WO2011058884A1 - 光走査装置 - Google Patents

光走査装置 Download PDF

Info

Publication number
WO2011058884A1
WO2011058884A1 PCT/JP2010/069192 JP2010069192W WO2011058884A1 WO 2011058884 A1 WO2011058884 A1 WO 2011058884A1 JP 2010069192 W JP2010069192 W JP 2010069192W WO 2011058884 A1 WO2011058884 A1 WO 2011058884A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
optical scanning
adjustment
scanning device
drive
Prior art date
Application number
PCT/JP2010/069192
Other languages
English (en)
French (fr)
Inventor
本田 雄士
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2011534440A priority Critical patent/JP4905611B2/ja
Priority to CN201080051426.XA priority patent/CN102597847B/zh
Priority to US13/509,958 priority patent/US8891148B2/en
Publication of WO2011058884A1 publication Critical patent/WO2011058884A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0064Constitution or structural means for improving or controlling the physical properties of a device
    • B81B3/0067Mechanical properties
    • B81B3/0072For controlling internal stress or strain in moving or flexible elements, e.g. stress compensating layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0841Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting element being moved or deformed by electrostatic means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/04Optical MEMS
    • B81B2201/042Micromirrors, not used as optical switches

Definitions

  • the present invention relates to an optical scanning device that scans reflected light by changing an angle between incident light and a reflecting surface.
  • Optical scanning devices that scan light are widely used in digital copying machines, laser printers, bar code readers, scanners, projectors, and the like.
  • a polygon mirror using a motor, a galvanometer mirror, or the like has been widely used as this optical scanning device.
  • optical scanning devices manufactured by applying MEMS technology have made great progress.
  • an optical scanning device that scans light by reciprocally vibrating a vibrating mirror about a beam portion as a rotation axis has attracted attention.
  • the vibrating mirror formed by MEMS technology has a simple structure compared to a conventional optical scanning device such as a polygon mirror using a motor, and can be integrally formed by a semiconductor process.
  • advantages such as easy miniaturization and cost reduction, and easy speeding up due to miniaturization.
  • the torsional elastic coefficient k in the equation (1) is given by the following equation assuming that the width of the beam portion is w, the thickness is t, the length is L, and t ⁇ w.
  • G (G ⁇ tw 3 ) / L (2)
  • is a constant determined from the ratio of the beams w and t.
  • the beam portion When the vibrating mirror vibrates, the beam portion is torsionally deformed at a high speed for a long time.
  • the beam portion and the vibrating mirror are integrally formed of single crystal silicon, it is considered that the beam portion and the vibrating mirror have sufficient durability against this deformation.
  • the resonance frequency is determined from the moment of inertia of the vibrating mirror, the torsion spring constant of the beam portion, and the like. However, these values cannot avoid variations due to differences in processing accuracy and ambient temperature. Therefore, the resonance frequency also varies.
  • Patent Document 1 discloses a resonant optical scanning device having a first beam portion, a second beam portion, a first piezoelectric element portion, and a power source portion. Yes.
  • the first beam portion is connected to one end of the vibrating mirror.
  • the second beam portion is connected to the other end of the vibrating mirror.
  • the first piezoelectric element portion elastically deforms the first beam portion.
  • the power supply unit applies a voltage for driving the vibrating mirror to the first piezoelectric element unit.
  • a direct-current voltage component is applied to the first piezoelectric element unit by the power source unit to generate tension in the first beam unit and the second beam unit.
  • the resonance frequency is adjusted by changing the elastic coefficient.
  • Patent Document 1 since the piezoelectric element (metal thin film or ceramic polycrystalline body) laminated on the surface of the beam portion is directly affected by torsional deformation at the time of resonance, defects are generated from the crystal grain boundaries, and fatigue is caused. Prone to destruction. That is, there is a problem that the adjustment accuracy of the resonance frequency is lowered or cannot be adjusted.
  • Patent Document 2 the first beam portion connected to one end of the vibrating mirror, the second beam portion connected to the other end of the vibrating mirror, and the first beam portion are elastically deformed.
  • An apparatus comprising a first structure for causing the structure is disclosed.
  • a voltage is applied to the first structure to generate tension in the first beam portion, and the resonance frequency is adjusted.
  • the oscillating mirror is driven with an electrostatic force by an electrode disposed on the lower or side surface of the mirror.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide an optical scanning device that can adjust the resonance frequency with high accuracy with a simple configuration and maintain stable operation.
  • an optical scanning device of the present invention includes a vibrating mirror that reflects incident light, a first beam portion connected to one end of the vibrating mirror, and a second end connected to the other end of the vibrating mirror.
  • a second drive unit connected to the first beam unit and disposed between the first beam unit and the first adjustment unit to swing the vibration mirror
  • a first adjustment unit that is coupled to the first drive unit and adjusts an elastic coefficient of the first beam unit by elastically deforming the first beam unit.
  • the first adjustment unit is disposed on the opposite side of the first beam unit with the first drive unit interposed therebetween, the first adjustment is performed when the beam unit swings.
  • the part is not easily affected by deformation of the beam part.
  • the resonance frequency can be adjusted with high accuracy by the first adjustment unit, it is possible to suppress variations in the resonance frequency due to temperature changes, processing processes, and the like as in the past.
  • a highly reliable optical scanning device that can maintain a stable operation can be provided.
  • the first drive unit has a simple configuration in which the first adjustment unit that adjusts the elastic coefficient of the first beam unit is disposed on the side opposite to the first beam unit. Another advantage is that no new machining process is required. Therefore, it is possible to suppress an increase in work efficiency and cost associated with the addition of the first adjustment unit.
  • FIG. 1 is a block diagram illustrating an overall configuration of an image display device according to an embodiment of the present invention. It is a top view which shows the structure of the optical scanning element in 1st Embodiment of this invention.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG. 2.
  • FIG. 4 is a process diagram for explaining the manufacturing method of the optical scanning element shown in FIG. 2, and a cross-sectional view corresponding to FIG. 3;
  • FIG. 4 is a process diagram for explaining the manufacturing method of the optical scanning element shown in FIG. 2, and a cross-sectional view corresponding to FIG. 3;
  • FIG. 4 is a process diagram for explaining the manufacturing method of the optical scanning element shown in FIG. 2, and a cross-sectional view corresponding to FIG. 3;
  • FIG. 4 is a process diagram for explaining the manufacturing method of the optical scanning element shown in FIG. 2, and a cross-sectional view corresponding to FIG. 3;
  • FIG. 4 is a process diagram for explaining the manufacturing method of the optical
  • FIG. 4 is a process diagram for explaining the manufacturing method of the optical scanning element shown in FIG. 2, and a cross-sectional view corresponding to FIG. 3;
  • FIG. 4 is a process diagram for explaining the manufacturing method of the optical scanning element shown in FIG. 2, and a cross-sectional view corresponding to FIG. 3;
  • FIG. 4 is a process diagram for explaining the manufacturing method of the optical scanning element shown in FIG. 2, and a cross-sectional view corresponding to FIG. 3;
  • FIG. 4 is a process diagram for explaining the manufacturing method of the optical scanning element shown in FIG. 2, and a cross-sectional view corresponding to FIG. 3;
  • FIG. 4 is a process diagram for explaining the manufacturing method of the optical scanning element shown in FIG. 2, and a cross-sectional view corresponding to FIG. 3;
  • FIG. 4 is a process diagram for explaining the manufacturing method of the optical scanning element shown in FIG. 2, and a cross-sectional view corresponding to FIG. 3;
  • FIG. 4 is a process diagram for explaining the manufacturing method of
  • FIG. 4 is a process diagram for explaining the manufacturing method of the optical scanning element shown in FIG. 2, and a cross-sectional view corresponding to FIG. 3;
  • FIG. 4 is a process diagram for explaining the manufacturing method of the optical scanning element shown in FIG. 2, and a cross-sectional view corresponding to FIG. 3;
  • FIG. 4 is a process diagram for explaining the manufacturing method of the optical scanning element shown in FIG. 2, and a cross-sectional view corresponding to FIG. 3;
  • FIG. 4 is a process diagram for explaining the manufacturing method of the optical scanning element shown in FIG. 2, and a cross-sectional view corresponding to FIG. 3;
  • FIG. 4 is a process diagram for explaining the manufacturing method of the optical scanning element shown in FIG. 2, and a cross-sectional view corresponding to FIG. 3;
  • FIG. 4 is a process diagram for explaining the manufacturing method of the optical scanning element shown in FIG. 2, and a cross-sectional view corresponding to FIG. 3;
  • FIG. 4 is a process diagram for explaining the manufacturing method of
  • FIG. 4 is a process diagram for explaining the manufacturing method of the optical scanning element shown in FIG. 2, and a cross-sectional view corresponding to FIG. 3;
  • FIG. 4 is a process diagram for explaining the manufacturing method of the optical scanning element shown in FIG. 2, and a cross-sectional view corresponding to FIG. 3;
  • FIG. 4 is a process diagram for explaining the manufacturing method of the optical scanning element shown in FIG. 2, and a cross-sectional view corresponding to FIG. 3;
  • FIG. 4 is a process diagram for explaining the manufacturing method of the optical scanning element shown in FIG. 2, and a cross-sectional view corresponding to FIG. 3;
  • FIG. 4 is a process diagram for explaining the manufacturing method of the optical scanning element shown in FIG. 2, and a cross-sectional view corresponding to FIG. 3;
  • FIG. 4 is a process diagram for explaining the manufacturing method of the optical scanning element shown in FIG. 2, and a cross-sectional view corresponding to FIG. 3;
  • FIG. 4 is a process diagram for explaining the manufacturing method of
