system is relatively fixed with the hook, in the first coordinate system
  • the coordinate axis corresponds to the coordinate axis in the second coordinate system; and the attitude parameter obtained by the hook in the first coordinate system is obtained according to the angle obtained by the angle measuring instrument and the acceleration obtained by the acceleration meter;
  • the first coordinate system is a Cartesian coordinate system having an XI axis, a Y1 axis, and a Z1 axis
  • the second coordinate system is a Cartesian coordinate system having an X2 axis, a Y2 axis, and a Z2 axis, and the XI axis
  • the Y1 axis and the Z1 axis correspond to the X2 axis, the Y2 axis, and the Z2 axis, respectively.
  • the angle measuring instrument is a three-axis angle measuring instrument, and the three measuring axis axes of the three-axis angle measuring instrument and the three coordinate axes of the second coordinate system respectively have predetermined angles.
  • the predetermined angle between the three measuring axis axes of the three-axis angle measuring instrument and the three coordinate axes of the second coordinate system is 0 degrees.
  • the accelerometer is a three-axis accelerometer, and the three measuring axis axes of the three-axis accelerometer respectively have a predetermined angle between the three coordinate axes of the second coordinate system.
  • the predetermined angle between the three measuring axis axes of the accelerometer and the three coordinate axes of the second coordinate system is 0 degrees.
  • the output device comprises a display, and the display displays the attitude parameter in a schematic form.
  • the attitude parameter comprises at least one of an instantaneous speed, a moving direction and a hook position of the hook in the first coordinate system.
  • the processor is further capable of comparing the attitude parameter with a predetermined parameter threshold to determine the safety of the lifting operation, and performing predetermined processing according to the comparison result.
  • the crane provided by the present invention comprises a crane body, a suspension wire rope and a hook, the lower end of the suspension wire rope is connected with the hook, and the upper end is connected with the fixed pulley on the crane body, which is different from the prior art in that And the hook posture detecting device of any one of the above, wherein the angle measuring instrument and the accelerometer of the hook posture detecting device are both fixed to the hanging wire rope or both are fixed with the hook.
  • the processor establishes the first coordinate system and the second coordinate system in the space, obtains the posture parameters of the hook based on the two coordinate systems, and understands the movement state of the hook;
  • the first coordinate system is fixed to the predetermined position, the predetermined position may be fixed with the crane related component, and the second coordinate system is associated with the movement of the hook, so that the movement state of the hook can be reflected on the relative motion state of the two coordinate systems;
  • the angle measuring instrument is configured to obtain an angle between the second coordinate system and the coordinate axis corresponding to the first coordinate system;
  • the acceleration measuring instrument is configured to obtain the acceleration of the hook in the predetermined direction, and the predetermined direction is fixed relative to the second coordinate system, And having a predetermined angle with the coordinate axis of the second coordinate system to provide a basis for obtaining the acceleration of the hook in the direction of each coordinate axis of the second coordinate system.
  • the processor is further capable of obtaining an acceleration of the hook on each coordinate axis of the first coordinate system according to the acceleration obtained by the accelerometer and the angle obtained by the angle measuring instrument; according to the acceleration of the hook on each coordinate axis of the first coordinate system,
  • the processor can obtain the attitude parameter of the hook to determine the motion state of the hook; then, the output device can output the attitude parameter obtained by the processor in an appropriate manner.
  • the present invention provides the hook posture detecting device capable of providing the attitude parameter of the hook, so that the crane control system or the operator can accurately understand the position, running speed, swing amplitude, etc. of the hook according to the attitude parameter output by the output device. Information to determine the movement state of the hook; and take appropriate stabilization measures according to the movement state of the hook, reduce the time required for the lifting operation, and improve the efficiency of the lifting operation.
  • the first coordinate system and the second coordinate system are respectively a rectangular coordinate system including three coordinate axes; the technical solution can obtain a more comprehensive attitude parameter of the hook through three coordinate axes; , to make the crane's control system or operator more accurate The information of the hook in the three-dimensional space is better, and the hooking measures are better implemented.
  • the angle between the corresponding coordinate axes in the two coordinate systems is obtained by using a three-axis angle measuring instrument; on the one hand, the accuracy of the measurement can be improved; on the other hand, the angle data can be obtained faster. , to improve the reaction speed of the hook posture detecting device.
  • the three measuring axis axes of the three-axis angle measuring instrument are respectively kept parallel with the three coordinate axes of the second coordinate system, thereby reducing the processing steps of the angle measuring instrument and improving the angle measuring instrument. Processing speed.
  • the acceleration of the hook in all directions is obtained by a three-axis accelerometer, which can improve the measurement accuracy and the reaction speed of the hook posture detecting device.
  • the three measuring axis axes of the three-axis accelerometer are respectively kept parallel with the three coordinate axes of the second coordinate system, thereby reducing the processing steps of the accelerometer and improving the accelerometer. Processing speed.
  • the output device comprises a display
  • the posture parameter of the hook can be expressed in the form of a schematic diagram through the display; the technical solution can provide the operator with intuitive operation information, thereby enabling the operator to better
  • the implementation of the stable hook measures facilitates the improvement of the efficiency of the lifting operation.
  • the processor is further capable of comparing the obtained hook posture parameter with a predetermined parameter threshold, and determining, according to a predetermined strategy, whether the hook position and the speed exceed a predetermined range; and then, according to the determination result Determining whether to perform related processing; if predetermined processing is required, a predetermined indication is output to further remind the operator that the technical solution can reduce or avoid the occurrence of a safety accident while improving the efficiency of the lifting operation.
  • a crane including the above-described hook posture detecting device is provided; since the hook posture detecting device has the above technical effects, the crane having the hook posture detecting device also has a corresponding Technical effect.
  • Figure 1 is a schematic view showing the overall structure of a truck crane
  • FIG. 2 is a structural block diagram of a hook posture measuring apparatus according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic view showing a positional relationship between an angle measuring instrument and an accelerometer and a hook in the first embodiment
  • 4 is a schematic diagram showing the relationship between the first coordinate system and the second coordinate system in the first embodiment, wherein the coordinate axes of the first coordinate system are shown by solid lines, and the coordinate axes of the second coordinate system are shown by broken lines.
  • FIG. 5 is a schematic diagram of the hook motion vector synthesis in the first embodiment. detailed description
  • the core of the invention lies in: establishing a first coordinate system and a second coordinate system, wherein the second coordinate system is related to the movement of the hook, and the first coordinate system is independent of the movement of the hook, thereby causing the change of the posture parameter of the hook Reflected in the change of the positional relationship between the two coordinate systems; Then, the angular relationship between the coordinate axes of the two coordinate systems is obtained by the angle measuring instrument, and the acceleration of the hook in the predetermined direction of the second coordinate system is obtained by the accelerometer Obtaining the acceleration of the hook on the corresponding coordinate axis of the first coordinate system according to the angle relationship and the acceleration; finally, obtaining the attitude parameter of the hook in the first coordinate system according to the acceleration of the hook on the coordinate axis of the first coordinate system, Further control of the movement of the hook provides a basis.
  • the description is merely exemplary and illustrative and should not be construed as limiting the scope of the invention.
  • FIG. 1 is a schematic diagram of the overall structure of a truck crane.
  • the truck crane in the figure includes a chassis 100, a boom 200, and a hook 400.
  • the boom 200 is mounted on the chassis 100 by a swing mechanism so as to be rotatable relative to the chassis 100 in a horizontal plane about a vertical axis;
  • the hook 400 has a movable pulley block thereon, and the movable pulley block passes through the suspension wire rope 410 and the upper portion of the boom 200
  • the fixed pulley block is connected, and the fixed pulley block is connected to the hoisting cylinder 300 of the crane through the traction wire rope 310.
  • the traction wire rope 310 moves the suspension wire rope 410 through the fixed pulley block, thereby moving the hook 400 in the vertical direction to move the hoisted cargo in the vertical direction; the slewing mechanism between the boom 200 and the chassis 100 Rotating under the drive of a suitable drive mechanism causes relative movement between the boom 200 and the chassis 100, and drives the hooks 400 and 3 ⁇ 4 ⁇ 4 to move the cargo in the horizontal plane to realize the change of the position of the cargo.
  • the hook 400 suspended from the upper portion of the boom 200 by the suspension wire 410 generates a lateral swing which affects the efficiency of the crane lifting operation.
  • FIG. 2 is a structural block diagram of a hook posture detecting apparatus according to Embodiment 1 of the present invention.
  • the hook posture detecting device provided in the first embodiment is used for measuring the attitude parameter of the crane hook, and the hook posture detecting device comprises an angle measuring instrument 510, an acceleration measuring meter 520 and The processor 530 and the output device 540.
  • the processor 530 can determine two coordinate systems according to the structural size of the crane; the first coordinate system 01 and the second coordinate system 02; the coordinate axis of the first coordinate system 01 corresponds to the coordinate axis of the second coordinate system 02.
  • the first coordinate system 01 and the second coordinate system 02 are respectively fixed to different devices, wherein the second coordinate system 02 is fixed to the hook 400, and the second coordinate system 01 is fixed to the upper portion of the boom 200, so that the hook 400 is opposite When the boom 200 swings or moves up and down, a relative position change is also generated between the two coordinate systems, so that the change of the attitude parameter of the hook 400 can be reflected in the change of the positional relationship between the two coordinate systems, for determination.
  • the attitude parameters of the hook 400 provide a premise.
  • the first seat system 01 is not limited to being fixed to the upper portion of the boom 200, but may be fixed to other portions of the crane other than the hook 400; when the crane is another type of crane, such as a gantry crane, the processor 530 is also
  • the coordinate system can be established based on the actual position of the job based on the predetermined position of the space. As long as the movement of the hook 400 and the change of the attitude parameter thereof can be reflected in the change of the positional relationship between the first coordinate system 01 and the second coordinate system 02 during the lifting operation, the posture parameter of the hook 400 can be determined.
