WO2011058737A1 - 固体撮像装置及びその製造方法 - Google Patents

固体撮像装置及びその製造方法 Download PDF

Info

Publication number
WO2011058737A1
WO2011058737A1 PCT/JP2010/006574 JP2010006574W WO2011058737A1 WO 2011058737 A1 WO2011058737 A1 WO 2011058737A1 JP 2010006574 W JP2010006574 W JP 2010006574W WO 2011058737 A1 WO2011058737 A1 WO 2011058737A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
state imaging
imaging device
wiring
receiving area
Prior art date
Application number
PCT/JP2010/006574
Other languages
English (en)
French (fr)
Inventor
清彦 山田
康司 中桐
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN2010800190824A priority Critical patent/CN102422417A/zh
Priority to JP2011514934A priority patent/JPWO2011058737A1/ja
Priority to EP10829701A priority patent/EP2500942A1/en
Publication of WO2011058737A1 publication Critical patent/WO2011058737A1/ja
Priority to US13/242,654 priority patent/US20120007148A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02325Optical elements or arrangements associated with the device the optical elements not being integrated nor being directly associated with the device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/41Extracting pixel data from a plurality of image sensors simultaneously picking up an image, e.g. for increasing the field of view by combining the outputs of a plurality of sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a solid-state imaging device, and more particularly to a solid-state imaging device for realizing a small and thin solid-state imaging device.
  • camera modules are required to be miniaturized, in particular, shortened height dimensions and footprints.
  • Improvement of the circuit configuration of a chip of a signal processor (DSP) is being promoted, but not only that, but a so-called system-on-chip in which a circuit of a DSP function is arranged around a solid-state imaging device using a CMOS process. (SOC) type solid-state imaging devices have been widely used.
  • DSP signal processor
  • the translucent substrate 101 when using a glass substrate as the translucent substrate 101, wiring (metal wiring) 102 using a metal film formed by a thin film deposition process or an electroless plating process is often used.
  • the wiring 102 since light is not easily transmitted through the metal film, the wiring 102 must be formed avoiding the light receiving area 105 of the solid-state imaging device 106 (see FIG. 10).
  • a CMOS compared with a CCD, a CMOS has a larger number of terminals (solder balls 108) connected to a substrate and a smaller pad pitch. Therefore, the area of the translucent substrate 101 is significantly larger than the actual solid-state image sensor 106.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a solid-state imaging device that can be reduced in size and thickness.
  • the solid-state imaging device of the present invention optically A transparent conductive pattern is used as the wiring.
  • the present invention by using an optically transparent conductive pattern, wiring can be performed on the light receiving area, the degree of freedom of wiring is increased, and the solid-state imaging device is substantially miniaturized. It is.
  • the solid-state imaging device of the present invention comprises a terminal electrode for outputting an electrical signal to the outside on a glass substrate, and an internal electrode for joining the solid-state imaging device to the glass substrate with a conductive adhesive, And the internal electrode are connected by an optically transparent conductive wiring that passes through the upper surface of the light receiving area of the solid-state image sensor, and the solid-state image sensor is formed in the gap between the solid-state image sensor and the glass substrate.
  • the range excluding the light receiving area is sealed with sealing resin.
  • the solid-state imaging device of the present invention includes a translucent substrate including a terminal electrode for external connection, an internal electrode that joins a solid-state imaging device, and a wiring that connects the terminal electrode and the corresponding internal electrode. And a solid-state imaging device arranged so that a light-receiving area faces the translucent substrate and connected to the internal electrode, and the wiring is at least in a region facing the light-receiving area of the solid-state imaging device Is made of a translucent conductive film.
  • the wiring connecting the internal electrode and the terminal electrode is formed of a translucent conductive film, and the wiring is provided on the light receiving area, so that the degree of freedom of wiring is increased and the solid-state imaging device is substantially Can be reduced in size.
  • a sealing resin is filled in a region of the gap between the solid-state imaging element and the translucent substrate, excluding a light receiving area of the solid-state imaging element.
  • the light receiving area of the solid-state imaging device is rectangular, and the wiring is configured to run obliquely at corners of the rectangle. According to this configuration, the wiring is formed at the peripheral portion of the light receiving area of the solid-state imaging device, and the degree of freedom of wiring can be improved without adversely affecting the imaging characteristics of the solid-state imaging device.
  • the terminal electrode is arranged along each side of the translucent substrate. According to this configuration, since the terminal electrode formation region can be increased, the mounting workability is improved.
  • the internal electrodes are arranged along two opposite sides of the solid-state imaging element. According to this configuration, since the wiring is formed across the light receiving area of the solid-state imaging device, the internal electrode is formed along two opposite sides and the terminal electrode is formed over the other side. However, the wiring length of the wiring connecting the internal electrode and the terminal electrode can be reduced, and a highly reliable wiring can be provided.
  • the translucent substrate is a glass substrate.
  • the wiring has at least an upper surface facing the light-receiving area of the solid-state imaging element made of a light-transmitting conductive film, and a metal film in a region other than the light-receiving area It is made up of.
  • the wiring is configured with a light-transmitting conductive film in the light receiving area, and is configured with a metal film in other regions, thereby suppressing the increase in wiring resistance to the maximum and providing a high degree of design freedom.
  • a semiconductor device can be provided.
  • the translucent electrode is composed of an indium tin oxide layer. According to this configuration, good translucency can be obtained with low resistance.
  • the solid-state imaging device a plurality of solid-state imaging elements are disposed on the light-transmitting substrate. According to this configuration, even if the wiring becomes complicated, the wiring can be efficiently performed with the shortest wiring length. Therefore, the exclusive area required for the wiring can be reduced and the size can be reduced. The operating speed can be improved by reducing the resistance.
  • the plurality of solid-state imaging elements are integrated on the same substrate, and the wiring is in a light-receiving area of the solid-state imaging element in a region facing the solid-state imaging element. Is disposed so as to face the wiring region surrounding the. According to this configuration, for example, by forming the wiring on the charge transfer portion, it is possible to facilitate the wiring while suppressing a decrease in the amount of received light.
  • the solid-state imaging device is configured by a photoelectric conversion unit including a photodiode and a charge transfer unit that transfers charges obtained by the photoelectric conversion unit, and the wiring is The region facing the solid-state imaging device is formed in a region facing the charge transfer unit.
  • the translucent substrate in the solid-state imaging device, includes an optical filter that transmits light in a specific wavelength band, and a light-shielding film formed at a portion corresponding to a boundary between the plurality of imaging regions. It has. According to this configuration, since the translucent substrate includes both the optical filter and the light shielding film that defines the imaging region, a small and thin solid-state imaging device can be provided.
  • the method for manufacturing the solid-state imaging device may include aligning the protruding electrode formed on the connection terminal portion of the solid-state imaging element with the internal electrode of the translucent substrate, and using a conductive adhesive. Joining the projecting electrode and the internal electrode, and sealing a region excluding a light receiving area of the solid-state imaging device. According to this method, it is possible to easily form a highly reliable solid-state imaging device.
  • the light-transmitting substrate is formed on a glass substrate and a surface of the glass substrate facing the solid-state imaging element attachment surface, and emits light in a specific wavelength band.
  • An optical filter to be transmitted; and a light shielding film formed at a portion corresponding to a boundary between the plurality of imaging regions, and the sealing step is cured in the transmission wavelength band of the optical filter after the bonding step.
