WO2021185247A1 - 起吊装置及其控制装置和方法、电子导板控制装置和方法 - Google Patents

起吊装置及其控制装置和方法、电子导板控制装置和方法 Download PDF

Info

Publication number
WO2021185247A1
WO2021185247A1 PCT/CN2021/081080 CN2021081080W WO2021185247A1 WO 2021185247 A1 WO2021185247 A1 WO 2021185247A1 CN 2021081080 W CN2021081080 W CN 2021081080W WO 2021185247 A1 WO2021185247 A1 WO 2021185247A1
Authority
WO
WIPO (PCT)
Prior art keywords
deviation
posture
lifting device
point cloud
preset
Prior art date
Application number
PCT/CN2021/081080
Other languages
English (en)
French (fr)
Inventor
王君雄
唐修俊
王光光
朱聪斌
Original Assignee
三一海洋重工有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010180466.XA external-priority patent/CN111302200A/zh
Priority claimed from CN202010189229.XA external-priority patent/CN111268567B/zh
Application filed by 三一海洋重工有限公司 filed Critical 三一海洋重工有限公司
Publication of WO2021185247A1 publication Critical patent/WO2021185247A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/16Applications of indicating, registering, or weighing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/46Position indicators for suspended loads or for crane elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/48Automatic control of crane drives for producing a single or repeated working cycle; Programme control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/05Programmable logic controllers, e.g. simulating logic interconnections of signals according to ladder diagrams or function charts