  • the premise is provided to achieve the object of the present invention.
  • FIG. 3 is a schematic diagram showing a relationship between a first coordinate system and a second coordinate system.
  • the solid axis indicates the coordinate axis of the first coordinate system, and the second coordinate system is shown by a broken line. Axis.
  • the first coordinate system 01 and the second coordinate system 02 are respectively a three-dimensional rectangular coordinate system, and the first coordinate system 01 has three coordinate axes: an XI axis, a Y1 axis, and a Z1 axis, and the second coordinate system 02 has three Coordinate axes: X2 axis, Y2 axis, and Z2 axis; wherein, the XI axis, the Y1 axis, and the Z1 axis correspond to the X2 axis, the Y2 axis, and the Z2 axis, respectively.
  • the angle measuring instrument 510 is configured to obtain an angle between the coordinate axis in the second coordinate system 02 and the corresponding coordinate axis in the first coordinate system 01.
  • the angle measuring instrument is a three-axis angle measuring instrument having three measuring axes, and the axes of the three measuring axes are respectively parallel with the three coordinate axes of the second coordinate system 02, that is, three
  • the angle between the axis of the measuring axis and the three coordinate axes of the second coordinate system 02 is 0 degrees, respectively; thus, when the second coordinate system 02 is rotated relative to the first coordinate system 01, each measuring axis can Obtain an angle between the coordinate axis of the second coordinate system 02 and the corresponding coordinate axis of the first coordinate system 01; as shown in FIG.
  • the angle measuring instrument 510 can obtain an angle a between the Z1 axis and the Z2 axis, and the Y1 axis and The angle b between the Y2 axes and the angle c between the XI axis and the X2 axis. It can be understood that the angle measuring instrument can also include three angle sensors and make each angle The degree sensor measures the angle between a pair of coordinate axes.
  • the accelerometer 520 is for measuring the acceleration of the hook in a predetermined direction, and the predetermined direction has a predetermined angle with the coordinate axis of the second coordinate system 02.
  • the accelerometer 520 is a three-axis accelerometer having three measuring axes, and the three measuring axis axes are respectively parallel to the three coordinate axes of the second coordinate system 02, that is, three measurements.
  • the angle between the axis of the axis and the three coordinate axes of the second coordinate system 02 is 0 degrees, respectively.
  • the accelerometer 520 can obtain the acceleration in the direction of each coordinate axis of the second coordinate system 02; as shown in FIG.
  • the accelerometer 520 can obtain the acceleration in the X2-axis direction 0 ⁇ 2 , in the Y2-axis direction. Acceleration (X y2 and acceleration in the Z2 axis direction 0 ⁇ 2 . It can be understood that the three measuring axes of the three-axis accelerometer may not be parallel with the three coordinate axes of the second coordinate system 02, or may be respectively The three coordinate axes of the two coordinate system 02 have a predetermined angle, and after the three measurement axes respectively obtain the acceleration corresponding to the axial direction, the hook 400 is obtained in the second coordinate system by calculation.
  • FIG. 4 is a schematic diagram showing the positional relationship between the angle measuring instrument and the accelerometer and the hook.
  • the angle measuring instrument 510 and the accelerometer 520 are fixed to the hook 400 so that the data and hooks obtained by the two are fixed.
  • the state of motion of the 400 is directly related.
  • the angle measuring instrument 510 and the accelerometer 520 may be fixed to the suspension wire rope 410 of the suspension hook 400, because the suspension wire rope 410 and the hook 400 move synchronously, and the attitude parameter and the movement state of the suspension wire rope 410 and the hook 400 have certain determinations. Therefore, the attitude parameter of the hook 400 can also be determined according to the attitude parameter of the suspension wire rope 410, achieving the object of the present invention.
  • the processor 530 is further configured to obtain the attitude parameter of the hook 400 in the first coordinate system 01 based on the angle obtained by the angle measuring instrument 510 and the acceleration obtained by the accelerometer 520.
  • the attitude parameter may include the velocity V, the direction of motion, and the position of the hook 400 in the first coordinate system.
  • the output device 540 outputs the attitude parameters obtained by the processor 530 to provide an operating system for the operator or crane.
  • the acceleration of the hook 400 in the direction of each coordinate axis in the first coordinate system 01 is obtained; wherein, in the first coordinate system 01, the acceleration in the XI-axis direction e, the acceleration in the Y1-axis direction X cosb , coronation cosa in the direction of the zi axis.
  • This The acceleration of the hook 400 in the first coordinate system 01 in the direction of each coordinate axis can be obtained.
  • the processor 530 processes at a predetermined cycle, and obtains the instantaneous velocity of the hook in the direction of each coordinate axis of the first coordinate system 01 according to the obtained 0 ⁇ , a yl, and a zl , by:
  • V x is the instantaneous speed of the hook 400 in the XI axis direction
  • Vy is the instantaneous speed of the hook 400 in the Y1 axis direction
  • V z is the instantaneous speed of the hook in the Z1 axis direction
  • the instant is The real-time speed of the hook 400 obtained by the processor 530
  • V 0x , V 0 y , and V 0z are initial velocities in the XI axis, the Y1 axis, and the Z1 axis direction, respectively, that is, the previous processing cycle of the processor 530.
  • Speed, dt is the processing cycle of processor 530.
  • the instantaneous velocity in the coordinate axis direction of the first coordinate system 01 can be obtained from the discrete function of the acceleration with respect to time.
  • the hook posture detecting device can start running when the crane performs the lifting operation, and preset values of V 0x , Voy and V 0z according to the state at the start of lifting; enable the processor 530 to obtain an angle according to the angle measuring device 510 and The acceleration obtained by the accelerometer 520 obtains the instantaneous velocity of the hook in the direction of each coordinate axis in the first coordinate system 01.
  • the instantaneous velocity can reflect the real-time motion state of the hook 400, and the real-time attitude parameter of the hook 400 can be further determined.
  • the instantaneous velocity V of the hook 400 in the first coordinate system 01 can be obtained, and the instantaneous speed is a hook.
  • the moving position of the hook 400 can be obtained.
  • the moving position can be determined according to the distance between the hook 400 and the predetermined position. Since the moving track of the hook 400 is a nonlinear moving track, in order to obtain the hook 400 and the reservation more accurately.
  • S 0x , S 0 y and S 0z are the initial distances of the hook 400 between the XI axis, the Y1 axis and the Z1 axis direction and the predetermined position, that is, the previous processing cycle of the processor 530.
  • the instantaneous displacement; dt is the processing period of the processor 530; thus, in the first coordinate system 01, the instantaneous displacement of the hook 400 in the direction of each coordinate axis of the first coordinate system 01 can be obtained according to the discrete function of the acceleration with respect to time, An instantaneous distance between the hooks 400 in the direction of each coordinate axis and a predetermined position is obtained. With reference to the position at which the hook is stationary, the offset of the hook 400 in the direction of each coordinate axis can be determined, and the swing distance and amplitude can be determined.
  • the instantaneous displacement S of the hook 400 in the first coordinate system 01 can also be obtained according to S x , S Y , S z , and the instantaneous displacement is the overall displacement of the hook 400 to determine the predetermined and fixed hook 400 The instantaneous distance between the positions.
  • the position of the hook 400 and the swinging degree can be determined with reference to the position of the hook 400 at rest.
  • the operator can accurately understand the position of the hook 400, the instantaneous speed, the amplitude of the swing, and the like to determine the motion state of the hook 400; thereby enabling a more appropriate stabilization hook. Measures to reduce the time required for lifting work and improve the efficiency of lifting operations.
  • the above object of the invention may also be achieved by two two-dimensional coordinate systems.
  • the first coordinate system Ol and the second coordinate system 02 are not limited to a straight-angle coordinate system, and may also be a polar coordinate system or other. Coordinate System.
  • the angle measuring instrument 510 may have one measuring axis and two measuring axes, and the axis of the measuring axis and the second coordinate system
  • the coordinate axes of 02 are parallel or have a predetermined angle; likewise, according to the above manner, the angle between the corresponding coordinate axes of the two coordinate systems can also be obtained, and further obtained from the acceleration obtained by the included angle and the accelerometer 520.
  • Hook 400 in the first The acceleration of the coordinate system Ol in the corresponding coordinate axis direction further obtains the attitude parameter of the hook 400.
  • the accelerometer 520 can also have one or two measuring axes, and the measuring axis axis is parallel to the coordinate axis of the second coordinate system 02. Or having a predetermined angle, the acceleration of the hook 400 in the direction of the corresponding coordinate axis of the second coordinate system 02 can also be obtained according to the above manner, achieving the object of the present invention.
  • the accelerometer has a function capable of measuring the acceleration in the three-dimensional direction to more accurately obtain the component of the acceleration in the direction of the predetermined coordinate axis.
  • the output device 540 may be an indicator light, and when the predetermined attitude parameter of the hook 400 reaches a predetermined value, the predetermined indicator light is issued a predetermined indication; or may be a display.
  • the posture parameters of the hook are shown in a suitable manner by the display. For example, the position and the movement track of the hook 400 can be displayed on the display in a schematic form, so that the operator can understand the hook through the schematic diagram displayed on the display. The position of the 400 determines the amplitude of the swing of the hook 400.
  • the processor 530 can preset the parameter threshold according to the actual needs of the lifting operation and the actual situation of the lifting 400, and obtain the predetermined attitude parameter and the preset parameter of the hook 400.
  • the thresholds are compared to determine whether the movement state of the hook 400 affects the normal progress of the lifting operation, and then the predetermined processing is performed based on the comparison result.
  • the speed threshold of the hook 400 can be preset to perform corresponding processing when the speed of the hook 400 is too large; the swing amplitude threshold can also be set to exceed the swing amplitude threshold when the position of the hook 400 exceeds the swing amplitude threshold.
  • Predetermined processing can be to issue a suitable alarm, generate an appropriate signal, etc., and to force the crane to stop the operation by the crane control system when there is a great safety risk.
  • the crane including the above-described hook posture detecting device also has a corresponding technical effect.
  • the processor 530 and the angle measuring instrument 510 can be fixed to the hook 400 at the same time, or simultaneously fixed on the suspension wire 410, and the output device 540 is mounted on the crane.
  • the control room communicates with the output device 540 and the processor 530 by wireless transmission.
  • Angle measuring instrument The 510 can be an angle sensor, a magnetometer, a gyroscope, etc., and the processor 530 can also have a filtering device, an AD conversion device, and the like. These improvements and refinements should also be considered as the protection scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control And Safety Of Cranes (AREA)