  • FIG. 4 is a process diagram for explaining the manufacturing method of the optical scanning element shown in FIG. 2, and a cross-sectional view corresponding to FIG. 3; It is a figure which shows the structure of the optical scanning element in 2nd Embodiment of this invention, and is sectional drawing equivalent to FIG. It is a figure which shows the structure of the optical scanning element in 3rd Embodiment of this invention, and is sectional drawing equivalent to FIG. It is a figure which shows the structure of the optical scanning element in 4th Embodiment of this invention, and is sectional drawing equivalent to FIG. It is a figure which shows the structure of the optical scanning element in 5th Embodiment of this invention, and is sectional drawing equivalent to FIG.
  • FIG. 1 is a block diagram showing the overall configuration of an image display apparatus according to an embodiment of the present invention.
  • the image display device 1 of the present embodiment includes a light beam generation device 11 that generates a light beam modulated according to a video signal S supplied from the outside.
  • the light flux generation device 11 includes a signal processing circuit 21, a light source unit 31, a collimating optical system 12, and a combining optical system 13. Based on the video signal S, the signal processing circuit 21 generates a signal that is an element for constructing an image.
  • the light source unit 31 converts the three video signals (R, G, B) output from the signal processing circuit 21 into luminous fluxes.
  • the collimating optical system 12 collimates the light beam.
  • the combining optical system 13 combines the light beams.
  • the image display apparatus 1 also scans the light combined by the combining optical system 13 in the horizontal direction in order to display an image, and the light beam scanned in the horizontal direction by the horizontal scanning unit 14 in the vertical direction. And a vertical scanning unit 15.
  • the image display device 1 emits a light beam scanned in the horizontal direction and the vertical direction by the horizontal scanning unit 14 and the vertical scanning unit 15 onto the screen 16.
  • red (R), green (G), and blue (B) video signals are generated, and each video signal is generated by each laser drive circuit (red laser drive circuit 22, green laser drive circuit 23, blue color). It is output to the laser drive circuit 24).
  • the signal processing circuit 21 outputs a horizontal synchronization signal used in the horizontal scanning unit 14 via the horizontal scanning synchronization circuit 25 and a vertical synchronization signal used in the vertical scanning unit 15 via the vertical scanning synchronization circuit 26. Output.
  • the light source unit 31 includes a red laser 32 and a red laser driving circuit 22, a green laser 33 and a green laser driving circuit 23, and a blue laser 34 and a blue laser driving circuit 24.
  • the red laser 32 generates a red light beam.
  • the red laser drive circuit 22 drives the red laser 32.
  • the green laser 33 generates a green light beam.
  • the green laser drive circuit 23 drives the green laser 33.
  • the blue laser 34 generates a blue light beam.
  • the blue laser drive circuit 24 drives the blue laser 34.
  • As each of the lasers 32 to 34 a semiconductor laser or a fixed laser with a harmonic generation mechanism (SHG) may be used.
  • SHG harmonic generation mechanism
  • the light beams emitted from the lasers 32 to 34 are collimated by the collimating optical system 12 and then enter the dichroic mirrors 36 to 38 of the combining optical system 13. These dichroic mirrors 36 to 38 selectively reflect or transmit each laser beam with respect to wavelength.
  • the red, green, and blue light beams incident on these three dichroic mirrors 36 to 38 are reflected or transmitted in a wavelength selective manner and output to the horizontal scanning unit 14.
  • the horizontal scanning unit 14 scans the light beam in the horizontal direction in order to project the light beam incident from the combining optical system 13 as an image.
  • the vertical scanning unit 15 scans the light beam in the vertical direction in order to project the light beam incident from the combining optical system 13 as an image.
  • the horizontal scanning unit 14 and the signal processing circuit 21 function as a horizontal light scanning device.
  • the vertical scanning unit 15 and the signal processing circuit 21 function as a vertical light scanning device.
  • the horizontal scanning unit 14 adjusts the resonance frequency of the horizontal scanning element 51, a horizontal scanning element (optical scanning device) 51 for scanning the light beam in the horizontal direction, a horizontal scanning driving circuit 41 that drives the horizontal scanning element 51, and the horizontal scanning element 51. And a resonance frequency adjusting circuit 42 for the purpose.
  • the vertical scanning unit 15 includes a vertical scanning element 43 for scanning the light beam in the vertical direction, and a vertical scanning driving circuit 44 for driving the vertical scanning element 43.
  • the horizontal scanning driving circuit 41 is driven based on the horizontal synchronizing signal output from the horizontal scanning synchronizing circuit 25.
  • the vertical scanning driving circuit 44 is driven based on the vertical synchronizing signal output from the vertical scanning synchronizing circuit 26.
  • FIG. 2 is a plan view showing the configuration of the optical scanning element in the first embodiment.
  • FIG. 3 is a sectional view taken along line AA in FIG.
  • the optical scanning element 51 is a resonance type optical scanning element.
  • the optical scanning element 51 is formed by bonding an upper frame 52 and a lower frame 53 (see FIG. 3) via an oxide film 54 (see FIG. 3) made of SiO 2 or the like.
  • the upper frame 52 and the lower frame 53 are integrally formed of a single crystal silicon substrate that can be finely processed and has an appropriate rigidity.
  • the upper frame 52 includes a rectangular frame-shaped base portion 56, a vibration mirror 57 having a rectangular shape in plan view, and a pair of bridge portions 59.
  • the oscillating mirror 57 is disposed at the central portion in the base portion 56.
  • the pair of bridge portions 59 respectively extend from the opposite sides of the base portion 56 (hereinafter referred to as short side portions 58) toward the vibration mirror 57, and support the vibration mirror 57 from both ends.
  • Each bridge portion 59 includes a pair of beam portions (first beam portion and second beam portion) 62, a drive portion (first drive portion and second drive portion) 63, and an adjustment portion (first drive portion). Adjustment unit and second adjustment unit) 64.
  • the pair of beam portions 62 extend along opposite directions from the both end sides of the vibrating mirror 57 along the extending direction (longitudinal direction) of the long side portion 61.
  • the driving unit 63 is connected to the beam units 62 to drive the vibrating mirror 57.
  • the adjustment unit 64 connects each drive unit 63 and each short side portion 58 of the base unit 56 and adjusts the elastic coefficient of the beam unit 62.
  • Each of the adjustment unit 64, the drive unit 63, and the beam unit 62 extends so that the width gradually decreases from the short side portion 58 toward the vibration mirror 57, and is integrally formed from the base portion 56 to the vibration mirror 57.
  • each bridge part 59 is a symmetric member centering on the vibration mirror 57, the structure of one bridge part 59 is demonstrated in the following description.
  • the vibrating mirror 57 includes a mirror substrate 66 and a reflective film 67 formed on the mirror substrate 66.
  • the mirror substrate 66 is supported in the vicinity of the center of one side by beam portions 62 integrally formed on both side surfaces.
  • the reflection film 67 is formed of a metal thin film having a sufficient reflectance with respect to light to be used.
  • the dimensions of the oscillating mirror 57 and the two beam portions 62 are designed so as to obtain the required resonance frequency.
  • the driving unit 63 includes a driving unit substrate 71 formed wider than the beam unit 62 and a piezoelectric element 72 formed on the driving unit substrate 71 via an oxide film 60.
  • the tip of the drive unit substrate 71 is integrally connected to the beam unit 62.
  • the base end of the drive unit substrate 71 is integrally connected to the adjustment unit 64.
  • the piezoelectric element 72 is formed by sequentially laminating a lower electrode 73, a piezoelectric layer 74, and an upper electrode 75 on the oxide film 60 of the drive unit substrate 71.
  • an electrode pad 76 made of an Al thin film or the like formed by masking by sputtering is formed.
  • the adjustment unit 64 includes an adjustment unit substrate 79 formed wider than the drive unit 63 between the drive unit 63 and the base unit 56, and a piezoelectric element formed on the adjustment unit substrate 79 via the oxide film 60. 80.
  • the tip of the adjustment unit substrate 79 is integrally connected to the drive unit substrate 71.
  • the base end of the adjustment portion substrate 79 is integrally connected to the inner peripheral surface of the short side portion 58 in the base portion 56.
  • the piezoelectric element 80 is formed by sequentially laminating a lower electrode 81, a piezoelectric layer 82, and an upper electrode 83 on the oxide film 60 of the adjustment unit substrate 79.
  • the electrode pads 76 and 84 may be formed at appropriate positions on the upper electrodes 75 and 83 in the piezoelectric region (the drive unit 63 and the adjustment unit 64).
  • Land portions 86 connected to the lower electrodes 73 and 81 of the piezoelectric elements 72 and 80 are formed via the oxide film 60 at the connecting portion of the short side portion 58 with the adjusting portion 64.
  • the land portion 86 functions as a common electrode for the drive portion 63 and the adjustment portion 64.
  • the land portion 86 includes an electrode film 87 formed continuously from the lower electrodes 73 and 81 of the drive unit 63 and the adjustment unit 64, and an electrode pad 88 formed on the electrode film 87. That is, the lower electrodes 73 and 81 of the drive unit 63 and the adjustment unit 64 and the electrode film 87 of the land unit 86 are integrally formed, while the piezoelectric layers 74 and 82 and the upper electrode 75, 83 is not formed.
  • the piezoelectric layers 74 and 82 and the upper electrodes 75 and 83 are separated between the drive unit 63 and the adjustment unit 64.
  • the piezoelectric elements 72 and 80 are configured to be independently driven.
  • an Al thin film is formed by sputtering as the electrode pads 76, 84, 88 described above, but other materials such as Pt can be selected as long as sufficient adhesion and conduction with the silicon substrate can be obtained.
  • the film forming method may be another method.
  • a voltage is applied from the horizontal scanning drive circuit 41 described above to the piezoelectric elements 72 and 80 via the electrode pads 76, 84 and 88.
  • the adjusting portion 64 is formed with a width and thickness so as not to be affected by deformation or the like when the beam portion 62 vibrates.