Definitions

  • This application relates to the field of transportation technology, in particular to a lifting device, a control device and method thereof, and an electronic guide plate control device and method.
  • the deviation detection is mainly carried out by LPS (detection of the attitude angle of the spreader) and TPS (detection of the deviation between the spreader and the target container) methods.
  • LPS detection of the attitude angle of the spreader
  • TPS detection of the deviation between the spreader and the target container
  • the laser structured light source method and scanner are usually used in the above detection process. Law. When the automated storage yard is carrying out automatic picking and placing of containers, it is not possible to quickly detect the deviation between the spreader and the container in real time, and cannot perform mutual verification, and the reliability is poor.
  • the purpose of this application is to provide a lifting device and its control device and method, electronic guide plate control device and method, which can accurately detect the deviation, and can adjust the angle deviation, improve the adjustment efficiency of the lifting device, and shorten The time required for the adjustment process.
  • the present application provides a control device for an electronic guide, including: a first collection device for collecting first point cloud data; a second collection device for collecting second point cloud data; and a controller, Respectively connected with the first collection device and the second collection device, the controller is used for controlling the lifting or lowering of the spreader according to the first point cloud data and/or the second point cloud data; wherein, The first collecting device and the second collecting device are arranged in the electronic guide plate.
  • the present application provides a method for controlling an electronic guide, including: collecting first point cloud data; collecting second point cloud data; and according to the first point cloud data and/or the second point cloud The data controls the lifting or lowering of the spreader.
  • the present application provides a hoisting device, including: a hoist, the hoist includes a hoist body and a plurality of hoisting component mounting members evenly distributed on the same side of the hoist body, the hoisting member
  • the mounting part is configured to install a lifting part; a plurality of adjustment mechanisms are respectively connected to a mounting part of the lifting part; a plurality of electronic guide plates are respectively connected to a mounting part of the lifting part, and are used to detect the lifting device Posture information; a first collection device and a second collection device are provided in the electronic guide plate, which are used to collect the first point cloud data and the second point cloud data, respectively; and a controller, which is connected to the plurality of electronic guide plates, for Based on the posture information acquired by the electronic guide, the adjustment mechanism is controlled to adjust the posture of the spreader.
  • the present application provides a lifting device control method, including: acquiring attitude deviation information between the lifting device and the container; and determining the lifting device based on the attitude deviation information between the lifting device and the container And the angle deviation between the lifting device and the container; and based on the angle deviation between the lifting device and the container, controlling the adjustment mechanism to adjust the posture of the lifting device so that the lifting device and the container The angle deviation meets the preset deviation condition.
  • the present application provides a lifting device control device, including: an acquisition module for acquiring posture deviation information between the lifting device and the container; To determine the angular deviation between the lifting device and the container; and a control module for controlling the adjustment mechanism to adjust the lifting device based on the angular deviation between the lifting device and the container , So that the angular deviation between the lifting device and the container meets the preset deviation condition.
  • the present application provides a computer device, including a processor, a memory, and a bus.
  • the memory stores machine-readable instructions executable by the processor.
  • the processor and The memories communicate through a bus, and the machine-readable instructions execute any of the above-mentioned methods when executed by the processor.
  • the present application provides a computer-readable storage medium with a computer program stored on the computer-readable storage medium, and the computer program is used to execute any of the above-mentioned methods.
  • FIG. 1 is a schematic structural diagram of an electronic guide plate control device provided by an embodiment of the application.
  • FIG. 2 is a schematic diagram of an electronic guide plate control device provided by another embodiment of the application.
  • FIG. 3 is a schematic diagram of an electronic guide plate control device provided by another embodiment of the application.
  • FIG. 4 is a schematic diagram of the internal structure of an electronic guide plate provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of the internal structure of an electronic guide plate provided by another embodiment of the application.
  • FIG. 6 is a schematic diagram of an electronic guide plate installed on a spreader provided by an embodiment of the application.
  • FIG. 7 is a flowchart of a method for controlling an electronic guide provided by an embodiment of the application.
  • FIG. 8 is a flowchart of a method for controlling an electronic guide plate according to another embodiment of the application.
  • FIG. 9 is a flowchart of an electronic guide plate control method provided by another embodiment of the application.
  • FIG. 10 is a flowchart of an electronic guide plate control method provided by another embodiment of the application.
  • FIG. 11 is a flowchart of an electronic guide plate control method provided by another embodiment of the application.
  • FIG. 12 is a schematic diagram of a system structure of a lifting device provided by another embodiment of the application.
  • FIG. 13 is a schematic structural diagram of an electronic guide plate provided by an embodiment of the application.
  • FIG. 14 is a flowchart of a method for controlling a lifting device according to an embodiment of the application.
  • FIG. 15 is a schematic diagram of a lifting device control device provided by an embodiment of the application.
  • FIG. 16 is a schematic structural diagram of a computer device provided by an embodiment of this application.
  • FIG. 1 is a schematic structural diagram of an electronic guide plate control device provided by an embodiment of the application.
  • the device includes: a first collection device 1, a second collection device 2 and a controller 3 (for example, Programmable Logic Controller, PLC for short), the first collection device 1 and the second collection device 2 are set up In the electronic guide, the first collection device 1 and the second collection device 2 are respectively connected to the controller 3, the first collection device 1 is used to collect the first point cloud data, and the second collection device 2 is used to collect the second point cloud.
  • the controller 3 controls the lifting or lowering of the spreader according to the first point cloud data collected by the first collecting device 1 and/or the second point cloud data collected by the second collecting device 2.
  • the embodiment of the present invention provides a control device for an electronic guide, including: a first collection device, a second collection device, and a controller.
  • the first collection device and the second collection device are arranged in the electronic guide; the first collection device and the second collection device
  • the two collection devices are respectively connected with the controller; the first collection device is used to collect the first point cloud data; the second collection device is used to collect the second point cloud data; the controller is used to obtain the first posture data according to the first point cloud data , Obtain the second posture data according to the second point cloud data, verify the first posture data and/or the second posture data, and control the lifting or lowering of the spreader according to the verification results, which can accurately detect deviations and perform Check, high reliability.
  • the electronic guide plate is a metal plate with a thickness of not less than 5 mm, and has anti-loosening measures.
  • the external structure of the electronic guide plate adopts a closed or semi-closed box structure, the width can be about 10mm, the length can be about 30mm, and the height can be about 20mm.
  • One side of the box body is set as a scanning port.
  • the electronic guide plate can be adjusted by a distance of about ⁇ 5cm or an angle of about ⁇ 5° according to different working conditions;
  • the first collection device 1 and the second collection device 2 are respectively connected to the controller 3;
  • the first collection device 1 is used to collect the first point cloud data
  • the second collecting device 2 is used to collect the second point cloud data
  • the controller 3 is configured to obtain first posture data according to the first point cloud data, obtain second posture data according to the second point cloud data, verify the first posture data and/or the second posture data to obtain the verification result, and Control the lifting or lowering of the spreader according to the verification result.
  • the first collection device 1 includes a point laser rangefinder or a camera
  • the second collection device 2 includes a line laser rangefinder
  • the first collection device 1 includes a point laser rangefinder 11, and the second collection device 2 includes a line laser rangefinder 12.
  • the point laser rangefinder 11 and the line laser rangefinder 12 are connected to the controller respectively. 3-phase connection.
  • the first collection device 1 includes a point laser rangefinder 11 or a camera 13 for collecting first point cloud data; and a line laser rangefinder 12 for collecting second point cloud data.
  • controller 3 is used to filter the first point cloud data and the second point cloud data to obtain point cloud data that meets the preset pick and place conditions; wherein, the point cloud data that meets the preset pick and place conditions is a point laser The actual distance measured or the actual distance measured by the line laser is within the range of the pick-and-place distance;
  • the point laser rangefinder 11 collects the first point cloud data
  • the line laser rangefinder 12 collects the second point cloud data
  • the point laser rangefinder 11 sends the first point cloud data to the controller 3.
  • the range meter 12 sends the second point cloud data to the controller 3.
  • the controller 3 filters the first point cloud data and the second point cloud data, that is, filters the point cloud data that does not meet the preset capture and release conditions, and obtains the point cloud data that meets the preset capture and release conditions.
  • the point cloud data that meets the preset pick-and-place conditions is the actual distance measured by the spot laser or the actual distance measured by the line laser.
  • the actual distance measured by the spot laser includes the distance from the spot laser to the container and the distance from the spot laser to the ground.
  • the actual distance measured by the line laser includes the distance from the line laser to the container, the distance from the line laser to the ground, and the distance from the line laser to the ground and the edge of the container.
  • the actual distance is compared with the first preset distance to obtain the deviation distance; when the deviation distance is less than or equal to the second preset distance, the spot laser rangefinder 11 is used for detection and confirmation, and the distance deviation in the vertical downward direction is collected; When the deviation distance is greater than the second preset distance, the line laser rangefinder 12 is used for detection and confirmation, and the distance deviation in the horizontal direction is collected.
  • the second preset distance includes but is not limited to 3.5 cm.
  • the spot laser rangefinder 11 When the deviation distance is less than or equal to the second preset distance, the spot laser rangefinder 11 will detect and confirm and collect the distance deviation in the vertical downward direction; when the deviation distance is greater than the second preset distance, the line laser will measure The distance meter 12 performs detection and confirmation, and collects the distance deviation in the horizontal direction.
  • the verification can be performed when the deviation distance is in a different range, the reliability of the electronic guide plate is improved, and the detection is accurate. deviation.
  • control device of the above electronic guide plate may also include an angle sensor; an angle sensor for collecting the rotation angle, wherein the angle sensor is connected to the controller; the controller is based on the vertical downward direction collected by the point laser rangefinder 11
  • the first attitude data is obtained, or the second attitude data is obtained according to the horizontal distance deviation collected by the line laser rangefinder 12 and the rotation angle collected by the angle sensor.
  • the controller 3 is configured to select first posture data that meets the above-mentioned preset pick and place condition from the first posture data, or select second posture data that meets the above-mentioned preset pick and place condition from the second posture data, according to
  • the first posture data that meets the preset pick and place condition selected from the first posture data or the second posture data that meets the preset pick and place condition selected from the second posture data are used to control the lifting or lowering of the spreader.
  • controller 3 is used to determine whether the first posture data and the second posture data are consistent, and if they are consistent, control the spreader to rise or fall.
  • the camera 13 collects the first point cloud data
  • the line laser rangefinder 12 collects the second point cloud data
  • the controller 3 obtains the first posture data according to the first point cloud data
  • the second point cloud data Obtain the second posture data, and determine whether the first posture data obtained by the first point cloud data collected by the camera 13 is consistent with the second posture data obtained by the second point cloud data collected by the line laser rangefinder 12, so as to proceed Mutual verification, thereby improving reliability.
  • the spreader is controlled to rise or fall.
  • the deviation of the angle between the working plane of the line laser rangefinder and the working plane of the point laser rangefinder is within the first threshold range
  • the scanning surface of the line laser rangefinder and the point laser rangefinder The angular deviation between the wire harnesses is within the first threshold range.
  • the point laser rangefinder and the line laser rangefinder are both set in the electronic guide plate, and the distance between them can be about 30mm.
  • the first threshold range may be about ⁇ 10°.
  • the angular deviation between the working plane of the line laser rangefinder and the projection surface of the camera is within the second threshold range.
  • the line laser rangefinder and the camera are both set in the electronic guide plate.
  • the distance between the line laser rangefinder and the camera is about 30mm.
  • the field of view needs to cover the corners of the target box.
  • the second threshold range may be about ⁇ 5°.
  • the electronic guide plate 6 is set on the spreader 5, and the spreader 5 is connected to the trolley 4 through a connecting line, and the spreader 5 is driven to move left and right by the sliding of the trolley 4.
  • the trolley 4 is arranged on the cart 7, and the cart 7 can rotate in multiple directions through universal wheels.
  • FIG. 7 is a flowchart of a method for controlling an electronic guide provided by an embodiment of the application.
  • the method includes the following steps:
  • Step S110 Collect the first point cloud data
  • Step S120 Collect the second point cloud data
  • Step S130 controlling the lifting or lowering of the spreader according to the first point cloud data and/or the second point cloud data.
  • the embodiment of the present invention provides a method for controlling an electronic guide plate, which includes: collecting first point cloud data, collecting second point cloud data, and controlling the lifting or lifting of the spreader according to the first point cloud data and/or the second point cloud data. Decline and high reliability.
  • FIG. 8 is a flowchart of a method for controlling an electronic guide plate according to another embodiment of the application.
  • step S130 may include the following sub-steps:
  • Step S131 Obtain first posture data according to the first point cloud data
  • Step S132 Obtain second posture data according to the second point cloud data
  • Step S133 Perform verification on the first posture data and/or the second posture data to obtain a verification result
  • Step S134 Control the lifting or lowering of the spreader according to the verification result.
  • the embodiment of the present invention provides a method for controlling an electronic guide plate.
  • the first posture data is obtained according to the first point cloud data