  • the imaging device can be downsized.
  • FIG. Sectional drawing which shows the solid-state imaging device of this Embodiment 1. Partially exploded perspective view of the solid-state imaging device of Embodiment 1 Partial assembly diagram of solid-state imaging device according to Embodiment 1 Partially exploded perspective view of the solid-state imaging device of Embodiment 1 Assembly completed drawing of solid-state imaging device of Embodiment 1 Sectional drawing of the assembly completion figure of the solid-state imaging device of this Embodiment 1 Upper surface outline explanatory drawing of the solid-state imaging device of this Embodiment 3. External view of compound eye lens using solid-state imaging device of Embodiment 3 Top view explanatory diagram showing a conventional solid-state imaging device
  • the solid-state imaging device according to Embodiment 1 connects a terminal electrode that outputs an electrical signal to the outside and an internal electrode 3 for joining the solid-state imaging device 5 to a glass substrate as the translucent substrate 1.
  • a terminal electrode that outputs an electrical signal to the outside and an internal electrode 3 for joining the solid-state imaging device 5 to a glass substrate as the translucent substrate 1.
  • wiring on the light receiving area 6 can be performed, the degree of freedom of the wiring 2 can be increased, and the solid-state imaging device can be substantially downsized. . That is, in this solid-state imaging device, as shown in FIGS.
  • a terminal electrode 4 that outputs an electrical signal to the outside on a glass substrate as a translucent substrate 1, and a solid-state imaging device 5 on the glass substrate.
  • a terminal electrode 4 and the internal electrode 3 are formed with an internal electrode 3 and an optically transparent conductive wiring 2.
  • the terminal electrode 4 and the internal electrode 3 are connected by an optically transparent conductive wiring 2 that passes through the upper surface of the light receiving area 6 of the solid-state imaging device 5, that is, a translucent conductive film.
  • a sealing resin 10 seals a range of the gap between the solid-state imaging device 5 and the translucent substrate 1 excluding the light receiving area 6 of the solid-state imaging device 5.
  • the solid-state imaging device includes a photoelectric conversion unit made of a photodiode and a charge transfer unit that transfers charges obtained by the photoelectric conversion unit.
  • FIG. 2 is a cross-sectional view taken along the line AA of FIG.
  • the solid-state imaging device of the present invention includes a translucent substrate 1 and a solid-state imaging element 5 as shown in a schematic top view in FIG.
  • the translucent substrate 1 includes a terminal electrode 4 for external connection, an internal electrode 3 that joins a solid-state imaging device, and a translucent conductive film that connects the terminal electrode 4 and the corresponding internal electrode 3.
  • Wiring 2 is provided.
  • the solid-state imaging device 5 is disposed so that a light receiving area faces the translucent substrate 1 and is connected to the internal electrode 3. Further, the wiring 2 is formed of a translucent conductive film at least in a region facing the light receiving area 6 of the solid-state imaging device 5.
  • Reference numeral 8 denotes a solder ball as a bump connected to the terminal electrode 4.
  • a solid-state imaging device (chip) 5 in which a light receiving area, that is, an imaging region 6 is formed on a silicon substrate as a semiconductor substrate is used.
  • the wiring 2 which consists of translucent electrically conductive films, such as the internal electrode 3, the terminal electrode 4, and indium tin oxide (ITO), is formed in the glass substrate as the translucent board
  • This translucent conductive film is formed by the following method, for example. First, a photosensitive resin film is formed by a wet coating method. Then, after pre-baking, UV exposure is performed through a predetermined mask using a high pressure discharge lamp, etc., development and baking are performed, and wiring 2 such as indium tin oxide (ITO) is formed.
  • ITO indium tin oxide
  • the solid-state imaging device 5 and the wiring 2 of the translucent substrate 1 are overlapped so as to face each other, and the solid-state imaging device 5 and the internal electrode 3 connected to the wiring 2 are connected to the electrical connection portion 14 (glass substrate).
  • the electrical connection portion 14 Glass substrate.
  • FIG. 3 is a partially broken partially exploded perspective view of the solid-state imaging device according to the first embodiment.
  • an electrode pad constituting the internal electrode 3 and the terminal electrode 4 is formed on a translucent glass substrate as the translucent substrate 1, and the internal electrode 3 and the terminal electrode are formed.
  • Each 4 is electrically connected by wiring on the glass substrate surface.
  • the internal electrode 3 and the terminal electrode 4 are for connection with the solid-state imaging device 5 and are provided corresponding to the metal bumps 15 formed around each imaging region (light receiving area) 6 of the solid-state imaging device 5. Wiring connection can be made directly from each imaging region.
  • the terminal electrode 4 is for electrical connection with a printed wiring board that takes out the signal of the solid-state imaging device 5 to the outside.
  • the solid-state imaging device 5 has a structure in which an imaging region (light receiving area) 6 is formed on a silicon substrate.
  • a metal bump 15 is formed on an electrical wiring pad (not shown) on the back surface of the solid-state imaging device (substrate) 5 and mounted on the electrode pad constituting the internal electrode 3.
  • insulative sealing resin 7 is injected around the electrical connection portion 14 between the metal bump 15 and the electrode pad (3) in order to ensure the adhesion strength and electrical connection reliability of the solid-state imaging device 5.
  • FIG. 4 is a partial assembly diagram of the solid-state imaging device according to the first embodiment.
  • a solid-state imaging device 5 is mounted on the translucent substrate 1 and an insulating sealing resin 7 is injected.
  • the insulating sealing resin 7 surrounds the periphery of the electrical connection portion 14 of the metal bump 15 of the solid-state imaging device 5 without leaking to the imaging region, and ensures adhesion strength. is doing.
  • a solder ball 8 is attached on the electrode pad of the terminal electrode 4.
  • FIG. 5 is a partially exploded perspective view of the solid-state imaging device according to the first embodiment.
  • the translucent substrate 1 on which the solid-state imaging device 5 is mounted and the solder balls 8 are attached is inverted and solder-mounted on the printed circuit board 9 and is reinforced by underfill (sealing resin) 10.
  • underfill solder resin
  • the insulating sealing resin 7 injected in the previous step is exposed.
  • a lens housing 12 in which a plurality of lenses 11 are installed from above is prepared.
  • the lens housing 12 is mounted with the surface of the translucent substrate 1 on the side where the solid-state imaging device 5 is not mounted as a reference plane, and is integrated with the printed wiring board 9 to complete a solid-state imaging device.
  • solder mounting is directly performed on the printed wiring board using solder balls.
  • an indirect conduction method in which a conductive member is interposed is used according to the thickness of the solid-state imaging device. Also good. Further, a method of cutting the printed wiring board side or making a through hole may be used.
  • FIG. 6 is an assembly completion diagram of the solid-state imaging device according to the first embodiment.
  • FIG. 7 is a cross-sectional view of the completed assembly of the solid-state imaging device according to the first embodiment.
  • the translucent substrate 1 is mounted on the surface of the printed wiring board 9 via the solder balls 8, and the periphery of the solder balls 8 is reinforced by the underfill 10.
  • a solid-state imaging device 5 having an imaging region (light-receiving area) 6 that is integrated into two is mounted via an electrical connection portion 14, and there is insufficient insulating sealing resin 7 around it. It is poured and hardened without any problems. Further, the insulating sealing resin 7 does not leak into the imaging region (light receiving area) 6 of the solid-state imaging device 5 by the manufacturing method of the present invention described later.
  • the lens housing 12 in which the lens 11 is installed is mounted on the surface of the translucent substrate 1 on the side where the solid-state imaging device 5 is not mounted.
  • the optical information in the compound eye lens 11 does not leak light next to it, and the distance from the translucent substrate 1 is made constant with high accuracy. 1 is incident on each imaging region (light-receiving area) 6 of the solid-state imaging device 5 mounted in 1. Further, the adhesion strength between the solid-state imaging device 5 and the translucent substrate 1 and the adhesion strength between the translucent substrate 1 and the printed wiring board 9 are sufficiently reinforced by the insulating sealing resin 7 and the underfill 10 to ensure the strength. ing. In addition, the connection between the solid-state imaging device 5 and the translucent substrate 1 is performed by using an electrode wiring pad (around the imaging region) corresponding to each imaging region without routing the wiring in the solid-state imaging device 5.