Description

吊钩姿态检测装置和起重机 本申请要求于 2009 年 11 月 20 日提交中国专利局、 申请号为 200910226102.4, 发明名称为"吊钩姿态检测装置和起重机 "的中国专利申 请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及一种起重机控制技术, 特别涉及一种吊钩姿态检测装置, 还涉及到包括上述吊钩姿态检测装置的起重机。 背景技术
起重机作为一种起吊搬运设备, 大量应用于建筑业、 制造业以及港口 运输业。 起重机具有多种类型, 每种类型的起重机具有不同结构。 对于汽 车起重机而言, 其包括底盘、 回转机构、 起重臂, 吊钩、 卷扬机构。 起重 臂下部通过回转机构与底盘相连, 吊钩通过钢丝绳悬挂于起重臂上部, 钢 丝绳绕过滑轮组与卷扬机构相连;卷扬机构通过钢丝绳驱动吊钩进行上升、 停止和下降等动作; 同时, 起重臂能够在回转机构的驱动下绕一个竖轴旋 转, 使吊钩在水平面内移动。
在进行起吊作业时, 起重机需要经过多个步骤, 一般包括落钩、起吊、 横移、 落钩等步骤。 在落钩过程中, 卷扬机构的卷扬筒在一个方向上旋转, 吊钩在重力作用下, 带动钢丝绳向下移动, 一直到达被起吊货物上方的适 当位置, 然后, 将吊钩与被起吊货物固定; 在起吊过程中, 卷扬机构的卷 扬筒在相反的方向上旋转, 通过钢丝绳拉动吊钩和货物一起向上移动, 使 货物离开地面; 在货物离开地面后, 回转机构运行, 进入横移的过程, 起 重臂横向旋转, 吊钩连同货物横向移动, 使货物到过预定位置的上方; 落 钩, 在货物到达预定位置上方后, 卷扬筒再进行反向旋转, 货物和吊钩向 下移动, 使货物到达预定位置, 实现对货物的搬运。 在起吊过程中, 吊钩 不仅要进行垂向的移动, 还要进行横向的移动; 由于惯性或外力作用, 通 过钢丝绳悬挂在起重臂上部的吊钩及货物会形成相应的摆动, 特别是在吊 钩携带货物开始横向移动, 或者在货物到达预定位置停止横向移动时, 吊 钩及货物的摆动幅度也会增加。 吊钩的摆动会影响起重机的起吊作业的效率。 在落钩时, 为了使吊钩 与货物相固定, 并避免吊钩与货物碰撞, 需要等待适当的时间, 以使吊钩 停止摆动; 在吊运货物横向移动时, 为了避免货物摆动而造成碰撞, 也需 要吊钩和货物以较小的速度移动; 在吊运的货物到达预定的位置后, 为了 将被吊运货物准确地放置在预定的位置, 还需要等待货物停止摆动后再落 钩。 现有起重机领域中, 普遍存在由于吊钩摆动而延长起吊作业的时间, 进而较低起重机起吊效率的问题。
上述问题不仅存在于汽车起重机的起吊作业过程中, 在龙门起重机或 其他起重机的起吊过程中, 也存在相同的问题。
对于上述问题,当前主要通过反摆动的稳钩措施减小吊钩的摆动幅度, 使吊钩更快的停止摆动, 以减少吊钩摆动对起吊作业效率的不利影响。 反 摆动的稳钩措施一般是根据吊钩摆动的幅度、频率和方向,利用控制装置, 使吊钩以适当频率、 幅度并与摆动相反的方向移动, 以使吊钩在较短的时 间内静止。 当前, 反摆动的稳钩措施主要依赖于具有较多经验的操作人员 对吊钩进行适当控制实现。
为了减小对操作人员操作经验的依赖性, 欧洲专利文献 EP1757554公 开了一种起重机反摆动的控制技术。 该专利文献公开的技术方案通过预先 设定模式的方式, 预先确定吊钩及货物的姿态参数, 并根据预先确定的姿 态参数, 控制系统采取适当反摆动措施减 ' j、摆动对起吊作业造成的不利影 响。 该技术方案的一个核心在于, 预先确定起吊过程中, 吊钩运动状态, 即吊钩的姿态参数, 并根据预定确定的吊钩姿态参数确定控制策略, 使吊 钩以预定的方式运动, 以减小吊钩摆动幅度, 使吊钩较快地停止摆动, 降 低吊钩摆动对起吊作业效率的不利影响。 但由于起吊作业实际情况的复杂 性, 预先确定的吊钩姿态参数^艮难与吊钩的实际姿态参数相一致, 因此, 该技术方案仅能够满足起吊作业环境较稳定的场合, 在未预先确定吊钩姿 态参数的作业环境中进行起吊作业时, 上述技术方案并不能够实现提高起 重机起吊作业效率的目的。
在起吊作业过程中, 如何确定吊钩实际的姿态参数, 为控制吊钩动作 提供前提, 以提高起重机起吊作业的效率是起重机领域的一个技术难题。 发明内容
针对上述技术难题, 本发明的第一个目的在于, 提供一种吊钩姿态检 测装置, 以确定吊钩实际的姿态参数, 为控制吊钩动作提供前提。
本发明的第二个目的在于, 提供一种具有上述吊钩姿态检测装置的起 重机, 以根据吊钩的实际姿态参数了解吊钩运动状态, 并实施稳钩措施, 提高起重机起吊作业的效率。
为了实现上述第一个目的, 本发明提供的吊钩姿态检测装置包括: 角度测量仪, 用于实时获得第二坐标系坐标轴与第一坐标系中相对应 坐标轴之间的夹角;
加速度测量计, 用于实时获得吊钩在预定方向的加速度, 所述预定方 向与第二坐标系的坐标轴之间具有预定的角度;
处理器, 用于建立所述第一坐标系和第二坐标系, 所述第一坐标系与 预定位置相对固定, 所述第二坐标系与吊钩相对固定, 所述第一坐标系中 的坐标轴与第二坐标系中的坐标轴相对应; 还根据角度测量仪获得的夹角 和加速度测量计获得的加速度获得吊钩在第一坐标系中的姿态参数;
输出装置, 用于将所述姿态参数输出。
优选的, 所述第一坐标系为具有 XI轴、 Y1轴和 Z1轴的直角坐标系 , 所述第二坐标系为具有 X2轴、 Y2轴和 Z2轴的直角坐标系, 所述 XI轴、 Y1轴和 Z1轴分别与 X2轴、 Y2轴和 Z2轴相对应。
优选的, 所述角度测量仪为三轴角度测量仪, 该三轴角度测量仪的三 个测量轴轴线与第二坐标系的三个坐标轴之间分别具有预定角度。
优选的, 所述三轴角度测量仪的三个测量轴轴线与第二坐标系的三个 坐标轴之间的预定角度均为 0度。
优选的, 所述加速度测量计为三轴加速度测量计, 该三轴加速度测量 计的三个测量轴轴线与第二坐标系的三个坐标轴之间分别具有预定角度。
优选的, 所述加速度测量计的三个测量轴轴线与第二坐标系的三个坐 标轴之间的预定角度均为 0度。
优选的, 所述输出装置包括显示器, 所述显示器以示意图的形式显示 所述姿态参数。 优选的, 所述姿态参数包括吊钩在第一坐标系中的瞬时速度、 运动方 向及吊钩位置中的至少一个。
优选的, 所述处理器还能够将姿态参数与预定参数阈值进行比较, 以 确定起吊作业的安全性, 并根据比较结果进行预定处理。
为了实现上述第二个目的, 本发明提供的起重机包括起重机本体、 悬 挂钢丝绳和吊钩, 所述悬挂钢丝绳下端与吊钩相连, 上端与起重机本体上 的定滑轮相连, 与现有技术的区别在于, 还包括上述任一种吊钩姿态检测 装置, 所述吊钩姿态检测装置的角度测量仪和加速度测量计均与悬挂钢丝 绳固定, 或均与吊钩固定。
本发明提供的吊钩姿态检测装置中, 处理器在空间内建立第一坐标系 和第二坐标系, 以两个坐标系为基础获得吊钩的姿态参数, 了解吊钩的运 动状态; 其中, 第一坐标系与预定位置固定, 预定位置可以与起重机相关 部件固定, 第二坐标系与吊钩的运动相关联, 以使吊钩的运动状态能够反 映在两个坐标系的相对运动状态上; 角度测量仪用于获得第二坐标系与第 一坐标系相对应坐标轴之间夹角; 加速度测量计用于获得吊钩在预定方向 上的加速度, 而且预定方向相对于第二坐标系固定, 并与第二坐标系的坐 标轴之间具有预定的角度, 以为获得吊钩在第二坐标系各坐标轴方向上的 加速度提供基础。 处理器还能够根据加速度测量计获得的加速度及角度测 量仪获得的夹角, 获得吊钩在第一坐标系各坐标轴上的加速度; 根据吊钩 在第一坐标系各坐标轴上的加速度, 处理器能够获得吊钩的姿态参数, 确 定吊钩的运动状态; 然后, 输出装置能够将处理器获得的姿态参数以合适 的方式输出。本发明提供上述吊钩姿态检测装置能够提供吊钩的姿态参数, 从而使起重机的控制系统或操作人员能够根据输出装置输出的姿态参数精 确地了解吊钩的位置、 运转速度, 摆动幅度等方面的信息, 以确定吊钩的 运动状态; 并根据吊钩的运动状态采取适当的稳钩措施, 减少起吊作业所 需要的时间, 提高起吊作业的效率。