  • the second posture data is obtained according to the second point cloud data
  • the first posture data and/or the second posture data are obtained. Carry out calibration, and control the lifting or lowering of the spreader according to the calibration result, can accurately detect the deviation, and can be verified, and the reliability is high.
  • step S134 may include: when the first posture data is consistent with the second posture data, controlling the spreader to rise or fall.
  • FIG. 9 is a flowchart of an electronic guide plate control method provided by another embodiment of the application.
  • the foregoing embodiment may further include:
  • Step S140 Collect the rotation angle.
  • step S132 can be adjusted to: obtain the second posture data according to the second point cloud data and the rotation angle.
  • FIG. 10 is a flowchart of an electronic guide plate control method provided by another embodiment of the application.
  • step S131 and step S132 the above-mentioned embodiment may further include:
  • Step S150 Select first posture data that meets the preset pick and place condition from the first posture data, or select second posture data that meets the preset pick and place condition from the second posture data.
  • the preset pick and place condition is that the corresponding actual distance is within the pick and place distance range.
  • step S133 is adjusted to:
  • the first posture data that meets the preset pick and place conditions and/or the second posture data that meets the preset pick and place conditions are verified to obtain a verification result.
  • FIG. 11 is a flowchart of an electronic guide plate control method provided by another embodiment of the application.
  • step S110 and step S120 the foregoing embodiment may further include:
  • Step S160 Filter the first point cloud data and/or the second point cloud data to obtain the first point cloud data that meets the preset grab and place conditions and/or the second point cloud data that meets the preset grab and place conditions.
  • the preset pick and place condition is that the corresponding actual distance is within the pick and place distance;
  • Step S170 compare the actual distance with the first preset distance to obtain the deviation distance
  • Step S180 When the deviation distance is less than or equal to the second preset distance, check and confirm by the first collecting device, and collect the distance deviation in the vertical downward direction.
  • step S130 may include:
  • Step S135 controlling the lifting or lowering of the spreader according to the distance deviation in the vertical downward direction.
  • the foregoing embodiment may further include:
  • Step S190 When the deviation distance is greater than the second preset distance, check and confirm by the second collecting device, and collect the distance deviation in the horizontal direction.
  • step S130 may include:
  • Step S136 Control the lifting or lowering of the spreader according to the distance deviation in the horizontal direction.
  • an embodiment of the present application provides a hoisting device 100, which includes a hoisting device 5, an electronic guide plate 6, a hoisting component 103, an adjusting mechanism 104 and a controller 3.
  • the spreader 5 includes a plurality of lifting component 103 mounting pieces evenly distributed on the same side of the spreader body.
  • the lifting component 103 mounting piece is used to install the lifting component 103, and each lifting component 103 mounting piece is connected with an adjustment mechanism 104. ;
  • the lifting device in the embodiment of the present application may include a first collection device that collects first point cloud data and a second collection device that collects second point cloud data, and the first collection device and the second collection device are arranged at In the electronic guide 6, the posture information may also include the first point cloud data or the second point cloud data in the foregoing embodiment.
  • the controller 3 is connected to the electronic guide 6 and is used for controlling the adjustment mechanism 104 to adjust the attitude of the spreader 5 based on the posture deviation information obtained by the electronic guide 6.
  • the electronic guide plate 6 is installed on one side of the outer edge of the spreader 5. It can be installed on the long side of the outer edge of the spreader 5 or on the short side of the outer edge of the spreader 5. In order to make the electronic guide plate 6 More information can be collected, and the electronic guide plate 6 is usually installed on the long side of the outer edge of the spreader 5.
  • FIG. 13 is a schematic structural diagram of an electronic guide plate provided by an embodiment of the application.
  • the electronic guide plate 6 may include one or more of the laser 1021, the radar 1022, the camera 13, and the angle sensor 1024.
  • the laser 1021 may include the point laser rangefinder 11 or the line laser rangefinder 12 described above.
  • the electronic guide plate 6 may include a laser 1021, and the laser 1021 is installed at a predetermined distance from the outer edge of the spreader 5.
  • the electronic guide plate 6 may include a radar 1022, and the angle between the scanning surface of the radar 1022 and the plane formed by the lifting component 103 meets a preset angle.
  • the electronic guide plate 6 may include a camera 13.
  • the optical axis of the camera 13 and the plane formed by the lifting component 103 form a preset angle, and the distance between the camera 13 and the outer edge of the hoist 5 Within the preset distance.
  • the laser 1021 may be a single-point laser, and the single-point laser may be installed at a position about 3 cm from the outer edge of the spreader.
  • the radar 1022 may be a single-line radar, and the scanning surface of the single-line radar and the plane formed by the lifting component 103 satisfy any one of the following relationships:
  • the scanning surface of the radar 1022 is perpendicular to the plane formed by the lifting member 103, and the scanning surface of the radar 1022 and the plane formed by the lifting member 103 meet a preset angle.
  • the above-mentioned preset angle can be determined according to actual needs, for example, it is ⁇ 15° with the plane formed by the lifting component 103, or ⁇ 15° with the vertical plane of the plane formed by the lifting component 103, or other preset angles.
  • the camera 13 may be located at a distance of 50 centimeters from the center of the spreader 5, so that multiple positions such as the plane of the spreader 5 and the ground marking line can be observed at the same time.
  • the angle sensor 1024 may be a three-axis angle sensor, which meets the needs and has a lower cost.
  • FIG. 14 is a flowchart of a method for controlling a lifting device according to an embodiment of the application, and the method includes the following steps:
  • S420 Determine the angular deviation between the lifting device and the container based on the posture deviation information between the lifting device and the container.
  • the adjustment mechanism is controlled to adjust the posture of the lifting device so that the angular deviation between the lifting device and the container meets the preset deviation condition.
  • step S410 based on the lifting device in the above embodiment, the attitude deviation information between the lifting device and the container is acquired.
  • one or more of the laser, radar, camera, and angle sensor in the electronic guide is used to detect the attitude deviation information between the lifting device and the container, and send the collected attitude deviation information to the controller .
  • step S420 determine the angular deviation between the lifting device and the container based on the posture deviation information between the lifting device and the container.
  • the angle deviation between the lifting device and the container can be obtained directly through the detected posture deviation information between the lifting device and the container.
  • the detected posture deviation information between the lifting device and the container cannot achieve the required detection accuracy. In this case, it can be based on the difference between the lifting device and the container.
  • the least squares deviation algorithm calculate the angle deviation between the spreader and the container. The specific implementation method is as follows: firstly adjust the spreader appropriately so that there is a reasonable preset deviation between the spreader and the container, and then use the least square formula to obtain the angle deviation between the spreader and the container.
  • the posture deviation information between the target container and the loaded container can also be used to determine the angle deviation between the target container and the loaded container, and perform subsequent processing.
  • the specific implementation method is as follows: firstly adjust the spreader appropriately so that there is a reasonable preset deviation between the target container and the load container, and then use the least square formula to obtain the angle deviation between the target container and the load container.
  • step S430 based on the angular deviation between the lifting device and the container, the adjustment mechanism is controlled to adjust the posture of the lifting device so that the angular deviation between the lifting device and the container meets the preset deviation condition.
  • the adjustment mechanism Based on the angle deviation between the lifting device and the container, it is judged whether the angle deviation meets the preset angle deviation threshold; if the angle deviation exceeds the preset angle deviation threshold, the adjustment mechanism is controlled to adjust the posture of the lifting device to make the lifting device and The angular deviation between the containers satisfies the preset deviation condition.
  • the posture of the lifting device can be adjusted based on the number of cables of the lifting device. For example, based on the 4-rope and/or 8-rope solution in the posture adjustment of the spreader, the adjustment mechanism is controlled to adjust the posture of the lifting device so that the angular deviation between the lifting device and the container meets the preset deviation condition.
  • the adjusted distance value between the spreader and the edge of the container can be obtained.
  • the distance value is:
  • the straight line z i A i x i +B i y i +c i is the long-side or short-side straight line vector of the target box.
  • the (x i , y i ) in this formula is the projection point of the laser on each spreader in the spreader coordinate system on the target container coordinate system, which is obtained by the three-axis angle sensor in the electronic guide.
  • the 4-rope and/or 8-rope solution in the posture adjustment of the spreader is:
  • the adjustment amount of the rope length can be obtained, so as to adjust the posture of the lifting device, so that the angular deviation between the lifting device and the container meets the preset deviation condition.
  • the present application provides a lifting device control method for controlling the above-mentioned spreader.
  • the lifting device control method includes: acquiring attitude deviation information between the lifting device and the container; and based on the attitude deviation information between the lifting device and the container, Determine the angle deviation between the lifting device and the container; based on the angle deviation between the lifting device and the container, control the adjustment mechanism to adjust the posture of the lifting device so that the angle deviation between the lifting device and the container meets the preset deviation condition.
  • the posture deviation information between the spreader and the container is detected, and the adjustment mechanism is controlled to adjust the posture of the spreader, which greatly improves The adjustment efficiency of the lifting device is improved, and the time required for the adjustment process is shortened.
  • the lifting device control device includes: an acquisition module 41, a determination module 42, and a control module 43, wherein:
  • the obtaining module 41 is used to obtain posture deviation information between the lifting device and the container;
  • the determining module 42 is used to determine the angular deviation between the lifting device and the container based on the posture deviation information between the lifting device and the container;
  • the control module 43 is used to control the adjustment mechanism and adjust the posture of the lifting device based on the angular deviation between the lifting device and the container, so that the angular deviation between the lifting device and the container meets the preset deviation condition.
  • This application provides a lifting device control device for controlling the above-mentioned spreader.
  • the lifting device control device obtains the attitude deviation information between the lifting device and the container through the acquisition module, and the determination module is based on the attitude deviation between the lifting device and the container Information, determine the angle deviation between the lifting device and the container, the control module controls the adjustment mechanism based on the angle deviation between the lifting device and the container, and adjusts the posture of the lifting device so that the angle deviation between the lifting device and the container meets the preset Deviation conditions.
  • the posture deviation information between the spreader and the container is detected, and the adjustment mechanism is controlled to adjust the posture of the spreader, which greatly The adjustment efficiency of the lifting device is improved, and the time required for the adjustment process is shortened.
  • the determining module 42 is used to determine the angular deviation between the lifting device and the container based on the posture deviation information between the lifting device and the container, specifically for:
  • the angle deviation between the spreader and the container is calculated according to the least squares deviation algorithm.
  • control module 43 is used to control the adjustment mechanism and adjust the attitude of the lifting device based on the angular deviation between the lifting device and the container, so that the angular deviation between the lifting device and the container meets the preset deviation condition. , Specifically used for:
  • the adjustment mechanism Based on the angle deviation between the lifting device and the container, it is judged whether the angle deviation meets the preset angle deviation threshold; if the angle deviation exceeds the preset angle deviation threshold, the adjustment mechanism is controlled to adjust the posture of the lifting device to make the lifting device and The angular deviation between the containers satisfies the preset deviation condition.
  • control module 43 is used to control the adjustment mechanism and adjust the attitude of the lifting device based on the angular deviation between the lifting device and the container, so that the angular deviation between the lifting device and the container meets the preset deviation condition. , Also used for:
  • the adjustment mechanism is controlled to adjust the posture of the lifting device so that the angle deviation between the lifting device and the container meets the preset deviation condition.
  • the embodiment of the present application also provides a computer device 500.
  • a schematic structural diagram of the computer device 500 provided in the embodiment of the present application includes:
  • the processor 51 and the memory 52 communicate through the bus 53 so that The processor 51 executes any method in the foregoing embodiments in the user mode, for example:
  • the adjustment mechanism is controlled to adjust the posture of the lifting device so that the angle deviation between the lifting device and the container meets the preset deviation condition.
  • determining the angle deviation between the lifting device and the container may include:
  • the angle deviation between the spreader and the container is calculated according to the least squares deviation algorithm.
  • the adjustment mechanism is controlled to adjust the attitude of the lifting device, so that the angular deviation between the lifting device and the container meets the preset deviation Conditions can include:
  • the adjustment mechanism Based on the angle deviation between the lifting device and the container, it is judged whether the angle deviation meets the preset angle deviation threshold; if the angle deviation exceeds the preset angle deviation threshold, the adjustment mechanism is controlled to adjust the posture of the lifting device to make the lifting device and The angular deviation between the containers satisfies the preset deviation condition.
  • the adjustment mechanism is controlled to adjust the attitude of the lifting device, so that the angular deviation between the lifting device and the container meets the preset deviation Conditions also include:
  • the adjustment mechanism is controlled to adjust the posture of the lifting device so that the angle deviation between the lifting device and the container meets the preset deviation condition.
  • the embodiments of the present application also provide a computer-readable storage medium on which a computer program is stored, and the computer program executes the method steps described in the above method embodiments when the computer program is run by a processor.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a non-volatile computer readable storage medium executable by a processor.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control And Safety Of Cranes (AREA)