  • each imaging region (light receiving area) 6 can be directly connected to the wiring on the translucent substrate 1. Therefore, bumps are not concentrated on the peripheral portion of the solid-state imaging device substrate (chip), and noise caused by unnecessary wiring routing can be suppressed.
  • the size of the translucent substrate 1 is lateral L0 and longitudinal L2 with respect to the light receiving area L1, and comparing the lateral L4 and longitudinal L5 of the translucent substrate 101 of the conventional example shown in FIG.
  • the width L0 of the present invention is significantly smaller than the width L4 of the conventional example (L0 ⁇ L4, L2 ⁇ L5).
  • the implementation of the present invention is effective for downsizing the solid-state imaging device.
  • substrate 1 what formed the optical filter film
  • the terminal electrode is arranged along each side of the translucent substrate because it is configured to run obliquely at the corner of the rectangular light receiving area of the solid-state imaging device. Can improve the degree of freedom of wiring without adversely affecting the imaging characteristics of the solid-state imaging device even when the solid-state imaging device is arranged along two opposite sides.
  • the solid-state imaging device a plurality of solid-state imaging elements are disposed on the light-transmitting substrate. According to this configuration, even if the wiring becomes complicated, the wiring can be efficiently performed with the shortest wiring length. Therefore, the exclusive area required for the wiring can be reduced and the size can be reduced. The operating speed can be improved by reducing the resistance.
  • the plurality of solid-state imaging elements may be integrated on the same substrate.
  • the wiring is arranged to face the wiring region surrounding the light receiving area of the solid-state imaging device. According to this configuration, for example, by forming the wiring on the charge transfer portion, it is possible to facilitate the wiring while suppressing a decrease in the amount of received light.
  • the protruding electrode formed on the connection terminal portion of the solid-state imaging element is aligned with the internal electrode of the translucent substrate, and a conductive adhesive is used.
  • the protruding electrode and the internal electrode are joined to seal a region excluding a light receiving area of the solid-state imaging device.
  • a region other than the light receiving area of the solid-state imaging device is sealed with a photocurable resin that causes a curing reaction in the transmission wavelength band of the optical filter. According to this method, it is possible to form a solid-state imaging device with high reliability without intrusion of resin into the light receiving area.
  • the wiring on the glass substrate is made of a translucent conductive film.
  • the region other than the imaging region (light receiving area) is made of a metal film.
  • the wiring is configured with a light-transmitting conductive film in the light receiving area, and is configured with a metal film in other regions, thereby suppressing the increase in wiring resistance to the maximum and providing a high degree of design freedom.
  • a semiconductor device can be provided.
  • a solid-state imaging device will be described with reference to FIGS.
  • two solid-state imaging devices 35a and 35b are arranged on a glass substrate as the translucent substrate 31 here.
  • An optically transparent conductive pattern as a wiring material for connecting the terminal electrode 34 for outputting an electric signal to the outside of the chip and the internal electrode 33 for joining the solid-state imaging devices 35a and 35b to the translucent substrate 31.
  • wiring can be performed on the light receiving area 36, the degree of freedom of the wiring 32 can be increased, and the solid-state imaging device can be substantially downsized. That is, as shown in FIG.
  • this solid-state imaging device conducts a terminal electrode 34 for outputting an electric signal to the outside on a glass substrate as a translucent substrate 31, and conducts solid-state imaging elements 35a and 35b on the glass substrate.
  • An optically transparent conductive wiring 32 that passes through the upper surface of the light receiving area 36 of the solid-state imaging device 35a, 35b through the internal electrode 33 for bonding with the adhesive, the terminal electrode 34, and the internal electrode 3
  • the housing 50 is connected to the light-transmitting conductive film, and the range between the solid-state image pickup devices 35a and 35b and the light-transmitting substrate 31 excluding the light receiving area 36 of the solid-state image pickup devices 35a and 35b. It is sealed.
  • each of the solid-state imaging devices 35a and 35b includes a photoelectric conversion unit including a photodiode and a charge transfer unit that transfers charges obtained by the photoelectric conversion unit.
  • FIG. 9 is a perspective view showing a compound eye camera using the solid-state imaging device of FIG.
  • the compound-eye camera of the present invention has a terminal electrode 34 for external connection, an internal electrode 33 for joining a solid-state imaging device, and the terminal electrode 34 corresponding to the terminal electrode 34, as shown in FIG.
  • a glass substrate as a light-transmitting substrate 31 provided with a wiring 32 made of a light-transmitting conductive film such as indium tin oxide (ITO) connecting the internal electrode 33, and a light receiving area 36 so as to face the glass substrate.
  • the solid-state imaging devices 35a and 35b connected to the internal electrode 33, and the wiring 32 is translucent at least in a region facing the light receiving area 36 of the solid-state imaging devices 35a and 35b. It is characterized by comprising a conductive film.
  • a light receiving area 36 that is, two imaging regions are formed on a silicon substrate as a semiconductor substrate, and the solid-state imaging device 35a, What formed 35b is used.
  • the translucent substrate 31 is formed with an internal electrode 33, a terminal electrode 34, and a wiring 32 made of a translucent conductive film.
  • the solid-state imaging elements 35a and 35b and the wiring 32 of the translucent substrate 31 are overlapped so that the solid-state imaging elements 35a and 35b and the internal electrode 33 connected to the wiring 2 are electrically connected.
  • it is mounted on a casing 50 composed of a lower barrel 41 and an upper barrel 42.
  • 43 is a light shielding wall
  • 44 is a lens
  • 45 is a stop.
  • the two imaging regions (light receiving areas) 36 are formed on a single semiconductor substrate, and thus have a highly accurate baseline length. As a result, it is possible to have a highly accurate ranging characteristic. In this way, it is possible to obtain a solid-state imaging device having good imaging characteristics, high-precision ranging characteristics, and high electrical connection reliability due to high strength. In particular, it is effective for application to an in-vehicle camera that requires a ranging function and high reliability.
  • a solid-state imaging device in which two imaging regions are integrated and formed on a semiconductor substrate has been described.
  • three or more imaging regions are integrally formed on a semiconductor substrate.
  • an electrode wiring pad may be formed around each imaging region to form a bump.
  • the electrode wiring pad forming region is adjusted as appropriate, and a plurality of imaging regions are formed. A method of forming an electrode wiring pad for each case is also applicable.
  • a glass substrate is used as the translucent substrate, but the present invention is not limited to glass, and a resin translucent substrate may be used.
  • the light receiving area accurately indicates the light receiving area of the solid-state imaging device, that is, the imaging area.
  • the solid-state imaging device is composed of a plurality of pixels, it is not necessary to be a light-transmitting conductive film in the inter-pixel region, and it is sufficient if it is a light-transmitting conductive film on the image pixel.
  • indium tin oxide, tin oxide, zinc oxide, or the like can be applied as the translucent conductive film.
  • a method for forming this light-transmitting conductive film those using the photosensitive ITO paint described in the above embodiment are effective, but other sputtering methods, vacuum deposition methods, sol-gel methods, cluster beam deposition methods, A PLD method, an ink jet drawing method, or the like is applicable.
  • wiring can be formed on the light receiving area by forming the wiring using the optically transparent conductive pattern, and the degree of freedom of wiring is increased and the solid-state imaging device. Can be reduced in size, and can be easily applied to small cameras such as portable terminals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Studio Devices (AREA)