在进一步的技术方案中, 所述第一坐标系和第二坐标系分别为包括三 个坐标轴的直角坐标系; 该技术方案通过三个坐标轴能够获得吊钩更全面 的姿态参数; 进一步地, 能够使起重机的控制系统或操作人员更准确地确 定吊钩在立体空间内的信息, 更好地实施稳钩措施。
在进一步的技术方案中, 用三轴角度测量仪获得两个坐标系中相对应 坐标轴之间的夹角; 这样一方面能够提高测量的准确性; 另一方面能够较 快地获得夹角数据, 提高吊钩姿态检测装置的反应速度。 在优选的技术方 案中, 使三轴角度测量仪的三个测量轴轴线分别与第二坐标系的三个坐标 轴之间保持平行, 这样能够减少角度测量仪的处理步骤, 提高角度测量仪 的处理速度。
同样, 在进一步的技术方案中, 用三轴加速度测量计获得吊钩在各方 向的加速度, 能够提高测量准确性和吊钩姿态检测装置的反应速度。 在优 选的技术方案中, 使三轴加速度测量计的三个测量轴轴线分别与第二坐标 系的三个坐标轴之间保持平行, 这样能够减少加速度测量计的处理步骤, 提高加速度测量计的处理速度。
在进一步的技术方案中, 所述输出装置包括显示器, 通过显示器能够 将吊钩的姿态参数以示意图的形式表达; 该技术方案能够为操作人员提供 直观的操作信息, 从而使操作人员能够更好地实施稳钩措施, 为起吊作业 效率的提高提供便利。
在进一步的技术方案中, 所述处理器还能够将获得的吊钩姿态参数与 预定的参数阈值相比较, 并根据预定的策略判断吊钩位置、 速度是否超出 预定的范围; 然后, 根据判断结果确定是否进行相关处理; 如果需要进行 预定处理, 则输出预定指示, 以进一步的提醒操作人员, 该技术方案能够 在提高起吊作业效率的同时, 减小或避免安全事故的发生。
在提供上述吊钩姿态检测装置的基础上, 还提供了一种包括上述吊钩 姿态检测装置的起重机; 由于吊钩姿态检测装置具有上述技术效果, 具有 该吊钩姿态检测装置的起重机也具有相应的技术效果。 附图说明
图 1是一种汽车起重机的总体结构示意图;
图 2是本发明实施例一提供的吊钩姿态测量装置的结构框图; 图 3是实施例一中, 角度测量仪和加速度测量计与吊钩的位置关系示 意图; 图 4是实施例一中, 第一坐标系与第二坐标系的对比关系示意图, 图 中用实线示出了第一坐标系的坐标轴,用虚线示出了第二坐标系的坐标轴; 图 5是实施例一中, 吊钩运动矢量合成示意图。 具体实施方式
本发明的核心在于: 建立第一坐标系和第二坐标系, 其中第二坐标系 与吊钩的运动相关, 第一坐标系与吊钩的运动无关, 从而使将吊钩的姿态 参数的改变反映在两个坐标系之间位置关系的改变上; 然后, 再用角度测 量仪获得两个坐标系坐标轴之间的角度关系, 用加速度测量计获得吊钩在 第二坐标系预定方向的加速度, 根据角度关系与加速度获得吊钩在第一坐 标系相应坐标轴上的加速度; 最后, 根据吊钩在第一坐标系坐标轴上的加 速度获得吊钩在第一坐标系中的姿态参数, 为进一步的控制吊钩的运动提 供依据。 描述仅是示范性和解释性, 不应对本发明的保护范围有任何的限制作用。
请参考图 1 , 该图是一种汽车起重机的总体结构示意图。 图中的汽车 起重机包括底盘 100, 起重臂 200、 吊钩 400。 起重臂 200通过回转机构安 装在底盘 100上, 以能够绕一个竖轴, 相对于底盘 100在水平面内旋转; 吊钩 400上具有动滑轮组, 动滑轮组通过悬挂钢丝绳 410与起重臂 200上 部的定滑轮组相连, 定滑轮组通过牽引钢丝绳 310与起重机的卷扬筒 300 相连。在进行起吊作业时,牽引钢丝绳 310通过定滑轮组使悬挂钢丝绳 410 运动, 从而使吊钩 400在垂向上移动, 以使被起吊货物在垂向上移动; 起 重臂 200与底盘 100之间的回转机构在适当驱动机构驱动下旋转, 使起重 臂 200与底盘 100之间相对运动, 并带动吊钩 400及 ¾¾吊货物在水平面 内移动, 实现货物位置的变换。 在起重臂 200旋转或受到外力作用时, 通 过悬挂钢丝绳 410悬挂在起重臂 200上部的吊钩 400会产生横向摆动, 该 横向摆动会影响起重机起吊作业的效率。
请参考图 2 , 该图是本发明实施例一提供的吊钩姿态检测装置的结构 框图。 实施例一提供的吊钩姿态检测装置用于测量上述起重机吊钩的姿态 参数, 该吊钩姿态检测装置包括角度测量仪 510, 加速度测量计 520和处 理器 530及输出装置 540。
处理器 530根据起重机的结构尺寸可以确定两个坐标系; 第一坐标系 01和第二坐标系 02;第一坐标系 01的坐标轴与第二坐标系 02的坐标轴 ——对应。 第一坐标系 01和第二坐标系 02分别与不同装置固定, 其中第 二坐标系 02与吊钩 400固定, 第二坐标系 01与起重臂 200的上部固定, 这样, 在吊钩 400相对于起重臂 200摆动或上下移动时, 两个坐标系之间 也产生相对位置变换, 从而使吊钩 400的姿态参数的变化能够反映在两个 坐标系之间的位置关系变化上, 为确定吊钩 400的姿态参数提供前提。 第 一坐系 01不限于与起重臂 200的上部固定, 也可以与除吊钩 400之外的 起重机的其他部分固定; 在起重机为其他类型的起重机, 比如龙门式起重 机时, 处理器 530还可以根据作业的实际需要以空间的预定位置为基础确 立坐标系。 只要在进行起吊作业时, 吊钩 400的运动及其姿态参数的变化 能够反映在第一坐标系 01与第二坐标系 02之间的位置关系变化上,就可 以为确定吊钩 400的姿态参数提供前提, 实现本发明的目的。
如图 3所示的实施例一中,第一坐标系与第二坐标系对比关系示意图, 图中用实线示出了第一坐标系的坐标轴, 用虚线示出了第二坐标系的坐标 轴。 本例中, 第一坐标系 01和第二坐标系 02分别为三维的直角坐标系, 第一坐标系 01具有三个坐标轴: XI轴、 Y1轴和 Z1轴, 第二坐标系 02 具有三个坐标轴: X2轴、 Y2轴和 Z2轴; 其中, XI轴、 Y1轴和 Z1轴分 别与 X2轴、 Y2轴和 Z2轴相对应。
角度测量仪 510用于获得第二坐标系 02 中坐标轴与第一坐标系 01 中相对应坐标轴之间的夹角。 本例中, 角度测量仪为三轴角度测量仪, 该 三轴角度测量仪具有三个测量轴,三个测量轴的轴线分别与第二坐标系 02 的三个坐标轴相平行, 即三个测量轴的轴线与第二坐标系 02 的三个坐标 轴之间的夹角分别为 0度; 这样, 在第二坐标系 02相对于第一坐标系 01 的进行旋转时, 每个测量轴能够获得第二坐标系 02 坐标轴与第一坐标系 01相应坐标轴之间的角度; 如图 3所示, 角度测量仪 510即能够获得 Z1 轴与 Z2轴之间的夹角 a, Y1轴和 Y2轴之间的夹角 b , XI轴与 X2轴之间 夹角 c。 可以理解, 角度测量仪也可以包括三个角度传感器, 并使每个角 度传感器测量一对坐标轴之间的夹角。
加速度测量计 520用于测量吊钩在预定方向的加速度, 所述预定方向 与第二坐标系 02 的坐标轴之间具有预定的角度。 本例中, 加速度测量计 520 为三轴加速度测量计, 该三轴加速度测量计具有三个测量轴, 三个测 量轴轴线分别与第二坐标系 02 的三个坐标轴平行, 即三个测量轴的轴线 与第二坐标系 02的三个坐标轴之间的角度分别为 0度。 这样, 加速度测 量计 520就能够获得在第二坐标系 02各坐标轴方向上的加速度;如图 3所 示, 加速度测量计 520能够获得 X2轴方向的加速度 0^2、 在 Y2轴方向上 的加速度(Xy2和在 Z2轴方向的加速度0^2。 可以理解, 三轴加速度测量计 的三个测量轴也可以不与第二坐标系 02 的三个坐标轴相平行, 也可以分 别与第二坐标系 02 的三个坐标轴之间具有预定角度, 在三个测量轴分别 获得对应轴线方向的加速度之后, 再通过运算获得吊钩 400在第二坐标系
02各坐标轴方向的加速度 0^2、 ay2和 az2