Abstract

一种起吊装置及其控制装置和方法、电子导板控制装置和方法,起吊装置包括:吊具(5),吊具(5)包括吊具本体和在吊具本体的同一侧面均匀分布的多个起吊部件安装件,起吊部件安装件构造为安装起吊部件(103);多个调节机构(104),分别与一个起吊部件(103)的安装件连接;多个电子导板(6),分别与一个起吊部件(103)的安装件连接,用于检测吊具(5)的姿态信息;电子导板(6)内设置第一采集装置(1)和第二采集装置(2),用于分别采集第一点云数据和第二点云数据;以及控制器(3),与多个电子导板(6)连接,用于基于电子导板(6)获取的姿态信息,控制调节机构(104)调整吊具(5)的姿态。该装置可以准确检测偏差,并且可以进行校验,可靠性高。

Description

起吊装置及其控制装置和方法、电子导板控制装置和方法 技术领域
本申请涉及交通运输技术领域,具体涉及一种起吊装置及其控制装置和方法、电子导板控制装置和方法。
发明背景
为了实现码头堆场的自动化和无人化,堆场内吊具姿态的偏差检测与实时识别显得尤为重要。传统方法中对箱的过程使用的都是机械导板,机械导板在非空吊具抓放箱时,很难实现自动对箱,需要人工操作对准,并且机械导板也不能实现偏差检测的功能。存在冲击大、高安全风险、无法实识偏差与精准调整的问题。
为了解决机械导板的缺陷,目前主要通过LPS(吊具姿态角度的检测)和TPS(吊具与目标集装箱偏差的检测)方法进行偏差检测,上述检测过程中通常采用激光结构光光源法和扫描仪法。自动化堆场在进行自动抓放集装箱时,无法快速实时检测到吊具与集装箱存在偏差,并且不能进行相互校验,可靠性差。
综上,采用上述方法,无法精确检测偏差,也无法进行冗余校验,有效性、可靠性差。
发明内容
有鉴于此,本申请的目的在于提供一种起吊装置及其控制装置和方法、电子导板控制装置和方法,可以准确检测偏差,并可以调整该角度偏差,提高了起吊装置的调整效率,缩短了调整过程需要的时间。
第一方面,本申请提供了一种电子导板的控制装置,包括:第一采集装置,用于采集第一点云数据;第二采集装置,用于采集第二点云数据;以及控制器,分别与所述第一采集装置和所述第二采集装置连接,所述控制器用于根据所述第一点云数据和/或所述第二点云数据控制吊具起升或下降;其中,所述第一采集装置和所述第二采集装置设置在所述电子导板内。
第二方面,本申请提供了一种电子导板的控制方法,包括:采集第一点云数据;采集第二点云数据;以及根据所述第一点云数据和/或所述第二点云数据控制吊具起升或下降。
第三方面,本申请提供了一种起吊装置,包括:吊具,所述吊具包括吊具本体和在所述吊具本体的同一侧面均匀分布的多个起吊部件安装件,所述起吊部件安装件构造为安装起吊部件;多个调节机构,分别与一个所述起吊部件的安装件连接;多个电子导板,分别与一个所述起吊部件的安装件连接,用于检测所述吊具的姿态信息;所述电子导板内设置第一采集装置和第二采集装置,用于分别采集第一点云数据和第二点云数据;以及控制器,与所述多个电子导板连接,用于基于所述电子导板获取的所述姿态信息,控制所述调节机构调整所述吊具的姿态。
第四方面,本申请提供了一种起吊装置控制方法,包括:获取所述起吊装置 与集装箱之间的姿态偏差信息;基于所述起吊装置与集装箱之间的姿态偏差信息,确定所述起吊装置与所述集装箱之间的角度偏差;以及基于所述起吊装置与所述集装箱之间的角度偏差,控制调节机构,调整所述起吊装置的姿态,以使所述起吊装置与所述集装箱之间的角度偏差满足预设偏差条件。
第五方面,本申请提供了一种起吊装置控制装置,包括:获取模块,用于获取所述起吊装置与集装箱之间的姿态偏差信息;确定模块,用于基于所述起吊装置与集装箱之间的姿态偏差信息,确定所述起吊装置与所述集装箱之间的角度偏差;以及控制模块,用于基于所述起吊装置与所述集装箱之间的角度偏差,控制调节机构,调整所述起吊装置的姿态,以使所述起吊装置与所述集装箱之间的角度偏差满足预设偏差条件。
第六方面,本申请提供了一种计算机设备,包括:处理器、存储器和总线,所述存储器存储有所述处理器可执行的机器可读指令,当计算机设备运行时,所述处理器与所述存储器之间通过总线通信,所述机器可读指令被所述处理器执行时执行上述任一所述的方法。
第七方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序用于执行上述任一所述的方法。
附图简要说明
图1为本申请一实施例提供的一种电子导板的控制装置的结构示意图。
图2为本申请另一实施例提供的一种电子导板的控制装置示意图。
图3为本申请另一实施例提供的一种电子导板的控制装置示意图。
图4为本申请一实施例提供的一种电子导板的内部结构示意图。
图5为本申请另一实施例提供的一种电子导板的内部结构示意图。
图6为本申请一实施例提供的一种安装在吊具上的电子导板示意图。
图7为本申请一实施例提供的一种电子导板的控制方法流程图。
图8为本申请另一实施例提供的一种电子导板的控制方法流程图。
图9为本申请另一实施例提供的一种电子导板的控制方法流程图。
图10为本申请另一实施例提供的一种电子导板的控制方法流程图。
图11为本申请另一实施例提供的一种电子导板的控制方法流程图。
图12为本申请另一实施例提供的一种起吊装置的系统结构示意图。
图13为本申请一实施例提供的一种电子导板的结构示意图。
图14为本申请一实施例提供的一种起吊装置控制方法的流程图。
图15为本申请一实施例提供的一种起吊装置控制装置的示意图。
图16为本申请一实施例提供的一种计算机设备的结构示意图。
图示说明:
1-第一采集装置;2-第二采集装置;3-控制器;11-点激光测距仪;12-线激光测距仪;13-摄像头;4-小车;5-吊具;6-电子导板;7-大车;100-起吊装置;103-起吊部件;104-调节机构;1021-激光器;1022-雷达;1024-角度传感器。
实施本发明的方式
为使本发明的目的、技术手段和优点更加清楚明白,以下结合附图对本发明作进一步详细说明。
图1为本申请一实施例提供的一种电子导板的控制装置的结构示意图。
参照图1,该装置包括:第一采集装置1、第二采集装置2和控制器3(例如可编程逻辑控制器,ProgrammableLogic Controller,简称PLC),第一采集装置1和第二采集装置2设置在电子导板内,第一采集装置1和第二采集装置2分别与控制器3相连接,第一采集装置1用于采集第一点云数据,第二采集装置2用于采集第二点云数据,控制器3根据第一采集装置1采集的第一点云数据和/或第二采集装置2采集的第二点云数据控制吊具起升或下降。
本发明实施例提供了一种电子导板的控制装置,包括:第一采集装置、第二采集装置和控制器,第一采集装置和第二采集装置设置在电子导板内;第一采集装置和第二采集装置分别与控制器相连接;第一采集装置用于采集第一点云数据;第二采集装置用于采集第二点云数据;控制器用于根据第一点云数据得到第一姿态数据、根据第二点云数据得到第二姿态数据、对第一姿态数据和/或第二姿态数据进行校验,且根据校验结果控制吊具起升或下降,可以准确检测偏差,并且可以进行校验,可靠性高。
在一实施例中,电子导板为厚度不小于5mm的金属板材,并具有防松动措施。电子导板的外形结构采用封闭式或半封闭式的盒式结构,宽度可以为10mm左右,长度可以为30mm左右,高度可以为20mm左右,盒体的其中一侧设置为扫描端口。其中,电子导板可以根据不同工况进行±5cm左右的距离调节,或者进行±5°左右的角度调节;
第一采集装置1和第二采集装置2分别与控制器3相连接;
第一采集装置1,用于采集第一点云数据;
第二采集装置2,用于采集第二点云数据;
控制器3用于根据第一点云数据得到第一姿态数据,根据第二点云数据得到第二姿态数据,对第一姿态数据和/或第二姿态数据进行校验得到校验结果,以及根据校验结果控制吊具起升或下降。
在一实施例中,第一采集装置1包括点激光测距仪或摄像头,第二采集装置2包括线激光测距仪。
具体地,参照图2,第一采集装置1包括点激光测距仪11,第二采集装置2包括线激光测距仪12,点激光测距仪11和线激光测距仪12分别与控制器3相连接。
进一步的,第一采集装置1包括点激光测距仪11或摄像头13,用于采集第一点云数据;线激光测距仪12,用于采集第二点云数据。
进一步的,控制器3用于将第一点云数据和第二点云数据进行过滤,得到满足预设抓放条件的点云数据;其中,满足预设抓放条件的点云数据为点激光测得的实际距离或线激光测得的实际距离在抓放距离范围内;
具体地,点激光测距仪11采集第一点云数据,线激光测距仪12采集第二点云数据,点激光测距仪11将第一点云数据发送给控制器3,线激光测距仪12将 第二点云数据发送给控制器3。控制器3对第一点云数据和第二点云数据进行过滤,即将不符合预设抓放条件的点云数据进行过滤,得到满足预设抓放条件的点云数据。满足预设抓放条件的点云数据为点激光测得的实际距离或线激光测得的实际距离,其中,点激光测得的实际距离包括点激光到集装箱的距离、点激光到地面的距离、点激光到地面与集装箱边缘的距离。线激光测得的实际距离包括线激光到集装箱的距离、线激光到地面的距离、线激光到地面与集装箱边缘的距离。