  • the oxide film 60 is formed on the back surfaces of the piezoelectric elements 72 and 80 and the land portion 86 in the upper frame 52, and the piezoelectric elements 72 and 80, the electrode film 87, and the electrode pad 76 are formed via the oxide film 60. , 84, 88 are formed.
  • the base unit 56, the mirror substrate 66, the drive unit substrate 71, and the adjustment unit substrate 79 described above are integrally formed by a semiconductor process.
  • the lower frame 53 is a rectangular frame member formed in the same shape as the base portion 56 in plan view.
  • the lower frame 53 has an opening 53a from which a region where the vibration mirror 57 vibrates is removed.
  • the thickness of the lower frame 53 is designed in consideration of being thicker than the vibration range of the vibration mirror 57 and not causing any trouble when the vibration mirror 57 is handled.
  • the deflection angle can be increased by resonance vibration.
  • An electromagnetic force or an electrostatic force may be used as the driving force.
  • the resonance frequency of the oscillating mirror 57 is determined by the respective materials and shapes such as the moment of inertia of the oscillating mirror 57 and the rigidity of the beam portion 62 as described above. Therefore, the target resonance frequency may not be obtained due to processing accuracy, temperature change, and the like.
  • the resonance frequency can be changed by changing the elastic coefficient of the beam portion 62.
  • the elastic coefficient of the beam portion 62 changes by controlling the voltage applied to the piezoelectric element 80.
  • the resonance frequency of the optical scanning element 51 can be detected, the resonance frequency is maintained at a constant value by applying feedback to the applied voltage applied to the piezoelectric element 80 of the adjusting unit 64 according to the detected value.
  • the methods for detecting the resonance frequency for example, a structure as shown in FIG. 3 can be considered.
  • the oscillating mirror 57 constituting the electrode surface is used as one electrode, and a counter electrode 90 is provided so as to face this electrode.
  • the resonance frequency can be detected by detecting the capacitance that changes according to the change between the electrode 90 and the vibrating mirror 57 by using the capacitance detection circuit (resonance frequency detection unit) 91. Thereby, the signal to the adjustment unit 64 is appropriately transmitted to the adjustment system, and the resonance frequency can be maintained at a desired value.
  • the capacitance detection circuit 91 is an example of a resonance frequency detection unit, and the resonance frequency may be detected by another method.
  • the resonance frequency can also be detected by the deflection angle of the vibrating mirror 57.
  • the piezoelectric element 80 is controlled while the drive frequency is set and the deflection angle is detected by a light detection element that detects a scanning beam from the vibration mirror 57 or a strain detection element that detects distortion of a torsion beam.
  • the resonance frequency can be controlled to coincide with the drive frequency.
  • the displacement of the piezoelectric element 80 may be feedback-controlled so that the deflection angle maintains a constant value.
  • FIG. 4A An SOI (for example, SOI) in which a supporting Si layer 100 (for example, a thickness of 475 ⁇ m) and an active layer 101 (for example, a thickness of 50 ⁇ m) are joined by an oxide film 102 (for example, a thickness of 2 ⁇ m).
  • a silicon on insulator substrate 103 is prepared.
  • a case will be described in which a plurality of optical scanning elements 51 are collectively formed from a single SOI substrate 103 using a semiconductor process.
  • the supporting Si layer 100 is used as a device substrate on which the lower frame 53 is formed.
  • the active layer 101 is used as a device substrate on which the upper frame body 52 is formed.
  • the surface of the active layer 101 is oxidized in advance to form an oxide film 60.
  • a resist 110 is applied onto the sputtered film 107 of the upper electrodes 75 and 83, and exposure and development are performed by using a photolithography technique, whereby the upper electrodes 75 and 83 are formed. Patterning is performed so that the resist 110 remains in the formation region.
  • the upper electrodes 75 and 83 and the sputtered films 106 and 107 of the piezoelectric layers 74 and 82 are etched using the resist 110 as a mask.
  • Step 6 As shown in FIG. 5A, a resist 111 is applied over the entire area of the active layer 101 so as to cover the upper electrodes 75 and 83.
  • patterning is performed so that the resist 111 remains in the formation region of the lower electrodes 73 and 81, the electrode film 87, and the oxide film 60.
  • Step 7 As shown in FIG. 5B, the sputtered film 107 and the oxide film 60 of the lower electrodes 73 and 81 and the electrode film 87 are etched using the resist 111 as a mask.
  • Step 9 a reflective film 67 is formed in the formation region of the vibrating mirror 57 on the active layer 101.
  • a resist 112 is applied over the entire area of the active layer 101.
  • patterning is performed so that the resist 112 remains in a region other than the region where the reflective film 67 is formed (the region where the vibrating mirror 57 is formed). That is, the opening 112 a of the resist 112 is formed in the formation region of the reflective film 67.
  • Step 10 Next, as shown in FIG. 5E, when silver or the like is deposited by a vapor deposition method or the like using the resist 112 as a mask, a vapor deposition film 113 is formed on the active layer 101 through the opening 112a of the resist 112.
  • Step 11 Thereafter, as shown in FIG. 6A, the resist 112 is removed. Thereby, the reflective film 67 is formed in the formation region of the vibration mirror 57.
  • Step 12 the outer shape of the vibrating mirror 57 and the bridge portion 59 is formed. Specifically, as shown in FIG. 6B, a resist 114 is applied over the entire area of the active layer 101. By performing exposure and development by using a photolithography technique, patterning is performed so that the resist 114 remains in the formation region of the upper frame body 52 (base portion 56, vibrating mirror 57, and bridge portion 59).
  • Step 13 Then, as shown in FIG. 6C, etching (DRIE: Deep Reactive Ion Etching) is performed using the resist 114 as a mask. If necessary, oxide film removal (BOE etching or the like) is performed before that.
  • DRIE Deep Reactive Ion Etching
  • Step 14 Thereafter, as shown in FIG. 6D, the resist 114 is peeled off. As a result, the vibrating mirror 57 is connected to the bridge portion 59 (both see FIG. 3) inside the base portion 56.
  • Step 15 Next, the lower frame 53 is formed. Specifically, as shown in FIG. 6E, first, a protective film 115 that covers the upper frame 52 is formed.
  • Step 16 Next, as shown in FIG. 7A, a resist 116 is applied to the entire back surface of the support Si layer 100.
  • patterning is performed so that the resist 116 remains in the formation region of the lower frame 53 by performing exposure and development.
  • Step 17 the lower frame 53 is formed by etching (DRIE) the supporting Si layer 100 using the resist 116 as a mask.
  • DRIE etching
  • Step 18 Then, as shown in FIG. 7C, etching (DRIE) is performed again using the resist 116 as a mask, and the oxide film 102 inside the lower frame 53 is removed.
  • etching DRIE
  • Step 19 As shown in FIG. 7D, the resist 116 and the protective film 115 are removed. As a result, a plurality of optical scanning elements 51 are connected to each other on the SOI substrate 103.
  • Step 20 Finally, the SOI substrate 103 is diced into individual optical scanning elements 51. Thereby, a plurality of the optical scanning elements 51 described above can be manufactured from one SOI substrate 103.
  • the adjustment unit 64 that adjusts the elastic coefficient of the beam unit 62 is provided on the side opposite to the beam unit 62 with the drive unit 63 interposed therebetween.
  • the drive unit 63 to which an AC voltage is applied when the oscillating mirror 57 is driven and the adjustment unit 64 to which a DC voltage is applied to adjust the elastic coefficient of the beam unit 62 are separated. Therefore, the influence by the torsional vibration of the beam portion 62 acting on the adjusting portion 64 is reduced. Thereby, the adjustment of the resonance frequency by the adjustment unit 64 can be performed with high accuracy. Therefore, it is possible to suppress variations in resonance frequency due to temperature changes, processing processes, and the like as in the past.
  • the adjustment portion 64 is formed with a width and thickness so as not to be affected by deformation or the like when the beam portion 62 vibrates. For this reason, the deformation
  • each bridge portion 59 is provided with a driving portion 63, stress is applied to the vibrating mirror 57 from both ends. Therefore, the rotation angle (swing angle) of the vibrating mirror 57 can be increased and driven with high accuracy.
  • the adjustment part 64 is provided in each bridge part 59, respectively. For this reason, the internal stress which acts on the beam part 62 can be increased, and a frequency adjustment rate can be improved. Moreover, the elastic coefficient of each beam part 62 can be adjusted equally. Thereby, the scanning accuracy can be improved.
  • the drive unit 63 and the adjustment unit 64 include piezoelectric elements 72 and 80, respectively. For this reason, it becomes possible to independently drive the oscillating mirror 57 by the drive unit 63 and adjust the resonance frequency by the adjustment unit 64. Furthermore, since the piezoelectric elements 72 and 80 are integrally formed by a semiconductor process, an increase in the manufacturing process can be suppressed and the cost can be reduced.
  • the optical scanning element 51 is integrally formed by a semiconductor process, whereby the optical scanning element 51 can be reduced in size and cost.
  • the speed can be increased by downsizing.
  • the stress which acts on the beam part 62 from the drive part 63 is directly transmitted, high drive efficiency can be obtained.
  • the adjustment unit 64 can be integrally formed between the drive unit 63 and the base unit 56. For this reason, while simplifying a structure, in order to add the adjustment part 64, a new process is not required. Therefore, it is possible to suppress an increase in work efficiency and cost associated with adding the adjustment unit 64.
  • FIG. 8 is a plan view of the optical scanning element in the second embodiment.
  • the optical scanning element 151 of the present embodiment includes a vibrating mirror 57, a pair of beam portions 62, a drive portion 63, a plurality of adjustment portions 164 a and 164 b, and a base portion 56.
  • the pair of beam portions 62 are connected to the vibrating mirror 57.
  • the driving unit 63 is connected to the beam unit 62 and drives the vibrating mirror 57.
  • the plurality of adjusting portions 164 a and 164 b adjust the elastic coefficient of the beam portion 62.
  • the base portion 56 fixes the adjusting portions 164a and 164b from the outside.