如图 4所示的角度测量仪和加速度测量计与吊钩的位置关系示意图, 本例中, 角度测量仪 510和加速度测量计 520与吊钩 400固定, 以使二者 获得的数据与吊钩 400的运动状态直接相关。 另外, 角度测量仪 510和加 速度测量计 520可以与悬挂吊钩 400的悬挂钢丝绳 410固定, 由于悬挂钢 丝绳 410与吊钩 400同步运动, 且悬挂钢丝绳 410的姿态参数和运动状态 与吊钩 400具有确定的关系, 因此, 根据悬挂钢丝绳 410的姿态参数也可 以确定吊钩 400的姿态参数, 实现本发明的目的。
处理器 530还用于根据角度测量仪 510 获得的夹角和加速度测量计 520获得的加速度获得吊钩 400在第一坐标系 01中的姿态参数。姿态参数 可以包括吊钩 400在第一坐标系中的运动速度 V、 运动方向及位置。
输出装置 540将处理器 530获得的所述姿态参数输出, 以提供给操作 人员或起重机的操作系统。
以下描述获得上述姿态参数的具体方式:
首先, 获得吊钩 400在第一坐标系 01 内各坐标轴方向的加速度; 其 中, 在第一坐标系 01中, XI轴方向上的加速度 e, Y1轴 方向上的加速度
Figure imgf000010_0001
X cosb , zi轴方向上的加 χ cosa。 这 样就可以获得吊钩 400在第一坐标系 01中, 各坐标轴方向上的加速度。 其次, 处理器 530 以预定的周期进行处理, 并根据获得的 0^、 ayl 和 azl、获得吊钩在第一坐标系 01各坐标轴方向上的瞬时速度, 具体方式 是:
Figure imgf000011_0001
其中, Vx为吊钩 400在 XI轴方向上的瞬时速度, Vy为吊钩 400在 Y1轴方向上的瞬时速度, Vz为吊钩在 Z1轴方向上的瞬时速度, 所述述 瞬时为处理器 530获得的吊钩 400的实时速度; V0x、 V0y和 V0z分别 为在 XI轴、 Y1轴和 Z1轴方向上的初始速度, 也就是处理器 530的上一 处理周期获得的速度, dt为处理器 530的处理周期。 这样, 在第一坐标系 01中, 根据加速度关于时间的离散函数就可以获得第一坐标系 01各坐标 轴方向上的瞬时速度。 吊钩姿态检测装置可以在起重机进行起吊作业时开 始运行, 并根据开始起吊时的状态, 预置 V0x、 Voy和 V0z的值; 使处 理器 530能够根据角度测量仪 510获得的夹角和加速度测量计 520获得的 加速度获得吊钩在第一坐标系 01 中各坐标轴方向上的瞬时速度, 瞬时速 度能够反映吊钩 400的实时运动状态, 并可以进一步确定吊钩 400的实时 姿态参数。
如图 5所示的吊钩运动矢量合成示意图, 根据 Vx、 \^和\^之间的 关系, 可以获得吊钩 400在第一坐标系 01 中的瞬时速度 V, 该瞬时速度 为吊钩 400的整体速度, 其中,
Figure imgf000011_0002
再次, 可以获得吊钩 400的运动位置, 运动位置可以根据吊钩 400与 预定位置之间的距离确定, 由于吊钩 400的运动轨迹为非线性运动轨迹, 为了更准确地获得吊钩 400与预定位置之间的距离, 可以先获得吊钩 400 在第一坐标系 01中各坐标轴方向上, 相对于预定位置的瞬时位移, 其中:
Figure imgf000012_0001
在 Y1轴方向的瞬时位移 sY =s。Y+ JI"xl 在 Z1轴方向的瞬时位移 s:
Figure imgf000012_0002
上述公式中, S0x、 S0y和 S0z分别为吊钩 400在 XI轴、 Y1轴和 Z1 轴方向上与预定位置之间的初始距离, 也就是处理器 530的上一处理周期 获得的瞬时位移; dt为处理器 530的处理周期; 这样, 在第一坐标系 01 中,根据加速度关于时间的离散函数就可以获得吊钩 400在第一坐标系 01 各坐标轴方向上的瞬时位移, 获得吊钩 400在各坐标轴方向上与预定位置 之间的瞬时距离。 以吊钩静止时的位置为参照, 就可以确定吊钩 400在各 个坐标轴方向上的偏移量, 确定摆动距离及幅度。 进一步地, 还可以再根 据 Sx 、 SY、 Sz获得吊钩 400在第一坐标系 01中的瞬时位移 S, 该瞬时位 移为吊钩 400的整体位移,以确定吊钩 400的与预定位置之间的瞬时距离。
Figure imgf000012_0003
同样, 以吊钩 400静止时位置为参照, 就可以确定吊钩 400的位置及 摆动副度。
根据处理器 530获得的上述姿态参数, 操作人员就可以精确地了解吊 钩 400的位置、 瞬时速度, 摆动幅度等方面的信息, 以确定吊钩 400的运 动状态; 从而能够采取更适当的稳钩措施, 减少起吊作业所需要的时间, 提高起吊作业的效率。
在实际起吊作业时,也可以通过两个二维的坐标系实现上述发明目的, 另外, 第一坐标系 Ol和第二坐标系 02不限于为直角度坐标系,也可以是 极坐标系或其他坐标系。在第一坐标系 Ol和第二坐标系 02分别具有一个 坐标轴或两个坐标轴时, 角度测量仪 510可以具有一个测量轴和二个测量 轴, 并使测量轴的轴线与第二坐标系 02的坐标轴平行或具有预定的角度; 同样,根据上述方式,也可以获得两个坐标系中相对应坐标轴之间的夹角, 并进一步地根据夹角和加速度测量计 520获得的加速度获得吊钩 400在第 一坐标系 Ol相应坐标轴方向的加速度, 进一步地获得吊钩 400的姿态参 数。
同样,在第一坐系 Ol和第二坐标系 02为其他坐标系时,加速度计测 量仪 520也可以具有一个或两个测量轴,并使测量轴轴线与第二坐标系 02 的坐标轴平行或具有预定的夹角, 也能够根据上述方式获得吊钩 400在第 二坐标系 02相应坐标轴方向上的加速度, 实现本发明的目的。 为了更准 确地获得吊钩 400的加速度, 优选的技术方案是加速度测量计具有能够测 量三维方向加速度的功能, 以更准确地获得在预定坐标轴方向上加速度的 分量。
为了使操作人员更直观地确定吊钩 400的姿态, 输出装置 540可以是 指示灯, 在吊钩 400预定的姿态参数达到预定数值时, 使预定的指示灯发 出预定的指示; 也可以是显示器, 通过显示器将吊钩的姿态参数以合适的 方式示出, 比如, 对于吊钩 400的位置及运动轨迹可以用示意图的形式显 示在显示器上, 这样, 操作人员就能够通过显示器显示的示意图了解吊钩 400的位置, 确定吊钩 400摆动的幅度; 另外, 处理器 530还可以根据起 吊作业的实际需要及起吊 400实际情况预设参数阈值,并将获得的吊钩 400 的预定姿态参数与预设参数阈值进行比较, 以确定吊钩 400的运动状态是 否影响起吊作业的正常进行, 然后根据比较结果进行预定处理。 比如说: 可以预设吊钩 400的速度阀值, 以在吊钩 400的速度过大时, 进行相应处 理; 也可以设置摆动幅度阈值, 以在吊钩 400的位置超出摆动幅度阈值时, 进行相预定处理。预定处理可以是发出合适的警报、产生合适的讯号等等, 还可以在具有很大的安全风险时, 通过起重机的控制系统强行使起重机停 止作业。
由于本发明提供的吊钩姿态检测装置具有上述技术效果, 包括上述吊 钩姿态检测装置的起重机也具有相对应的技术效果。 为了方便信息通讯, 并方便操作人员对吊钩 400状态的了解, 可以使处理器 530与角度测量仪 510同时固定在吊钩 400, 或同时固定在悬挂钢丝绳 410上, 将输出装置 540安装在起重机的控制室内, 并使输出装置 540与处理器 530之间通过 无线传输方式通讯。 以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领域的 普通技术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进 和润饰, 比如: 角度测量仪 510可以为角度传感器、 磁强计、 陀螺仪等等, 处理器 530中还可以具有滤波装置及 AD转换装置等等, 这些改进和润饰 也应视为本发明的保护范围。