将实际距离与第一预设距离进行比较,得到偏差距离;当偏差距离小于或等于第二预设距离时,通过点激光测距仪11进行检测确认,采集竖直向下方向的距离偏差;当偏差距离大于第二预设距离时,通过线激光测距仪12进行检测确认,采集水平方向的距离偏差。
具体地,第二预设距离包括但不限于3.5cm。当偏差距离小于或等于第二预设距离时,由点激光测距仪11进行检测确认,并采集竖直向下方向的距离偏差;当偏差距离大于第二预设距离时,由线激光测距仪12进行检测确认,并采集水平方向的距离偏差。本实施例中,通过采用点激光测距仪11和线激光测距仪12组合的方式,可以当偏差距离在不同的范围的情况下,进行校验,提高电子导板的可靠性,并且精确检测偏差。
进一步的,上述电子导板的控制装置还可以包括角度传感器;角度传感器,用于采集旋转角度,其中,角度传感器与控制器相连接;控制器根据点激光测距仪11采集的竖直向下方向的距离偏差,得到第一姿态数据,或者根据线激光测距仪12采集的水平方向的距离偏差和角度传感器采集的旋转角度,得到第二姿态数据。
进一步的,控制器3用于从第一姿态数据中选取满足上述预设抓放条件的第一姿态数据,或者从第二姿态数据中选取满足上述预设抓放条件的第二姿态数据,根据从第一姿态数据中选取的满足预设抓放条件的第一姿态数据或从第二姿态数据中选取的满足预设抓放条件的第二姿态数据,控制吊具起升或下降。
进一步的,控制器3用于判断第一姿态数据和第二姿态数据是否一致,如果一致,则控制吊具上升或下降。
具体地,参照图3,摄像头13采集第一点云数据,线激光测距仪12采集第二点云数据,控制器3根据第一点云数据得到第一姿态数据,根据第二点云数据得到第二姿态数据,并判断由摄像头13采集第一点云数据得到的第一姿态数据,与由线激光测距仪12采集第二点云数据得到的第二姿态数据是否一致,以此进行相互校验,从而提高可靠性。在第一姿态数据与第二姿态数据一致的情况下,控制吊具上升或下降。
进一步的,参照图4,线激光测距仪的工作平面与点激光测距仪的工作平面之间角度的偏差在第一阈值范围内,线激光测距仪的扫描面与点激光测距仪的线束之间的角度偏差在第一阈值范围内。
这里,当线激光测距仪与点激光测距仪进行组合时,点激光测距仪与线激光测距仪均设置在电子导板内,它们之间的距离可以为30mm左右。其中,第一阈值范围可以为±10°左右。
进一步的,参照图5,线激光测距仪的工作平面与摄像头的投影面之间的角 度偏差在第二阈值范围内。
这里,当线激光测距仪与摄像头之间进行组合时,线激光测距仪与摄像头均设置在电子导板内,其中,线激光测距仪与摄像头之间的距离为30mm左右,摄像头采集的视野范围需要覆盖目标箱的箱角。第二阈值范围可以为±5°左右。
参照图6,电子导板6设置在吊具5上,吊具5通过连接线与小车4相连接,通过小车4的滑动带动吊具5左右移动。小车4设置在大车7上,大车7通过万向轮可以多方向旋转。
图7为本申请一实施例提供的一种电子导板的控制方法流程图。
参照图7,应用于如上所述的一种电子导板的控制装置,该方法包括以下步骤:
步骤S110:采集第一点云数据;
步骤S120:采集第二点云数据;
步骤S130:根据第一点云数据和/或第二点云数据控制吊具起升或下降。
本发明实施例提供了一种电子导板的控制方法,包括:采集第一点云数据、采集第二点云数据,根据第一点云数据和/或第二点云数据控制吊具起升或下降,可靠性高。
图8为本申请另一实施例提供的一种电子导板的控制方法流程图。
参照图8,上述步骤S130可以包括如下子步骤:
步骤S131:根据第一点云数据得到第一姿态数据;
步骤S132:根据第二点云数据得到第二姿态数据;
步骤S133:对第一姿态数据和/或第二姿态数据进行校验得到校验结果;
步骤S134:根据校验结果控制吊具起升或下降。
本发明实施例提供了一种电子导板的控制方法,根据第一点云数据得到第一姿态数据,根据第二点云数据得到第二姿态数据,对第一姿态数据和/或第二姿态数据进行校验,并且根据校验结果控制吊具起升或下降,可以准确检测偏差,并且可以进行校验,可靠性高。
在一实施例中,上述步骤S134的具体实现方式可以包括:当第一姿态数据和第二姿态数据一致时,则控制吊具上升或下降。
图9为本申请另一实施例提供的一种电子导板的控制方法流程图。
参照图9,上述实施例还可以包括:
步骤S140:采集旋转角度。
对应的,步骤S132可以调整为:根据第二点云数据和旋转角度,得到第二姿态数据。
图10为本申请另一实施例提供的一种电子导板的控制方法流程图。
参照图10,在步骤S131和步骤S132之后,上述实施例还可以包括:
步骤S150:从第一姿态数据中选取满足预设抓放条件的第一姿态数据,或者从第二姿态数据中选取满足预设抓放条件的第二姿态数据。其中,预设抓放条件为对应的实际距离在抓放距离范围内。
对应的,上述步骤S133调整为:
对满足预设抓放条件的第一姿态数据和/或满足预设抓放条件的第二姿态数 据进行校验得到校验结果。
图11为本申请另一实施例提供的一种电子导板的控制方法流程图。
参照图11,在步骤S110和步骤S120之后,上述实施例还可以包括:
步骤S160:对第一点云数据和/或第二点云数据进行过滤,得到满足预设抓放条件的第一点云数据和/或满足预设抓放条件的第二点云数据。其中,预设抓放条件为对应的实际距离在抓放距离范围内;
步骤S170:将实际距离与第一预设距离进行比较,得到偏差距离;
步骤S180:当偏差距离小于或等于第二预设距离时,通过第一采集装置进行检测确认,采集竖直向下方向的距离偏差。
对应的,步骤S130可以包括:
步骤S135:根据竖直向下方向的距离偏差控制吊具起升或下降。
在一实施例中,如图11所示,上述实施例还可以包括:
步骤S190:当偏差距离大于第二预设距离时,通过第二采集装置进行检测确认,采集水平方向的距离偏差。
对应的,步骤S130可以包括:
步骤S136:根据水平方向的距离偏差控制吊具起升或下降。
如图12所示,本申请一实施例提供了一种起吊装置100,包括:吊具5、电子导板6、起吊部件103、调节机构104以及控制器3。
其中,吊具5包括在吊具本体的同一侧面均匀分布的多个起吊部件103安装件,起吊部件103安装件用于安装起吊部件103,每个起吊部件103安装件均连有一个调节机构104;
电子导板6至少有两个,不同电子导板6与不同的起吊部件103安装件连接,用于检测吊具5与集装箱之间的姿态信息;其中,姿态信息可以包括吊具5与集装箱之间的姿态偏差信息,本申请实施例中的起吊装置可以包括采集第一点云数据的第一采集装置和采集第二点云数据的第二采集装置,且第一采集装置和第二采集装置设置于电子导板6内,姿态信息也可以包括上述实施例中的第一点云数据或第二点云数据。
控制器3与电子导板6连接,用于基于电子导板6获取的姿态偏差信息,控制调节机构104调整吊具5的姿态。
示例性的,所述电子导板6安装于吊具5外沿的一侧,可以安装在吊具5外沿的长边、也可以安装在吊具5外沿的短边,为了使电子导板6可以采集到更多的信息,通常将电子导板6安装在吊具5外沿的长边。
图13为本申请一实施例提供的一种电子导板的结构示意图。
其中,电子导板6可以包括:激光器1021、雷达1022、摄像头13以及角度传感器1024中的一种或者多种。其中激光器1021可以包括上述的点激光测距仪11或线激光测距仪12。
在一实施例中,如图13所示,电子导板6可以包括激光器1021,激光器1021安装于距离吊具5外沿的预设距离的位置处。
在一实施例中,如图13所示,电子导板6可以包括雷达1022,雷达1022的扫描面与起吊部件103构成的平面之间的角度满足预设角度。
在一实施例中,如图13所示,电子导板6可以包括摄像头13,摄像头13的光轴与起吊部件103构成的平面成预设角度,且摄像头13与吊具5外沿之间的距离在预设距离范围内。
示例性的,激光器1021可以选取单点激光器,该单点激光器可以安装在吊具外沿3cm左右位置处。
示例性的,雷达1022可以选用单线雷达,该单线雷达的扫描面与起吊部件103构成的平面满足如下任一关系:
雷达1022的扫描面与起吊部件103构成的平面垂直、雷达1022的扫描面与起吊部件103构成的平面之间满足预设角度。
其中,上述预设角度可以按照实际需要确定,例如,与起吊部件103构成的平面成±15°,或是与起吊部件103构成平面的垂直面成±15°,或是其他预设角度。
示例性的,摄像头13可以按照在距离吊具5中心位置50厘米处附近,由此,可以同时观察到吊具5平面、地面标识线等多处位置。
示例性的,角度传感器1024可以为三轴角度传感器,在满足需要的同时,其成本较低。
图14为本申请一实施例提供的一种起吊装置控制方法的流程图,所述方法包括如下步骤:
S410:获取起吊装置与集装箱之间的姿态偏差信息。
S420:基于起吊装置与集装箱之间的姿态偏差信息,确定起吊装置与集装箱之间的角度偏差。
S430:基于起吊装置与集装箱之间的角度偏差,控制调节机构,调整起吊装置的姿态,以使起吊装置与集装箱之间的角度偏差满足预设偏差条件。
下面分别对上述S410~S430分别加以详细说明。