  • a connecting portion 165 that connects the base end of the driving portion 63 and the leading ends of the adjustment portions 164a and 164b together is formed on the base end side of the driving portion 63.
  • a pair of adjusting portions 164 a and 164 b extending in a bifurcated shape from both ends in the width direction of the connecting portion 165 toward the long side portion 61 of the base portion 56 are connected to the connecting portion 165.
  • These adjustment units 164 a and 164 b are arranged at symmetrical positions with respect to the width direction of the drive unit 63.
  • the drive part 63, the connection part 165, and the adjustment parts 164a and 164b are integrally formed in a Y shape in plan view.
  • the adjustment portions 164 a and 164 b extend along a direction intersecting with the extending direction of the long side portion 61 and the short side portion 58.
  • the drive unit 63 (the coupling unit 165) and the long side portion 61 are bridged by a pair of adjustment units 164a and 164b.
  • Each of the adjustment units 164a and 164b is configured by forming piezoelectric elements 180a and 180b on the adjustment unit substrates 179a and 179b, as in the first embodiment described above.
  • An electrode film 187 and an electrode pad 188 are formed on the connection portion 165.
  • the electrode film 187 is continuously formed from the lower electrodes 73 and 81 (see FIG.
  • the electrode pad 188 is formed on the electrode film 190 and is used to apply a voltage to the adjusting units 164 a and 164 b and the lower electrodes 73 and 81 of the driving unit 63.
  • the same effects as those of the first embodiment described above can be obtained. Furthermore, according to the present embodiment, the plurality (two) of the adjustment units 164a and 164b are arranged at positions symmetrical with respect to the width direction of the drive unit 63 and the beam unit 62. The part 62 can be supported stably. As a result, the internal stress acting from the drive unit 63 is evenly distributed to the respective adjustment units 164a and 164b, so that the influence of vibration of the vibration mirror 57 can be further reduced. Further, the adjustment portion 64 is directed obliquely with respect to the extending direction of the beam portion 62.
  • the extending direction of the beam part 62 among the stresses generated by the piezoelectric elements 180 a and 180 b of the adjustment part 64 can be utilized to the maximum extent as the compression and expansion / contraction components of the beam portion 62.
  • FIG. 9 is a plan view of an optical scanning element according to the third embodiment.
  • symbol is attached
  • the drive part 63 and the base part 56 demonstrated the structure connected with the two adjustment parts 164a and 164b via the connection part 165, it is not restricted to this. Two or more adjustment units may be provided.
  • the optical scanning element 251 of the present embodiment includes three adjustment units 164a, 164b, and 164c.
  • the two adjusting portions 164 a and 164 b extend in an oblique direction from the both ends in the width direction of the connecting portion 165 toward the long side portion 61.
  • the adjustment part 164 c extends from the base end side of the connection part 165 toward the short side part 58. That is, the optical scanning element 251 of the present embodiment is connected in series along the extending direction of the drive unit 63 and the pair of adjustment units 164a and 164b connected in parallel at positions symmetrical to the width direction of the drive unit 63.
  • the adjustment unit 164c is provided.
  • Each adjustment unit 164c is configured such that the piezoelectric element 180c is formed on the adjustment unit substrate 179c as in the first embodiment described above.
  • the drive unit 63 and the beam unit 62 can be further supported by supporting the drive unit 63 with the three adjustment units 164a to 164c. It can be supported stably. As a result, the internal stress acting from the drive unit 63 is evenly distributed to each of the adjustment units 164a to 164c, and the influence of vibration of the vibration mirror 57 can be further reduced.
  • FIG. 10 is a plan view of an optical scanning element in the fourth embodiment.
  • the optical scanning element 351 of this embodiment includes a vibrating mirror 57, a beam portion 62, a connecting portion 365, a plurality of driving portions 363 a and 363 b, and an adjusting portion 64.
  • the beam portion 62 is connected to the vibration mirror 57.
  • the connecting portion 365 is connected to the proximal end side of the beam portion 62.
  • the plurality of drive units 363a and 363b extend in the direction orthogonal to the extending direction of the beam unit 62 via the coupling unit 365, respectively.
  • the adjustment portion 64 extends along the extending direction of the beam portion 62 via the connecting portion 365.
  • the driving parts 363a and 363b extend from the both ends in the width direction of the coupling part 365 toward the long side parts 61 facing each other.
  • the drive parts 363a and 363b are formed so as to bridge between the long side parts 61 by the drive parts 363a and 363b and the connecting part 365.
  • the drive units 363a and 363b are configured by forming piezoelectric elements 372a and 372b on the drive unit substrates 371a and 371b as in the first embodiment described above.
  • electrode films 377a and 377b formed continuously from the lower electrode 73 (see FIG. 3) of the drive portions 363a and 363b are formed on each long side portion 61.
  • Electrode pads 378a and 378b are formed on the electrode films 377a and 377b.
  • the adjustment unit 64 is the same as that of the first embodiment described above, and is configured by forming the piezoelectric element 80 on the adjustment unit substrate 79. On each short side portion 58, an electrode film 385 is formed which is continuously formed from the lower electrode 81 (see FIG. 3) of the piezoelectric element 80 in each adjustment portion 64. An electrode pad 386 is formed on the electrode film 385.
  • the piezoelectric layer 74 is driven and the beam portion
  • the length of the piezoelectric layer 74 changes along the extending direction of 62.
  • an internal voltage is generated by applying an AC voltage to the piezoelectric element 372a of the driving unit 363a that supports the one beam unit 62.
  • an AC voltage having a phase opposite to that of the drive unit 363a is applied to the piezoelectric element 372b of the drive unit 363b that supports the one beam unit 62.
  • the internal stress generated in the beam portion 62 acts to vibrate the vibrating mirror 57. After starting in this way, the deflection angle can be increased by resonance vibration.
  • an AC voltage having the same phase as that of the drive unit 363 a that supports the one beam unit 62 is applied to the drive unit 363 a that supports the other beam unit 62, and the drive unit 363 b that supports the other beam unit 62. In this case, an AC voltage having the same phase as that of the drive unit 363b that supports the one beam unit 62 is applied.
  • an alternating voltage the internal stress generated in the beam portion 62 can be enhanced.
  • the adjustment unit 64 is disposed at a position orthogonal to the extending direction of the drive units 363a and 363b.
  • the internal stress which acts on the adjustment part 64 from the drive parts 363a and 363b can further be reduced.
  • the adjusting portion 64 is arranged in parallel along the extending direction of the beam portion 62, the component acting in the extending direction of the beam portion 62 among the stress generated by the adjusting portion 64 is maximized. Will be. Therefore, the adjustment of the resonance frequency by the adjustment unit 64 can be performed with high accuracy, and the influence of the vibration mirror 57 acting on the adjustment unit 64 can be reduced.
  • lateral vibration (a direction orthogonal to the extending direction of the beam unit 62 in a plan view) is suppressed, and the driving force of the vibrating mirror 57 is used to the maximum. Is done.
  • FIG. 11 is a plan view of an optical scanning element in the fifth embodiment.
  • the beam portion 462 of the optical scanning element 451 in this embodiment includes a beam portion main body 401 and two beam support portions 402 and 403.
  • the beam body 401 extends from both ends of the vibrating mirror 57.
  • each beam portion 462 is formed in a Y shape in plan view.
  • an internal stress is generated in the adjustment unit 64 by applying a DC voltage to the piezoelectric element 80 of the adjustment unit 64 via the electrode pads 84 and 88.
  • This stress is transmitted to the beam support portions 402 and 403 via the drive portion 63 and then to the beam portion main body 401.
  • the length or shape of the beam support portions 402 and 403 or the beam portion main body 401 changes.
  • the resonance frequency can be changed by changing the elastic coefficient of the beam support portions 402 and 403 or the beam portion main body 401.
  • the change amount of the elastic coefficient of the beam support portions 402 and 403 or the beam portion main body 401 is changed by controlling the voltage applied to the piezoelectric element 80.
  • the stress applied to the beam support portions 402 and 403 from the adjustment portion 64 via the drive portion 63 is easily utilized for the shape change of the beam portion main body 401, The efficiency of frequency adjustment can be improved.
  • the second to fourth embodiments described above also have similar beam support portions 402 and 403 so that the effect of frequency adjustment by the adjustment portion 64 is amplified.
  • the driving unit 63 is connected to each beam unit 62.
  • the configuration is not limited thereto.
  • the driving unit 63 may be connected to at least one of the beam units 62.
  • the adjustment unit 64 is arranged between each drive unit 63 and the base unit 56, the configuration is not limited thereto. You may make it the structure which arrange
  • the optical scanning device according to the embodiment of the present invention is employed in the horizontal scanning element 51 in the image display device 1
  • the optical scanning device may be employed in the vertical scanning element 43.
  • the above-described optical scanning device according to the embodiment of the present invention is not limited to the optical scanning element 51 in the image display device 1, and may be employed as an optical scanning device such as a digital copying machine, a laser printer, or a barcode reader.
  • two or more drive units and adjustment units may be provided.
  • the present invention can be applied to an optical scanning device. According to this optical scanning device, the resonance frequency can be adjusted with high accuracy with a simple configuration, and a stable operation can be maintained.
  • Horizontal scanning element (optical scanning device) 57 Vibrating mirror 62,462 Beam part (first beam part, second beam part) 63, 363a, 363b driving unit (first driving unit, second driving unit) 64, 164a, 164b, 164c adjustment unit (first adjustment unit, second adjustment unit) 72 Piezoelectric element 80, 180a, 180b, 180c Piezoelectric element 91 Capacitance detection circuit (resonance frequency detection unit)