Claims

权 利 要 求
1、 一种吊钩姿态检测装置, 其特征在于, 包括:
角度测量仪(510), 用于实时获得第二坐标系 (Ol) 坐标轴与第一坐 标系 (02) 中相对应坐标轴之间的夹角;
加速度测量计(520),用于实时获得吊钩(400)在预定方向的加速度, 所述预定方向与第二坐标系 (02) 的坐标轴之间具有预定的角度;
处理器( 530), 用于建立所述第一坐标系 (Ol)和第二坐标系 (02), 所述第一坐标系 (Ol)与预定位置相对固定, 所述第二坐标系 (02)与吊 钩(400)相对固定,所述第一坐标系(Ol )中的坐标轴与第二坐标系(02) 中的坐标轴相对应; 还根据角度测量仪(510)获得的夹角和加速度测量计 (520)获得的加速度获得吊钩(400)在第一坐标系(Ol )中的姿态参数; 输出装置 (540), 用于将所述姿态参数输出。
2、根据权利要求 1所述的吊钩姿态检测装置, 其特征在于, 所述第一 坐标系 ( Ol )为具有 XI轴、 Y1轴和 Z1轴的直角坐标系, 所述第二坐标 系 ( 02 )为具有 X2轴、 Y2轴和 Z2轴的直角坐标系, 所述 XI轴、 Y1轴 和 Z1轴分别与 X2轴、 Y2轴和 Z2轴相对应。
3、根据权利要求 2所述的吊钩姿态检测装置, 其特征在于, 所述角度 测量仪(510)为三轴角度测量仪, 该三轴角度测量仪的三个测量轴轴线与 第二坐标系 (02) 的三个坐标轴之间分别具有预定角度。
4、根据权利要求 3所述的吊钩姿态检测装置, 其特征在于, 所述角度 测量仪 (510) 的三个测量轴轴线与第二坐标系 (02) 的三个坐标轴之间 的预定角度均为 0度。
5、 根据权利要求 2、 3或 4所述的吊钩姿态检测装置, 其特征在于, 所述加速度测量计(520)为三轴加速度测量计, 该三轴加速度测量计的三 个测量轴轴线与第二坐标系 (02) 的三个坐标轴之间分别具有预定角度。
6、根据权利要求 5所述的吊钩姿态检测装置, 其特征在于, 所述加速 度测量计 (520) 的三个测量轴轴线与第二坐标系 (02) 的三个坐标轴之 间的预定角度均为 0度。
7、 根据权利要求 1-6任一项所述的吊钩姿态检测装置, 其特征在于, 所述输出装置(540)包括显示器, 所述显示器以示意图的形式显示所述姿 态参数。
8、 根据权利要求 1-7任一项所述的吊钩姿态检测装置, 其特征在于, 所述姿态参数包括吊钩 (400)在第一坐标系 (Ol ) 中的瞬时速度、 运动 方向及吊钩位置中的至少一个。
9、 根据权利要求 1-8任一项所述的吊钩姿态检测装置, 其特征在于, 所述处理器( 530 )还能够将姿态参数与预定参数阈值进行比较, 以确定起 吊作业的安全性, 并根据比较结果进行预定处理。
10、一种起重机, 包括起重臂(200),悬挂钢丝绳(410)和吊钩(400), 所述悬挂钢丝绳(410)下端与吊钩(400)相连, 上端与起重臂(200)上 的定滑轮相连, 其特征在于, 还包括权利要求 1-9任一项所述的吊钩姿态 检测装置, 所述吊钩姿态检测装置的角度测量仪(510) 和加速度测量计 (520) 均与悬挂钢丝绳(410) 固定, 或均与吊钩 (400) 固定。
PCT/CN2010/074471 2009-11-20 2010-06-25 吊钩姿态检测装置和起重机 WO2011060640A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10831056.6A EP2436637B1 (en) 2009-11-20 2010-06-25 Hook pose detecting equipment and crane
BR112012003465A BR112012003465A2 (pt) 2009-11-20 2010-06-25 "equipamento para detectar a posição de gancho e guindaste."
US13/380,554 US8627575B2 (en) 2009-11-20 2010-06-25 Hook pose detecting equipment and crane
RU2012107154/11A RU2516812C2 (ru) 2009-11-20 2010-06-25 Устройство определения положения крюка и кран

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910226102.4 2009-11-20
CN200910226102.4A CN101723239B (zh) 2009-11-20 2009-11-20 吊钩姿态检测装置和起重机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/380,554 Substitution US8627575B2 (en) 2009-11-20 2010-06-25 Hook pose detecting equipment and crane

Publications (1)

Publication Number Publication Date
WO2011060640A1 true WO2011060640A1 (zh) 2011-05-26

Family

ID=42444906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/074471 WO2011060640A1 (zh) 2009-11-20 2010-06-25 吊钩姿态检测装置和起重机

Country Status (6)

Country Link
US (1) US8627575B2 (zh)
EP (1) EP2436637B1 (zh)
CN (1) CN101723239B (zh)
BR (1) BR112012003465A2 (zh)
RU (1) RU2516812C2 (zh)
WO (1) WO2011060640A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013095975A1 (en) * 2011-12-19 2013-06-27 Trimble Navigation Limited Determining the location of a load for a tower crane
CN105293380A (zh) * 2015-11-30 2016-02-03 厦门海普智能科技有限公司 叉装车货叉姿态显示方法及显示装置
CN114132838A (zh) * 2021-12-15 2022-03-04 北京科技大学 一种无人天车运行过程中的防摇摆控制方法

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101723239B (zh) * 2009-11-20 2012-05-02 三一汽车制造有限公司 吊钩姿态检测装置和起重机
CN101891125B (zh) * 2010-08-03 2012-07-11 上海三一科技有限公司 一种起重机超起配重偏离的检测装置及方法
EP2466252B1 (en) * 2010-12-20 2013-07-10 Christopher Bauder Winch for providing a predetermined length of unwound cable
CN102120545B (zh) * 2010-12-22 2012-12-19 中联重科股份有限公司 起重机防摇系统
US8862419B2 (en) * 2011-04-19 2014-10-14 Honeywell International Inc. Crane jib attitude and heading reference system calibration and initialization
CN102249151B (zh) * 2011-05-20 2013-06-12 林汉丁 吊车吊钩偏角激光显示与监视装置
CN102431897B (zh) * 2011-11-25 2014-04-30 林汉丁 起重机吊装垂直度偏差测量显示装置及吊装法
DE102011056631A1 (de) * 2011-12-19 2013-06-20 Rud Ketten Rieger & Dietz Gmbh U. Co. Kg Wippe für Gehänge mit Anzeigeanordnung
CN102530729B (zh) * 2012-02-14 2014-05-21 三一重工股份有限公司 控制吊物振摆的方法和系统
CN102530725B (zh) * 2012-03-29 2014-07-02 苏州市思玛特电力科技有限公司 汽车起重机防摆控制技术