一:在步骤S410中,基于上述实施例中的起吊装置,获取起吊装置与集装箱之间的姿态偏差信息。
示例性的,通过电子导板中的激光器、雷达、摄像头以及角度传感器中的一种或者多种,检测起吊装置与集装箱之间的姿态偏差信息,并将所采集到的姿态偏差信息发送至控制器。
二:在步骤S420中,基于起吊装置与集装箱之间的姿态偏差信息,确定起吊装置与集装箱之间的角度偏差。
当电子导板的数量超过4个,可以直接通过检测到的起吊装置与集装箱之间的姿态偏差信息,得到起吊装置与集装箱之间的角度偏差。
但是,当电子导板的数量不超过4个,且至少为2个时,检测到的起吊装置与集装箱之间的姿态偏差信息便不能达到所需的检测精度,此时可以基于起吊装置与集装箱之间的姿态偏差信息,根据最小二乘法偏差算法,计算吊具与集装箱之间的角度偏差。其具体实施方法如下:首先适当调整吊具,使得吊具与集装箱之间存在合理的预置偏差,之后,再利用最小二乘法公式,获得吊具与集装箱之间的角度偏差。
除此之外,还可以利用目标集装箱与负载集装箱的姿态偏差信息,确定目标 集装箱与负载集装箱之间的角度偏差,并进行后续处理。其具体实施方法如下:首先适当调整吊具,使得目标集装箱与负载集装箱之间存在合理的预置偏差,之后,再利用最小二乘法公式,获得目标集装箱与负载集装箱之间的角度偏差。
三:在步骤S430中,基于起吊装置与集装箱之间的角度偏差,控制调节机构,调整起吊装置的姿态,以使起吊装置与集装箱之间的角度偏差满足预设偏差条件。
基于起吊装置与集装箱之间的角度偏差,判断角度偏差是否满足预设的角度偏差阈值;若角度偏差超过预设的角度偏差阈值,则控制调节机构,调整起吊装置的姿态,以使起吊装置与集装箱之间的角度偏差满足预设偏差条件。
在一实施例中,可以基于起吊装置的缆绳数量,调整起吊装置的姿态。例如,基于吊具姿态调整中的4绳和/或8绳方案,控制调节机构,调整起吊装置的姿态,以使起吊装置与集装箱之间的角度偏差满足预设偏差条件。
示例性的,通过匹配欧氏距离计算公式,可以得到吊具与集装箱边沿的调整距离值。该距离值大小为:
Figure PCTCN2021081080-appb-000001
其中,直线z i=A ix i+B iy i+c i是目标箱的长边或者短边直线向量。此公式中的(x i,y i)为吊具坐标系中每个吊具上的点激光在目标集装箱坐标系上的投影点,通过电子导板内的三轴角度传感器获得。
示例性的,吊具姿态调整中的4绳和/或8绳方案为:
通过自由度分析可知,吊具的姿态完全由起吊部件中的绳长决定,令吊具欧拉矩阵为
Figure PCTCN2021081080-appb-000002
集装箱欧拉矩阵为
Figure PCTCN2021081080-appb-000003
在集装箱上的吊点位置为
Figure PCTCN2021081080-appb-000004
吊具上的吊点位置为
Figure PCTCN2021081080-appb-000005
坐标原点为O t=(0,0,0),吊具坐标原点为
Figure PCTCN2021081080-appb-000006
有效长度矢量为
Figure PCTCN2021081080-appb-000007
可得如下表达式:
Figure PCTCN2021081080-appb-000008
转换可得:
Figure PCTCN2021081080-appb-000009
即:
Figure PCTCN2021081080-appb-000010
由此可以获取绳长的调整量,从而调整起吊装置的姿态,以使起吊装置与集装箱之间的角度偏差满足预设偏差条件。
本申请提供一种起吊装置控制方法,用于控制上述吊具,该起吊装置控制方法包括:获取所述起吊装置与集装箱之间的姿态偏差信息;基于起吊装置与集装箱之间的姿态偏差信息,确定起吊装置与集装箱之间的角度偏差;基于起吊装置与集装箱之间的角度偏差,控制调节机构,调整起吊装置的姿态,以使起吊装置与集装箱之间的角度偏差满足预设偏差条件。
在本申请中,;通过将不同电子导板与不同的起吊部件安装件连接,从而检测吊具与集装箱之间的姿态偏差信息,并以此控制调节机构调整所述吊具的姿态,极大地提高了起吊装置的调整效率,缩短了调整过程需要的时间。
图15为本申请一实施例提供的一种起吊装置控制装置的示意图,用于控制上述吊具,该起吊装置控制装置包括:获取模块41、确定模块42以及控制模块43,其中:
获取模块41,用于获取起吊装置与集装箱之间的姿态偏差信息;
确定模块42,用于基于起吊装置与集装箱之间的姿态偏差信息,确定起吊装置与集装箱之间的角度偏差;
控制模块43,用于基于起吊装置与集装箱之间的角度偏差,控制调节机构,调整起吊装置的姿态,以使起吊装置与集装箱之间的角度偏差满足预设偏差条件。
本申请提供了一种起吊装置控制装置,用于控制上述吊具,该起吊装置控制装置通过获取模块获取起吊装置与集装箱之间的姿态偏差信息、确定模块基于起吊装置与集装箱之间的姿态偏差信息,确定起吊装置与集装箱之间的角度偏差,控制模块基于起吊装置与集装箱之间的角度偏差,控制调节机构,调整起吊装置的姿态,以使起吊装置与集装箱之间的角度偏差满足预设偏差条件。
在本申请中,通过将不同所述电子导板与不同的起吊部件安装件连接,从而检测吊具与集装箱之间的姿态偏差信息,并以此控制调节机构调整所述吊具的姿态,极大地提高了起吊装置的调整效率,缩短了调整过程需要的时间。
在一实施例中,确定模块42,用于基于起吊装置与集装箱之间的姿态偏差信息,确定起吊装置与集装箱之间的角度偏差时,具体用于:
当电子导板的数量不超过4个,且至少为2个时,基于起吊装置与集装箱之间的姿态偏差信息,根据最小二乘法偏差算法,计算吊具与集装箱之间的角度偏差。
在一实施例中,控制模块43,用于基于起吊装置与集装箱之间的角度偏差,控制调节机构,调整起吊装置的姿态,以使起吊装置与集装箱之间的角度偏差满足预设偏差条件时,具体用于:
基于起吊装置与集装箱之间的角度偏差,判断角度偏差是否满足预设的角度偏差阈值;若角度偏差超过预设的角度偏差阈值,则控制调节机构,调整起吊装置的姿态,以使起吊装置与集装箱之间的角度偏差满足预设偏差条件。
在一实施例中,控制模块43,用于基于起吊装置与集装箱之间的角度偏差,控制调节机构,调整起吊装置的姿态,以使起吊装置与集装箱之间的角度偏差满足预设偏差条件时,还用于:
基于吊具姿态调整中的4绳和/或8绳方案,控制调节机构,调整起吊装置的姿态,以使起吊装置与集装箱之间的角度偏差满足预设偏差条件。
本申请实施例还提供了一种计算机设备500,如图16所示,为本申请实施例提供的计算机设备500结构示意图,包括:
处理器51、存储器52、和总线53;存储器52用于存储执行指令,包括内存521和外部存储器522;这里的内存521也称内存储器,用于暂时存放处理器51中的运算数据,以及与硬盘等外部存储器522交换的数据,处理器51通过内存521与外部存储器522进行数据交换,当所述计算机设备500运行时,所述处理器51与所述存储器52之间通过总线53通信,使得所述处理器51在用户态执行上述实施例中的任一方法,例如:
获取起吊装置与集装箱之间的姿态偏差信息;
基于起吊装置与集装箱之间的姿态偏差信息,确定起吊装置与集装箱之间的角度偏差;
基于起吊装置与集装箱之间的角度偏差,控制调节机构,调整起吊装置的姿态,以使起吊装置与集装箱之间的角度偏差满足预设偏差条件。
在一实施例中,处理器51执行的指令中,基于起吊装置与集装箱之间的姿态偏差信息,确定起吊装置与集装箱之间的角度偏差可以包括:
当电子导板的数量不超过4个,且至少为2个时,基于起吊装置与集装箱之间的姿态偏差信息,根据最小二乘法偏差算法,计算吊具与集装箱之间的角度偏差。
在一实施例中,处理器51执行的指令中,基于起吊装置与集装箱之间的角度偏差,控制调节机构,调整起吊装置的姿态,以使起吊装置与集装箱之间的角度偏差满足预设偏差条件,可以包括:
基于起吊装置与集装箱之间的角度偏差,判断角度偏差是否满足预设的角度偏差阈值;若角度偏差超过预设的角度偏差阈值,则控制调节机构,调整起吊装置的姿态,以使起吊装置与集装箱之间的角度偏差满足预设偏差条件。
在一实施例中,处理器51执行的指令中,基于起吊装置与集装箱之间的角度偏差,控制调节机构,调整起吊装置的姿态,以使起吊装置与集装箱之间的角度偏差满足预设偏差条件,还包括:
基于吊具姿态调整中的4绳和/或8绳方案,控制调节机构,调整起吊装置的姿态,以使起吊装置与集装箱之间的角度偏差满足预设偏差条件。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器运行时执行上述方法实施例中所述的方法步骤。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可执行的非易失的计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-OnlyMemory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (33)