Abstract

 小型化薄型化が可能な固体撮像装置を提供する。 本発明の固体撮像装置は、従来ガラス基板上に光学的に不透明なパターンを配線して固体撮像素子をフリップ実装していたのに対して、本発明では光学的に透明な導電性パターンを用いることで、受光エリア上に配線可能とし、配線の自由度を増大するとともに、固体撮像装置を実質的に小型化する。

Description

[規則37.2に基づきISAが決定した発明の名称] 固体撮像装置及びその製造方法
 本発明は、固体撮像装置に係り、特に小型でかつ薄型の固体撮像装置を実現するための固体撮像装置に関するものである。
 従来、所定の端子が設けられたガラス基板に、前記ガラス基板と離隔し固体撮像素子の接続端子にAuなどの金属からなるバンプを形成し、前記ガラスの端子とバンプを接続するいわゆるフェースダウン実装する撮像装置が提案されている(例えば特許文献1、特許文献2)。
 しかしながら、特に携帯電話機の小型化と高機能化により、カメラモジュールには小型化、特に高さ寸法の短縮とフットプリントの縮小が求められている。
 そして、その対策の一つとして固体撮像素子の画素寸法を縮小し、カメラモジュールの高さの大部分を占める光学系の寸法(撮像素子とレンズ天面寸法)を小さくする設計が追及されている。
 またカメラモジュールの実装面積の縮小化やコストダウンを実現する為に、従来はCCDイメージセンサとその出力信号を電気的に補正して、カメラの解像度や色調、シェーディングなどを補正するデバイス(デジタル・シグナル・プロセッサ:DSP)のチップの回路構成の改良が進められているが、それだけではなく、CMOSプロセスを用いた固体撮像素子の周辺部に、DSP機能の回路を配置したいわゆるシステム・オン・チップ(SOC)型の固体撮像素子が広く用いられるようになってきている。
日本国特開平6-204442号公報 日本国特開平7-231074号公報
 従来、透光性基板101としてのガラス基板を用いる場合にも薄膜蒸着プロセスや無電解メッキプロセスで形成した金属膜を用いた配線(金属配線)102が用いられることが多い。このような透光性基板101においては、金属膜を光が透過しにくいので固体撮像素子106の受光エリア105を避けて配線102を形成するしかなかった(図10参照)。一般的にCCDと比較してCMOSは、基板に接続する端子(半田ボール108)数が多くパッドピッチも狭い。従って実際の固体撮像素子106に対して、透光性基板101の面積が大幅に大きくなってしまう。
 その結果、カメラモジュール基板の実装面積の拡大を招き、小型化や薄型化の要求が十分に満たされないという課題があった。
 本発明は、前記実情に鑑みてなされたもので、小型化・薄型化が可能な固体撮像装置を提供することを目的とする。
 上記課題を解決する為に、ガラス基板上に、光学的に不透明なパターンを配線して固体撮像素子をフリップ実装していた従来の方法に代えて、本発明の固体撮像装置では、光学的に透明な導電性パターンを配線として用いるものである。このように、本発明では、光学的に透明な導電性パターンを用いることで、受光エリア上に配線できるようにし、配線の自由度を増大するとともに、固体撮像装置を実質的に小型化するものである。
 本発明の固体撮像装置は、ガラス基板上に、外部に電気信号を出力する端子電極と、ガラス基板に固体撮像素子を導電性接着剤により接合するための内部電極とを具備し、前記端子電極と内部電極とを、前記固体撮像素子の受光エリア上面を通過する、光学的に透明な導電性の配線で接続するとともに、前記固体撮像素子と前記ガラス基板との隙間のうち前記固体撮像素子の受光エリアを除く範囲を封止樹脂で封止している。
 すなわち、本発明の固体撮像装置は、外部接続用の端子電極と、固体撮像素子を接合する内部電極と、前記端子電極と対応する前記内部電極とを接続する配線とを具備した透光性基板と、前記透光性基板に受光エリアが対向するように配置され、前記内部電極に接続された固体撮像素子とを具備し、前記配線は、少なくとも前記固体撮像素子の受光エリアに対向する領域においては、透光性導電膜で構成されたことを特徴とする。
 この構成によれば、内部電極と端子電極とを結ぶ配線を、透光性導電膜で構成し、受光エリア上に配線することで、配線の自由度を増大するとともに、固体撮像装置を実質的に小型化することができる。
 また、本発明では、上記固体撮像装置において、前記固体撮像素子と前記透光性基板との隙間のうち前記固体撮像素子の受光エリアを除く領域に封止樹脂が充填されたことを特徴とする。
 この構成によれば、固体撮像素子への水分の浸入も抑止可能であり、さらなる保護材料が不要であるため小型化が可能となる。
 また、本発明では、上記固体撮像装置において、前記固体撮像素子の前記受光エリアは、長方形であり、前記配線は、前記長方形の角部を斜めに走行するように構成される。
 この構成によれば、配線は固体撮像素子の前記受光エリアの周縁部に形成され、固体撮像素子の撮像特性に悪影響を与えることなく、配線自由度を向上することができる。
 また、本発明では、上記固体撮像装置において、前記端子電極は、前記透光性基板の各辺に沿って配列される。
 この構成によれば、端子電極形成領域を増大することができるため、実装作業性が向上する。
 また、本発明では、上記固体撮像装置において、前記内部電極は、前記固体撮像素子の相対向する2辺に沿って配列される。
 この構成によれば、固体撮像素子の受光エリアを横切って配線が形成されているため、内部電極が相対向する2辺に沿って形成され、端子電極が他の辺にわたって形成されている場合にも、内部電極と端子電極とを結ぶ配線の配線長を低減することができ、信頼性の高い配線を提供することが可能となる。
 また、本発明では、上記固体撮像装置において、前記透光性基板は、ガラス基板である。
 この構成により、水分の浸透を抑制し、化学的に安定であることから、信頼性の高い固体撮像装置を形成することが可能となる。
 また、本発明では、上記固体撮像装置において、前記配線は、少なくとも前記固体撮像素子の受光エリアに対向する上面が、透光性導電膜で構成されるとともに、受光エリア以外の領域では、金属膜で構成されるようにしている。
 この構成によれば、配線は受光エリアでは透光性導電膜で構成され、それ以外の領域では金属膜で構成することで、配線抵抗の増大を最大限に抑制しつつ、設計自由度の高い半導体装置を提供することができる。
 また、本発明では、上記固体撮像装置において、前記透光性電極は、酸化インジウム錫層で構成される。
 この構成によれば、低抵抗で良好な透光性を得ることができる。
 また、本発明では、上記固体撮像装置において、前記透光性基板上に複数の固体撮像素子が配設されたことを特徴とする。
 この構成によれば、配線が複雑となっても、最短の配線長で効率よく配線を行うことができるため、配線に要する専有面積の低減を図り、小型化をはかることができるだけでなく、配線抵抗の低減により動作速度を向上することができる。
 また、本発明では、上記固体撮像装置において、前記複数の固体撮像素子は同一基板上に集積化されており、前記配線は、前記固体撮像素子に対向する領域では、前記固体撮像素子の受光エリアを囲む配線領域に対向するように配設される。
 この構成によれば、たとえば電荷転送部上に配線を形成することで、受光量の低下を抑制しつつも、配線の容易化をはかることができる。
 また、本発明では、上記固体撮像装置において、前記固体撮像素子はそれぞれフォトダイオードからなる光電変換部と、前記光電変換部で得られた電荷を転送する電荷転送部とで構成され、前記配線は、前記固体撮像素子に対向する領域では、前記電荷転送部に対向する領域に形成される。
 また、本発明では、上記固体撮像装置において、前記透光性基板が、特定の波長帯域の光を透過させる光学フィルタと、前記複数の撮像領域の境界に対応する部分に形成された遮光膜とを具備している。
 この構成によれば、透光性基板が光学フィルタと撮像領域を規定する遮光膜とも具備しているため、小型でかつ薄型の固体撮像装置を提供することができる。
 また、本発明では、上記固体撮像装置の製造方法が、前記透光性基板の前記内部電極に、前記固体撮像素子の接続端子部に形成された突起電極を位置合わせし、導電性接着剤により前記突起電極と前記内部電極とを接合する工程と、前記固体撮像素子の受光エリアを除く領域を封止する工程とを含む。
 この方法によれば、容易に信頼性の高い固体撮像装置を形成することが可能となる。
 また、本発明では、上記固体撮像装置の製造方法において、前記透光性基板が、ガラス基板と、前記ガラス基板の前記固体撮像素子貼着面の対面に形成され、特定の波長帯域の光を透過させる光学フィルタと、前記複数の撮像領域の境界に対応する部分に形成された遮光膜とを具備し、前記封止する工程は、前記接合する工程後、前記光学フィルタの透過波長帯域で硬化反応を生じる光硬化性樹脂で、前記固体撮像素子の受光エリアを除く領域を封止する工程を含む。