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Micromachines (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

 本発明の光走査装置は、入射した光を反射する振動ミラーと、振動ミラーの一端に連結された第1の梁部と、振動ミラーの他端に連結された第2の梁部と、第1の梁部に連結され、第1の梁部と第1の調整部との間に配置され、振動ミラーを揺動させる第1の駆動部と、第1の駆動部に連結され、第1の梁部を弾性変形させることで、第1の梁部の弾性係数を調整する第1の調整部とを有する。

Description

光走査装置
 本発明は、入射した光と反射面との角度を変化させることにより、その反射光の走査を行う光走査装置に関する。
 光を走査する光走査装置は、デジタル複写機や、レーザープリンタ、バーコードリーダー、スキャナー、プロジェクタ等で広く用いられている。この光走査装置として、従来はモーターを用いたポリゴンミラーやガルバノミラーなどが一般的に広く用いられてきた。
 一方で近年の微細加工技術の発展により、MEMS技術を応用して製造された光走査装置が大きな発展を遂げている。中でも、梁部を回転軸として振動ミラーを往復振動させることにより光を走査させる光走査装置が注目を集めている。MEMS技術によって形成される振動ミラーは、従来のモーターを用いたポリゴンミラー等の回転による光走査装置と比較して、構造が簡単であることや、半導体プロセスによる一体成形が可能であることにより、小型化や低コスト化が容易であること、また小型化により高速化が容易であること等の利点がある。
 これらのMEMS技術による振動ミラーは、振れ角を大きくとるために、駆動周波数と構造体の共振周波数とを一致させることが一般的である。ミラーの共振周波数frは、梁部のねじり弾性係数kと振動ミラーの慣性モーメントIMとから、次式で与えられる。
 fr=1/(2π√(k/IM))             (1)
 式(1)におけるねじれ弾性係数kは、梁部の幅をw、厚さをt、長さをLとし、t<wを仮定すると、次式で与えられる。
 k=(Gβtw)/L                   (2)
 ここでGは横弾性定数であり、梁部を形成する材料のヤング率Eとポアソン比νを用いてG=E/(2(1+ν))で表される。βは梁wとtの比から定まる定数である。
 振動ミラーの振動時に、梁部は高速かつ長時間ねじり変形する。しかし梁部及び振動ミラーは単結晶のシリコンで一体成形されているため、この変形に対しても十分な耐久性を有していると考えられている。
 このように共振周波数は、振動ミラーの慣性モーメントと、梁部のねじりバネ定数等から決定される。しかし一方でこれらの値は、加工精度や周囲温度などの違いによるばらつきを避けることはできない。そのため、共振周波数にもばらつきが出てしまう。
 そこで、上述した問題を解決するために、振動ミラーの共振周波数の調整機構を設けた光走査装置が提案されている。この光走査装置は、調整機構により、部材の加工精度のばらつきや周囲温度の変化による共振周波数の変動を調整し、共振周波数を一定に保つことができる。
 このような構成として、例えば特許文献1においては、第1の梁部と、第2の梁部と、第1の圧電素子部と、電源部と、を有する共振型光走査装置が開示されている。第1の梁部は、振動ミラーの一端に連結されている。第2の梁部は、振動ミラーの他端に連結されている。第1の圧電素子部は、第1の梁部を弾性変形させる。電源部は、振動ミラーを駆動させるための電圧を第1の圧電素子部に印加する。この共振型光走査装置は、電源部により、第1の圧電素子部に対して直流電圧成分を加えて、第1の梁部と第2の梁部に張力を生じさせることにより、梁部の弾性係数を変化させ、共振周波数の調整を行っている。
 しかしながら、特許文献1では、梁部の表面に積層された圧電素子(金属薄膜やセラミックス多結晶体)は、共振時におけるねじり変形の影響を直接受けるため、結晶粒界から欠陥が発生し、疲労破壊が生じやすい。つまり、共振周波数の調整精度が落ちたり、調整不能になったりする問題があった。
 これに対して、特許文献2においては、振動ミラーの一端に連結された第1の梁部と、振動ミラーの他端に連結された第2の梁部と、第1の梁部を弾性変形させるための第1の構造体とを備える装置が開示されている。この装置は、第1の構造体に電圧を印加することで第1の梁部に張力を生じさせ、共振周波数の調整を行っている。この場合、振動ミラーは、ミラー下部または側面に配置した電極により、静電力で駆動させることが想定される。
日本国特開2007-25608号公報 日本国特開2006-195290号公報
 しかしながら、特許文献2の装置の構成では、第1の構造体と第1の梁部とが連結されている関係で、ミラー下部または側面から静電気により振動ミラーを駆動させる場合であっても、第1の構造体自体が揺動させざるを得ない。そのため、第1の構造体の圧電素子がミラー振動の影響を受け、共振周波数の調整精度が低下するという問題があった。
 本発明は、上述した問題に鑑みてなされたものであり、簡易な構成により共振周波数を高精度に調整でき、安定した動作を維持することができる光走査装置を提供することを目的とする。
 上記問題を解決するために、本発明の光走査装置は、入射した光を反射する振動ミラーと、前記振動ミラーの一端に連結された第1の梁部と、前記振動ミラーの他端に連結された第2の梁部と、前記第1の梁部に連結され、前記第1の梁部と前記第1の調整部との間に配置され、前記振動ミラーを揺動させる第1の駆動部と、前記第1の駆動部に連結され、前記第1の梁部を弾性変形させることで、前記第1の梁部の弾性係数を調整する第1の調整部とを有する。
 本発明によれば、第1の駆動部を間に挟んで第1の梁部とは反対側に第1の調整部が配置されているため、梁部の揺動時において、第1の調整部は梁部の変形等による影響を受け難くなる。これにより、第1の調整部による共振周波数の調整を高精度に行うことができるので、従来のように温度変化や加工プロセス等による共振周波数のばらつきを抑制することができる。その結果、安定した動作を維持することができる信頼性の高い光走査装置を提供できる。
 また、構造上も、第1の駆動部における第1の梁部とは反対側に、第1の梁部の弾性係数を調整する第1の調整部を配置するという簡易な構成をとっており、新たな加工プロセスを必要としない点も利点である。したがって、第1の調整部追加に伴う作業効率及びコストの増加を抑制することができる。
本発明の実施形態における画像表示装置の全体構成を示すブロック図である。 本発明の第1実施形態における光走査素子の構成を示す平面図である。 図2のA-A線に沿う断面図である。 図2に示す光走査素子の製造方法を説明するための工程図であり、図3に相当する断面図である。 図2に示す光走査素子の製造方法を説明するための工程図であり、図3に相当する断面図である。 図2に示す光走査素子の製造方法を説明するための工程図であり、図3に相当する断面図である。 図2に示す光走査素子の製造方法を説明するための工程図であり、図3に相当する断面図である。 図2に示す光走査素子の製造方法を説明するための工程図であり、図3に相当する断面図である。 図2に示す光走査素子の製造方法を説明するための工程図であり、図3に相当する断面図である。 図2に示す光走査素子の製造方法を説明するための工程図であり、図3に相当する断面図である。 図2に示す光走査素子の製造方法を説明するための工程図であり、図3に相当する断面図である。 図2に示す光走査素子の製造方法を説明するための工程図であり、図3に相当する断面図である。 図2に示す光走査素子の製造方法を説明するための工程図であり、図3に相当する断面図である。 図2に示す光走査素子の製造方法を説明するための工程図であり、図3に相当する断面図である。 図2に示す光走査素子の製造方法を説明するための工程図であり、図3に相当する断面図である。 図2に示す光走査素子の製造方法を説明するための工程図であり、図3に相当する断面図である。 図2に示す光走査素子の製造方法を説明するための工程図であり、図3に相当する断面図である。 図2に示す光走査素子の製造方法を説明するための工程図であり、図3に相当する断面図である。 図2に示す光走査素子の製造方法を説明するための工程図であり、図3に相当する断面図である。 図2に示す光走査素子の製造方法を説明するための工程図であり、図3に相当する断面図である。 図2に示す光走査素子の製造方法を説明するための工程図であり、図3に相当する断面図である。 図2に示す光走査素子の製造方法を説明するための工程図であり、図3に相当する断面図である。 本発明の第2実施形態における光走査素子の構成を示す図であり、図3に相当する断面図である。 本発明の第3実施形態における光走査素子の構成を示す図であり、図3に相当する断面図である。 本発明の第4実施形態における光走査素子の構成を示す図であり、図3に相当する断面図である。 本発明の第5実施形態における光走査素子の構成を示す図であり、図3に相当する断面図である。
 次に、本発明の実施形態を図面を参照して説明する。
 (第1実施形態)
  (画像表示装置)
 最初に、本発明の実施形態の光走査装置が組み込まれる画像表示装置の全体構成及び動作について説明する。図1は、本発明の実施形態における画像表示装置の全体構成を示すブロック図である。
 図1に示すように、本実施形態の画像表示装置1は、外部から供給される映像信号Sに応じて変調された光束を生成する光束生成装置11を備えている。光束生成装置11は、信号処理回路21と、光源部31と、コリメート光学系12と、合成光学系13とを備えている。信号処理回路21は、映像信号Sに基づいて画像を構成するための要素となる信号を発生させる。光源部31は、信号処理回路21から出力される3つの映像信号(R、G、B)をそれぞれ光束にする。コリメート光学系12は、光束を平行光化する。合成光学系13は、光束を合成する。画像表示装置1はまた、合成光学系13で合成された光を画像表示するために水平方向に走査する水平走査部14と、水平走査部14で水平方向に走査された光束を垂直方向に走査する垂直走査部15とを備える。画像表示装置1は、水平走査部14および垂直走査部15により水平方向と垂直方向に走査された光束をスクリーン16上に出射する。
 信号処理回路21では、赤(R)、緑(G)、青(B)の各映像信号が生成され、各映像信号が各レーザー駆動回路(赤色レーザー駆動回路22、緑色レーザー駆動回路23、青色レーザー駆動回路24)に出力される。信号処理回路21は、水平走査部14で使用される水平同期信号を水平走査同期回路25を介して出力し、また垂直走査部15で使用される垂直同期信号を垂直走査同期回路26を介して出力する。
 光源部31は、赤色レーザー32及び赤色レーザー駆動回路22と、緑色レーザー33及び緑色レーザー駆動回路23と、青色レーザー34及び青色レーザー駆動回路24と、を備えている。赤色レーザー32は、赤色の光束を発生させる。赤色レーザー駆動回路22は、赤色レーザー32を駆動する。緑色レーザー33は、緑色の光束を発生させる。緑色レーザー駆動回路23は、緑色レーザー33を駆動する。青色レーザー34は、青色の光束を発生させる。青色レーザー駆動回路24は、青色レーザー34を駆動する。各レーザー32~34として、半導体レーザーあるいは高調波発生機構(SHG)付き固定レーザー等を使用してもよい。
 各レーザー32~34から出射したそれぞれの光束は、コリメート光学系12によってそれぞれ平行光化された後、合成光学系13のダイクロイックミラー36~38に入射される。これらのダイクロイックミラー36~38により、各レーザー光が波長に関して選択的に反射または透過される。
 これらの3つのダイクロイックミラー36~38に入射した赤、緑、青の光束は、波長選択的に反射または透過して、水平走査部14に出力される。
 水平走査部14は、合成光学系13から入射された光束を画像として投影するために、光束を水平方向に走査する。垂直走査部15は、合成光学系13から入射された光束を画像として投影するために、光束を垂直方向に走査する。
 水平走査部14と信号処理回路21とは、水平光走査装置として機能する。垂直走査部15と信号処理回路21とは、垂直光走査装置として機能する。
 水平走査部14は、光束を水平方向に走査するための水平走査素子(光走査装置)51と、水平走査素子51を駆動させる水平走査駆動回路41と、水平走査素子51の共振周波数を調整するための共振周波数調整回路42とを有している。
 垂直走査部15は、光束を垂直方向に走査するための垂直走査素子43と、垂直走査素子43を駆動させるための垂直走査駆動回路44と、を備えている。水平走査駆動回路41は、水平走査同期回路25から出力される水平同期信号に基づいて駆動する。垂直走査駆動回路44は、垂直走査同期回路26から出力される垂直同期信号に基づいて駆動する。
  (光走査素子)
 次に、上述した水平走査素子(以下、光走査素子という)について説明する。図2は第1実施形態における光走査素子の構成を示す平面図である。図3は図2のA-A線に沿う断面図である。
 図2,図3に示すように、光走査素子51は、共振タイプの光走査素子である。光走査素子51は、上部枠体52と下部枠体53(図3参照)とがSiO等からなる酸化膜54(図3参照)を介して接合することにより形成されている。上部枠体52及び下部枠体53は、微細加工が可能で適度な剛性を持つ単結晶シリコン基板により一体形成されている。
 上部枠体52は、矩形枠状のベース部56と、平面視矩形状の振動ミラー57と、一対の橋架部59とを備えている。振動ミラー57は、ベース部56内の中央部に配置されている。一対の橋架部59は、ベース部56の対向する辺(以下、短辺部58という)からそれぞれ振動ミラー57に向かって延在し、振動ミラー57を両端から支持する。