  1. 一种电子导板的控制装置,包括:
    第一采集装置,用于采集第一点云数据;
    第二采集装置,用于采集第二点云数据;以及
    控制器,分别与所述第一采集装置和所述第二采集装置连接,所述控制器用于根据所述第一点云数据和/或所述第二点云数据控制吊具起升或下降;
    其中,所述第一采集装置和所述第二采集装置设置在所述电子导板内。
  2. 根据权利要求1所述的电子导板的控制装置,其中,所述控制器配置为:
    根据所述第一点云数据得到第一姿态数据;
    根据所述第二点云数据得到第二姿态数据;
    对所述第一姿态数据和/或所述第二姿态数据进行校验得到校验结果;以及
    根据所述校验结果控制吊具起升或下降。
  3. 根据权利要求2所述的电子导板的控制装置,其中,所述控制器配置为:
    当所述第一姿态数据和所述第二姿态数据一致时,则控制所述吊具上升或下降。
  4. 根据权利要求1至3中任一项所述的电子导板的控制装置,其中,还包括:
    角度传感器,用于采集旋转角度;
    其中,所述控制器配置为:根据所述第一点云数据,得到第一姿态数据,或者根据所述第二点云数据和所述旋转角度,得到第二姿态数据。
  5. 根据权利要求2至4中任一项所述的电子导板的控制装置,其中,所述控制器配置为:
    从所述第一姿态数据中选取满足预设抓放条件的第一姿态数据,或者从所述第二姿态数据中选取满足所述预设抓放条件的第二姿态数据;其中,所述预设抓放条件为对应的实际距离在抓放距离范围内;以及
    根据所述满足预设抓放条件的第一姿态数据或所述满足预设抓放条件的第二姿态数据,控制所述吊具起升或下降。
  6. 根据权利要求1至5中任一项所述的电子导板的控制装置,其中,所述第一采集装置包括点激光测距仪或摄像头,和/或所述第二采集装置包括线激光测距仪。
  7. 根据权利要求6所述的电子导板的控制装置,其中,所述第一采集装置的工作平面与所述第二采集装置的工作平面之间角度的偏差在第一阈值范围内,所述第二采集装置的扫描面与所述第一采集装置的线束之间的角度偏差在所述第一阈值范围内。
  8. 根据权利要求1至7中任一项所述的电子导板的控制装置,其中,所述第二采集装置的工作平面与所述第一采集装置的投影面之间的角度偏差在第二阈值范围内。
  9. 根据权利要求1至8中任一项所述的电子导板的控制装置,其中,所述控制器配置为:
    对所述第一点云数据和/或所述第二点云数据进行过滤,得到满足预设抓放条 件的第一点云数据和/或满足预设抓放条件的第二点云数据;其中,所述预设抓放条件为对应的实际距离在抓放距离范围内;
    将所述实际距离与第一预设距离进行比较,得到偏差距离;以及
    当所述偏差距离小于或等于第二预设距离时,通过所述第一采集装置进行检测确认,采集竖直向下方向的距离偏差。
  10. 根据权利要求1至9中任一项所述的电子导板的控制装置,其中,所述控制器配置为:
    对所述第一点云数据和/或所述第二点云数据进行过滤,得到满足预设抓放条件的第一点云数据和/或满足预设抓放条件的第二点云数据;其中,所述预设抓放条件为对应的实际距离在抓放距离范围内;
    将所述实际距离与第一预设距离进行比较,得到偏差距离;以及
    当所述偏差距离大于所述第二预设距离时,通过所述第二采集装置进行检测确认,采集水平方向的距离偏差。
  11. 一种电子导板的控制方法,包括:
    采集第一点云数据;
    采集第二点云数据;以及
    根据所述第一点云数据和/或所述第二点云数据控制吊具起升或下降。
  12. 根据权利要求11所述的电子导板的控制方法,其中,所述根据所述第一点云数据和/或所述第二点云数据控制吊具起升或下降包括:
    根据所述第一点云数据得到第一姿态数据;
    根据所述第二点云数据得到第二姿态数据;
    对所述第一姿态数据和/或所述第二姿态数据进行校验得到校验结果;以及
    根据所述校验结果控制吊具起升或下降。
  13. 根据权利要求12所述的电子导板的控制方法,其中,所述根据所述校验结果控制吊具起升或下降包括:
    当所述第一姿态数据和所述第二姿态数据一致时,则控制所述吊具上升或下降。
  14. 根据权利要求12或13所述的电子导板的控制方法,其中,还包括:
    采集旋转角度;
    其中,所述根据所述第二点云数据得到第二姿态数据包括:
    根据所述第二点云数据和所述旋转角度,得到第二姿态数据。
  15. 根据权利要求12至14中任一项所述的电子导板的控制方法,其中,还包括:
    从所述第一姿态数据中选取满足预设抓放条件的第一姿态数据,或者从所述第二姿态数据中选取满足所述预设抓放条件的第二姿态数据;其中,所述预设抓放条件为对应的实际距离在抓放距离范围内;
    其中,所述对所述第一姿态数据和/或所述第二姿态数据进行校验得到校验结果包括:
    对满足所述预设抓放条件的第一姿态数据和/或满足所述预设抓放条件的第二姿态数据进行校验得到校验结果。
  16. 根据权利要求11至15中任一项所述的电子导板的控制方法,其中,还包括:
    对所述第一点云数据和/或所述第二点云数据进行过滤,得到满足预设抓放条件的第一点云数据和/或满足预设抓放条件的第二点云数据;其中,所述预设抓放条件为对应的实际距离在抓放距离范围内;
    将所述实际距离与第一预设距离进行比较,得到偏差距离;以及
    当所述偏差距离小于或等于第二预设距离时,通过所述第一采集装置进行检测确认,采集竖直向下方向的距离偏差;
    所述根据所述第一点云数据和/或所述第二点云数据控制吊具起升或下降包括:
    根据所述竖直向下方向的距离偏差控制吊具起升或下降。
  17. 根据权利要求11至16中任一项所述的电子导板的控制方法,其中,还包括:
    对所述第一点云数据和/或所述第二点云数据进行过滤,得到满足预设抓放条件的第一点云数据和/或满足预设抓放条件的第二点云数据;其中,所述预设抓放条件为对应的实际距离在抓放距离范围内;
    将所述实际距离与第一预设距离进行比较,得到偏差距离;以及
    当所述偏差距离大于所述第二预设距离时,通过所述第二采集装置进行检测确认,采集水平方向的距离偏差;
    所述根据所述第一点云数据和/或所述第二点云数据控制吊具起升或下降包括:
    根据所述水平方向的距离偏差控制吊具起升或下降。
  18. 一种起吊装置,包括:
    吊具,所述吊具包括吊具本体和在所述吊具本体的同一侧面均匀分布的多个起吊部件安装件,所述起吊部件安装件构造为安装起吊部件;
    多个调节机构,分别与一个所述起吊部件的安装件连接;
    多个电子导板,分别与一个所述起吊部件的安装件连接,用于检测所述吊具的姿态信息;所述电子导板内设置第一采集装置和第二采集装置,用于分别采集第一点云数据和第二点云数据;以及
    控制器,与所述多个电子导板连接,用于基于所述电子导板获取的所述姿态信息,控制所述调节机构调整所述吊具的姿态。
  19. 根据权利要求18所述的起吊装置,其中,所述姿态信息包括所述吊具与集装箱之间的姿态偏差信息;
    所述控制器配置为:基于所述电子导板获取的所述姿态偏差信息,控制所述调节机构调整所述吊具的姿态。
  20. 根据权利要求18或19所述的起吊装置,其中,所述多个电子导板包括:激光器、雷达、摄像头以及角度传感器中的一种或者多种。
  21. 根据权利要求18至20中任一项所述的起吊装置,其中,所述多个电子导板包括激光器,所述激光器安装于距离所述吊具外沿为预设距离的位置处。
  22. 根据权利要求18至21中任一项所述的起吊装置,其中,所述多个电子导 板包括雷达,所述雷达的扫描面与所述起吊部件所在的平面之间的角度满足预设角度。
  23. 根据权利要求18至22中任一项所述的起吊装置,其中,所述多个电子导板包括摄像头,所述摄像头的光轴与所述起吊部件所在的平面成预设角度,且所述摄像头与所述吊具外沿之间的距离在预设距离范围内。
  24. 一种起吊装置控制方法,包括:
    获取所述起吊装置与集装箱之间的姿态偏差信息;
    基于所述起吊装置与集装箱之间的姿态偏差信息,确定所述起吊装置与所述集装箱之间的角度偏差;以及
    基于所述起吊装置与所述集装箱之间的角度偏差,控制调节机构,调整所述起吊装置的姿态,以使所述起吊装置与所述集装箱之间的角度偏差满足预设偏差条件。
  25. 根据权利要求24所述起吊装置控制方法,其中,所述起吊装置包括电子导板;
    其中,所述基于所述起吊装置与集装箱之间的姿态偏差信息,确定所述起吊装置与所述集装箱之间的角度偏差包括:
    当所述电子导板的数量不超过4个,且至少为2个时,基于所述起吊装置与集装箱之间的姿态偏差信息,根据最小二乘法偏差算法,计算所述吊具与所述集装箱之间的角度偏差。
  26. 根据权利要求24或25所述起吊装置控制方法,其中,所述基于所述起吊装置与所述集装箱之间的角度偏差,控制调节机构,调整所述起吊装置的姿态,以使所述起吊装置与所述集装箱之间的角度偏差满足预设偏差条件,包括:
    当所述角度偏差超过预设的角度偏差阈值时,控制所述调节机构,调整所述起吊装置的姿态,以使所述起吊装置与所述集装箱之间的角度偏差满足预设偏差条件。
  27. 根据权利要求24至26中任一项所述起吊装置控制方法,其中,所述基于所述起吊装置与所述集装箱之间的角度偏差,控制调节机构,调整所述起吊装置的姿态,以使所述起吊装置与所述集装箱之间的角度偏差满足预设偏差条件,还包括:
    基于吊具姿态调整中的4绳和/或8绳方案,控制所述调节机构,调整所述起吊装置的姿态,以使所述起吊装置与所述集装箱之间的角度偏差满足预设偏差条件。
  28. 一种起吊装置控制装置,包括:
    获取模块,用于获取所述起吊装置与集装箱之间的姿态偏差信息;
    确定模块,用于基于所述起吊装置与集装箱之间的姿态偏差信息,确定所述起吊装置与所述集装箱之间的角度偏差;以及
    控制模块,用于基于所述起吊装置与所述集装箱之间的角度偏差,控制调节机构,调整所述起吊装置的姿态,以使所述起吊装置与所述集装箱之间的角度偏差满足预设偏差条件。
  29. 根据权利要求28所述的起吊装置控制装置,其中,所述起吊装置包括电 子导板;
    其中,所述确定模块配置为:
    当所述电子导板的数量不超过4个,且至少为2个时,基于所述起吊装置与集装箱之间的姿态偏差信息,根据最小二乘法偏差算法,计算所述吊具与所述集装箱之间的角度偏差。
  30. 根据权利要求28或29所述的起吊装置控制装置,其中,所述控制模块配置为:
    当所述角度偏差超过预设的角度偏差阈值时,控制所述调节机构,调整所述起吊装置的姿态,以使所述起吊装置与所述集装箱之间的角度偏差满足预设偏差条件。
  31. 根据权利要求28至30中任一项所述的起吊装置控制装置,其中,所述控制模块配置为:
    基于吊具姿态调整中的4绳和/或8绳方案,控制所述调节机构,调整所述起吊装置的姿态,以使所述起吊装置与所述集装箱之间的角度偏差满足预设偏差条件。
  32. 一种计算机设备,包括:处理器、存储器和总线,所述存储器存储有所述处理器可执行的机器可读指令,当计算机设备运行时,所述处理器与所述存储器之间通过总线通信,所述机器可读指令被所述处理器执行时执行上述权利要求11至17、或24至27中任一所述的方法的步骤。
  33. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序用于执行上述权利要求11至17、或24至27中任一所述的方法。
PCT/CN2021/081080 2020-03-16 2021-03-16 起吊装置及其控制装置和方法、电子导板控制装置和方法 WO2021185247A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010180466.X 2020-03-16
CN202010180466.XA CN111302200A (zh) 2020-03-16 2020-03-16 一种起吊装置、起吊装置控制方法及装置
CN202010189229.X 2020-03-17
CN202010189229.XA CN111268567B (zh) 2020-03-17 2020-03-17 一种基于电子导板的控制装置和方法