 この構成によれば、受光エリアへの樹脂の侵入もなく信頼性の高い固体撮像装置を形成することが可能となる。
 以上説明したように、本発明によれば、光学的に透明な導電性パターンを用いて配線を形成することで、受光エリアの上に配線することが可能となり、配線の自由度が増大し固体撮像装置を小型化することが可能になる。
本実施の形態1の固体撮像装置の上面概要説明図 本実施の形態1の固体撮像装置を示す断面図 本実施の形態1の固体撮像装置の部分分解斜視図 本実施の形態1の固体撮像装置の部分組立て図 本実施の形態1の固体撮像装置の部分分解斜視図 本実施の形態1の固体撮像装置の組立て完成図 本実施の形態1の固体撮像装置の組立て完成図の断面図 本実施の形態3の固体撮像装置の上面概要説明図 本実施の形態3の固体撮像装置を用いた複眼レンズの外観図 従来の固体撮像装置を示す上面説明図
 以下、本発明に係る実施の形態について図面を参照して詳細に説明する。
 (実施の形態1)
 実施の形態1の固体撮像装置について図1乃至図7に基づいて説明する。
 本発明の実施の形態1の固体撮像装置は、外部に電気信号を出力する端子電極と、透光性基板1としてのガラス基板に固体撮像素子5を接合するための内部電極3とを接続する配線2の材料として、光学的に透明な導電性パターンを用いることで、受光エリア6上に配線可能とし、配線2の自由度を増大でき、固体撮像装置を実質的に小型化するものである。
 すなわち、この固体撮像装置においては、図1及び図2に示すように、透光性基板1としてのガラス基板上に、外部に電気信号を出力する端子電極4と、ガラス基板に固体撮像素子5を導電性接着剤により接合するための内部電極3と、光学的に透明な導電性の配線2とが形成されている。そしてこの端子電極4と内部電極3とを、固体撮像素子5の受光エリア6上面を通過する、光学的に透明な導電性の配線2、すなわち透光性導電膜で接続する。さらに固体撮像素子5と前記透光性基板1との隙間のうち前記固体撮像素子5の受光エリア6を除く範囲を封止樹脂10で封止している。ここで固体撮像素子はフォトダイオードからなる光電変換部と、前記光電変換部で得られた電荷を転送する電荷転送部とで構成される。ここで図2は図1のA-A断面図である。
 すなわち、本発明の固体撮像装置は、図1に上面概要説明図を示すように、透光性基板1と固体撮像素子5とを具備している。そしてこの透光性基板1は、外部接続用の端子電極4と、固体撮像素子を接合する内部電極3と、前記端子電極4と対応する前記内部電極3とを接続する透光性導電膜からなる配線2とを具備している。固体撮像素子5は、前記透光性基板1に受光エリアが対向するように配置され、前記内部電極3に接続される。さらに、配線2は、少なくとも固体撮像素子5の受光エリア6に対向する領域においては、透光性導電膜で構成される。8は端子電極4に接続されたバンプとしての半田ボールである。
 そして、図2に示すように、本実施の形態の固体撮像装置では、半導体基板としてのシリコン基板上に、受光エリアすなわち撮像領域6を形成した固体撮像素子(チップ)5が用いられている。そして、透光性基板1としてのガラス基板には内部電極3と端子電極4および酸化インジウム錫(ITO)などの透光性導電膜からなる配線2が形成されている。
 この透光性導電膜は例えば、以下の方法で形成される。
 まず、湿式塗布法により感光性の樹脂膜を形成する。
 そしてプリべーク後、高圧放電灯などを用い、所定のマスクを介して紫外線露光を行い、現像後、焼成を行い、酸化インジウム錫(ITO)などの配線2を形成する。
 そしてこの固体撮像素子5と前記透光性基板1の配線2とが対向するように、重ね合わされ、固体撮像素子5と配線2に接続された内部電極3とが、電気接続部14(ガラス基板の内部電極3を構成する電極パッドと固体撮像素子の金属バンプ15との接続部)を介して電気的に接続されるとともに、前記電気接続部14の周囲を絶縁性封止樹脂7で封止している。
 図3は、本実施の形態1の固体撮像装置の一部破断部分分解斜視図である。ここでは、図3及び図2に示すように透光性基板1としての透光性のガラス基板に内部電極3および端子電極4を構成する電極パッドが形成されており、内部電極3と端子電極4は、それぞれがガラス基板表面上で配線されて電気接続されている。内部電極3と端子電極4は固体撮像素子5との接続用であり、固体撮像素子5の各撮像領域(受光エリア)6の周りに形成される金属バンプ15に対応して設けられており、各撮像領域から直接配線接続できるようになっている。また、端子電極4は固体撮像素子5の信号を外部に取り出すプリント配線基板との電気接続用である。固体撮像素子5は、前述したようにシリコン基板上に撮像領域(受光エリア)6が形成された構造となっている。そして、固体撮像素子(基板)5の裏面の電気配線パッド(図示せず)上に金属バンプ15が形成され、内部電極3を構成する電極パッドに実装される。このときに、固体撮像素子5の密着強度と電気接続信頼性を確保するためにこの金属バンプ15と電極パッド(3)との電気接続部14の周りに絶縁性封止樹脂7を注入する。
 図4は、本実施の形態1の固体撮像装置の部分組立て図である。
 透光性基板1上に固体撮像素子5が実装され、絶縁性封止樹脂7が注入されている。図2および図4から明らかなように、絶縁性封止樹脂7は、撮像領域へ漏れ出すことなく、固体撮像素子5の金属バンプ15の電気接続部14の周囲を取り囲んで、密着強度を確保している。また、端子電極4の電極パッド上には、半田ボール8が取り付けられている。
 図5は、本実施の形態1の固体撮像装置の部分分解斜視図である。
 固体撮像素子5が実装され半田ボール8が取り付けられた透光性基板1は、反転してプリント配線基板9に半田実装され、アンダーフィル(封止樹脂)10により強度補強されている。ここでは、前工程で注入した絶縁性封止樹脂7が露出している。この状態で上部から複数のレンズ11が設置されているレンズ筐体12を準備する。このレンズ筐体12を、透光性基板1の固体撮像素子5が実装されていない側の表面を基準面として装着し、プリント配線基板9と一体化して固体撮像装置が完成する。
 なお、本実施の形態では、半田ボールによるプリント配線基板への直接的な半田実装としたが、固体撮像素子の厚みに応じて、導電部材を間に介在させた間接的な導通方法を用いてもよい。またプリント配線基板側を削ったり貫通穴を空ける方法を用いるようにしてもよい。
 図6は、本実施の形態1の固体撮像装置の組立て完成図である。図7は、本実施の形態1の固体撮像装置の組立て完成図の断面図である。
 プリント配線基板9の表面に半田ボール8を介して、透光性基板1が実装されており、半田ボール8の周囲はアンダーフィル10により強度補強されている。透光性基板1には、2個一体となった撮像領域(受光エリア)6を持つ固体撮像素子5が電気接続部14を介して実装され、その周囲には絶縁性封止樹脂7が不足無く注入され、硬化されている。また、絶縁性封止樹脂7は、後述する本発明の製造方法により、固体撮像素子5の撮像領域(受光エリア)6へ漏れ出していない。
 さらに、レンズ11が設置されたレンズ筐体12が透光性基板1の固体撮像素子5が実装されていない側の表面を基準として装着されている。
 このような構造を持っているために、複眼のレンズ11における光学情報は光が隣に漏れることなく、透光性基板1からの距離を精度良く一定として、これもまた精度良く透光性基板1に実装された固体撮像素子5のそれぞれの撮像領域(受光エリア)6に入射される。さらに、固体撮像素子5と透光性基板1間の密着強度および透光性基板1とプリント配線基板9間の密着強度は絶縁性封止樹脂7及びアンダーフィル10により十分補強され強度を確保している。また固体撮像素子5と透光性基板1との接続は、固体撮像素子5内で配線の引き回しを行なうことなく、各撮像領域に対応して各撮像領域の周りに設けられた電極配線パッド(図示せず)に設けられた金属バンプ15を介して行なわれる。このため、各撮像領域(受光エリア)6から透光性基板1上の配線に直接接続できるようになっている。従って、固体撮像素子基板(チップ)の周縁部にバンプが集中することもなく、無駄な配線の引き回しに起因するノイズも抑制することが可能となる。
 ここで透光性基板1の大きさは受光エリアL1に対して横L0、縦L2となっており、図8に示した従来例の透光性基板101の横L4、縦L5とを比較すると縦はほぼ同程度であるが本発明の横L0が従来例の横L4に対して大幅に小さくなっている(L0<L4、L2≒L5)。
 すなわち、本発明を実施することにより、固体撮像装置の小型化に有効であることがわかる。
 なお、透光性基板1には、光学フィルタ膜、あるいは反射防止膜を形成したものを用いてもよい。その場合には、より光学特性を向上させることが出来る。