 各橋架部59は、一対の梁部(第1の梁部及び第2の梁部)62と、駆動部(第1の駆動部及び第2の駆動部)63と、調整部(第1の調整部及び第2の調整部)64と、を有している。一対の梁部62は、振動ミラー57の両端側から長辺部61の延在方向(長手方向)に沿って互いに逆方向に沿って延在する。駆動部63は、これら梁部62にそれぞれ連結されて振動ミラー57を駆動させる。調整部64は、各駆動部63とベース部56の各短辺部58とをそれぞれ連結するとともに、梁部62の弾性係数を調整する。これら各調整部64、駆動部63及び梁部62は、短辺部58から振動ミラー57に向かって幅が段々と縮小するように延在しており、ベース部56から振動ミラー57まで一体形成されている。各橋架部59は、振動ミラー57を中心にして対称の部材であるため、以下の説明では、一方の橋架部59の構成について説明する。
 振動ミラー57は、ミラー基板66と、ミラー基板66上に形成された反射膜67とを備えている。ミラー基板66は、両側面に一体形成された梁部62でそれぞれ一辺の中央付近を支持されている。反射膜67は、使用する光に対して十分な反射率を持つ金属薄膜により形成されている。振動ミラー57と2本の梁部62の寸法は、必要とする共振周波数が得られるように設計されている。
 駆動部63は、梁部62よりも幅広に形成された駆動部基板71と、駆動部基板71上に酸化膜60を介して形成された圧電素子72とを備えている。駆動部基板71の先端は、梁部62に一体的に連結される。一方、駆動部基板71の基端は、調整部64に一体的に連結されている。図3に示すように、圧電素子72は、駆動部基板71の酸化膜60上に、下部電極73、圧電層74、上部電極75が順次積層されて形成されている。圧電素子72(上部電極75)上には、スパッタ法でマスク成膜されたAl薄膜等による電極パッド76が形成されている。
 調整部64は、駆動部63とベース部56との間で、駆動部63よりも幅広に形成された調整部基板79と、調整部基板79上に酸化膜60を介して形成された圧電素子80とを備えている。調整部基板79の先端は、駆動部基板71に一体的に連結される。調整部基板79の基端は、ベース部56における短辺部58の内周面に一体的に連結されている。圧電素子80は、調整部基板79の酸化膜60上に、下部電極81、圧電層82、上部電極83が順次積層されて形成されている。上部電極83上には、スパッタ法でマスク成膜されたAl薄膜等による電極パッド84が形成されている。電極パッド76,84は、圧電領域(駆動部63及び調整部64)における上部電極75,83上の適当な位置に形成して構わない。
 短辺部58における調整部64との連結部分には、圧電素子72,80の下部電極73,81に接続されるランド部86が酸化膜60を介して形成されている。ランド部86は、駆動部63と調整部64との共通電極として機能している。ランド部86は、駆動部63及び調整部64の下部電極73,81から連続的に形成された電極膜87と、この電極膜87上に形成された電極パッド88とを備えている。すなわち、駆動部63及び調整部64の下部電極73,81と、ランド部86の電極膜87とは一体的に形成される一方、ランド部86上には圧電層74,82及び上部電極75,83は形成されていない。駆動部63と調整部64との間において、圧電素子72,80のうち、圧電層74,82及び上部電極75,83が分離されている。各圧電素子72,80は独立して駆動可能に構成されている。ここでは上述した電極パッド76,84,88としてAl薄膜をスパッタ法で形成しているが、十分な密着性とシリコン基板との導通が得られればPt等の他の材料も選択可能である。また、成膜方法としても他の方法で成膜してもよい。上述した水平走査駆動回路41から電極パッド76,84,88を介して圧電素子72,80に電圧が印加される。
 調整部64は、梁部62の振動時に、変形等の影響を受けないような幅及び厚さで形成されている。上述したように上部枠体52における圧電素子72,80及びランド部86の裏面には酸化膜60が形成され、この酸化膜60を介して、圧電素子72,80、電極膜87及び電極パッド76,84,88が形成されている。上述したベース部56、ミラー基板66、駆動部基板71及び調整部基板79は半導体プロセスにより一体成形されている。
 下部枠体53は、平面視でベース部56と同形状に形成された矩形枠型の部材である。下部枠体53は、振動ミラー57が振動する領域が除去された開口部53aを有している。下部枠体53の厚さは、振動ミラー57の振動範囲よりも厚く、かつ振動ミラー57を取り扱う際に支障をきたさないことを考慮して設計されている。
  (光走査素子の動作方法)
 次に、上述した光走査素子の動作を説明する。
 図2,図3の構成において、水平走査駆動回路41から各電極パッド76,88を介して、駆動部基板71の圧電層74の表面または裏面に配置された各電極73,75間に交流電圧を印加する。この交流電圧の印加により、圧電層74が駆動されて梁部62の延在方向に沿って圧電層74の長さが変化する。この場合、駆動部63の圧電層74に交流電圧を印加することにより、駆動部63に発生する内部応力は、振動ミラー57を振動させる作用をする。
 このようにして振動ミラー57が起動した後は、共振振動により振れ角を増大していくことができる。ここでは振動ミラー57を共振振動させるための駆動力として圧電層74を上部電極75及び下部電極73で挟んだ圧電素子72を用いた場合を説明したが、これに限られない。駆動力として、電磁力、静電力を用いてもよい。
  (共振周波数の調整方法)
 振動ミラー57の共振周波数は、上述したように振動ミラー57の慣性モーメントと梁部62の剛性等、それぞれの材料、形状によって定まる。したがって、加工精度や温度変化等により、目標とする共振周波数が得られない場合がある。
 この問題を解決するための方法を、以下で説明する。
 調整部64の圧電素子80に、水平走査駆動回路41から電極パッド84,88を介して直流電圧を印加することにより、圧電層82が駆動されて梁部62の延在方向に沿って圧電層74の長さが変化し、調整部64に応力が発生する。この応力は、駆動部63を介して梁部62に伝達され、それに伴い梁部62が応力を受ける。具体的には、梁部62の延在方向における長さや梁部62の横断面形状が変化する。具体的に、調整部64が伸びる場合、梁部62には圧縮の内部応力が作用し、調整部64が短くなる場合、梁部62には引っ張りの内部応力が作用する。これにより、梁部62の弾性係数が変化することで、共振周波数を変化させることができる。梁部62の弾性係数は、圧電素子80に加える電圧を制御することにより変化する。
 そこで、光走査素子51の共振周波数を検出することができれば、その検出値に応じて調整部64の圧電素子80に印加される印加電圧にフィードバックをかけることで、共振周波数を一定値に維持することができる。共振周波数検出のための方法の一つとして、例えば図3に示すようの構造が考えられる。電極面を構成する振動ミラー57を一方の電極とし、この電極に対向させて対向電極90を設置する。これら電極90及び振動ミラー57間の変化に応じて変化する静電容量を、静電容量検出回路(共振周波数検出部)91を用いて検出することにより共振周波数を検出することができる。これにより、調整部64への信号は適切に調整系へ伝達され、共振周波数を所望の値に保つことができる。
 この静電容量検出回路91は、共振周波数検出部の一例であり、他の方法により共振周波数を検出してもよい。共振周波数は、振動ミラー57の振れ角により検出することもできる。駆動周波数を設定しておいて、振れ角を振動ミラー57からの走査ビームを検出する光検出素子、あるいはねじり梁のひずみを検出するひずみ検出素子等によって検出しながら、圧電素子80を制御することにより、共振周波数が駆動周波数に一致するように制御することができる。さらに、環境温度の変動による振れ角の低下にも対応することができる。そのためには、振れ角が一定値を維持するように圧電素子80の変位をフィードバック制御すればよい。
  (光走査素子の製造方法)
 上述した光走査素子の製造方法について、図4A~4E,および図5A~5Eを参照して説明する。
 工程1
 まず、図4Aに示すように、支持Si層100(例えば、厚さ475μm)と活性層101(例えば、厚さ50μm)とが、酸化膜102(例えば、厚さ2μm)によって接合されたSOI(Silicon on Insulator)基板103を用意する。本実施形態では、1枚のSOI基板103から複数の光走査素子51を、半導体プロセスを用いて一括形成する場合について説明する。支持Si層100は下部枠体53を形成するデバイス基板として用いる。活性層101は上部枠体52を形成するデバイス基板として用いる。活性層101の表面は予め酸化処理して酸化膜60を形成しておく。
 工程2
 次に、図4Bに示すように、スパッタ法等を用いて、活性層101上の全域に下部電極73,81、圧電層74,82及び上部電極75,83並びにランド部86の電極膜87のスパッタ製膜105~107を積層する。
 工程3
 次に、図4Cに示すように、上部電極75,83のスパッタ製膜107上にレジスト110を塗布し、フォトリソグラフィ技術を用いることにより、露光および現像を行なうことで、上部電極75,83の形成領域にレジスト110が残存するようにパターニングを行う。
 工程4
 図4Dに示すように、レジスト110をマスクとして上部電極75,83及び圧電層74,82のスパッタ製膜106,107をエッチングする。
 工程5
 その後、図4Eに示すように、レジスト110を剥離する。これにより、上部電極75,83及び圧電層74,82が形成される。
 工程6
 次に、図5Aに示すように、活性層101上の全域に上部電極75,83を覆うようにレジスト111を塗布する。フォトリソグラフィ技術を用いることにより、露光および現像を行なうことで、下部電極73,81及び電極膜87及び酸化膜60の形成領域にレジスト111が残存するようにパターニングを行う。
 工程7
 次に、図5Bに示すように、レジスト111をマスクとして、下部電極73,81及び電極膜87のスパッタ製膜107及び酸化膜60をエッチングする。
 工程8
 その後、図5Cに示すように、レジスト111を剥離する。これにより、下部電極73,81、電極膜87及び酸化膜60が形成される。
 工程9
 次に、活性層101上における振動ミラー57の形成領域に反射膜67を形成する。具体的には、図5Dに示すように、活性層101上の全域にレジスト112を塗布する。フォトリソグラフィ技術を用いることにより、露光および現像を行なうことで、反射膜67の形成領域(振動ミラー57の形成領域)以外の領域にレジスト112が残存するようにパターニングを行う。すなわち、反射膜67の形成領域には、レジスト112の開口部112aが形成される。
 工程10
 次に、図5Eに示すように、レジスト112をマスクとして、蒸着法等により銀等を成膜すると、活性層101上にはレジスト112の開口部112aを通して蒸着製膜113が形成される。
 工程11
 その後、図6Aに示すように、レジスト112を剥離する。これにより、振動ミラー57の形成領域に反射膜67が形成される。
 工程12
 次に、振動ミラー57及び橋架部59の外形を形成する。具体的には、図6Bに示すように、活性層101上の全域にレジスト114を塗布する。フォトリソグラフィ技術を用いることにより、露光および現像を行なうことで、上部枠体52(ベース部56、振動ミラー57及び橋架部59)の形成領域にレジスト114が残存するようにパターニングを行う。
 工程13
 そして、図6Cに示すように、レジスト114をマスクとしてエッチング(DRIE:Deep Reactive Ion Etching)を行う。な必要であれば、その前に酸化膜除去(BOEエッチング等)を行っておく。
 工程14
 その後、図6Dに示すように、レジスト114を剥離する。これにより、ベース部56の内側で振動ミラー57が橋架部59(ともに図3参照)に連結された状態になる。
 工程15
 次に、下部枠体53を形成する。具体的には、図6Eに示すように、まず上部枠体52を被覆する保護膜115を形成する。
 工程16
 次に、図7Aに示すように、支持Si層100の裏面全域にレジスト116を塗布する。フォトリソグラフィ技術を用いることにより、露光および現像を行なうことで、下部枠体53の形成領域にレジスト116が残存するようにパターニングを行う。
 工程17
 次に、図7Bに示すように、レジスト116をマスクとして支持Si層100をエッチング(DRIE)することで、下部枠体53を形成する。
 工程18
 そして、図7Cに示すように、レジスト116をマスクとして再度エッチング(DRIE)を行い、下部枠体53の内側の酸化膜102を除去する。
 工程19
 図7Dに示すように、レジスト116、および保護膜115を剥離する。これにより、SOI基板103上に複数の光走査素子51が連結された状態で形成される。
 工程20
 最後に、SOI基板103をダイシングすることで、個々の光走査素子51に個片化する。これにより、1枚のSOI基板103から上述した光走査素子51を複数製造することができる。
 このように、本実施形態では、駆動部63を間に挟んで梁部62とは反対側に、梁部62の弾性係数を調整する調整部64を設ける構成とした。
 この構成によれば、振動ミラー57の駆動時に交流電圧が印加される駆動部63と、梁部62の弾性係数の調整に直流電圧が印加される調整部64とが分離されている。したがって、調整部64に作用する梁部62のねじり振動による影響が低減される。これにより、調整部64による共振周波数の調整を高精度に行うことができる。よって、従来のように温度変化や加工プロセス等による共振周波数のばらつきを抑制することができる。しかも、調整部64は、梁部62の振動時に、変形等の影響を受けないような幅及び厚さで形成されている。このため、梁部62の振動に伴う調整部64の変形を確実に防止することができる。