Publications (1)

Publication Number Publication Date
WO2021185247A1 true WO2021185247A1 (zh) 2021-09-23

Family

ID=77770718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081080 WO2021185247A1 (zh) 2020-03-16 2021-03-16 起吊装置及其控制装置和方法、电子导板控制装置和方法

Country Status (1)

Country Link
WO (1) WO2021185247A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115432574A (zh) * 2022-08-15 2022-12-06 三一海洋重工有限公司 一种基于5g的进出舱吊运设备、对接方法及系统
CN118025951A (zh) * 2023-12-28 2024-05-14 三一海洋重工有限公司 抓箱控制方法、装置及系统、起重设备及存储介质
CN118083809A (zh) * 2024-04-22 2024-05-28 烟台港集装箱码头有限公司 集装箱正面吊装控制方法、系统、终端及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120255188A1 (en) * 2009-11-20 2012-10-11 Sany Automobile Manufacture Co., Ltd. Hook pose detecting equipment and crane
US20130245814A1 (en) * 2012-03-16 2013-09-19 Nhk Spring Co., Ltd. Working hanging apparatus and work hanging method for hanging work on hanger through movement of work under correction
CN108910701A (zh) * 2018-08-09 2018-11-30 三海洋重工有限公司 吊具姿态检测系统及方法
CN110422767A (zh) * 2019-06-27 2019-11-08 三一海洋重工有限公司 对吊具定位的方法、装置及系统
CN111268567A (zh) * 2020-03-17 2020-06-12 三一海洋重工有限公司 一种基于电子导板的控制装置和方法
CN111302200A (zh) * 2020-03-16 2020-06-19 三一海洋重工有限公司 一种起吊装置、起吊装置控制方法及装置
CN211733588U (zh) * 2020-03-16 2020-10-23 三一海洋重工有限公司 一种起吊装置及系统
CN211733643U (zh) * 2020-03-17 2020-10-23 三一海洋重工有限公司 一种基于电子导板的控制装置和系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120255188A1 (en) * 2009-11-20 2012-10-11 Sany Automobile Manufacture Co., Ltd. Hook pose detecting equipment and crane
US20130245814A1 (en) * 2012-03-16 2013-09-19 Nhk Spring Co., Ltd. Working hanging apparatus and work hanging method for hanging work on hanger through movement of work under correction
CN108910701A (zh) * 2018-08-09 2018-11-30 三海洋重工有限公司 吊具姿态检测系统及方法
CN110422767A (zh) * 2019-06-27 2019-11-08 三一海洋重工有限公司 对吊具定位的方法、装置及系统
CN111302200A (zh) * 2020-03-16 2020-06-19 三一海洋重工有限公司 一种起吊装置、起吊装置控制方法及装置
CN211733588U (zh) * 2020-03-16 2020-10-23 三一海洋重工有限公司 一种起吊装置及系统
CN111268567A (zh) * 2020-03-17 2020-06-12 三一海洋重工有限公司 一种基于电子导板的控制装置和方法
CN211733643U (zh) * 2020-03-17 2020-10-23 三一海洋重工有限公司 一种基于电子导板的控制装置和系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115432574A (zh) * 2022-08-15 2022-12-06 三一海洋重工有限公司 一种基于5g的进出舱吊运设备、对接方法及系统
CN118025951A (zh) * 2023-12-28 2024-05-14 三一海洋重工有限公司 抓箱控制方法、装置及系统、起重设备及存储介质
CN118083809A (zh) * 2024-04-22 2024-05-28 烟台港集装箱码头有限公司 集装箱正面吊装控制方法、系统、终端及存储介质

Similar Documents

Publication Publication Date Title
WO2021185247A1 (zh) 起吊装置及其控制装置和方法、电子导板控制装置和方法
US11780101B2 (en) Automated package registration systems, devices, and methods
CN110116407B (zh) 柔性机器人位姿测量方法及装置
CN107324041B (zh) 用于片盒夹持的机械手及自动片盒搬运装置
CN106327044B (zh) 车载钢卷及车辆鞍座自动识别和定位装置及其方法
CN113460851B (zh) 基于单目视觉和激光的管片自动抓取和运输系统和方法
CN104724606B (zh) 一种生产物料贮运作业图像自动跟踪装置和方法
CN112340608B (zh) 一种基于双目视觉的桥式起重机吊装防斜拉监测与自动对中系统及方法
CN108214487B (zh) 基于双目视觉和激光雷达的机器人目标定位和抓取方法
WO2019000859A1 (zh) 基于集装箱箱区轮廓三维识别的吊具安全防撞系统及方法
CN106809730A (zh) 一种基于视觉的集装箱自动对接起吊系统及起吊方法
CN211733588U (zh) 一种起吊装置及系统
CN114034205B (zh) 一种箱体装填系统及装填方法
CN106629399A (zh) 一种集装箱对箱引导系统
CN211733643U (zh) 一种基于电子导板的控制装置和系统
CN111302200A (zh) 一种起吊装置、起吊装置控制方法及装置
CN114890280A (zh) 一种吊具的检测对准方法和装置
CN210081754U (zh) 一种巡检机器人
CN110745702B (zh) 基于单目相机的起重机工作空间多信息测量方法及系统
CN111302229B (zh) 防止误吊起集卡的方法和系统
CN111268567B (zh) 一种基于电子导板的控制装置和方法
CN117657804A (zh) 一种视觉辅助的货物码放方法及装车机器人
CN216736095U (zh) 一种无人值守自动对准的揽焦车
AU2020357789B2 (en) Spreader position control
JP2020040780A (ja) ピッキングシステム、情報処理装置及び情報処理プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21771814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21771814

Country of ref document: EP

Kind code of ref document: A1