 また、上記固体撮像装置において、固体撮像素子の長方形の受光エリアの角部を斜めに走行するように構成されるため、端子電極は、前記透光性基板の各辺に沿って配列され内部電極は、前記固体撮像素子の相対向する2辺に沿って配列されている場合にも固体撮像素子の撮像特性に悪影響を与えることなく、配線自由度を向上することができる。
 また、本発明では、上記固体撮像装置において、前記透光性基板上に複数の固体撮像素子が配設されたことを特徴とする。
 この構成によれば、配線が複雑となっても、最短の配線長で効率よく配線を行うことができるため、配線に要する専有面積の低減を図り、小型化をはかることができるだけでなく、配線抵抗の低減により動作速度を向上することができる。
 また、本発明では、上記固体撮像装置において、前記複数の固体撮像素子が同一基板上に集積化されていてもよい。この場合は、配線が、前記固体撮像素子に対向する領域では、前記固体撮像素子の受光エリアを囲む配線領域に対向するように配設される。
 この構成によれば、たとえば電荷転送部上に配線を形成することで、受光量の低下を抑制しつつも、配線の容易化をはかることができる。
 また、本発明では、上記固体撮像装置の製造に際しては、前記透光性基板の前記内部電極に、前記固体撮像素子の接続端子部に形成された突起電極を位置合わせし、導電性接着剤により前記突起電極と前記内部電極とを接合し、前記固体撮像素子の受光エリアを除く領域を封止する。封止に際しては光学フィルタの透過波長帯域で硬化反応を生じる光硬化性樹脂で、前記固体撮像素子の受光エリアを除く領域を封止する。
 この方法によれば受光エリアへの樹脂の侵入もなく信頼性の高い固体撮像装置を形成することが可能となる。
 (実施の形態2)
 次に、本発明の実施の形態2について説明する。
 前記実施の形態では、ガラス基板上の配線は、透光性導電膜で構成したが、少なくとも固体撮像素子の受光エリアに対向する上面が、透光性導電膜で構成されていればよい。本実施の形態では、撮像領域(受光エリア)以外の領域では、金属膜で構成する。
 この構成によれば、配線は受光エリアでは透光性導電膜で構成され、それ以外の領域では金属膜で構成することで、配線抵抗の増大を最大限に抑制しつつ、設計自由度の高い半導体装置を提供することができる。
 (実施の形態3)
 次に、本発明の実施の形態3について説明する。
 前記実施の形態では、受光エリアが1つの場合について説明したが、本実施の形態では、複数の撮像領域(受光エリア)をもつ固体撮像素子を用いた場合について説明する。
 本実施の形態では、同一基板上に複数の固体撮像素子が集積化されており、前記配線は、前記固体撮像素子に対向する領域では、前記固体撮像素子の受光エリアを囲む配線領域に対向するように配設される。
 実施の形態3の固体撮像装置について図8および9に基づいて説明する。
 本発明の実施の形態3の固体撮像装置は、図8に基板の上面図を示すように、ここでは2枚の固体撮像素子35a、35bを透光性基板31としてのガラス基板上に配置し、チップ外部に電気信号を出力する端子電極34と、透光性基板31に固体撮像素子35a、35bを接合するための内部電極33とを接続する配線材料として、光学的に透明な導電性パターンを用いることで、受光エリア36上に配線可能とし、配線32の自由度を増大でき、固体撮像装置を実質的に小型化するものである。
 すなわち、この固体撮像装置は、図8に示すように、透光性基板31としてのガラス基板上に、外部に電気信号を出力する端子電極34と、ガラス基板に固体撮像素子35a、35bを導電性接着剤により接合するための内部電極33と、前記端子電極34と内部電極3とを、前記固体撮像素子35a、35bの受光エリア36上面を通過する、光学的に透明な導電性の配線32、すなわち透光性導電膜で接続するとともに、前記固体撮像素子35a、35bと前記透光性基板31との隙間のうち前記固体撮像素子35a、35bの受光エリア36を除く範囲を筐体50で封止している。ここで固体撮像素子35a、35bはフォトダイオードからなる光電変換部と、前記光電変換部で得られた電荷を転送する電荷転送部とで構成される。ここで図9は図8の固体撮像装置を用いた複眼カメラを示す斜視図である。
 すなわち、本発明の複眼カメラは、図9に外観の概要説明図を示すように、外部接続用の端子電極34と、固体撮像素子を接合する内部電極33と、前記端子電極34と対応する前記内部電極33とを接続する酸化インジウム錫(ITO)などの透光性導電膜からなる配線32とを具備した透光性基板31としてのガラス基板と、前記ガラス基板に受光エリア36が対向するように配置され、前記内部電極33に接続された固体撮像素子35a、35bとを具備し、前記配線32は、少なくとも前記固体撮像素子35a、35bの受光エリア36に対向する領域においては、透光性導電膜で構成されたことを特徴とする。
 そして、図9に示すように、本実施の形態の固体撮像装置を用いた複眼カメラでは、半導体基板としてのシリコン基板上に、受光エリア36すなわち2つの撮像領域を形成し、固体撮像素子35a、35bを形成したものが用いられている。そして、透光性基板31には内部電極33と端子電極34および透光性導電膜からなる配線32が形成されている。そしてこの固体撮像素子35a、35bと前記透光性基板31の配線32とが対向するように、重ね合わされ、固体撮像素子35a、35bと配線2に接続された内部電極33とが、電気的に接続されるとともに、下鏡筒41と上鏡筒42とからなる筐体50に装着されている。ここで43は遮光壁、44はレンズ、45は絞りである。
 この構成によれば、たとえば電荷転送部上に配線を形成することで、受光量の低下を抑制しつつも、配線の容易化をはかることができる。
 なお、2個の撮像領域(受光エリア)36は単一の半導体基板上に形成されているので高精度の基線長を持っている。結果として、非常に高精度な測距特性を持つことが出来る。
 このようにして、撮像特性が良好で高精度な測距特性を持ち、高強度性により電気接続信頼性が高い固体撮像装置を得ることが出来る。特に、測距機能と高信頼性が要求される、車載用のカメラへの適用に効果がある。
 なお、本発明の実施の形態では、半導体基板上に2個の撮像領域を集積形成した固体撮像素子を使用して説明したが、3個以上の複数の撮像領域を半導体基板上に一体形成し、より撮像特性を向上させて、付加価値を向上させた固体撮像装置に関しても本発明を適用することにより、高精度、高信頼性を持つ個体撮像装置とその製造方法を得ることが出来る。
 このとき、撮像領域ごとに周りに電極配線パッドを形成してバンプを形成してもよいし、多数の撮像領域を配列した場合には適宜電極配線パッドの形成領域を調整し、複数の撮像領域ごとに電極配線パッドを形成するなどの方法も適用可能である。
 また、前記実施の形態では、透光性基板としてガラス基板を用いたが、ガラスに限定されることなく、樹脂製の透光性基板を用いてもよい。
 なお、本発明において受光エリアとは、正確には固体撮像素子の受光エリアすなわち撮像領域を示すものとする。たとえば固体撮像素子が複数の画素で構成されている場合、画素間領域では透光性導電膜である必要はなく、画画素上で透光性導電膜となっていればよい。
 なお、透光性導電膜としては、酸化インジウム錫の他、酸化錫、酸化亜鉛などが適用可能である。この透光性導電膜の成膜方法としては、前記実施の形態で説明した感光性ITO塗料を用いたものは有効であるが、その他スパッタリング法、真空蒸着法、ゾルゲル法、クラスタービーム蒸着法、PLD法、インクジェット描画法などが適用可能である。
 本出願は、2009年11月11日出願の日本特許出願(特願2009-258226)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の固体撮像装置によれば、光学的に透明な導電性パターンを用いて配線を形成することで、受光エリアの上に配線することが可能となり、配線の自由度が増大し固体撮像装置を小型化することが可能になり、携帯端末などの小型カメラなどへの適用が容易となる。
 1、31      透光性基板
 2、32      配線  
 3、33      内部電極
 4、34      端子電極
 5、35a、35b 固体撮像素子
 6、36      撮像領域(受光エリア)
 7         絶縁性封止樹脂  
 8         半田ボール
 9         プリント配線基板
 10        アンダーフィル
 11        レンズ
 12        レンズ筐体
 14        電気接続部
 15        金属バンプ
 43        遮光壁
 44        レンズ
 50        筐体
 