DE102012015095A1 (de) * 2012-08-01 2014-02-06 Vdeh-Betriebsforschungsinstitut Gmbh Haken eines Krans mit einer Winkelmesseinheit und Verfahren zur Fehllasterkennung mit Automatisierungskonzept
CN102807170B (zh) * 2012-08-20 2015-08-19 徐州重型机械有限公司 起重机及其双卷扬同步控制装置、控制方法
CN102795547B (zh) * 2012-08-31 2014-07-16 中国人民解放军国防科学技术大学 起重机吊钩位置和摆角的实时摄像测量方法
CN102923572B (zh) * 2012-09-24 2015-08-26 苏州市思玛特电力科技有限公司 一种吊车负载空间摆角检测技术及装置
CN103033160B (zh) * 2012-12-17 2015-09-02 江苏大学 一种喷杆位姿测量装置及其测量方法
CN103253594B (zh) * 2013-05-07 2015-03-25 徐工集团工程机械股份有限公司 履带起重机多卷扬钢丝绳长度调整方法及装置
CN103723631B (zh) * 2013-12-30 2015-12-02 武桥重工集团股份有限公司 吊件吊装姿态调平无线监测系统
CN103991801B (zh) * 2014-05-12 2016-02-17 中联重科股份有限公司 塔机及其吊钩防摇控制方法、装置和系统
CN104340875B (zh) * 2014-10-09 2016-05-11 中联重科股份有限公司 起重机的臂架姿态监测控制系统、方法、装置及起重机
US9975196B2 (en) * 2015-01-05 2018-05-22 University Of Kentucky Research Foundation Measurement of three-dimensional welding torch orientation for manual arc welding process
CN105347181B (zh) * 2015-12-07 2018-07-20 南开大学 一种自动吊钩系统
CN106586835B (zh) * 2016-12-16 2019-10-22 湖南中联重科智能技术有限公司 塔式起重机控制方法、设备、系统以及塔式起重机
CN106865417B (zh) * 2017-03-02 2018-06-22 五邑大学 一种基于轨迹球和多编码器的起重机摆角计算方法
CN107161855B (zh) * 2017-07-04 2018-10-02 龙岩市惠祥科技有限公司 一种物料调配天车系统
CN107235419A (zh) * 2017-07-11 2017-10-10 长沙海川自动化设备有限公司 塔式起重机安全监控系统及具有其的塔式起重机
NL1042605B1 (nl) * 2017-10-24 2019-05-01 Ropeblock B V Werkwijze voor het hijsen van objecten en bijbehorend zelfcorrigerend hijsblok.
CN109724594A (zh) * 2017-10-30 2019-05-07 罗伯特·博世有限公司 装置的自身运动姿态识别方法和采用该方法的装置
CN108358060A (zh) * 2018-02-16 2018-08-03 广西建工集团智慧制造有限公司 一种塔式起重机吊钩姿态检测及防摇摆装置
WO2019210362A1 (en) * 2018-05-04 2019-11-07 Thomas Bedgood Sensing device for a crane
WO2019230395A1 (ja) * 2018-05-30 2019-12-05 京セラ株式会社 表示システム
CN111747326B (zh) * 2018-06-12 2022-02-08 北京建筑大学 起重机gnss检测用偏摆测量装置
DE102018005068A1 (de) * 2018-06-26 2020-01-02 Liebherr-Components Biberach Gmbh Kran und Verfahren zum Steuern eines solchen Krans
CN109678055A (zh) * 2018-11-07 2019-04-26 上海图森未来人工智能科技有限公司 移动吊装设备控制系统及方法、服务器、移动吊装设备
DE102020112227A1 (de) * 2019-11-22 2021-05-27 Liebherr-Werk Biberach Gmbh Bau- und/oder Materialumschlagsmaschine
RU196670U1 (ru) * 2019-11-30 2020-03-11 Виктор Юрьевич Боушев Устройство мониторинга положений грузовых канатов и груза грузоподъёмного крана
WO2021185247A1 (zh) * 2020-03-16 2021-09-23 三一海洋重工有限公司 起吊装置及其控制装置和方法、电子导板控制装置和方法
CN111348544A (zh) * 2020-04-16 2020-06-30 林汉丁 吊重时显示实时吊钩偏角监控装置及起重机
CN111807223A (zh) * 2020-08-12 2020-10-23 义乌恒邦建筑智能科技有限公司 一种塔机变幅机构实时防摇控制方法及防摇装置
CN112033373A (zh) * 2020-08-21 2020-12-04 苏州巨能图像检测技术有限公司 一种龙门架吊具的姿态检测方法
EP4247746A1 (de) * 2021-01-27 2023-09-27 Liebherr-Werk Biberach GmbH Hebezeug sowie verfahren zum bestimmen von schlaffseil an dem hebezeug
CN113023571A (zh) * 2021-03-30 2021-06-25 中国港湾工程有限责任公司 一种起重机稳钩装置
US20220324679A1 (en) 2021-04-12 2022-10-13 Structural Services, Inc. Systems and methods for assisting a crane operator
CN113620157B (zh) * 2021-09-15 2024-05-03 绍兴起重机总厂 一种成品管桩多用途起重机
DE102021130876A1 (de) * 2021-11-25 2023-05-25 Manitowoc Crane Group France Sas Hakenflasche
EP4368558A1 (de) * 2022-11-10 2024-05-15 XCMG European Research Center GmbH Verfahren zur steuerung der position eines lastelementes und/oder einer von einem lastelement gehaltenen last eines krans
CN117422835A (zh) * 2023-11-14 2024-01-19 国网湖北省电力有限公司超高压公司 一种基于球极坐标系的吊车安全作业范围评估方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3921818A (en) * 1973-04-02 1975-11-25 Tokyo Shibaura Electric Co Crane suspension control apparatus
US5526946A (en) * 1993-06-25 1996-06-18 Daniel H. Wagner Associates, Inc. Anti-sway control system for cantilever cranes
US6135301A (en) * 1994-03-28 2000-10-24 Mitsubishi Jukogyo Kabushiki Kaisha Swaying hoisted load-piece damping control apparatus
EP1757554A2 (en) 2005-08-24 2007-02-28 Rockwell Automation Technologies, Inc. Anti-sway control for crane
CN101723239A (zh) * 2009-11-20 2010-06-09 三一汽车制造有限公司 吊钩姿态检测装置和起重机

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2096307C1 (ru) * 1990-06-15 1997-11-20 Като Воркс Ко., ЛТД Способ определения высоты подъема крюка стрелового крана и устройство для его осуществления
US5645181A (en) 1992-02-12 1997-07-08 Kato Works Co., Ltd. Method for detecting a crane hook lifting distance
US7489098B2 (en) 2005-10-05 2009-02-10 Oshkosh Corporation System for monitoring load and angle for mobile lift device
US20070200032A1 (en) * 2006-02-24 2007-08-30 Eadie William J Radio frequency emitting hook system for a rotary-wing aircraft external load handling
RU58110U1 (ru) * 2006-08-15 2006-11-10 Общество с ограниченной ответственностью "Научно-производственное предприятие "ЭГО" Устройство управления грузоподъемным краном
RU62916U1 (ru) * 2007-01-29 2007-05-10 Общество с ограниченной ответственностью "Научно-производственное предприятие "ЭГО" Датчик перемещения оборудования грузоподъемной машины
ITMI20080227A1 (it) 2008-02-13 2009-08-14 Felice Vinati '' dispositivo di sicurezza per apparati di sollevamento a fune ''

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3921818A (en) * 1973-04-02 1975-11-25 Tokyo Shibaura Electric Co Crane suspension control apparatus
US5526946A (en) * 1993-06-25 1996-06-18 Daniel H. Wagner Associates, Inc. Anti-sway control system for cantilever cranes
US6135301A (en) * 1994-03-28 2000-10-24 Mitsubishi Jukogyo Kabushiki Kaisha Swaying hoisted load-piece damping control apparatus
EP1757554A2 (en) 2005-08-24 2007-02-28 Rockwell Automation Technologies, Inc. Anti-sway control for crane
CN101723239A (zh) * 2009-11-20 2010-06-09 三一汽车制造有限公司 吊钩姿态检测装置和起重机

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013095975A1 (en) * 2011-12-19 2013-06-27 Trimble Navigation Limited Determining the location of a load for a tower crane
US9041595B2 (en) 2011-12-19 2015-05-26 Trimble Navigation Limited Determining the location of a load for a tower crane
EP2794456A4 (en) * 2011-12-19 2015-11-18 Trimble Navigation Ltd DETERMINING THE POSITION OF A LOAD FOR A TOWER CRANES
CN105293380A (zh) * 2015-11-30 2016-02-03 厦门海普智能科技有限公司 叉装车货叉姿态显示方法及显示装置
CN114132838A (zh) * 2021-12-15 2022-03-04 北京科技大学 一种无人天车运行过程中的防摇摆控制方法

Also Published As

Publication number Publication date
EP2436637A1 (en) 2012-04-04
US8627575B2 (en) 2014-01-14
CN101723239A (zh) 2010-06-09
RU2012107154A (ru) 2013-12-27
US20120255188A1 (en) 2012-10-11
RU2516812C2 (ru) 2014-05-20
BR112012003465A2 (pt) 2016-03-01
EP2436637A4 (en) 2013-04-24
CN101723239B (zh) 2012-05-02
EP2436637B1 (en) 2015-01-14

Similar Documents

Publication Publication Date Title
WO2011060640A1 (zh) 吊钩姿态检测装置和起重机
US11987475B2 (en) System and method for transporting a swaying hoisted load
CN102923572B (zh) 一种吊车负载空间摆角检测技术及装置
JP4625469B2 (ja) 揺れ制御のためのシステム
CN105934401B (zh) 用于控制从电动可滑动件悬吊载荷的摆动设备、工序和起重装置的控制装置
CN107572373A (zh) 基于机器视觉的新型起重机主动防斜拉控制系统及其控制方法
CN109179228B (zh) 一种建筑施工塔吊机防碰系统
CN106829741B (zh) 行车远程控制系统和控制方法
CN110510521B (zh) 自动化集装箱码头轨道吊吊具姿态检测方法、装置和系统
JP6280380B2 (ja) クレーン吊荷の振れ角検出装置
JP6454856B2 (ja) 姿勢検出装置及び姿勢検出方法
CN105565163B (zh) 一种桥式起重机吊钩钢丝绳偏摆角检测装置及检测方法
US11198596B2 (en) Crane
CN214422133U (zh) 一种吊钩摆角检测装置及起重机
CN205472297U (zh) 一种桥式起重机吊钩钢丝绳偏摆角检测装置
JP2020090332A (ja) クレーンおよびクレーン制御方法
JP2004244151A (ja) クレーンの吊下げ長さ測定方法及び装置
JP2022190556A (ja) クレーン
TWI520896B (zh) Image tracking method for reducing computational load
JPH1017268A (ja) クレーン吊荷のスキュー振れ止め方法および装置
JP2766726B2 (ja) 振れ止め制御装置
JP2022061911A (ja) クレーン監視装置および該方法ならびに天井クレーン
JPS6219353B2 (zh)
JPH06135684A (ja) 最大振れ角検出装置
CN117864966A (zh) 协同控制方法、协同控制系统及工程机械群

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831056

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13380554

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010831056

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1806/CHENP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012107154

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012003465

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012003465

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120215