 したがって、共振周波数の調整精度を向上させ、安定し動作を維持することができる信頼性の高い光走査素子51を提供することができる。
 また、各橋架部59にそれぞれ駆動部63が設けられているので、振動ミラー57には両端側から応力が付与されることになる。そのため、振動ミラー57の回転角(振れ角)を大きく、かつ高精度に駆動することができる。
 さらに、各橋架部59にそれぞれ調整部64が設けられている。このため、梁部62に作用する内部応力を増大させることができ、周波数調整率を向上させることができる。また、各梁部62の弾性係数を均等に調整することができる。これにより、走査精度の向上を図ることができる。
 また、駆動部63及び調整部64が圧電素子72,80をそれぞれ備えている。このため、駆動部63による振動ミラー57の駆動、及び調整部64による共振周波数の調整をそれぞれ独立して行うことが可能となる。さらに、圧電素子72,80は、半導体プロセスにより一体形成されるため、製造プロセスの増加を抑制し、低コスト化を図ることができる。
 本実施形態では光走査素子51を半導体プロセスにより一体成形することで、光走査素子51の小型化及び低コスト化を実現することができる。また、小型化により高速化を図ることができる。また、駆動部63から梁部62へ作用する応力が直接的に伝達されるため、高い駆動効率を得ることができる。
 しかも、本実施形態では、駆動部63とベース部56との間に、一体的に調整部64を形成することができる。このため、構成の簡素化を図るとともに、調整部64を追加するために新たなプロセスを必要としない。したがって、調整部64を追加することに伴う作業効率及びコストの増加を抑制することができる。
 (第2実施形態)
 次に、本発明の第2実施形態について説明する。図8は第2実施形態における光走査素子の平面図である。以下の説明については、上述した第1実施形態と同様の構成については同一の符号を付して説明を省略する。
 図8に示すように、本実施形態の光走査素子151は、振動ミラー57と、一対の梁部62と、駆動部63と、複数の調整部164a,164bと、ベース部56とを備えている。一対の梁部62は、振動ミラー57に連結されている。駆動部63は、梁部62に連結されて振動ミラー57を駆動させる。複数の調整部164a,164bは、梁部62の弾性係数を調整する。ベース部56は、調整部164a,164bをその外側から固定している。
 駆動部63の基端側には、駆動部63の基端と各調整部164a,164bの先端とをまとめて連結する連結部165が形成されている。この連結部165には、連結部165の幅方向両端側からベース部56の長辺部61に向かって二股状に延在する一対の調整部164a,164bが連結されている。これら調整部164a,164bは、駆動部63の幅方向に対して対称位置に配置されている。駆動部63、連結部165及び調整部164a,164bは、平面視Y字状に一体形成されている。すなわち、調整部164a,164bは、長辺部61及び短辺部58の延在方向に交差する方向に沿って延在している。本実施形態の光走査素子151においては、駆動部63(連結部165)と長辺部61とが、一対の調整部164a,164bによって架け渡されている。各調整部164a,164bは、上述した第1実施形態と同様に、調整部基板179a,179b上に圧電素子180a,180bが形成されることにより構成されている。連結部165上には、電極膜187と、電極パッド188とが形成されている。電極膜187は、圧電素子180a,180bの下部電極73,81(図3参照)から連続的に形成されている。電極パッド188は、電極膜190上に形成され、調整部164a,164b及び駆動部63の下部電極73,81に電圧を印加するために用いられる。
 本実施形態によれば、上述した第1実施形態と同様の効果を奏する。さらに、本実施形態によれば、複数(2本)の調整部164a,164bが、駆動部63及び梁部62の幅方向に対して対称な位置に配置されているため、駆動部63及び梁部62を安定して支持することができる。これにより、駆動部63から作用する内部応力が各調整部164a,164bに均等に分散されるので、振動ミラー57の振動による影響をさらに低減することができる。
 また、調整部64が梁部62の延在方向に対して斜め方向を向いている。このため、調整部64が梁部62の延在方向に対して直交している場合に比べて、調整部64の圧電素子180a,180bで生成される応力のうち、梁部62の延在方向に沿う力成分を、梁部62の圧縮及び伸縮成分として最大限に活用することができる。
 (第3実施形態)
 次に、本発明の第3実施形態について説明する。図9は第3実施形態における光走査素子の平面図である。以下の説明については、上述した第1実施形態と同様の構成については同一の符号を付して説明を省略する。上述した第2実施形態では、駆動部63とベース部56とが連結部165を介して2本の調整部164a,164bによって連結されている構成について説明したが、これに限られない。調整部は2本以上の複数であっても構わない。
 具体的には、図9に示すように、本実施形態の光走査素子251は、3本の調整部164a,164b,164cを備えている。2本の調整部164a,164bは、連結部165の幅方向両端側から長辺部61に向かって斜め方向に延在する。調整部164cは、連結部165の基端側から短辺部58に向かって延在する。すなわち、本実施形態の光走査素子251は、駆動部63の幅方向に対して対称な位置に並列接続された一対の調整部164a,164bと、駆動部63の延在方向に沿って直列接続された調整部164cとを備えている。各調整部164cは、上述した第1実施形態と同様に、調整部基板179c上に圧電素子180cが形成されることに構成される。
 本実施形態によれば、上述した第2実施形態と同様の効果を奏することに加え、駆動部63を3本の調整部164a~164cによって支持することで、駆動部63及び梁部62をより安定して支持することができる。これにより、駆動部63から作用する内部応力が各調整部164a~164cに均等に分散され、振動ミラー57の振動による影響をさらに低減することができる。
 (第4実施形態)
 次に、本発明の第4実施形態について説明する。図10は第4実施形態における光走査素子の平面図である。以下の説明については、上述した第1実施形態と同様の構成については同一の符号を付して説明を省略する。本実施形態は、駆動部が複数設けられている点で上述した各実施形態と相違している。
 図10に示すように、本実施形態の光走査素子351は、振動ミラー57と、梁部62と、連結部365と、複数の駆動部363a,363bと、調整部64とを備えている。梁部62は、振動ミラー57に連結されている。連結部365は、梁部62の基端側に連結されている。複数の駆動部363a,363bは、連結部365を介して梁部62の延在方向に直交する方向にそれぞれ延在する。調整部64は、連結部365を介して梁部62の延在方向に沿って延在する。
 駆動部363a,363bは、連結部365の幅方向両端側から、それぞれ対向する長辺部61に向かって延在している。駆動部363a,363bは、駆動部363a,363b及び連結部365によって長辺部61間を架け渡すように形成されている。各駆動部363a,363bは、上述した第1実施形態と同様に、駆動部基板371a,371b上に圧電素子372a,372bが形成されることにより構成される。各長辺部61上には、各駆動部363a,363bの下部電極73(図3参照)から連続的に形成された電極膜377a,377bが形成されている。電極膜377a,377b上には、電極パッド378a,378bが形成されている。
 調整部64は、上述した第1実施形態と同様であり、調整部基板79上に圧電素子80が形成されることにより構成されている。各短辺部58上には、各調整部64における圧電素子80の下部電極81(図3参照)から連続的に形成された電極膜385が形成されている。電極膜385上には、電極パッド386が形成されている。
 この場合、駆動部363a,363bにおける圧電層74(図3参照)の表面または裏面に配置した電極73,75(図3参照)間に電圧を印加すると、圧電層74が駆動されて、梁部62の延在方向に沿って圧電層74の長さが変化する。具体的に、一方の梁部62を支持する駆動部363aの圧電素子372aに交流電圧を印加することにより、内部応力が発生する。また、一方の梁部62を支持する駆動部363bの圧電素子372bには駆動部363aとは逆相の交流電圧を印加する。これにより梁部62に発生する内部応力は、振動ミラー57を振動させる作用をする。このようにして起動した後は、共振振動により振れ角を増大していくことができる。
 これに対して、他方の梁部62を支持する駆動部363aには、一方の梁部62を支持する駆動部363aと同相の交流電圧を印加し、他方の梁部62を支持する駆動部363bには、一方の梁部62を支持する駆動部363bと同相の交流電圧を印加する。このように交流電圧を印加することにより、梁部62に発生させる内部応力を増強することができる。すなわち、一対の駆動部363a,363b間でそれぞれ逆相の交流電圧を印加する一方、各梁部62間で相当する駆動部同士(駆動部363a同士及び駆動部363b同士)には同相の交流電圧を印加する。
 このように、本実施形態によれば、上述した実施形態と同様の効果を奏することに加え、調整部64が駆動部363a,363bの延在方向に対して直交した位置に配置されている。これにより、駆動部363a,363bから調整部64に作用する内部応力をさらに低減することができる。しかも、調整部64は梁部62の延在方向に沿って平行に配置されているため、調整部64で生成される応力のうち、梁部62の延在方向に作用する成分については最大化されることになる。したがって、調整部64による共振周波数の調整を高精度に行うことができるとともに、調整部64に作用する振動ミラー57による影響を低減することが可能となる。
 また、駆動部363a,363bが梁部62に与える駆動力のうち、横振動(平面視で梁部62の延在方向に直交する方向)を抑制し、振動ミラー57の駆動力が最大限活用される。
 (第5実施形態)
 次に、本発明の第5実施形態について説明する。図11は第5実施形態における光走査素子の平面図である。以下の説明については、上述した第1実施形態と同様の構成については同一の符号を付して説明を省略する。
 図11に示すように、本実施形態における光走査素子451の梁部462は、梁部本体401と、2本の梁支持部402,403とを備えている。梁部本体401は、振動ミラー57の両端部からそれぞれ延在する。2本の梁支持部402,403は、梁部本体401の基端側から二股状に延在し、駆動部63の幅方向両側に一体的に連結されている。すなわち、各梁部462は、平面視Y字状に形成されている。
 この場合、調整部64の圧電素子80に、電極パッド84,88を介して直流電圧を印加することにより、調整部64に内部応力が発生する。この応力は、駆動部63を介して梁支持部402,403に伝達された後、梁部本体401に伝達される。それに伴い梁支持部402,403または梁部本体401の長さまたは形状が変化する。
 これにより、梁支持部402,403または梁部本体401の弾性係数が変化することで、共振周波数を変化させることができる。また、梁支持部402,403または梁部本体401の弾性係数の変化量は、圧電素子80に加える電圧を制御することにより変化する。
 本実施形態では、上述した実施形態と同様の効果を奏するとともに、調整部64から駆動部63を介して梁支持部402,403に加わる応力が梁部本体401の形状変化に生かされやすくなり、周波数調整の効率を向上させることができる。この場合、梁支持部402,403の変形により、梁部本体401及び梁支持部402,403全体としてのねじり弾性係数が変化するため、調整部64による応力の効果を高めるのに好適である。
 上述した第2~4実施形態も同様の梁支持部402,403を有することで、調整部64による周波数調整の効果が増幅されることは明らかである。
 以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
 例えば、第1実施形態では、各梁部62にそれぞれ駆動部63を連結する構成としたが、これに限られない。少なくとも一方の梁部62に駆動部63を連結する構成にしても構わない。また、各駆動部63とベース部56との間に調整部64を配置する構成としたが、これに限られない。一方の駆動部63とベース部56との間のみに調整部64を配置する構成にしても構わない。
 上述した各実施形態の構成を適宜組み合わせるような構成にしても構わない。
 上述においては、本発明の実施形態の光走査装置を、画像表示装置1における水平走査素子51に採用する構成について説明したが、垂直走査素子43に採用しても構わない。
 上述した本発明の実施形態の光走査装置を画像表示装置1における光走査素子51に限らずデジタル複写機や、レーザープリンタ、バーコードリーダー等の光走査装置として採用することも可能である。
 また、駆動部及び調整部は、2本以上の複数本設けても構わない。
 この出願は、2009年11月16日に出願された日本出願特願2009-260881を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明は、光走査装置に適用することができる。この光走査装置によれば、簡易な構成により共振周波数を高精度に調整でき、安定した動作を維持することができる。
51,151,251,351,451  水平走査素子(光走査装置) 
57   振動ミラー 
62,462  梁部(第1の梁部、第2の梁部) 
63,363a,363b    駆動部(第1の駆動部、第2の駆動部) 
64,164a,164b,164c 調整部(第1の調整部、第2の調整部) 
72   圧電素子 
80,180a,180b,180c 圧電素子 
91   静電容量検出回路(共振周波数検出部)

Claims (17)

  1.  入射した光を反射する振動ミラーと、
     前記振動ミラーの一端に連結された第1の梁部と、
     前記振動ミラーの他端に連結された第2の梁部と、
     前記第1の梁部に連結され、前記第1の梁部と前記第1の調整部との間に配置され、前記振動ミラーを揺動させる第1の駆動部と、
     前記第1の駆動部に連結され、前記第1の梁部を弾性変形させることで、前記第1の梁部の弾性係数を調整する第1の調整部とを有する光走査装置。
  2.  前記第1の駆動部が、圧電素子を含む請求項1に記載の光走査装置。
  3.  前記第1の調整部が、圧電素子を含む請求項1または請求項2に記載の光走査装置。
  4.  前記第1の梁部は、前記第1の駆動部に向けて少なくとも2本以上に分岐した構造を持つ梁支持部を備える請求項1ないし請求項3の何れか1項に記載の光走査装置。
  5.  前記第1の駆動部は、前記第1の梁部に対して対称位置の少なくとも2箇所以上に形成されている請求項1ないし請求項4の何れか1項に記載の光走査装置。
  6.  前記第1の調整部は、前記第1の梁部に対して対称位置の少なくとも2箇所以上に形成されている請求項1ないし請求項5の何れか1項に記載の光走査装置。
  7.  前記振動ミラー、前記第1の梁部、前記第1の駆動部、及び前記第1の調整部が、一体成形されている請求項1ないし請求項6の何れか1項に記載の光走査装置。
  8.  前記振動ミラーの共振周波数を検出する共振周波数検出部をさらに備え、共振周波数が一定となるよう前記第1の調整部を制御する請求項1ないし請求項7の何れか1項に記載の光走査装置。
  9.  前記第2の梁部に連結され、前記振動ミラーを揺動させる第2の駆動部をさらに有する請求項1ないし請求項8の何れか1項に記載の光走査装置。
  10.  前記第2の駆動部に連結され、前記第2の梁部を弾性変形させ、前記第2の梁部の弾性係数を調整する第2の調整部をさらに有する請求項9に記載の光走査装置。
  11.  前記第2の駆動部が、圧電素子を含む請求項9または請求項10に記載の光走査装置。
  12.  前記第2の調整部が、圧電素子を含む請求項9ないし請求項11の何れか1項に記載の光走査装置。
  13.  前記第2の梁部は、第2の駆動部に向けて少なくとも2本以上に分岐した構造を持つ梁支持部を備える請求項9ないし請求項12の何れか1項に記載の光走査装置。
  14.  前記第2の駆動部は、前記第2の梁部に対して対称位置の少なくとも2箇所以上に形成されている請求項9ないし請求項13の何れか1項に記載の光走査装置。
  15.  前記第2の調整部は、前記第2の梁部に対して対称位置の少なくとも2箇所以上に形成されている請求項9ないし請求項14の何れか1項に記載の光走査装置。
  16.  前記振動ミラー、前記第2の梁部、前記第2の駆動部、及び前記第2の調整部が、一体成形されている請求項9ないし請求項15の何れか1項に記載の光走査装置。
  17.  前記振動ミラーの共振周波数を検出する共振周波数検出部をさらに備え、共振周波数が一定となるよう前記第2の調整部を制御する請求項9ないし請求項16の何れか1項に記載の光走査装置。
PCT/JP2010/069192 2009-11-16 2010-10-28 光走査装置 WO2011058884A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011534440A JP4905611B2 (ja) 2009-11-16 2010-10-28 光走査装置
CN201080051426.XA CN102597847B (zh) 2009-11-16 2010-10-28 光扫描装置
US13/509,958 US8891148B2 (en) 2009-11-16 2010-10-28 Optical scanning device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-260881 2009-11-16
JP2009260881 2009-11-16

Publications (1)

Publication Number Publication Date
WO2011058884A1 true WO2011058884A1 (ja) 2011-05-19

Family

ID=43991543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069192 WO2011058884A1 (ja) 2009-11-16 2010-10-28 光走査装置

Country Status (4)

Country Link
US (1) US8891148B2 (ja)
JP (1) JP4905611B2 (ja)
CN (1) CN102597847B (ja)
WO (1) WO2011058884A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012058527A (ja) * 2010-09-09 2012-03-22 Ricoh Co Ltd 光偏向器、光走査装置、画像形成装置及び画像投影装置
JP2013250349A (ja) * 2012-05-30 2013-12-12 Toshiba Corp 露光装置及び画像形成装置ならびに露光装置の制御方法
WO2017018312A1 (ja) * 2015-07-27 2017-02-02 京セラ株式会社 ミラーデバイス
WO2017069263A1 (ja) * 2015-10-22 2017-04-27 京セラ株式会社 光走査装置
JP2020020865A (ja) * 2018-07-30 2020-02-06 三菱電機株式会社 光走査装置およびその駆動方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6201528B2 (ja) 2012-11-15 2017-09-27 株式会社リコー 光偏向装置、画像形成装置、ヘッドアップディスプレイ及び車両
CN103018895B (zh) * 2012-12-03 2016-03-16 东南大学 一种表面微机械加工的模拟微镜
EP2851733B1 (en) * 2013-08-28 2016-12-21 Ricoh Company Ltd. Optical deflection device and image forming apparatus
CN108166950B (zh) * 2018-02-02 2020-06-23 北京九尊能源技术股份有限公司 一种游梁式抽油机以及用于该抽油机的节能控制方法
TWI736493B (zh) * 2020-12-24 2021-08-11 千石科技股份有限公司 雙一維微機電鏡面元件
CN114690397A (zh) * 2020-12-25 2022-07-01 千石科技股份有限公司 双一维微机电镜面元件
DE102022117930A1 (de) 2022-07-18 2024-01-18 OQmented GmbH Mems-vorrichtung und verfahren zur herstellung der mems-vorrichtung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004191953A (ja) * 2002-11-26 2004-07-08 Brother Ind Ltd 光走査装置および画像形成装置
JP2006099045A (ja) * 2004-09-06 2006-04-13 Ricoh Co Ltd スキャナ素子、スキャナ素子の調整方法、光走査装置および画像形成装置
JP2007287931A (ja) * 2006-04-17 2007-11-01 Seiko Epson Corp アクチュエータの製造方法、および、アクチュエータ
JP2008096750A (ja) * 2006-10-12 2008-04-24 Seiko Epson Corp アクチュエータ、光スキャナおよび画像形成装置
JP2008304553A (ja) * 2007-06-05 2008-12-18 Seiko Epson Corp アクチュエータ、光スキャナおよび画像形成装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7446911B2 (en) 2002-11-26 2008-11-04 Brother Kogyo Kabushiki Kaisha Optical scanning apparatus and image forming apparatus
JP2006195290A (ja) 2005-01-14 2006-07-27 Ricoh Co Ltd 画像読取装置及び画像形成装置
JP4935013B2 (ja) * 2005-07-21 2012-05-23 ブラザー工業株式会社 光走査装置、画像表示装置及び光スキャナの共振周波数変更方法並びに反射ミラー位置の補正方法
JP2008070863A (ja) * 2006-08-14 2008-03-27 Ricoh Co Ltd 振動ミラー、光書込装置および画像形成装置
JP2009223246A (ja) * 2008-03-19 2009-10-01 Hitachi Ltd ミラー駆動方法ならびにそれを用いた表示装置
JP2009244330A (ja) 2008-03-28 2009-10-22 Funai Electric Co Ltd 投射型画像表示装置
KR20090106168A (ko) * 2008-04-04 2009-10-08 삼성전자주식회사 광주사 장치, 이를 채용한 화상 형성 장치 및 광주사 방법
JP2009260881A (ja) 2008-04-21 2009-11-05 Nec Saitama Ltd 基地局間同期方法および該方法を用いた移動通信システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004191953A (ja) * 2002-11-26 2004-07-08 Brother Ind Ltd 光走査装置および画像形成装置
JP2006099045A (ja) * 2004-09-06 2006-04-13 Ricoh Co Ltd スキャナ素子、スキャナ素子の調整方法、光走査装置および画像形成装置
JP2007287931A (ja) * 2006-04-17 2007-11-01 Seiko Epson Corp アクチュエータの製造方法、および、アクチュエータ
JP2008096750A (ja) * 2006-10-12 2008-04-24 Seiko Epson Corp アクチュエータ、光スキャナおよび画像形成装置
JP2008304553A (ja) * 2007-06-05 2008-12-18 Seiko Epson Corp アクチュエータ、光スキャナおよび画像形成装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012058527A (ja) * 2010-09-09 2012-03-22 Ricoh Co Ltd 光偏向器、光走査装置、画像形成装置及び画像投影装置
JP2013250349A (ja) * 2012-05-30 2013-12-12 Toshiba Corp 露光装置及び画像形成装置ならびに露光装置の制御方法
WO2017018312A1 (ja) * 2015-07-27 2017-02-02 京セラ株式会社 ミラーデバイス
JPWO2017018312A1 (ja) * 2015-07-27 2018-05-24 京セラ株式会社 ミラーデバイス
WO2017069263A1 (ja) * 2015-10-22 2017-04-27 京セラ株式会社 光走査装置
JP2020020865A (ja) * 2018-07-30 2020-02-06 三菱電機株式会社 光走査装置およびその駆動方法

Also Published As

Publication number Publication date
US20120275000A1 (en) 2012-11-01
JP4905611B2 (ja) 2012-03-28
JPWO2011058884A1 (ja) 2013-03-28
US8891148B2 (en) 2014-11-18
CN102597847A (zh) 2012-07-18
CN102597847B (zh) 2014-04-30

Similar Documents

Publication Publication Date Title
JP4905611B2 (ja) 光走査装置
US7446911B2 (en) Optical scanning apparatus and image forming apparatus
JP5761194B2 (ja) 光走査装置および画像表示装置
US9091856B2 (en) Optical reflecting element
JP4409811B2 (ja) 光走査装置、光書込装置、画像形成装置、振動ミラーチップ及び光走査モジュール
JP6447683B2 (ja) 走査型微小電気機械反射鏡システム、光検出及び測距(lidar)装置、及び走査型微小電気機械反射鏡システムの作動方法
JP5614167B2 (ja) 光偏向器、光走査装置、画像形成装置及び画像投影装置
JP2005128147A (ja) 光偏向器及び光学装置
JP2011018026A (ja) 光偏向器、光走査装置、画像形成装置及び画像投影装置
WO2010035469A1 (ja) 光スキャナ及びこの光スキャナを備えた画像表示装置
JP4972781B2 (ja) マイクロスキャナ及びそれを備えた光走査装置。
US9335543B2 (en) Optical scanner, image display device, head mount display, and heads-up display
WO2012115264A1 (ja) 光走査装置
US8830550B2 (en) Light deflector, method of manufacturing light deflector, and image display device
JP2010237519A (ja) 光スキャナ
JP2011069954A (ja) 光スキャナ
JP2013160891A (ja) 振動ミラー素子およびプロジェクタ機能を有する電子機器
JP2010002777A (ja) マイクロミラーデバイス、光走査装置及び画像形成装置
JP4910902B2 (ja) マイクロスキャナ及びそれを備えた光走査装置。
JP2013160892A (ja) 振動ミラー素子、振動ミラー素子の製造方法およびプロジェクタ機能を有する電子機器
EP1586933A1 (en) Light scanner and image-forming apparatus
JP5077139B2 (ja) 光学反射素子
JP5381751B2 (ja) 光スキャナ、及び光スキャナを用いた画像表示装置
JP4620789B1 (ja) 光走査装置
JP7175816B2 (ja) 光学装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080051426.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10829844

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011534440

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13509958

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10829844

Country of ref document: EP

Kind code of ref document: A1