Claims (14)

  1.  外部接続用の端子電極と、固体撮像素子を接合する内部電極と、前記端子電極と対応する前記内部電極とを接続する配線とを具備した透光性基板と、
     前記透光性基板に受光エリアが対向するように配置され、前記内部電極に接続された固体撮像素子とを具備し、
     前記配線は、少なくとも前記固体撮像素子の受光エリアに対向する領域においては、透光性導電膜で構成された固体撮像装置。
  2.  請求項1に記載の固体撮像装置であって、
     前記固体撮像素子と前記透光性基板との隙間のうち前記固体撮像素子の受光エリアを除く領域に封止樹脂が充填された固体撮像装置。
  3.  請求項1に記載の固体撮像装置であって、
     前記固体撮像素子の前記受光エリアは、長方形であり、
     前記配線は、前記長方形の角部を斜めに走行するように構成された固体撮像装置。
  4.  請求項1乃至3のいずれか1項に記載の固体撮像装置であって、
     前記端子電極は、前記透光性基板の各辺に沿って配列された固体撮像装置。
  5.  請求項4に記載の固体撮像装置であって、
     前記内部電極は、前記固体撮像素子の相対向する2辺に沿って配列された固体撮像装置。
  6.  請求項1乃至5のいずれか1項に記載の固体撮像装置であって、
     前記透光性基板は、ガラス基板である固体撮像装置。
  7.  請求項1乃至3のいずれか1項に記載の固体撮像装置であって、
     前記配線は、少なくとも前記固体撮像素子の前記受光エリアに対向する上面が、透光性導電膜で構成されるとともに、前記受光エリア以外の領域では、金属膜で構成されるようにした固体撮像装置。
  8.  請求項1乃至7のいずれか1項に記載の固体撮像装置であって、
     前記透光性電極は、酸化インジウム錫層で構成された固体撮像装置。
  9.  請求項1乃至8のいずれか1項に記載の固体撮像装置であって、
     前記透光性基板上に複数の固体撮像素子が配設された固体撮像装置。
  10.  請求項9に記載の固体撮像装置であって、
     前記複数の固体撮像素子は同一基板上に集積化されており、
     前記配線は、前記固体撮像素子に対向する領域では、前記固体撮像素子の受光エリアを囲む配線領域に対向するように配設された固体撮像装置。
  11.  請求項10に記載の固体撮像装置であって、
     前記固体撮像素子はそれぞれフォトダイオードからなる光電変換部と、前記光電変換部で得られた電荷を転送する電荷転送部とで構成され、
     前記配線は、前記固体撮像素子に対向する領域では、前記電荷転送部に対向する領域に形成された固体撮像装置。
  12.  請求項11に記載の固体撮像装置であって、
     前記透光性基板が、特定の波長帯域の光を透過させる光学フィルタと、前記複数の撮像領域の境界に対応する部分に形成された遮光膜とを具備した固体撮像装置。
  13.  請求項1乃至12のいずれか1項に記載の固体撮像装置を製造する方法であって、
     前記透光性基板の前記内部電極に、前記固体撮像素子の接続端子部に形成された突起電極を位置合わせし、導電性接着剤により前記突起電極と前記内部電極とを接合する工程と、
     前記固体撮像素子の受光エリアを除く領域を封止する工程とを含む固体撮像装置の製造方法。
  14.  請求項13に記載の固体撮像装置を製造する方法であって、
     前記透光性基板が、ガラス基板と、前記ガラス基板の前記固体撮像素子貼着面の対面に形成され、特定の波長帯域の光を透過させる光学フィルタと、前記複数の撮像領域の境界に対応する部分に形成された遮光膜とを具備し、
     前記封止する工程は、前記接合する工程後、前記光学フィルタの透過波長帯域で硬化反応を生じる光硬化性樹脂で、前記固体撮像素子の受光エリアを除く領域を封止する工程を含む固体撮像装置の製造方法。
PCT/JP2010/006574 2009-11-11 2010-11-09 固体撮像装置及びその製造方法 WO2011058737A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2010800190824A CN102422417A (zh) 2009-11-11 2010-11-09 固态成像装置及其制造方法
JP2011514934A JPWO2011058737A1 (ja) 2009-11-11 2010-11-09 固体撮像装置
EP10829701A EP2500942A1 (en) 2009-11-11 2010-11-09 Solid-state image pickup device and method for manufacturing same
US13/242,654 US20120007148A1 (en) 2009-11-11 2011-09-23 Solid-state image pickup device and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009258226 2009-11-11
JP2009-258226 2009-11-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/242,654 Continuation US20120007148A1 (en) 2009-11-11 2011-09-23 Solid-state image pickup device and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2011058737A1 true WO2011058737A1 (ja) 2011-05-19

Family

ID=43991406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006574 WO2011058737A1 (ja) 2009-11-11 2010-11-09 固体撮像装置及びその製造方法

Country Status (5)

Country Link
US (1) US20120007148A1 (ja)
EP (1) EP2500942A1 (ja)
JP (1) JPWO2011058737A1 (ja)
CN (1) CN102422417A (ja)
WO (1) WO2011058737A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013130394A (ja) * 2011-12-20 2013-07-04 Yaskawa Electric Corp エンコーダ及びサーボモータ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6316000B2 (ja) * 2014-01-20 2018-04-25 キヤノン株式会社 撮像素子ユニット、及び光学機器
JP6734654B2 (ja) * 2016-01-21 2020-08-05 浜松ホトニクス株式会社 受光モジュール及び受光モジュールの製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06204442A (ja) 1993-01-07 1994-07-22 Matsushita Electron Corp 固体撮像装置およびその製造方法
JPH07231074A (ja) 1994-02-18 1995-08-29 Toshiba Corp 固体撮像モジュール
JP2001267540A (ja) * 2000-03-15 2001-09-28 Sharp Corp 固体撮像装置及びその製造方法
JP2006128625A (ja) * 2004-09-30 2006-05-18 Oki Electric Ind Co Ltd 半導体装置及びその製造方法
JP2008141037A (ja) * 2006-12-04 2008-06-19 Fujifilm Corp 固体撮像装置
JP2009258226A (ja) 2008-04-14 2009-11-05 Sumitomo Chemical Co Ltd 複合偏光板およびそれを用いた液晶表示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6740950B2 (en) * 2001-01-15 2004-05-25 Amkor Technology, Inc. Optical device packages having improved conductor efficiency, optical coupling and thermal transfer
EP1812968B1 (en) * 2004-08-25 2019-01-16 Callahan Cellular L.L.C. Apparatus for multiple camera devices and method of operating same
TWI284402B (en) * 2005-12-30 2007-07-21 Advanced Semiconductor Eng Build-up package and method of an optoelectronic chip
TWI358113B (en) * 2007-10-31 2012-02-11 Advanced Semiconductor Eng Substrate structure and semiconductor package usin

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06204442A (ja) 1993-01-07 1994-07-22 Matsushita Electron Corp 固体撮像装置およびその製造方法
JPH07231074A (ja) 1994-02-18 1995-08-29 Toshiba Corp 固体撮像モジュール
JP2001267540A (ja) * 2000-03-15 2001-09-28 Sharp Corp 固体撮像装置及びその製造方法
JP2006128625A (ja) * 2004-09-30 2006-05-18 Oki Electric Ind Co Ltd 半導体装置及びその製造方法
JP2008141037A (ja) * 2006-12-04 2008-06-19 Fujifilm Corp 固体撮像装置
JP2009258226A (ja) 2008-04-14 2009-11-05 Sumitomo Chemical Co Ltd 複合偏光板およびそれを用いた液晶表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013130394A (ja) * 2011-12-20 2013-07-04 Yaskawa Electric Corp エンコーダ及びサーボモータ

Also Published As

Publication number Publication date
CN102422417A (zh) 2012-04-18
JPWO2011058737A1 (ja) 2013-03-28
US20120007148A1 (en) 2012-01-12
EP2500942A1 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
JP4710610B2 (ja) 固体撮像装置及び該固体撮像装置を備えた撮像装置
JP6176118B2 (ja) 撮像ユニットおよび撮像装置
US8698938B2 (en) Solid-state imaging apparatus, method of manufacturing same, and camera
JP6745815B2 (ja) 光学装置及び光学装置の製造方法
US20140168510A1 (en) Imaging element module and method for manufacturing the same
US20050270405A1 (en) Image pickup device and camera module
JP5375219B2 (ja) 撮像装置
US20040256687A1 (en) Optical module, method of manufacturing the same, and electronic instrument
CN113471153B (zh) 封装结构及封装方法、摄像头模组及电子设备
JP2005109092A (ja) 固体撮像装置及び該固体撮像装置を備えた撮像装置
WO2011058737A1 (ja) 固体撮像装置及びその製造方法
US9111826B2 (en) Image pickup device, image pickup module, and camera
JP2011165774A (ja) 固体撮像装置の製造方法
JP4174664B2 (ja) 光モジュール及びその製造方法並びに電子機器
CN113471152B (zh) 封装结构及封装方法、摄像头模组、电子设备
JP2004153855A (ja) 撮像装置
JP2009188828A (ja) 固体撮像装置とその製造方法
JP2007329813A (ja) 固体撮像装置及びこの固体撮像装置を備えた撮像装置
KR101446330B1 (ko) 관통 비아를 갖는 이미지 센서
JP2009070876A (ja) 固体撮像装置およびその製造方法
JP2013085095A (ja) 撮像デバイス
WO2023162713A1 (ja) 半導体装置、電子機器および半導体装置の製造方法
JP7214870B2 (ja) 撮像素子ユニット及び撮像装置
JP2009111130A (ja) 撮像装置及びその製造方法
JP2011018766A (ja) 撮像ユニット

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080019082.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2011514934

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10829701

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010829701

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE