WO2011052669A1 - 熱処理済フッ化ビニリデン系重合体粉末の製造方法およびフッ化ビニリデン系重合体溶液の製造方法 - Google Patents

熱処理済フッ化ビニリデン系重合体粉末の製造方法およびフッ化ビニリデン系重合体溶液の製造方法 Download PDF

Info

Publication number
WO2011052669A1
WO2011052669A1 PCT/JP2010/069134 JP2010069134W WO2011052669A1 WO 2011052669 A1 WO2011052669 A1 WO 2011052669A1 JP 2010069134 W JP2010069134 W JP 2010069134W WO 2011052669 A1 WO2011052669 A1 WO 2011052669A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinylidene fluoride
fluoride polymer
polymer powder
heat
treated
Prior art date
Application number
PCT/JP2010/069134
Other languages
English (en)
French (fr)
Inventor
民人 五十嵐
宏 坂部
絵美 菅原
慎太郎 武藤
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43922091&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011052669(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to KR1020127013572A priority Critical patent/KR101413864B1/ko
Priority to US13/503,890 priority patent/US20120213915A1/en
Priority to JP2011538471A priority patent/JP5705126B2/ja
Priority to PL10826801T priority patent/PL2495273T3/pl
Priority to EP10826801.2A priority patent/EP2495273B1/en
Priority to CN201080048628.9A priority patent/CN102597069B/zh
Publication of WO2011052669A1 publication Critical patent/WO2011052669A1/ja
Priority to US14/609,636 priority patent/US20150137032A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • C08F14/22Vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/11Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids from solid polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/16Homopolymers or copolymers of vinylidene fluoride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a heat-treated vinylidene fluoride polymer powder and a method for producing a vinylidene fluoride polymer solution. Specifically, a method for producing a heat-treated vinylidene fluoride polymer powder excellent in dispersibility and solubility in an aprotic polar solvent such as N-methyl-2-pyrrolidone, and a vinylidene fluoride polymer using the polymer powder The present invention relates to a method for producing a solution.
  • a vinylidene fluoride polymer solution obtained by dissolving vinylidene fluoride polymer powder in N-methyl-2-pyrrolidone (hereinafter also referred to as NMP) is used. in use.
  • Patent Document 1 As a method for dissolving a vinylidene fluoride polymer, a method is known in which a vinylidene fluoride polymer powder is first dispersed in a poor solvent and then stirred and dissolved in a good solvent (for example, Patent Documents). 1).
  • Patent Document 1 it is described that acetone, tetrahydrofuran or the like is used as a poor solvent and NMP or the like is used as a good solvent.
  • a porous vinylidene fluoride polymer powder is known (for example, see Patent Document 2).
  • the vinylidene fluoride polymer powder described in Patent Document 2 can be obtained by a supercritical suspension polymerization method including a step of suspending a vinylidene fluoride monomer and a step of supercritical polymerization.
  • the vinylidene fluoride polymer powder described in Patent Document 2 does not suppress the formation of maco. Therefore, if the method of dispersing the vinylidene fluoride polymer powder in the solvent is inappropriate, mako is formed. There was a problem that the solubility was lowered.
  • the present inventors have conducted heat-treated vinylidene fluoride polymer powder obtained by heat-treating unheat-treated vinylidene fluoride polymer powder under specific conditions. Found that it has excellent solubility in aprotic polar solvents such as NMP, and completed the present invention.
  • the method for producing a heat-treated vinylidene fluoride polymer powder of the present invention is obtained by adding an unheat-treated vinylidene fluoride polymer powder to a temperature at which the polymer powder is 125 ° C. or higher and lower than the crystal melting temperature (Tm). It is characterized by performing a heat treatment.
  • the heat treatment time is preferably 10 seconds to 20 hours.
  • the median diameter of the unheated vinylidene fluoride polymer powder is preferably 1 to 250 ⁇ m.
  • the method for producing a vinylidene fluoride polymer solution of the present invention is characterized in that the heat-treated vinylidene fluoride polymer powder obtained by the above production method is dissolved in an aprotic polar solvent.
  • the method for producing a vinylidene fluoride polymer solution of the present invention is preferably characterized in that the heat-treated vinylidene fluoride polymer powder obtained by the production method is dissolved in N-methyl-2-pyrrolidone. .
  • the method for producing an electrode slurry for an electricity storage device of the present invention is characterized by mixing a vinylidene fluoride polymer solution obtained by the production method with an active material.
  • the heat-treated vinylidene fluoride polymer powder obtained by the production method and an active material are mixed, and the resulting mixture is aprotic. It is characterized by mixing with a polar solvent.
  • the method for producing an electrode for an electricity storage device of the present invention is characterized in that an electrode slurry for an electricity storage device obtained by the production method is applied to a current collector and dried.
  • the heat-treated vinylidene fluoride polymer powder obtained by the method for producing a heat-treated vinylidene fluoride polymer powder of the present invention is an aprotic polar solvent such as NMP as compared with the conventional vinylidene fluoride polymer powder. Excellent solubility in
  • the method for producing a vinylidene fluoride polymer solution of the present invention can dissolve the powder easily by using the heat-treated vinylidene fluoride polymer powder.
  • the method for producing a heat-treated vinylidene fluoride polymer powder according to the present invention comprises subjecting an unheat-treated vinylidene fluoride polymer powder to a heat treatment at a temperature at which the polymer powder is 125 ° C. or higher and lower than the crystal melting temperature (Tm). It is characterized by giving.
  • the heat-treated vinylidene fluoride polymer powder obtained by the production method of the present invention is superior in solubility in an aprotic polar solvent such as NMP as compared with a conventional vinylidene fluoride polymer powder.
  • the heat treatment in the present invention means that the temperature of the vinylidene fluoride polymer powder itself is 125 ° C. or higher and lower than the crystal melting temperature (Tm) of the unheated vinylidene fluoride polymer powder.
  • This is a treatment for holding the vinylidene polymer powder. That is, in the temporary heating such as air drying, the temperature of the vinylidene fluoride polymer powder itself is lower than the hot air temperature.
  • the heat treatment in the present invention is such a vinylidene fluoride polymer. Not a treatment in which the temperature of the powder itself is sufficiently increased, but a treatment in which the temperature of the vinylidene fluoride polymer powder itself is 125 ° C. or higher and lower than the crystal melting temperature (Tm) of the unheated vinylidene fluoride polymer powder. means.
  • the unheated vinylidene fluoride polymer powder used in the present invention will be described below.
  • the unheated vinylidene fluoride polymer powder used in the present invention means a vinylidene fluoride polymer powder that has not been heat-treated as described below, and conventionally known vinylidene fluoride polymer powder can be used. .
  • Examples of the other monomer include a carboxyl group-containing monomer, a carboxylic acid anhydride group-containing monomer, a fluorine-containing monomer excluding vinylidene fluoride, and an ⁇ -olefin.
  • a carboxyl group-containing monomer a carboxylic acid anhydride group-containing monomer
  • a fluorine-containing monomer excluding vinylidene fluoride a fluorine-containing monomer excluding vinylidene fluoride
  • an ⁇ -olefin a monomer that may be used by 2 or more types.
  • Examples of the unsaturated monobasic acid include acrylic acid.
  • Examples of the unsaturated dibasic acid include maleic acid and citraconic acid.
  • the unsaturated dibasic acid monoester preferably has 5 to 8 carbon atoms, and examples thereof include maleic acid monomethyl ester, maleic acid monoethyl ester, citraconic acid monomethyl ester, and citraconic acid monoethyl ester. Can do.
  • Examples of the carboxylic acid anhydride group-containing monomer include unsaturated dibasic acid anhydrides, and examples of the unsaturated dibasic acid anhydride include maleic anhydride and citraconic anhydride.
  • fluorine-containing monomer excluding vinylidene fluoride examples include vinyl fluoride, trifluoroethylene, chlorotrifluoroethylene, tetrafluoroethylene, and hexafluoropropylene.
  • ⁇ -Olefin includes ethylene, propylene, 1-butene and the like.
  • the copolymer of vinylidene fluoride and other monomers is preferably a copolymer of vinylidene fluoride and maleic acid monomethyl ester, a copolymer of vinylidene fluoride, hexafluoropropylene and maleic acid monomethyl ester, or the like. It is done.
  • a copolymer of vinylidene fluoride and another monomer can be obtained by copolymerizing vinylidene fluoride and the other monomer.
  • the method for homopolymerizing vinylidene fluoride and the method for copolymerizing vinylidene fluoride and other monomers are not particularly limited, and can be obtained by a polymerization method such as suspension polymerization, emulsion polymerization, solution polymerization or the like.
  • polymerization conditions such as polymerization temperature can be arbitrarily set.
  • the polymerization temperature is usually in the range of 20 to 120 ° C, preferably in the range of 25 to 100 ° C, and most preferably in the range of 25 to 75 ° C.
  • the vinylidene fluoride polymer powder obtained by suspension polymerization at a polymerization temperature in the range of 25 to 75 ° C. is used as the unheat-treated vinylidene fluoride polymer powder, it can be obtained by the production method of the present invention.
  • the heat-treated vinylidene fluoride polymer powder is preferred because it tends to be excellent in solubility in an aprotic polar solvent such as NMP.
  • the polymerization method is preferably suspension polymerization or emulsion polymerization, and more preferably suspension polymerization, in which a polymer having monomer units derived from vinylidene fluoride in a powder state can be obtained.
  • the unheat-treated vinylidene fluoride polymer powder used in the present invention may be a polymer having a monomer unit derived from vinylidene fluoride by a polymerization method obtained in a powder state. It may be a polymer having a specific particle diameter obtained by selecting the polymer with a sieve or the like.
  • the unheat-treated vinylidene fluoride polymer powder used in the present invention is obtained when a polymer having a monomer unit derived from vinylidene fluoride is obtained by a polymerization method obtained in a bulk state. May be a polymer formed into a powder by freeze pulverization using liquid nitrogen described in JP-A-6-108103, for example.
  • a modified product of a homopolymer of vinylidene fluoride or a copolymer of a copolymer of vinylidene fluoride and another monomer includes the homopolymer of vinylidene fluoride or a copolymer of vinylidene fluoride and another monomer.
  • the polymer can be obtained by modification.
  • the melting point of the unheat-treated vinylidene fluoride polymer powder may be lowered and may be easily fused during heat treatment. It becomes difficult.
  • the amount of the monomer unit derived from vinylidene fluoride and the monomer unit derived from another monomer can be determined by a known method such as NMR, elemental analysis, or oxygen flask combustion method.
  • the unheat-treated vinylidene fluoride polymer powder used in the present invention preferably has a polystyrene-equivalent weight average molecular weight of 200,000 or more by gel permeation chromatography (GPC), more preferably 300,000 or more. Preferably, it is most preferably 500,000 or more.
  • the upper limit of the weight average molecular weight in terms of polystyrene is not particularly limited, but the solubility of the heat-treated vinylidene fluoride polymer powder obtained by the production method of the present invention in an aprotic polar solvent such as NMP is not limited. From the viewpoint, it is preferably 4 million or less.
  • the median diameter of the unheat-treated vinylidene fluoride polymer powder used in the present invention is preferably 1 to 250 ⁇ m, and more preferably 50 to 230 ⁇ m. Within the above range, the heat-treated vinylidene fluoride polymer powder is excellent in solubility and handling properties, which is preferable.
  • the median diameter is the particle diameter corresponding to 50% of the cumulative curve in the particle size distribution, and is also called 50% average particle diameter (dp50).
  • the median diameter is derived on the basis of a volume-based particle size distribution. In this case, the total volume of particles having a larger particle diameter than the value of the median diameter is equal to the total volume of particles having a smaller particle diameter. Become.
  • the inherent viscosity of the unheat-treated vinylidene fluoride polymer powder used in the present invention is preferably 0.3 to 10 dl / g, and more preferably 1 to 5 dl / g. Within the said range, the mechanical property of the obtained heat-treated vinylidene fluoride polymer is good, and the handleability of the solution is also good.
  • the crystal melting temperature (Tm) of the unheat-treated vinylidene fluoride polymer powder used in the present invention is usually 130 to 180 ° C.
  • the crystal melting temperature can be determined from a DSC curve obtained by differential scanning calorimetry (hereinafter also referred to as DSC). In the DSC curve, when there are a plurality of crystal melting peaks (endothermic peaks), the crystal melting temperature (Tm) is determined based on the peak having the maximum peak area.
  • a commercially available product may be used as the unheated vinylidene fluoride polymer powder.
  • the heat treatment temperature in the heat treatment is 125 ° C. or higher and lower than the crystal melting temperature (Tm) of the unheat-treated vinylidene fluoride polymer powder, but preferably 130 ° C. or higher, and 135 ° C. or higher. It is more preferable. Moreover, it is preferable that it is less than 180 degreeC, and it is more preferable that it is 160 degrees C or less. Within the above range, the heat-treated vinylidene fluoride polymer powder is preferable because it does not form maco when dissolved and is excellent in solubility.
  • the heat treatment time in the heat treatment is not particularly limited, but is usually 10 seconds to 20 hours, more preferably 60 seconds to 20 hours, and most preferably 60 seconds to 5 hours.
  • the heat processing time in this invention means the time when the temperature of polymer powder itself is 125 degreeC or more and less than a crystal melting temperature (Tm). Even if the unheat-treated vinylidene fluoride polymer powder is held in a hot air circulating furnace or a Henschel mixer, immediately after being put in the hot air circulating furnace, the temperature of the polymer powder itself is the temperature of the hot air circulating furnace (heating Temperature).
  • the heat treatment time in the present invention is not the time when the polymer powder is placed in a hot-air circulating furnace or the like and held, but the temperature of the polymer powder itself is held at 125 ° C. or higher and lower than the crystal melting temperature (Tm). Means time.
  • the atmosphere when the heat treatment is performed there is no particular limitation on the atmosphere when the heat treatment is performed, and for example, it can be performed in an air atmosphere or a nitrogen atmosphere.
  • the heat treatment can be carried out under reduced pressure, under increased pressure or under normal pressure, but is usually carried out under normal pressure.
  • the method of performing the heat treatment is not particularly limited, and examples thereof include a method using a hot air circulating furnace, a method using a Henschel mixer, and a method using a gear oven.
  • the heat treatment when performed in a hot air circulating furnace, for example, it can be performed by installing a box containing unheat-treated vinylidene fluoride polymer powder in the hot air circulating furnace.
  • it when performing heat processing with a Henschel mixer, it can carry out, for example by putting unheat-treated vinylidene fluoride polymer powder in a Henschel mixer and heating it with stirring.
  • Heat-treated vinylidene fluoride polymer powder The heat-treated vinylidene fluoride polymer powder obtained by the production method of the present invention is superior in solubility in an aprotic polar solvent such as NMP, as compared with an unheat-treated vinylidene fluoride polymer powder.
  • solubility index is not one, but for example, when vinylidene fluoride polymer powder is dispersed in NMP when the vinylidene fluoride polymer powder is introduced into NMP at room temperature, the It can be judged that the vinylidene chloride polymer powder is superior in solubility as compared with the case where mako is formed.
  • the time until the vinylidene fluoride polymer powder is dissolved when the vinylidene fluoride polymer powder is put into NMP heated to a specific temperature (for example, 50 ° C.) and stirred is short. It can be determined that the solubility is excellent.
  • the obtained vinylidene fluoride polymer solution is preferably a transparent solution, but a translucent solution and There is a case.
  • the heat-treated vinylidene fluoride polymer powder can be used without any problem in order to form an electrode slurry for an electricity storage device and an electrode for an electricity storage device.
  • the heat-treated vinylidene fluoride polymer powder obtained by the method for producing a heat-treated vinylidene fluoride polymer powder is dissolved in an aprotic polar solvent. It is characterized by that.
  • the method for producing a vinylidene fluoride polymer solution according to the present invention uses the heat-treated vinylidene fluoride polymer powder as the vinylidene fluoride polymer powder, thereby removing the conventional vinylidene fluoride polymer powder. It can be dissolved more rapidly than when it is dissolved in a protic polar solvent.
  • Examples of the aprotic polar solvent include N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide and the like, and among them, N-methyl-2-pyrrolidone is preferable.
  • the amount of the aprotic polar solvent used for producing the vinylidene fluoride polymer solution is not particularly limited, but is usually 400 to 100 parts by weight based on 100 parts by weight of the heat-treated vinylidene fluoride polymer powder. It is used in an amount of 10,000 parts by weight, preferably 550 to 2400 parts by weight.
  • the heat-treated vinylidene fluoride polymer powder is usually added to an aprotic polar solvent and stirred.
  • the heat treatment is applied to the aprotic polar solvent heated to 35 to 130 ° C.
  • the heat-treated vinylidene fluoride polymer powder is put into an aprotic polar solvent at room temperature, stirred at high speed using a homogenizer, a disper mixer, etc., and heated to 35 to 130 ° C. by shearing heat generation.
  • dissolving is mentioned.
  • the heat-treated vinylidene fluoride polymer powder is dissolved in an aprotic polar solvent, a stirrer using a homogenizer, a disper mixer, a propeller blade, etc. K. Fill mix, ultrasonic vibration, or the like can be used.
  • the apparatus provided with the heating jacket etc. may be sufficient as needed.
  • the method for producing an electrode slurry for an electricity storage device of the present invention comprises mixing a vinylidene fluoride polymer solution obtained by the method for producing a vinylidene fluoride polymer solution with an active material (first method) Method), a heat-treated vinylidene fluoride polymer powder obtained by the method for producing a heat-treated vinylidene fluoride polymer powder and an active material are mixed, and the resulting mixture is mixed with an aprotic polar solvent. And a method (second method) characterized by the above.
  • a nonaqueous electrolyte secondary battery for example, lithium ion polymer secondary battery
  • an electric double layer capacitor etc.
  • the electrode slurry for an electricity storage device obtained by the production method of the present invention is particularly preferably used when forming a positive electrode of a nonaqueous electrolyte secondary battery.
  • the vinylidene fluoride polymer solution is obtained by mixing with an active material.
  • a planetary mixer, a kneader, an internal mixer, T.M. K. A fill mix or the like can be used.
  • the heat-treated vinylidene fluoride polymer powder and the active material are first mixed to obtain a mixture.
  • a planetary mixer, paddle mixer, Henschel mixer, ribbon mixer, etc. Can be used.
  • the obtained mixture is mixed with an aprotic polar solvent.
  • a planetary mixer, a kneader, an internal mixer, T.M. K. A fill mix or the like can be used.
  • the aprotic polar solvent used in the second method the aprotic polar solvent described in the section ⁇ Method for producing vinylidene fluoride polymer solution> can be used.
  • the amount of the aprotic polar solvent used in the second method is not particularly limited, but is usually 400 to 10,000 parts by weight, preferably 100 parts by weight with respect to 100 parts by weight of the heat-treated vinylidene fluoride polymer powder. It is used in the range of 550 to 2400 parts by weight.
  • the amount of the active material used in the method for producing the electrode slurry for the electricity storage device is not particularly limited.
  • the heat-treated vinylidene fluoride polymer powder when used to obtain a vinylidene fluoride polymer solution ( First method) 100 parts by weight or 100 parts by weight of heat-treated vinylidene fluoride polymer powder (second method) is usually 100 to 10,000 parts by weight, preferably 900 to 6400 parts by weight. is there.
  • examples of the active material include carbon materials, metal / alloy materials, metal oxides, etc. Among them, metal oxides are preferable.
  • the method for producing an electrode for an electricity storage device of the present invention is characterized in that the electrode slurry for an electricity storage device obtained by the method for producing an electrode slurry for an electricity storage device is applied to a current collector and dried.
  • Examples of the current collector include copper, aluminum, nickel, and gold, and examples of the shape include a metal foil and a metal net.
  • the electrode slurry for the electricity storage device when applying the electrode slurry for the electricity storage device to the current collector, it is applied to at least one surface, preferably both surfaces of the current collector.
  • the method for coating is not particularly limited, and examples thereof include a method using a bar coater, a die coater, or a comma coater.
  • drying performed after the coating is usually performed at a temperature of 50 to 150 ° C. for 1 to 300 minutes.
  • the pressure at the time of drying is not particularly limited, but it is usually carried out under atmospheric pressure or reduced pressure.
  • Approx. 2.0 mg of a sample (the following vinylidene fluoride polymer powder) was precisely weighed in an aluminum sample pan. While flowing nitrogen at a flow rate of 50 mL / min, the temperature was raised from 30 ° C. to 230 ° C. at a rate of 5 ° C./min. During this time, temperature modulation of ⁇ 0.53 ° C./40 sec was applied. Using the software attached to Q100 (Universal Analysis 2000), analysis was performed using the Integrate Peak Linear command to determine the crystal melting temperature (Tm).
  • a vinylidene fluoride polymer solution was prepared by adding 4 g of the following vinylidene fluoride polymer powder to 1 liter of N, N-dimethylformamide and dissolving it at 80 ° C. over 8 hours. This solution was kept at 30 ° C., and the logarithmic viscosity was measured with an Ubbelohde viscometer, and the inherent viscosity was determined by the following equation.
  • ⁇ rel sample solution drop seconds / solvent drop seconds
  • C sample solution concentration (0.4 g / dl).
  • the molecular weight of the following vinylidene fluoride polymer powder is determined by gel permeation chromatograph (manufactured by JASCO Corporation) for N-methyl-2-pyrrolidone solution in which vinylidene fluoride polymer powder is dissolved at a concentration of 0.1% by weight. GPC-900, shodex KD-806M column, temperature 40 ° C.), and the weight average molecular weight in terms of polystyrene was measured.
  • the point when the solid matter or gel-like material derived from the vinylidene fluoride polymer powder disappears is not only when the solution becomes a transparent state, but also when the solution is a semi-transparent state without any solid matter or gel-like matter. In this case, the dissolution was completed.
  • the time from the setting to the water bath until the dissolution was completed was defined as the dissolution time.
  • the obtained polymer slurry was heat treated at 95 ° C. for 30 minutes, dehydrated, washed with water, and further dried at 80 ° C. for 20 hours to obtain a vinylidene fluoride polymer powder (1).
  • the inherent viscosity of the obtained vinylidene fluoride polymer powder (1) was 2.2 dl / g, the weight average molecular weight was 770,000, the median diameter was 195 ⁇ m, and Tm was 171 ° C.
  • the vinylidene fluoride polymer powder (1) was analyzed for chlorine content in accordance with JIS K7229, and 1.1 mol% in terms of chlorotrifluoroethylene monomer was introduced, that is, vinylidene fluoride polymer powder ( It was confirmed that 1) had 98.9 mol% of monomer units derived from vinylidene fluoride.
  • the obtained polymer slurry was heat treated at 95 ° C. for 30 minutes, then dehydrated, washed with water, and further dried to obtain a vinylidene fluoride polymer powder (2). Drying was performed using a flash dryer under conditions of a hot air inlet temperature of 140 ° C. and a hot air outlet temperature of 80 ° C.
  • the obtained polymer slurry was heat treated at 95 ° C. for 30 minutes, dehydrated, washed with water, and further dried to obtain a vinylidene fluoride polymer powder (3). Drying was performed using a flash dryer under conditions of a hot air inlet temperature of 140 ° C. and a hot air outlet temperature of 80 ° C.
  • the resulting polymer slurry was heat treated at 95 ° C. for 30 minutes, dehydrated, washed with water, and further dried to obtain a vinylidene fluoride polymer powder (4). Drying was performed using a flash dryer under conditions of a hot air inlet temperature of 140 ° C. and a hot air outlet temperature of 80 ° C.
  • the obtained vinylidene fluoride polymer powder (4) had an inherent viscosity of 2.2 dl / g, a weight average molecular weight of 770,000, a median diameter of 215 ⁇ m, and a Tm of 173 ° C.
  • the obtained polymer slurry was heat treated at 95 ° C. for 30 minutes, dehydrated, washed with water, and further dried to obtain a vinylidene fluoride polymer powder (5). Drying was performed using a flash dryer under conditions of a hot air inlet temperature of 140 ° C. and a hot air outlet temperature of 80 ° C.
  • the resulting vinylidene fluoride polymer powder (5) had an inherent viscosity of 3.1 dl / g, a weight average molecular weight of 1.1 million, a median diameter of 220 ⁇ m, and a Tm of 173 ° C.
  • PVDF powder manufactured by Solvay Solexis, trade name solf6020 was used as the vinylidene fluoride polymer powder (6). Solef 6020 had an inherent viscosity of 1.85 dl / g, a weight average molecular weight of 600,000, a median diameter of 104 ⁇ m, and a Tm of 170 ° C.
  • kynar HSV900 had an inherent viscosity of 1.0 dl / g, a weight average molecular weight of 660,000, a median diameter of 5 ⁇ m, and a Tm of 160 ° C.
  • the above-mentioned vinylidene fluoride polymer powders (1) to (7) are not subjected to a heat treatment in which the temperature of the vinylidene fluoride polymer powder itself is 125 ° C. or higher. Corresponds to vinylidene polymer powder.
  • Example 1 10 g of vinylidene fluoride polymer powder (5) is placed in a kraft paper box having a width of 10 cm, a length of 15 cm, and a height of 3 cm, and the vinylidene fluoride polymer powder (5) has a uniform thickness. I spread it in the box.
  • the box made of kraft paper is covered with kraft paper, and the box with the lid is placed in a hot air circulating furnace (trade name FineOven DH410, manufactured by Yamato Kagaku) at a temperature of 125 ° C., and vinylidene fluoride polymer
  • a hot air circulating furnace (trade name FineOven DH410, manufactured by Yamato Kagaku) at a temperature of 125 ° C.
  • vinylidene fluoride polymer The powder (5) itself is held for 5 hours from the time when the temperature reaches 125 ° C., and then the covered box is taken out of the hot air circulation furnace and allowed to cool at room temperature, whereby the heat-treated vinylidene fluoride polymer powder (1) was obtained.
  • the dispersibility, dissolution time, and solution state of the heat-treated vinylidene fluoride polymer powder (1) were determined according to the above methods.
  • Example 2 In the same manner as in Example 1, 10 g of vinylidene fluoride polymer powder (5) was placed in a kraft paper box having a width of 10 cm, a length of 15 cm, and a height of 3 cm, and vinylidene fluoride polymer powder (5 ) was spread in a box so that the thickness was uniform.
  • the kraft paper box is covered with kraft paper, and the capped box is placed in a hot air circulating furnace (manufactured by Yamato Kagaku, trade name FineOven DH410) at a temperature of 130 ° C., and vinylidene fluoride polymer After the temperature of the powder (5) itself reaches 125 ° C., the temperature is raised to 130 ° C. over 5 minutes and held at 130 ° C. for 55 minutes, and then the covered box is taken out of the hot air circulation furnace and released at room temperature. By cooling, a heat-treated vinylidene fluoride polymer powder (2) was obtained.
  • a hot air circulating furnace manufactured by Yamato Kagaku, trade name FineOven DH410
  • the dispersibility, dissolution time, and solution state of the heat-treated vinylidene fluoride polymer powder (2) were determined according to the above methods.
  • Example 3 In the same manner as in Example 1, 10 g of vinylidene fluoride polymer powder (5) was placed in a kraft paper box having a width of 10 cm, a length of 15 cm, and a height of 3 cm, and vinylidene fluoride polymer powder (5 ) was spread in a box so that the thickness was uniform.
  • the kraft paper box is covered with kraft paper, and the capped box is placed in a hot air circulating furnace (manufactured by Yamato Kagaku, trade name FineOven DH410) at a temperature of 130 ° C., and vinylidene fluoride polymer
  • a hot air circulating furnace manufactured by Yamato Kagaku, trade name FineOven DH410
  • the temperature was raised to 130 ° C. over 5 minutes and held at 130 ° C. for 19 hours and 55 minutes.
  • the covered box was taken out of the hot air circulation furnace and kept at room temperature. Was allowed to cool to obtain a heat-treated vinylidene fluoride polymer powder (3).
  • the dispersibility, dissolution time, and solution state of the heat-treated vinylidene fluoride polymer powder (3) were determined according to the above methods.
  • Example 4 In the same manner as in Example 1, 10 g of vinylidene fluoride polymer powder (5) was placed in a kraft paper box having a width of 10 cm, a length of 15 cm, and a height of 3 cm, and vinylidene fluoride polymer powder (5 ) was spread in a box so that the thickness was uniform.
  • the box made of kraft paper is covered with kraft paper, and the box with the lid is placed in a hot air circulating furnace (trade name FineOven DH410, manufactured by Yamato Kagaku) at a temperature of 135 ° C., and vinylidene fluoride polymer
  • a hot air circulating furnace (trade name FineOven DH410, manufactured by Yamato Kagaku) at a temperature of 135 ° C.
  • vinylidene fluoride polymer After the temperature of the powder (5) itself reached 125 ° C, the temperature was raised to 130 ° C over 1 minute, further raised to 135 ° C over 5 minutes, held at 135 ° C for 54 minutes, and then covered.
  • the box was taken out from the hot air circulating furnace and allowed to cool at room temperature to obtain a heat-treated vinylidene fluoride polymer powder (4).
  • the dispersibility, dissolution time, and solution state of the heat-treated vinylidene fluoride polymer powder (4) were determined according to the above method.
  • Example 5 In the same manner as in Example 1, 10 g of vinylidene fluoride polymer powder (5) was placed in a kraft paper box having a width of 10 cm, a length of 15 cm, and a height of 3 cm, and vinylidene fluoride polymer powder (5 ) was spread in a box so that the thickness was uniform.
  • Example 6 In the same manner as in Example 1, 10 g of vinylidene fluoride polymer powder (5) was placed in a kraft paper box having a width of 10 cm, a length of 15 cm, and a height of 3 cm, and vinylidene fluoride polymer powder (5 ) was spread in a box so that the thickness was uniform.
  • the box made of kraft paper is covered with kraft paper, and the box with the lid is put in a hot air circulating furnace (manufactured by Yamato Kagaku, trade name FineOven DH410) at a temperature of 150 ° C., and vinylidene fluoride polymer
  • a hot air circulating furnace manufactured by Yamato Kagaku, trade name FineOven DH410
  • the temperature was raised to 130 ° C. over 18 seconds, further raised to 135 ° C. over 24 seconds, further raised to 140 ° C. over 30 seconds
  • the temperature was raised to 150 ° C. over 6 minutes and held at 150 ° C. for 52 minutes, and then the covered box was taken out of the hot air circulation furnace and allowed to cool at room temperature, whereby heat-treated vinylidene fluoride polymer powder (6) was obtained.
  • Example 7 In the same manner as in Example 1, 10 g of vinylidene fluoride polymer powder (5) was placed in a kraft paper box having a width of 10 cm, a length of 15 cm, and a height of 3 cm, and vinylidene fluoride polymer powder (5 ) was spread in a box so that the thickness was uniform.
  • the box made of kraft paper is covered with kraft paper, and the box with the lid is put in a hot air circulating furnace (manufactured by Yamato Kagaku, trade name FineOven DH410) at a temperature of 160 ° C., and vinylidene fluoride polymer
  • a hot air circulating furnace manufactured by Yamato Kagaku, trade name FineOven DH410
  • the temperature was raised to 130 ° C. over 12 seconds, further raised to 135 ° C. over 18 seconds, further raised to 140 ° C. over 18 seconds
  • the temperature is further raised to 150 ° C. over 1 minute, further raised to 160 ° C. over 6 minutes and held at 160 ° C. for 52 minutes, and then the covered box is taken out of the hot air circulation furnace and allowed to cool at room temperature.
  • a heat-treated vinylidene fluoride polymer powder (7) was obtained.
  • the dispersibility, dissolution time, and solution state of the heat-treated vinylidene fluoride polymer powder (7) were determined according to the above methods.
  • Example 2 In the same manner as in Example 1, 10 g of vinylidene fluoride polymer powder (5) was placed in a kraft paper box having a width of 10 cm, a length of 15 cm, and a height of 3 cm, and vinylidene fluoride polymer powder (5 ) was spread in a box so that the thickness was uniform.
  • the box made of kraft paper is covered with kraft paper, and the box with the lid is placed in a hot air circulating furnace (manufactured by Yamato Kagaku, trade name FineOven DH410) at a temperature of 120 ° C., and vinylidene fluoride polymer After the temperature of the powder (5) itself reaches 120 ° C., it is held at 120 ° C. for 54 minutes, and then the covered box is taken out of the hot air circulation furnace and allowed to cool at room temperature, whereby heat-treated vinylidene fluoride is obtained. A polymer powder (c2) was obtained.
  • the box made of kraft paper is covered with kraft paper, and the box with the lid is placed in a hot air circulating furnace (manufactured by Yamato Kagaku, trade name FineOven DH410) at a temperature of 120 ° C., and vinylidene fluoride polymer
  • a hot air circulating furnace manufactured by Yamato Kagaku, trade name FineOven DH410
  • vinylidene fluoride polymer After the temperature of the powder (5) itself becomes 120 ° C., it is kept at 120 ° C. for 20 hours, and then the covered box is taken out of the hot air circulation furnace and allowed to cool at room temperature, thereby heat-treated vinylidene fluoride.
  • a polymer powder (c3) was obtained.
  • the dispersibility, dissolution time, and solution state of the heat-treated vinylidene fluoride polymer powder (c3) were determined according to the above methods.
  • the box made of kraft paper is covered with kraft paper, and the box with the lid is put in a hot air circulating furnace (manufactured by Yamato Kagaku, trade name FineOven DH410) at a temperature of 180 ° C., and vinylidene fluoride polymer
  • the temperature of the powder (5) itself increased to 130 ° C. over 6 seconds from the time when the temperature became 125 ° C., further increased to 135 ° C. over 6 seconds, further increased to 140 ° C. over 12 seconds, The temperature was further raised to 150 ° C. over 24 seconds, further raised to 160 ° C. over 30 seconds, further raised to 170 ° C. over 1 minute, further raised to 180 ° C. over 6 minutes, 180 ° C.
  • the covered box was taken out from the hot air circulating furnace and allowed to cool at room temperature to obtain a heat-treated vinylidene fluoride polymer powder (c4).
  • the vinylidene fluoride polymer powder (5) was fused by the heat treatment.
  • Example 8 A heat-treated vinylidene fluoride polymer powder (8) was obtained in the same manner as in Example 5 except that the vinylidene fluoride polymer powder (5) was replaced with the vinylidene fluoride polymer powder (1). .
  • the dispersibility, dissolution time, and solution state of the heat-treated vinylidene fluoride polymer powder (8) were determined according to the above methods.
  • the vinylidene fluoride polymer powder (1) not subjected to the heat treatment obtained in Production Example 1 is also referred to as a vinylidene fluoride polymer powder (c5).
  • Example 9 As the Henschel mixer, a product name FM10B / I manufactured by Mitsui Mining Co., Ltd. was used.
  • the dispersibility, dissolution time, and solution state of the heat-treated vinylidene fluoride polymer powder (9) were determined according to the above methods.
  • Example 10 A heat-treated vinylidene fluoride polymer powder (10) was obtained in the same manner as in Example 5 except that the vinylidene fluoride polymer powder (5) was replaced with the vinylidene fluoride polymer powder (2). .
  • the dispersibility, dissolution time, and solution state of the heat-treated vinylidene fluoride polymer powder (10) were determined according to the above methods.
  • the vinylidene fluoride polymer powder (2) not subjected to the heat treatment obtained in Production Example 2 is also referred to as a vinylidene fluoride polymer powder (c6).
  • Example 11 A heat-treated vinylidene fluoride polymer powder (11) was obtained in the same manner as in Example 5 except that the vinylidene fluoride polymer powder (5) was replaced with the vinylidene fluoride polymer powder (3). .
  • the dispersibility, dissolution time, and solution state of the heat-treated vinylidene fluoride polymer powder (11) were determined according to the above method.
  • the vinylidene fluoride polymer powder (3) not subjected to the heat treatment obtained in Production Example 3 is also referred to as a vinylidene fluoride polymer powder (c7).
  • Example 12 A heat-treated vinylidene fluoride polymer powder (12) was obtained in the same manner as in Example 5 except that the vinylidene fluoride polymer powder (5) was replaced with the vinylidene fluoride polymer powder (4). .
  • the dispersibility, dissolution time, and solution state of the heat-treated vinylidene fluoride polymer powder (12) were determined according to the above methods.
  • vinylidene fluoride polymer powder (4) not subjected to the heat treatment obtained in Production Example 4 is also referred to as vinylidene fluoride polymer powder (c8).
  • Example 13 As the Henschel mixer, a product name FM10B / I manufactured by Mitsui Mining Co., Ltd. was used.
  • the temperature was raised to 130 ° C. over 1 minute from the time when the temperature of the vinylidene fluoride polymer powder (5) itself reached 125 ° C.
  • the dispersibility, dissolution time, and solution state of the heat-treated vinylidene fluoride polymer powder (13) were determined according to the above methods.
  • Example 14 A heat-treated vinylidene fluoride polymer powder (14) was obtained in the same manner as in Example 2 except that the vinylidene fluoride polymer powder (5) was replaced with the vinylidene fluoride polymer powder (6). .
  • Example 15 A heat-treated vinylidene fluoride polymer powder (15) was obtained in the same manner as in Example 5 except that the vinylidene fluoride polymer powder (5) was replaced with the vinylidene fluoride polymer powder (6). .
  • the dispersibility, dissolution time, and solution state of the heat-treated vinylidene fluoride polymer powder (15) were determined according to the above methods.
  • vinylidene fluoride polymer powder (6) which has not been heat-treated is also referred to as a vinylidene fluoride polymer powder (c9).
  • Example 16 A heat-treated vinylidene fluoride polymer powder (16) was obtained in the same manner as in Example 6 except that the vinylidene fluoride polymer powder (5) was replaced with the vinylidene fluoride polymer powder (7). .
  • the dispersibility, dissolution time, and solution state of the heat-treated vinylidene fluoride polymer powder (16) were determined according to the above methods.
  • vinylidene fluoride polymer powder (7) which has not been heat-treated is also referred to as a vinylidene fluoride polymer powder (c10).
  • Tables 1 and 2 show the results of Examples and Comparative Examples.
  • the temperature of the vinylidene fluoride polymer powder itself is such that, when heat treatment is performed using a hot air circulating furnace, the vinylidene fluoride polymer powder in the kraft paper box Measured by inserting a thermocouple into the layer formed from Moreover, when heat processing was performed using a Henschel mixer, it measured by inserting a thermocouple in the vinylidene fluoride polymer powder inside a Henschel mixer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明は、非プロトン性極性溶媒に対する溶解性に優れるフッ化ビニリデン系重合体粉末の製造方法および、該方法により得られるフッ化ビニリデン系重合体粉末を用いた、フッ化ビニリデン系重合体溶液の製造方法を提供する。 本発明の熱処理済フッ化ビニリデン系重合体粉末の製造方法は、未熱処理フッ化ビニリデン系重合体粉末に、該重合体粉末が125℃以上、結晶融解温度(Tm)未満となる温度で熱処理を施すことを特徴とする。

Description

熱処理済フッ化ビニリデン系重合体粉末の製造方法およびフッ化ビニリデン系重合体溶液の製造方法
 本発明は、熱処理済フッ化ビニリデン系重合体粉末の製造方法およびフッ化ビニリデン系重合体溶液の製造方法に関する。詳しくは、N-メチル-2-ピロリドン等の非プロトン性極性溶媒に対する分散性、溶解性に優れる熱処理済フッ化ビニリデン系重合体粉末の製造方法、該重合体粉末を用いるフッ化ビニリデン系重合体溶液の製造方法に関する。
 リチウムイオン二次電池用の結着剤として、フッ化ビニリデン系重合体粉末を、N-メチル-2-ピロリドン(以下、NMPとも記す)に溶解することにより得られるフッ化ビニリデン系重合体溶液が使用されている。
 一般に、フッ化ビニリデン系重合体粉末の分子量が大きいほど、結着剤として用いた際の結着力が大きくなるが、分子量が大きいほどNMPに溶解する際に要する時間が長くなり、生産性を悪化させる。
 溶解する際に要する時間が長くなる理由としては、分子量が高くなるほど、それぞれのフッ化ビニリデン系重合体粉末自体が溶けにくくなること、およびNMP中で、フッ化ビニリデン系重合体粉末同士が粘着し、大きな塊(以下、ママコとも記す)を形成することが挙げられる。
 特に、NMP中でママコを形成すると、ママコ内部にはNMPが浸透しないため、フッ化ビニリデン系重合体粉末をNMPに溶解する際に要する時間が、非常に長くなる。
 フッ化ビニリデン系重合体の溶解方法としては、フッ化ビニリデン系重合体粉末を、まず貧溶媒中に分散させ、次いで良溶媒中で攪拌して溶解させる方法が知られている(例えば、特許文献1参照)。特許文献1に記載の方法では、アセトン、テトラヒドロフラン等を貧溶媒として用い、NMP等を良溶媒として用いることが記載されている。特許文献1に記載の方法では、極めて簡便な方法によりフッ化ビニリデン系重合体を溶解することが可能である。しかしながら、特許文献1に記載の方法では、フッ化ビニリデン系重合体粉末を貧溶媒中に分散し、さらに良溶媒中で攪拌する必要がある為、操作が煩雑であり、生産性に劣る傾向があった。また、フッ化ビニリデン系重合体溶液から貧溶媒を除去する態様も記載されているが、貧溶媒を除去する工程を設けることは、コスト高の原因となる。
 また、NMPに対する溶解性に優れるフッ化ビニリデン系重合体粉末として、多孔質のフッ化ビニリデン系重合体粉末が知られている(例えば、特許文献2参照)。特許文献2に記載されたフッ化ビニリデン系重合体粉末は、フッ化ビニリデンモノマーを懸濁する工程と、超臨界重合する工程とを有する超臨界懸濁重合法により得ることができる。特許文献2に記載のフッ化ビニリデン系重合体粉末は、ママコの形成を抑制するものではないため、フッ化ビニリデン系重合体粉末の溶媒への分散方法が不適切であると、ママコを形成し、溶解性が低下する問題があった。
特開平10-298298号公報 国際公開第2009/047969号パンフレット
 本発明は上記従来技術の有する課題を鑑みてされたものであり、従来よりもNMP等の非プロトン性極性溶媒に対する溶解性に優れるフッ化ビニリデン系重合体粉末を製造する方法および、該方法により得られるフッ化ビニリデン系重合体粉末を用いた、フッ化ビニリデン系重合体溶液の製造方法を提供することを目的とする。
 本発明者等は、上記課題を解決するために鋭意検討を重ねた結果、特定の条件で、未熱処理フッ化ビニリデン系重合体粉末を熱処理することにより得られる熱処理済フッ化ビニリデン系重合体粉末は、NMP等の非プロトン性極性溶媒に対して優れた溶解性を有することを見出し、本発明を完成させた。
 すなわち、本発明の熱処理済フッ化ビニリデン系重合体粉末の製造方法は、未熱処理フッ化ビニリデン系重合体粉末に、該重合体粉末が125℃以上、結晶融解温度(Tm)未満となる温度で熱処理を施すことを特徴とする。
 前記未熱処理フッ化ビニリデン系重合体粉末が、フッ化ビニリデンに由来するモノマーユニットを80モル%以上有することが好ましい。
 前記熱処理における、熱処理時間が10秒~20時間であることが好ましい。
 前記未熱処理フッ化ビニリデン系重合体粉末の、メディアン径が1~250μmであることが好ましい。
 前記未熱処理フッ化ビニリデン系重合体粉末の、ゲルパーミエーションクロマトグラフィーによるポリスチレン換算の重量平均分子量が20万以上であることが好ましい。
 本発明のフッ化ビニリデン系重合体溶液の製造方法は、前記製造方法により得られる熱処理済フッ化ビニリデン系重合体粉末を、非プロトン性極性溶媒に溶解することを特徴とする。
 本発明のフッ化ビニリデン系重合体溶液の製造方法は、好ましくは、前記製造方法により得られる熱処理済フッ化ビニリデン系重合体粉末を、N-メチル-2-ピロリドンに溶解することを特徴とする。
 また、本発明のフッ化ビニリデン系重合体溶液の製造方法は、より好ましくは、前記製造方法により得られる熱処理済フッ化ビニリデン系重合体粉末を、液温が35~130℃のN-メチル-2-ピロリドンに溶解することを特徴とする。
 本発明の蓄電デバイス用電極スラリーの製造方法は、前記製造方法により得られるフッ化ビニリデン系重合体溶液を、活物質と混合することを特徴とする。
 本発明の蓄電デバイス用電極スラリーの製造方法の別の態様としては、前記製造方法により得られる熱処理済フッ化ビニリデン系重合体粉末と活物質とを混合し、得られた混合物を、非プロトン性極性溶媒と混合することを特徴とする。
 本発明の蓄電デバイス用電極の製造方法は、前記製造方法により得られる蓄電デバイス用電極スラリーを集電体に塗布・乾燥することを特徴とする。
 本発明熱処理済のフッ化ビニリデン系重合体粉末の製造方法によって得られる熱処理済フッ化ビニリデン系重合体粉末は、従来のフッ化ビニリデン系重合体粉末と比べて、NMP等の非プロトン性極性溶媒に対する溶解性に優れる。
 また、本発明のフッ化ビニリデン系重合体溶液の製造方法は、前記熱処理済フッ化ビニリデン系重合体粉末を用いることにより、容易に該粉末を溶解することができる。
 次に本発明について具体的に説明する。
 <熱処理済フッ化ビニリデン系重合体粉末の製造方法>
 本発明の熱処理済フッ化ビニリデン系重合体粉末の製造方法は、未熱処理フッ化ビニリデン系重合体粉末に、該重合体粉末が125℃以上、結晶融解温度(Tm)未満となる温度で熱処理を施すことを特徴とする。
 本発明の製造方法により得られる熱処理済フッ化ビニリデン系重合体粉末は、従来のフッ化ビニリデン系重合体粉末と比べて、NMP等の非プロトン性極性溶媒に対する溶解性に優れる。
 なお、本発明における熱処理とは、フッ化ビニリデン系重合体粉末自体の温度が125℃以上、未熱処理フッ化ビニリデン系重合体粉末の結晶融解温度(Tm)未満となる範囲で、未熱処理フッ化ビニリデン系重合体粉末を保持する処理である。すなわち、気流乾燥等の一時的な加熱では、フッ化ビニリデン系重合体粉末自体の温度は、熱風温度よりも低い温度となるが、本発明における熱処理とは、このようなフッ化ビニリデン系重合体粉末自体の温度が充分に上がらない処理ではなく、フッ化ビニリデン系重合体粉末自体の温度が、125℃以上、未熱処理フッ化ビニリデン系重合体粉末の結晶融解温度(Tm)未満となる処理を意味する。
 〔未熱処理フッ化ビニリデン系重合体粉末〕
 本発明に用いる未熱処理フッ化ビニリデン系重合体粉末について、以下説明する。本発明に用いる未熱処理フッ化ビニリデン系重合体粉末とは、後述の熱処理が施されていないフッ化ビニリデン系重合体粉末を意味し、従来公知のフッ化ビニリデン系重合体粉末を用いることができる。
 本発明に用いる未熱処理フッ化ビニリデン系重合体粉末は、フッ化ビニリデン由来のモノマーユニットを有する重合体の粉末であればよい。フッ化ビニリデン由来のモノマーユニットを有する重合体としては、特に限定はないが、フッ化ビニリデンの単独重合体、フッ化ビニリデンと他のモノマーとの共重合体、フッ化ビニリデンの単独重合体の変性物、フッ化ビニリデンと他のモノマーとの共重合体の変性物が挙げられる。これらの重合体は通常は一種単独で用いられるが、二種以上を用いてもよい。
 前記他のモノマーとしては、カルボキシル基含有モノマー、カルボン酸無水物基含有モノマー、フッ化ビニリデンを除くフッ素含有モノマー、α‐オレフィン等が挙げられる。他のモノマーとしては、一種単独で用いても、二種以上で用いてもよい。
 前記カルボキシル基含有モノマーとしては、不飽和一塩基酸、不飽和二塩基酸、不飽和二塩基酸のモノエステル等が好ましく、不飽和二塩基酸、不飽和二塩基酸のモノエステルがより好ましい。
 前記不飽和一塩基酸としては、アクリル酸等が挙げられる。前記不飽和二塩基酸としては、マレイン酸、シトラコン酸等が挙げられる。また、前記不飽和二塩基酸のモノエステルとしては、炭素数5~8のものが好ましく、例えばマレイン酸モノメチルエステル、マレイン酸モノエチルエステル、シトラコン酸モノメチルエステル、シトラコン酸モノエチルエステル等を挙げることができる。
 中でも、カルボキシル基含有モノマーとしては、マレイン酸、シトラコン酸、マレイン酸モノメチルエステル、シトラコン酸モノメチルエステルが好ましい。
 前記カルボン酸無水物基含有モノマーとしては、不飽和二塩基酸の酸無水物が挙げられ、不飽和二塩基酸の酸無水物としては、無水マレイン酸、無水シトラコン酸等が挙げられる。
 フッ化ビニリデンを除くフッ素含有モノマーとしては、フッ化ビニル、トリフルオロエチレン、クロロトリフルオロエチレン、テトラフルオロエチレン、ヘキサフルオロプロピレン等が挙げられる。
 α‐オレフィンとしては、エチレン、プロピレン、1‐ブテン等が挙げられる。
 フッ化ビニリデンと他のモノマーの共重合体としては好ましくは、フッ化ビニリデンとマレイン酸モノメチルエステルとの共重合体、フッ化ビニリデンとヘキサフルオロプロピレンとマレイン酸モノメチルエステルとの共重合体等が挙げられる。
 フッ化ビニリデンと他のモノマーの共重合体は、フッ化ビニリデンと前記他のモノマーとを共重合することにより得られる。
 フッ化ビニリデンを単独重合する方法、フッ化ビニリデンと他のモノマーとを共重合する方法としては、特に限定はなく、例えば懸濁重合、乳化重合、溶液重合等の重合法により得ることがでる。
 また、重合温度等の重合条件も任意に設定することができる。例えば懸濁重合を行う場合には、重合温度が通常は20~120℃の範囲であり、好ましくは25~100℃の範囲であり、最も好ましくは25~75℃の範囲である。未熱処理フッ化ビニリデン系重合体粉末として、重合温度が25~75℃の範囲で懸濁重合を行うことにより得られたフッ化ビニリデン系重合体粉末を用いると、本発明の製造方法により得られる熱処理済フッ化ビニリデン系重合体粉末のNMP等の非プロトン性極性溶媒に対する溶解性に優れる傾向があり好ましい。
 重合法としては、粉末状態のフッ化ビニリデン由来のモノマーユニットを有する重合体を得ることができる、懸濁重合、乳化重合が好ましく、懸濁重合がより好ましい。本発明に用いる未熱処理フッ化ビニリデン系重合体粉末は、フッ化ビニリデン由来のモノマーユニットを有する重合体を、粉末状態で得られる重合法によって得た場合には、該重合体そのものでもよく、該重合体を篩等によって選別することにより得られる、特定の粒子径の重合体でもよい。また、本発明に用いる未熱処理フッ化ビニリデン系重合体粉末は、フッ化ビニリデン由来のモノマーユニットを有する重合体を、バルク(塊)状態で得られる重合法によって得た場合には、該重合体を、例えば特開平6-108103号公報等に記載された液体窒素を用いた凍結粉砕等によって粉末状に成形した重合体であってもよい。
 また、フッ化ビニリデンの単独重合体の変性物、フッ化ビニリデンと他のモノマーとの共重合体の変性物としては、前記フッ化ビニリデンの単独重合体またはフッ化ビニリデンと他のモノマーとの共重合体を、変性することにより得ることができる。該変性としては、マレイン酸、無水マレイン酸等のカルボキシル基またはカルボン酸無水物基を有するモノマーを用いることが好ましい。
 本発明に用いる未熱処理フッ化ビニリデン系重合体粉末としては、フッ化ビニリデン由来のモノマーユニットを80モル%以上有することが好ましく、90モル%以上有することがより好ましく、95モル%以上有することが最も好ましい(但し、全モノマーユニットを100モル%とする)。また、本発明に用いる未熱処理フッ化ビニリデン系重合体粉末としては、フッ化ビニリデン以外の他のモノマーに由来するモノマーユニットを20モル%以下有することが好ましく、10モル%以下有することがより好ましく、5モル%以下有することが最も好ましい(但し、全モノマーユニットを100モル%とする)。フッ化ビニリデン由来のモノマーユニットが80モル%未満であると未熱処理フッ化ビニリデン系重合体粉末の融点が低下し、熱処理時に融着し易くなる場合があり、融着した場合には一般に製造が困難になる。フッ化ビニリデン由来のモノマーユニットおよび、他のモノマーに由来するモノマーユニットの量は、NMR、元素分析、酸素フラスコ燃焼法等の公知の方法により求めることができる。
 本発明に用いる未熱処理フッ化ビニリデン系重合体粉末としては、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算の重量平均分子量が、20万以上であることが好ましく、30万以上であることがより好ましく、50万以上であることが最も好ましい。ポリスチレン換算の重量平均分子量の上限としては、特に限定はないが、本発明の製造方法により得られる、熱処理済フッ化ビニリデン系重合体粉末の、NMP等の非プロトン性極性溶媒への溶解性の観点から400万以下であることが好ましい。
 本発明に用いる未熱処理フッ化ビニリデン系重合体粉末のメディアン径は、1~250μmであることが好ましく、50~230μmであることがより好ましい。前記範囲内では熱処理済フッ化ビニリデン系重合体粉末の溶解性とハンドリング性に優れるため、好適である。なお、メディアン径とは、粒径分布における累積曲線の50%にあたる粒子径であり、50%平均粒径(dp50)とも呼ばれる。本発明においてメディアン径は体積基準の粒径分布に基づいて導出されることとし、この場合はメディアン径の値よりも大きい粒径の粒子の総体積と小さい粒径の粒子の総体積とが等しくなる。
 本発明に用いる未熱処理フッ化ビニリデン系重合体粉末のインヘレント粘度は、0.3~10dl/gであることが好ましく、1~5dl/gであることがより好ましい。前記範囲内では、得られる熱処理済フッ化ビニリデン系重合体の機械特性が良好であり、溶液のハンドリング性も良好である。
 本発明に用いる未熱処理フッ化ビニリデン系重合体粉末の結晶融解温度(Tm)は、通常は130~180℃である。結晶融解温度は、示差走査熱量測定(以下DSCとも記す)で得られるDSC曲線より求めることができる。なおDSC曲線において、複数の結晶融解ピーク(吸熱ピーク)が存在する場合には、ピーク面積が最大のピークに基づき結晶融解温度(Tm)を決定する。
 なお、未熱処理フッ化ビニリデン系重合体粉末としては、市販品を用いてもよい。
 〔熱処理〕
 本発明の熱処理済フッ化ビニリデン系重合体粉末の製造方法では、未熱処理フッ化ビニリデン系重合体粉末に、該重合体粉末が125℃以上、結晶融解温度(Tm)未満となる温度で熱処理を施す。
 本発明における熱処理とは、前記未熱処理フッ化ビニリデン系重合体粉末自体の温度が、125℃以上、結晶融解温度(Tm)未満となる温度で、前記重合体粉末を保持する処理である。すなわち、気流乾燥等の一時的な加熱では、フッ化ビニリデン系重合体粉末自体の温度は、熱風温度よりも低い温度となるが、本発明における熱処理とは、このようなフッ化ビニリデン系重合体粉末自体の温度が充分に上がらない処理ではなく、フッ化ビニリデン系重合体粉末自体の温度が、125℃以上、未熱処理フッ化ビニリデン系重合体粉末の結晶融解温度(Tm)未満となる処理を意味する。
 熱処理における、熱処理温度は、前述のように125℃以上、未熱処理フッ化ビニリデン系重合体粉末の結晶融解温度(Tm)未満であるが、130℃以上であることが好ましく、135℃以上であることがより好ましい。また、180℃未満であることが好ましく、160℃以下であることがより好ましい。前記範囲内では熱処理済フッ化ビニリデン系重合体粉末は、溶解時にママコを形成せず、溶解性に優れるため好ましい。
 熱処理における、熱処理時間としては特に限定はないが、通常は10秒~20時間であり、60秒~20時間であることがより好ましく、60秒~5時間であることが最も好ましい。なお、本発明における熱処理時間とは、重合体粉末自体の温度が125℃以上、結晶融解温度(Tm)未満である時間を意味する。未熱処理フッ化ビニリデン系重合体粉末を、熱風循環炉やヘンシェルミキサー中に保持したとしても、熱風循環炉等に入れた直後は、前記重合体粉末自体の温度は、熱風循環炉の温度(加熱温度)よりも低い。本発明における熱処理時間とは、前記重合体粉末を、熱風循環炉等に入れ、保持した時間ではなく、重合体粉末自体の温度が125℃以上、結晶融解温度(Tm)未満で保持されていた時間を意味する。
 熱処理を行う際の雰囲気としても特に限定はなく、例えば空気雰囲気下、窒素雰囲気下で行うことができる。また、熱処理は減圧下、加圧下、常圧下のいずれでも行うことができるが、通常は常圧下で行われる。
 熱処理を行う方法としては特に限定はなく、熱風循環炉により行う方法、ヘンシェルミキサーにより行う方法、ギアオーブンにより行う方法等が挙げられる。熱処理を熱風循環炉で行う場合には、例えば熱風循環炉中に、未熱処理フッ化ビニリデン系重合体粉末を入れた箱を設置することにより行うことができる。また、熱処理をヘンシェルミキサーにより行う場合には、例えばヘンシェルミキサーに、未熱処理フッ化ビニリデン系重合体粉末を投入し、攪拌しながら加熱することにより行うことができる。
 〔熱処理済フッ化ビニリデン系重合体粉末〕
 本発明の製造方法により得られる熱処理済フッ化ビニリデン系重合体粉末は、未熱処理フッ化ビニリデン系重合体粉末と比べて、NMP等の非プロトン性極性溶媒に対する溶解性に優れる。
 なお、溶解性の指標は一つではないが、例えば、室温のNMPにフッ化ビニリデン系重合体粉末を投入した際に、フッ化ビニリデン系重合体粉末がNMP中に分散した場合には、フッ化ビニリデン系重合体粉末がママコを形成する場合と比べて溶解性に優れると判断することができる。別の指標としては、特定温度(例えば50℃)に加温したNMP中にフッ化ビニリデン系重合体粉末を投入し、攪拌した際にフッ化ビニリデン系重合体粉末が溶解するまでの時間が短いほど溶解性に優れると判断することができる。
 なお、熱処理済フッ化ビニリデン系重合体粉末を非プロトン性極性溶媒で溶解した際には、得られるフッ化ビニリデン系重合体溶液は、透明な溶液となることが好ましいが、半透明の溶液となる場合がある。なお、半透明の液体となる場合でも、熱処理済フッ化ビニリデン系重合体粉末は、蓄電デバイス用電極スラリー、蓄電デバイス用電極を形成するために、問題なく用いることができる。
 <フッ化ビニリデン系重合体溶液の製造方法>
 本発明のフッ化ビニリデン系重合体溶液の製造方法は、前記熱処理済フッ化ビニリデン系重合体粉末の製造方法により得られる熱処理済フッ化ビニリデン系重合体粉末を、非プロトン性極性溶媒に溶解することを特徴とする。
 本発明のフッ化ビニリデン系重合体溶液の製造方法は、フッ化ビニリデン系重合体粉末として、前記熱処理済フッ化ビニリデン系重合体粉末を用いることにより、従来のフッ化ビニリデン系重合体粉末を非プロトン性極性溶媒に溶解する場合よりも、速やかに溶解することができる。
 非プロトン性極性溶媒としては、N-メチル-2-ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド等が挙げられ、中でもN-メチル-2-ピロリドンが好ましい。
 フッ化ビニリデン系重合体溶液を製造する際に用いる、非プロトン性極性溶媒の量としては特に限定はないが、通常は前記熱処理済フッ化ビニリデン系重合体粉末100重量部に対して、400~10000重量部、好ましくは550~2400重量部の範囲で用いられる。
 フッ化ビニリデン系重合体溶液を製造する際には、通常非プロトン性極性溶媒に、前記熱処理済フッ化ビニリデン系重合体粉末を投入し、攪拌することにより得られる。
 本発明のフッ化ビニリデン系重合体溶液の製造方法では、前記熱処理済フッ化ビニリデン系重合体粉末を、液温が35~130℃の非プロトン性極性溶媒に溶解することが好ましく、前記熱処理済フッ化ビニリデン系重合体粉末を、液温が35~130℃のN-メチル-2-ピロリドンに溶解することがより好ましい。また、非プロトン性極性溶媒として、N-メチル-2-ピロリドンを用いた場合には、液温が45~80℃であることが、熱処理済フッ化ビニリデン系重合体粉末の溶解性の観点から特に好ましい。
 なお、前記熱処理済フッ化ビニリデン系重合体粉末を、液温が35~130℃の非プロトン性極性溶媒に溶解する方法としては、35~130℃に加熱した非プロトン性極性溶媒に、前記熱処理済フッ化ビニリデン系重合体粉末を投入し、溶解する方法、室温の非プロトン性極性溶媒に、前記熱処理済フッ化ビニリデン系重合体粉末を投入し、ヒーター等によって、35~130℃に加熱して溶解する方法、室温の非プロトン性極性溶媒に、前記熱処理済フッ化ビニリデン系重合体粉末を投入し、ホモジナイザーやディスパーミキサー等を用いて高速攪拌を行い、せん断発熱によって35~130℃に加熱して溶解する方法等が挙げられる。
 また、熱処理済フッ化ビニリデン系重合体粉末を、非プロトン性極性溶媒に溶解する際には、ホモジナイザーやディスパーミキサー、プロペラ型翼等を用いた攪拌機、プライミクス社製T.K.フィルミックス、超音波振動等を用いることができる。また、必要に応じて加熱ジャケット等を備えた装置であっても良い。
 <蓄電デバイス用電極スラリーの製造方法>
 本発明の蓄電デバイス用電極スラリーの製造方法は、前記フッ化ビニリデン系重合体溶液の製造方法により得られるフッ化ビニリデン系重合体溶液を、活物質と混合することを特徴とする方法(第一の方法)、前記熱処理済フッ化ビニリデン系重合体粉末の製造方法により得られる熱処理済フッ化ビニリデン系重合体粉末と活物質とを混合し、得られた混合物を、非プロトン性極性溶媒と混合することを特徴とする方法(第二の方法)が挙げられる。
 なお、蓄電デバイスとしては、非水電解質二次電池(例えばリチウムイオン・ポリマー二次電池)、電気二重層キャパシタ等が挙げられる。本発明の製造方法により得られる蓄電デバイス用電極スラリーは、特に、非水電解質二次電池の正極を形成する際に用いられることが好ましい。
 第一の方法では、前記フッ化ビニリデン系重合体溶液を、活物質と混合することにより得られるが、混合の際にはプラネタリーミキサー、ニーダー、インターナルミキサー、プライミクス社製T.K.フィルミックス等を用いることができる。
 第二の方法では、まず前記熱処理済フッ化ビニリデン系重合体粉末と活物質とを混合し、混合物を得るが、該混合の際にはプラネタリーミキサー、パドルミキサー、ヘンシェルミキサー、リボンミキサー等を用いることができる。また第二の方法では、得られた混合物を非プロトン性極性溶媒と混合するが、該混合の際にはプラネタリーミキサー、ニーダー、インターナルミキサー、プライミクス社製T.K.フィルミックス等を用いることができる。
 なお、第二の方法で用いる非プロトン性極性溶媒としては、<フッ化ビニリデン系重合体溶液の製造方法>の項で記載した非プロトン性極性溶媒を用いることができる。また、第二の方法で用いる非プロトン性極性溶媒の量としては特に限定はないが、通常は前記熱処理済フッ化ビニリデン系重合体粉末100重量部に対して、400~10000重量部、好ましくは550~2400重量部の範囲で用いられる。
 なお、蓄電デバイス用電極スラリーの製造方法に用いられる活物質の量としては、特に限定はないが、通常はフッ化ビニリデン系重合体溶液を得る際に用いる熱処理済フッ化ビニリデン系重合体粉末(第一の方法)100重量部または、熱処理済フッ化ビニリデン系重合体粉末(第二の方法)100重量部に対して、通常は100~10000重量部であり、好ましくは900~6400重量部である。
 また、活物質としては、炭素材料、金属・合金材料、金属酸化物などが挙げられるが、中でも金属酸化物が好ましい。
 <蓄電デバイス用電極の製造方法>
 本発明の蓄電デバイス用電極の製造方法は、前記蓄電デバイス用電極スラリーの製造方法により得られる蓄電デバイス用電極スラリーを集電体に塗布・乾燥することを特徴とする。
 集電体としては、例えば銅、アルミニウム、ニッケル、金が挙げられ、その形状としては例えば金属箔や金属網等が挙げられる。
 また、蓄電デバイス用電極スラリーを集電体に塗布する際には、前記集電体の少なくとも一面、好ましくは両面に塗布を行う。塗布する際の方法としては特に限定は無く、バーコーター、ダイコーター、コンマコーターで塗布する等の方法が挙げられる。
 また、塗布した後に行われる乾燥としては、通常50~150℃の温度で1~300分行われる。また、乾燥の際の圧力は特に限定はないが、通常は、大気圧下または減圧下で行われる。
 次に本発明について実施例を示してさらに詳細に説明するが、本発明はこれらによって限定されるものではない。
 下記フッ化ビニリデン系重合体粉末および、実施例、比較例で得られた熱処理済フッ化ビニリデン系重合体粉末の物性は、下記方法で測定、評価を行った。
 〔DSCの測定〕
 下記フッ化ビニリデン系重合体粉末のDSC測定を、TAインスツルメント製MDSC(Q100)を用いて行った。
 アルミ製サンプルパンに試料(下記フッ化ビニリデン系重合体粉末)約2.0mgを精秤した。50mL/minの流量で窒素をフローしながら、30℃から230℃まで5℃/minの速度で昇温し、この間、±0.53℃/40secの温度変調をかけた。Q100付属のソフトウェア(Universal Analysis 2000)を用い、Integrate Peak Linearコマンドを用いて解析を行い、結晶融解温度(Tm)を求めた。
 〔インヘレント粘度の測定方法〕
 1リットルのN,N-ジメチルホルムアミドに、下記フッ化ビニリデン系重合体粉末4gを添加し、80℃で8時間かけて溶解させることにより、フッ化ビニリデン系重合体溶液を調整した。この溶液を30℃に保持してウベローデ粘度計で対数粘度を測定し、下式によってインヘレント粘度を求めた。
 インヘレント粘度(対数粘度)[η]=ln(ηrel)/C
 ここでηrel=試料溶液の落下秒数/溶媒の落下秒数、C=試料溶液の濃度(0.4g/dl)を表す。
 〔GPCによる分子量の評価〕
 下記フッ化ビニリデン系重合体粉末の分子量は、フッ化ビニリデン系重合体粉末を濃度0.1重量%で溶解したN-メチル-2-ピロリドン溶液について、ゲルパーミエーションクロマトグラフ(日本分光株式会社製;GPC-900、shodex KD-806Mカラム、温度40℃)を用いることにより、ポリスチレン換算の重量平均分子量として測定した。
 〔粒子径の測定方法〕
 下記フッ化ビニリデン系重合体粉末0.5gをエタノール1gで良く湿潤させた後、水9gを加えて攪拌混合した。その後、サンノプコ株式会社製「SNウェット366」の1%希釈液を0.6g加え、良く混合した。該混合により得られた混合物のメディアン径(dp50)を、島津製作所製の粒度分布測定装置(SALD-3000S)を用いて測定した。
 〔分散状態の評価〕
 内径35mmのサンプル瓶にNMP20gを秤量し、スターラーチップ(長さ30mm、中央部直径8mm、端部直径7mm)を使用して400rpmで攪拌しながら下記実施例、比較例で得られた熱処理済フッ化ビニリデン系重合体粉末(但し、比較例1、5~10ではフッ化ビニリデン系重合体粉末)1gを投入し、1分間攪拌した。
 フッ化ビニリデン系重合体粉末同士が凝集し、数mm程度の大きさの凝集塊を形成した場合を「ママコ」、単一粒子と同程度もしくは数倍程度の粒子サイズに分散されている物を「分散」とした。
 なお分散状態の評価は、室温(23℃)で行った。
 〔溶解時間の評価〕
 前記分散状態の評価を行った後、下記実施例、比較例で得られた熱処理済フッ化ビニリデン系重合体粉末(但し、比較例1、5~10ではフッ化ビニリデン系重合体粉末)およびNMPの入ったサンプル瓶を50℃のウォーターバスにセットし、400rpmで攪拌を続けながら内容物の状態を目視で確認し、フッ化ビニリデン系重合体粉末由来の固形物やゲル状物が無くなった時点で溶解が完了したものとした。
 なお、フッ化ビニリデン系重合体粉末由来の固形物やゲル状物が無くなった時点とは、透明状態の溶液となった場合だけでなく、固形物やゲル状物が無く半透明状態の溶液となった場合も、溶解が完了したものとした。ウォーターバスにセットした時点から、溶解が完了するまでの時間を溶解時間とした。
 〔溶液の状態の評価〕
 内径35mmのサンプル瓶にNMP20gを秤量し、スターラーチップ(長さ30mm、中央部直径8mm、端部直径7mm)を使用して400rpmで攪拌しながら下記実施例、比較例で得られた熱処理済フッ化ビニリデン系重合体粉末(但し、比較例1、5~10ではフッ化ビニリデン系重合体粉末)1gを投入し、1分間攪拌した。次いでフッ化ビニリデン系重合体粉末およびNMPの入ったサンプル瓶を、所定温度(40、50、60、65、70℃)のウォーターバスにセットし、充分な時間を掛けて攪拌・溶解をさせた後、目視で溶液が透明であった物を「透明」、半透明状態であったものを「濁り」、沈降物があったものを「沈殿」とした。
 〔製造例1〕
 (フッ化ビニリデン系重合体粉末(1)の製造)
 容積2リットルのオートクレーブに、イオン交換水1118g、メチルセルロース0.4g、フッ化ビニリデンモノマー421g、クロロトリフロロエチレンモノマー9g、ジイソプロピルパーオキシジカーボネート2.5g、フロン225cbを2.5g、の各量を仕込み、28℃で12時間懸濁重合を行った。
 重合完了後、得られた重合体スラリーを95℃で30分熱処理した後、脱水、水洗し、更に80℃で20時間乾燥してフッ化ビニリデン系重合体粉末(1)を得た。
 得られたフッ化ビニリデン系重合体粉末(1)のインヘレント粘度は2.2dl/g、重量平均分子量は77万、メディアン径が195μm、Tmが171℃であった。フッ化ビニリデン系重合体粉末(1)について、JIS K7229に従い塩素含有量を分析し、クロロトリフルオロエチレンモノマー換算で1.1mol%が導入されていること、すなわち、フッ化ビニリデン系重合体粉末(1)がフッ化ビニリデン由来のモノマーユニットを98.9mol%有する事を確認した。
 〔製造例2〕
 (フッ化ビニリデン系重合体粉末(2)の製造)
 容積2リットルのオートクレーブに、イオン交換水1026g、メチルセルロース0.2g、フッ化ビニリデンモノマー400g、ジ-n-プロピルパーオキシジカーボネート2.4g、メタノール2.4g、酢酸エチル5.5gの各量を仕込み、重合温度を26℃、後に昇温して40℃で12時間懸濁重合を行った。
 重合完了後、得られた重合体スラリーを95℃で30分熱処理した後、脱水、水洗し、更に乾燥を行い、フッ化ビニリデン系重合体粉末(2)を得た。乾燥は気流乾燥機を用い、熱風入口温度140℃、熱風出口温度80℃の条件で行った。
 得られたフッ化ビニリデン系重合体粉末(2)のインヘレント粘度は1.1dl/g、重量平均分子量は30万、メディアン径が210μm、Tmが173℃であった。
 〔製造例3〕
 (フッ化ビニリデン系重合体粉末(3)の製造)
 容積2リットルのオートクレーブに、イオン交換水1026g、メチルセルロース0.2g、フッ化ビニリデンモノマー400g、ジ-n-プロピルパーオキシジカーボネート2.4g、メタノール2.4g、酢酸エチル2.0gの各量を仕込み、重合温度を26℃、後に昇温して40℃で11時間懸濁重合を行った。
 重合完了後、得られた重合体スラリーを95℃で30分熱処理した後、脱水、水洗し、更に乾燥を行い、フッ化ビニリデン系重合体粉末(3)を得た。乾燥は気流乾燥機を用い、熱風入口温度140℃、熱風出口温度80℃の条件で行った。
 得られたフッ化ビニリデン系重合体粉末(3)のインヘレント粘度は1.3dl/g、重量平均分子量は35万、メディアン径が184μm、Tmが173℃であった。
 〔製造例4〕
 (フッ化ビニリデン系重合体粉末(4)の製造)
 容積2リットルのオートクレーブに、イオン交換水1024g、メチルセルロース0.2g、フッ化ビニリデンモノマー400g、ジイソプロピルパーオキシジカーボネート1.4g、フロン225cbを1.4g、酢酸エチル3.0gの各量を仕込み、26℃で16時間懸濁重合を行った。
 重合完了後、得られた重合体スラリーを95℃で30分熱処理した後、脱水、水洗し、更に乾燥を行い、フッ化ビニリデン系重合体粉末(4)を得た。乾燥は気流乾燥機を用い、熱風入口温度140℃、熱風出口温度80℃の条件で行った。
 得られたフッ化ビニリデン系重合体粉末(4)のインヘレント粘度は2.2dl/g、重量平均分子量は77万、メディアン径が215μm、Tmが173℃であった。
 〔製造例5〕
 (フッ化ビニリデン系重合体粉末(5)の製造)
 容積2リットルのオートクレーブに、イオン交換水1024g、メチルセルロース0.2g、フッ化ビニリデンモノマー400g、ジイソプロピルパーオキシジカーボネート0.6g、フロン225cbを0.6g、酢酸エチル1.9gの各量を仕込み、26℃で20時間懸濁重合を行った。
 重合完了後、得られた重合体スラリーを95℃で30分熱処理した後、脱水、水洗し、更に乾燥を行い、フッ化ビニリデン系重合体粉末(5)を得た。乾燥は気流乾燥機を用い、熱風入口温度140℃、熱風出口温度80℃の条件で行った。
 得られたフッ化ビニリデン系重合体粉末(5)のインヘレント粘度は3.1dl/g、重量平均分子量は110万、メディアン径が220μm、Tmが173℃であった。
 実施例、比較例では、下記の市販されているフッ化ビニリデン系重合体粉末も用いた。
 (フッ化ビニリデン系重合体粉末(6))
 フッ化ビニリデン系重合体粉末(6)として、ソルベイ・ソレクシス社製のPVDF粉末、商品名solef6020を用いた。solef6020のインヘレント粘度は1.85dl/g、重量平均分子量は60万、メディアン径が104μm、Tmが170℃であった。
 (フッ化ビニリデン系重合体粉末(7))
 フッ化ビニリデン系重合体粉末(7)として、アルケマ社製のPVDF粉末、商品名kynar HSV900を用いた。kynar HSV900は、インヘレント粘度が1.0dl/g、重量平均分子量は66万、メディアン径が5μm、Tmが160℃であった。
 なお、上記フッ化ビニリデン系重合体粉末(1)~(7)は、フッ化ビニリデン系重合体粉末自体の温度が125℃以上となる熱処理が行われていないため、本発明における未熱処理フッ化ビニリデン系重合体粉末に相当する。
 〔実施例1〕
 幅10cm、長さ15cm、高さ3cmのクラフト紙製の箱の中に、フッ化ビニリデン系重合体粉末(5)10gを入れ、フッ化ビニリデン系重合体粉末(5)の厚さが均一となるように、箱中に広げた。
 次いで、前記クラフト紙製の箱に、クラフト紙で蓋をし、温度125℃の熱風循環炉(ヤマト科学製、商品名FineOven DH410)の中に蓋をした箱を入れ、フッ化ビニリデン系重合体粉末(5)自体の温度が125℃となった時点から5時間保持した後、蓋をした箱を熱風循環炉から取り出し、室温下で放冷することにより、熱処理済フッ化ビニリデン系重合体粉末(1)を得た。
 熱処理済フッ化ビニリデン系重合体粉末(1)の分散性、溶解時間、溶液の状態について前記方法に従って求めた。
 〔実施例2〕
 実施例1と同様に、幅10cm、長さ15cm、高さ3cmのクラフト紙製の箱の中に、フッ化ビニリデン系重合体粉末(5)10gを入れ、フッ化ビニリデン系重合体粉末(5)の厚さが均一となるように、箱中に広げた。
 次いで、前記クラフト紙製の箱に、クラフト紙で蓋をし、温度130℃の熱風循環炉(ヤマト科学製、商品名FineOven DH410)の中に蓋をした箱を入れ、フッ化ビニリデン系重合体粉末(5)自体の温度が125℃となった時点から5分かけて130℃に昇温し、130℃で55分保持した後、蓋をした箱を熱風循環炉から取り出し、室温下で放冷することにより、熱処理済フッ化ビニリデン系重合体粉末(2)を得た。
 熱処理済フッ化ビニリデン系重合体粉末(2)の分散性、溶解時間、溶液の状態について前記方法に従って求めた。
 〔実施例3〕
 実施例1と同様に、幅10cm、長さ15cm、高さ3cmのクラフト紙製の箱の中に、フッ化ビニリデン系重合体粉末(5)10gを入れ、フッ化ビニリデン系重合体粉末(5)の厚さが均一となるように、箱中に広げた。
 次いで、前記クラフト紙製の箱に、クラフト紙で蓋をし、温度130℃の熱風循環炉(ヤマト科学製、商品名FineOven DH410)の中に蓋をした箱を入れ、フッ化ビニリデン系重合体粉末(5)自体の温度が125℃となった時点から5分かけて130℃に昇温し、130℃で19時間55分保持した後、蓋をした箱を熱風循環炉から取り出し、室温下で放冷することにより、熱処理済フッ化ビニリデン系重合体粉末(3)を得た。
 熱処理済フッ化ビニリデン系重合体粉末(3)の分散性、溶解時間、溶液の状態について前記方法に従って求めた。
 〔実施例4〕
 実施例1と同様に、幅10cm、長さ15cm、高さ3cmのクラフト紙製の箱の中に、フッ化ビニリデン系重合体粉末(5)10gを入れ、フッ化ビニリデン系重合体粉末(5)の厚さが均一となるように、箱中に広げた。
 次いで、前記クラフト紙製の箱に、クラフト紙で蓋をし、温度135℃の熱風循環炉(ヤマト科学製、商品名FineOven DH410)の中に蓋をした箱を入れ、フッ化ビニリデン系重合体粉末(5)自体の温度が125℃となった時点から1分かけて130℃に昇温し、さらに5分かけて135℃に昇温し、135℃で54分保持した後、蓋をした箱を熱風循環炉から取り出し、室温下で放冷することにより、熱処理済フッ化ビニリデン系重合体粉末(4)を得た。
 熱処理済フッ化ビニリデン系重合体粉末(4)の分散性、溶解時間、溶液の状態について前記方法に従って求めた。
 〔実施例5〕
 実施例1と同様に、幅10cm、長さ15cm、高さ3cmのクラフト紙製の箱の中に、フッ化ビニリデン系重合体粉末(5)10gを入れ、フッ化ビニリデン系重合体粉末(5)の厚さが均一となるように、箱中に広げた。
 次いで、前記クラフト紙製の箱に、クラフト紙で蓋をし、温度140℃の熱風循環炉(ヤマト科学製、商品名FineOven DH410)の中に蓋をした箱を入れ、フッ化ビニリデン系重合体粉末(5)自体の温度が125℃となった時点から30秒かけて130℃に昇温し、さらに48秒かけて135℃に昇温し、さらに5分かけて140℃に昇温し、140℃で53分保持した後、蓋をした箱を熱風循環炉から取り出し、室温下で放冷することにより、熱処理済フッ化ビニリデン系重合体粉末(5)を得た。
 熱処理済フッ化ビニリデン系重合体粉末(5)の分散性、溶解時間、溶液の状態について前記方法に従って求めた。
 〔実施例6〕
 実施例1と同様に、幅10cm、長さ15cm、高さ3cmのクラフト紙製の箱の中に、フッ化ビニリデン系重合体粉末(5)10gを入れ、フッ化ビニリデン系重合体粉末(5)の厚さが均一となるように、箱中に広げた。
 次いで、前記クラフト紙製の箱に、クラフト紙で蓋をし、温度150℃の熱風循環炉(ヤマト科学製、商品名FineOven DH410)の中に蓋をした箱を入れ、フッ化ビニリデン系重合体粉末(5)自体の温度が125℃となった時点から18秒かけて130℃に昇温し、さらに24秒かけて135℃に昇温し、さらに30秒かけて140℃に昇温し、さらに6分かけて150℃に昇温し、150℃で52分保持した後、蓋をした箱を熱風循環炉から取り出し、室温下で放冷することにより、熱処理済フッ化ビニリデン系重合体粉末(6)を得た。
 熱処理済フッ化ビニリデン系重合体粉末(6)の分散性、溶解時間、溶液の状態について前記方法に従って求めた。
 〔実施例7〕
 実施例1と同様に、幅10cm、長さ15cm、高さ3cmのクラフト紙製の箱の中に、フッ化ビニリデン系重合体粉末(5)10gを入れ、フッ化ビニリデン系重合体粉末(5)の厚さが均一となるように、箱中に広げた。
 次いで、前記クラフト紙製の箱に、クラフト紙で蓋をし、温度160℃の熱風循環炉(ヤマト科学製、商品名FineOven DH410)の中に蓋をした箱を入れ、フッ化ビニリデン系重合体粉末(5)自体の温度が125℃となった時点から12秒かけて130℃に昇温し、さらに18秒かけて135℃に昇温し、さらに18秒かけて140℃に昇温し、さらに1分かけて150℃に昇温し、さらに6分かけて160℃に昇温し、160℃で52分保持した後、蓋をした箱を熱風循環炉から取り出し、室温下で放冷することにより、熱処理済フッ化ビニリデン系重合体粉末(7)を得た。
 熱処理済フッ化ビニリデン系重合体粉末(7)の分散性、溶解時間、溶液の状態について前記方法に従って求めた。
 〔比較例1〕
 製造例5で得られたフッ化ビニリデン系重合体粉末(5)の分散性、溶解時間、溶液の状態について前記方法に従って求めた。
 なお、製造例5で得られた熱処理の施されていない、フッ化ビニリデン系重合体粉末(5)を、フッ化ビニリデン系重合体粉末(c1)とも記す。
 〔比較例2〕
 実施例1と同様に、幅10cm、長さ15cm、高さ3cmのクラフト紙製の箱の中に、フッ化ビニリデン系重合体粉末(5)10gを入れ、フッ化ビニリデン系重合体粉末(5)の厚さが均一となるように、箱中に広げた。
 次いで、前記クラフト紙製の箱に、クラフト紙で蓋をし、温度120℃の熱風循環炉(ヤマト科学製、商品名FineOven DH410)の中に蓋をした箱を入れ、フッ化ビニリデン系重合体粉末(5)自体の温度が120℃となった時点から、120℃で54分間保持した後、蓋をした箱を熱風循環炉から取り出し、室温下で放冷することにより、熱処理済フッ化ビニリデン系重合体粉末(c2)を得た。
 熱処理済フッ化ビニリデン系重合体粉末(c2)の分散性、溶解時間、溶液の状態について前記方法に従って求めた。
 〔比較例3〕
 実施例1と同様に、幅10cm、長さ15cm、高さ3cmのクラフト紙製の箱の中に、フッ化ビニリデン系重合体粉末(5)10gを入れ、フッ化ビニリデン系重合体粉末(5)の厚さが均一となるように、箱中に広げた。
 次いで、前記クラフト紙製の箱に、クラフト紙で蓋をし、温度120℃の熱風循環炉(ヤマト科学製、商品名FineOven DH410)の中に蓋をした箱を入れ、フッ化ビニリデン系重合体粉末(5)自体の温度が120℃となった時点から、120℃で20時間保持した後、蓋をした箱を熱風循環炉から取り出し、室温下で放冷することにより、熱処理済フッ化ビニリデン系重合体粉末(c3)を得た。
 熱処理済フッ化ビニリデン系重合体粉末(c3)の分散性、溶解時間、溶液の状態について前記方法に従って求めた。
 〔比較例4〕
 実施例1と同様に、幅10cm、長さ15cm、高さ3cmのクラフト紙製の箱の中に、フッ化ビニリデン系重合体粉末(5)10gを入れ、フッ化ビニリデン系重合体粉末(5)の厚さが均一となるように、箱中に広げた。
 次いで、前記クラフト紙製の箱に、クラフト紙で蓋をし、温度180℃の熱風循環炉(ヤマト科学製、商品名FineOven DH410)の中に蓋をした箱を入れ、フッ化ビニリデン系重合体粉末(5)自体の温度が125℃となった時点から6秒かけて130℃に昇温し、さらに6秒かけて135℃に昇温し、さらに12秒かけて140℃に昇温し、さらに24秒かけて150℃に昇温し、さらに30秒かけて160℃に昇温し、さらに1分かけて170℃に昇温し、さらに6分かけて180℃に昇温し、180℃で51分保持した後、蓋をした箱を熱風循環炉から取り出し、室温下で放冷することにより、熱処理済フッ化ビニリデン系重合体粉末(c4)を得た。
 熱処理済フッ化ビニリデン系重合体粉末(c4)の分散性、溶解時間、溶液の状態について前記方法に従って求めた。
 なお、熱処理済フッ化ビニリデン系重合体粉末(c4)では、フッ化ビニリデン系重合体粉末(5)が熱処理により融着した。
 〔実施例8〕
 フッ化ビニリデン系重合体粉末(5)をフッ化ビニリデン系重合体粉末(1)に代えた以外は、実施例5と同様に行い、熱処理済フッ化ビニリデン系重合体粉末(8)を得た。
 熱処理済フッ化ビニリデン系重合体粉末(8)の分散性、溶解時間、溶液の状態について前記方法に従って求めた。
 〔比較例5〕
 製造例1で得られたフッ化ビニリデン系重合体粉末(1)の分散性、溶解時間、溶液の状態について前記方法に従って求めた。
 なお、製造例1で得られた熱処理の施されていない、フッ化ビニリデン系重合体粉末(1)を、フッ化ビニリデン系重合体粉末(c5)とも記す。
 〔実施例9〕
 ヘンシェルミキサーとしては、三井鉱山社製、商品名FM10B/I型を用いた。
 フッ化ビニリデン系重合体粉末(5)1kgをヘンシェルミキサーに投入し、ブレードの回転数を1600rpmとし、25℃から、5℃/minの速度で140℃まで昇温した。
 すなわち、フッ化ビニリデン系重合体粉末(5)自体の温度が125℃となった時点から1分かけて130℃に昇温し、さらに1分かけて135℃に昇温し、さらに1分かけて140℃に昇温した。
 140℃に到達した時点でサンプリングを行い、得られたサンプルを室温下で放冷することにより、熱処理済フッ化ビニリデン系重合体粉末(9)を得た。
 熱処理済フッ化ビニリデン系重合体粉末(9)の分散性、溶解時間、溶液の状態について前記方法に従って求めた。
 〔実施例10〕
 フッ化ビニリデン系重合体粉末(5)をフッ化ビニリデン系重合体粉末(2)に代えた以外は、実施例5と同様に行い、熱処理済フッ化ビニリデン系重合体粉末(10)を得た。
 熱処理済フッ化ビニリデン系重合体粉末(10)の分散性、溶解時間、溶液の状態について前記方法に従って求めた。
 〔比較例6〕
 製造例2で得られたフッ化ビニリデン系重合体粉末(2)の分散性、溶解時間、溶液の状態について前記方法に従って求めた。
 なお、製造例2で得られた熱処理の施されていない、フッ化ビニリデン系重合体粉末(2)を、フッ化ビニリデン系重合体粉末(c6)とも記す。
 〔実施例11〕
 フッ化ビニリデン系重合体粉末(5)をフッ化ビニリデン系重合体粉末(3)に代えた以外は、実施例5と同様に行い、熱処理済フッ化ビニリデン系重合体粉末(11)を得た。
 熱処理済フッ化ビニリデン系重合体粉末(11)の分散性、溶解時間、溶液の状態について前記方法に従って求めた。
 〔比較例7〕
 製造例3で得られたフッ化ビニリデン系重合体粉末(3)の分散性、溶解時間、溶液の状態について前記方法に従って求めた。
 なお、製造例3で得られた熱処理の施されていない、フッ化ビニリデン系重合体粉末(3)を、フッ化ビニリデン系重合体粉末(c7)とも記す。
 〔実施例12〕
 フッ化ビニリデン系重合体粉末(5)をフッ化ビニリデン系重合体粉末(4)に代えた以外は、実施例5と同様に行い、熱処理済フッ化ビニリデン系重合体粉末(12)を得た。
 熱処理済フッ化ビニリデン系重合体粉末(12)の分散性、溶解時間、溶液の状態について前記方法に従って求めた。
 〔比較例8〕
 製造例4で得られたフッ化ビニリデン系重合体粉末(4)の分散性、溶解時間、溶液の状態について前記方法に従って求めた。
 なお、製造例4で得られた熱処理の施されていない、フッ化ビニリデン系重合体粉末(4)を、フッ化ビニリデン系重合体粉末(c8)とも記す。
 〔実施例13〕
 ヘンシェルミキサーとしては、三井鉱山社製、商品名FM10B/I型を用いた。
 フッ化ビニリデン系重合体粉末(5)1kgをヘンシェルミキサーに投入し、ブレードの回転数を1600rpmとし、25℃から、5℃/minの速度で130℃まで昇温した。
 すなわち、フッ化ビニリデン系重合体粉末(5)自体の温度が125℃となった時点から1分かけて130℃に昇温した。
 130℃に到達した時点でサンプリングを行い、得られたサンプルを室温下で放冷することにより、熱処理済フッ化ビニリデン系重合体粉末(13)を得た。
 熱処理済フッ化ビニリデン系重合体粉末(13)の分散性、溶解時間、溶液の状態について前記方法に従って求めた。
 〔実施例14〕
 フッ化ビニリデン系重合体粉末(5)をフッ化ビニリデン系重合体粉末(6)に代えた以外は、実施例2と同様に行い、熱処理済フッ化ビニリデン系重合体粉末(14)を得た。
 熱処理済フッ化ビニリデン系重合体粉末(14)の分散性、溶解時間、溶液の状態について前記方法に従って求めた。
 〔実施例15〕
 フッ化ビニリデン系重合体粉末(5)をフッ化ビニリデン系重合体粉末(6)に代えた以外は、実施例5と同様に行い、熱処理済フッ化ビニリデン系重合体粉末(15)を得た。
 熱処理済フッ化ビニリデン系重合体粉末(15)の分散性、溶解時間、溶液の状態について前記方法に従って求めた。
 〔比較例9〕
 フッ化ビニリデン系重合体粉末(6)の分散性、溶解時間、溶液の状態について前記方法に従って求めた。
 なお、熱処理の施されていない、フッ化ビニリデン系重合体粉末(6)を、フッ化ビニリデン系重合体粉末(c9)とも記す。
 〔実施例16〕
 フッ化ビニリデン系重合体粉末(5)をフッ化ビニリデン系重合体粉末(7)に代えた以外は、実施例6と同様に行い、熱処理済フッ化ビニリデン系重合体粉末(16)を得た。
 熱処理済フッ化ビニリデン系重合体粉末(16)の分散性、溶解時間、溶液の状態について前記方法に従って求めた。
 〔比較例10〕
 フッ化ビニリデン系重合体粉末(7)の分散性、溶解時間、溶液の状態について前記方法に従って求めた。
 なお、熱処理の施されていない、フッ化ビニリデン系重合体粉末(7)を、フッ化ビニリデン系重合体粉末(c10)とも記す。
 実施例、比較例の結果を表1、2に示す。
 なお、前記実施例、比較例において、フッ化ビニリデン系重合体粉末自体の温度は、熱処理を熱風循環炉を用いて行う場合には、前記クラフト紙製の箱中のフッ化ビニリデン系重合体粉末から形成される層に熱電対を差し込むことにより測定した。また、熱処理をヘンシェルミキサーを用いて行う場合には、ヘンシェルミキサー内部のフッ化ビニリデン系重合体粉末中に熱電対を差込むことにより測定した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Claims (11)

  1.  未熱処理フッ化ビニリデン系重合体粉末に、該重合体粉末が125℃以上、結晶融解温度(Tm)未満となる温度で熱処理を施すことを特徴とする、熱処理済フッ化ビニリデン系重合体粉末の製造方法。
  2.  前記未熱処理フッ化ビニリデン系重合体粉末が、フッ化ビニリデンに由来するモノマーユニットを80モル%以上有することを特徴とする請求項1に記載の熱処理済フッ化ビニリデン系重合体粉末の製造方法。
  3.  前記熱処理における、熱処理時間が10秒~20時間であることを特徴とする請求項1または2に記載の熱処理済フッ化ビニリデン系重合体粉末の製造方法。
  4.  前記未熱処理フッ化ビニリデン系重合体粉末の、メディアン径が1~250μmである事を特徴とする請求項1~3のいずれか一項に記載の熱処理済フッ化ビニリデン系重合体粉末の製造方法。
  5.  前記未熱処理フッ化ビニリデン系重合体粉末の、ゲルパーミエーションクロマトグラフィーによるポリスチレン換算の重量平均分子量が20万以上であることを特徴とする請求項1~4のいずれか一項に記載の熱処理済フッ化ビニリデン系重合体粉末の製造方法。
  6.  請求項1~5のいずれか一項に記載の製造方法により得られる熱処理済フッ化ビニリデン系重合体粉末を、非プロトン性極性溶媒に溶解することを特徴とするフッ化ビニリデン系重合体溶液の製造方法。
  7.  請求項1~5のいずれか一項に記載の製造方法により得られる熱処理済フッ化ビニリデン系重合体粉末を、N-メチル-2-ピロリドンに溶解することを特徴とするフッ化ビニリデン系重合体溶液の製造方法。
  8.  請求項1~5のいずれか一項に記載の製造方法により得られる熱処理済フッ化ビニリデン系重合体粉末を、液温が35~130℃のN-メチル-2-ピロリドンに溶解することを特徴とするフッ化ビニリデン系重合体溶液の製造方法。
  9.  請求項6~8のいずれか一項に記載の製造方法により得られるフッ化ビニリデン系重合体溶液を、活物質と混合することを特徴とする蓄電デバイス用電極スラリーの製造方法。
  10.  請求項1~5のいずれか一項に記載の製造方法により得られる熱処理済フッ化ビニリデン系重合体粉末と活物質とを混合し、得られた混合物を、非プロトン性極性溶媒と混合することを特徴とする蓄電デバイス用電極スラリーの製造方法。
  11.  請求項9または10に記載の製造方法により得られる蓄電デバイス用電極スラリーを集電体に塗布・乾燥することを特徴とする蓄電デバイス用電極の製造方法。
PCT/JP2010/069134 2009-10-30 2010-10-28 熱処理済フッ化ビニリデン系重合体粉末の製造方法およびフッ化ビニリデン系重合体溶液の製造方法 WO2011052669A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020127013572A KR101413864B1 (ko) 2009-10-30 2010-10-28 열처리가 끝난 불화 비닐리덴계 중합체 분말의 제조 방법 및 불화 비닐리덴계 중합체 용액의 제조 방법
US13/503,890 US20120213915A1 (en) 2009-10-30 2010-10-28 Process for Producing Heat-Treated Vinylidene Fluoride Polymer Powder and Process for Producing Vinylidene Fluoride Polymer Solution
JP2011538471A JP5705126B2 (ja) 2009-10-30 2010-10-28 熱処理済フッ化ビニリデン系重合体粉末の製造方法およびフッ化ビニリデン系重合体溶液の製造方法
PL10826801T PL2495273T3 (pl) 2009-10-30 2010-10-28 Sposób wytwarzania obrobionego termicznie polimeru proszkowego fluorku winylidenu
EP10826801.2A EP2495273B1 (en) 2009-10-30 2010-10-28 Method for producing heat-treated vinylidene fluoride polymer powder
CN201080048628.9A CN102597069B (zh) 2009-10-30 2010-10-28 经过热处理的1,1-二氟乙烯类聚合物粉末的制造方法及1,1-二氟乙烯类聚合物溶液的制造方法
US14/609,636 US20150137032A1 (en) 2009-10-30 2015-01-30 Process For Producing Heat-Treated Vinylidene Fluoride Polymer Powder And Process For Producing Vinylidene Fluoride Polymer Solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-250651 2009-10-30
JP2009250651 2009-10-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/503,890 A-371-Of-International US20120213915A1 (en) 2009-10-30 2010-10-28 Process for Producing Heat-Treated Vinylidene Fluoride Polymer Powder and Process for Producing Vinylidene Fluoride Polymer Solution
US14/609,636 Division US20150137032A1 (en) 2009-10-30 2015-01-30 Process For Producing Heat-Treated Vinylidene Fluoride Polymer Powder And Process For Producing Vinylidene Fluoride Polymer Solution

Publications (1)

Publication Number Publication Date
WO2011052669A1 true WO2011052669A1 (ja) 2011-05-05

Family

ID=43922091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069134 WO2011052669A1 (ja) 2009-10-30 2010-10-28 熱処理済フッ化ビニリデン系重合体粉末の製造方法およびフッ化ビニリデン系重合体溶液の製造方法

Country Status (9)

Country Link
US (2) US20120213915A1 (ja)
EP (1) EP2495273B1 (ja)
JP (1) JP5705126B2 (ja)
KR (1) KR101413864B1 (ja)
CN (1) CN102597069B (ja)
HU (1) HUE034985T2 (ja)
PL (1) PL2495273T3 (ja)
TW (1) TWI448490B (ja)
WO (1) WO2011052669A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034581A1 (ja) * 2012-08-30 2014-03-06 東レ株式会社 フッ化ビニリデン樹脂微粒子の製造方法、およびフッ化ビニリデン樹脂微粒子
CN108003265A (zh) * 2016-10-27 2018-05-08 浙江蓝天环保高科技股份有限公司 一种提高聚偏氟乙烯树脂溶解性的方法
WO2020054273A1 (ja) 2018-09-11 2020-03-19 株式会社クレハ フッ化ビニリデン系ポリマー粉末、バインダー組成物、電極合剤、および電極の製造方法
KR20210041115A (ko) 2018-09-11 2021-04-14 가부시끼가이샤 구레하 전극 합제, 전극 합제의 제조방법 및 전극의 제조방법

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2431404A1 (de) * 2010-08-27 2012-03-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Fluorpolymerhaltige Lösung oder Suspension, Verfahren zu ihrer Herstellung sowie ihre Verwendung bei der Herstellung von piezo- und pyroelektrischen Schichten
US20180269484A1 (en) * 2015-09-30 2018-09-20 Kureha Corporation Binder composition, electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP7472128B2 (ja) * 2018-11-22 2024-04-22 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. 熱処理されたpvdfの製造方法
KR20210008736A (ko) * 2019-07-15 2021-01-25 주식회사 엘지화학 전극 바인더의 제조방법 및 상기 전극 바인더를 포함하는 전극 복합체

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0420534A (ja) * 1990-05-14 1992-01-24 Daikin Ind Ltd ポリテトラフルオロエチレン粉末の製法
JPH04282559A (ja) * 1991-03-11 1992-10-07 Furukawa Battery Co Ltd:The 水素吸蔵合金電極並にその製造法
JPH06108103A (ja) 1992-06-02 1994-04-19 Elf Atochem North America Inc 粉末被覆
JPH07295271A (ja) * 1994-04-25 1995-11-10 Canon Inc 電子写真感光体及び電子写真装置
JPH10298298A (ja) 1997-04-23 1998-11-10 Kureha Chem Ind Co Ltd ポリフッ化ビニリデン系樹脂の溶解方法
WO2002088227A1 (fr) * 2001-04-26 2002-11-07 Daikin Industries, Ltd. Poudre de polymere contenant du fluor, procede de production associe et article revetu
JP2003055467A (ja) * 2001-07-26 2003-02-26 Ausimont Spa ホモポリマー又は改質ptfeの熱加工不能な細粉の製造法
WO2009047969A1 (ja) 2007-10-11 2009-04-16 Kureha Corporation フッ化ビニリデン系ポリマー粉体及びその利用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3927156A (en) 1969-09-30 1975-12-16 Kureha Chemical Ind Co Ltd Production of ink-feeding and writing core for writing instrument
US5391709A (en) * 1993-11-17 1995-02-21 E. I. Du Pont De Nemours And Company Purification process of PTFE using fiber bed and heated air
WO2006082778A1 (ja) * 2005-02-02 2006-08-10 Kureha Corporation 親水性フッ化ビニリデン樹脂組成物およびその製造方法
JP2007273445A (ja) * 2006-03-09 2007-10-18 Nec Tokin Corp ポリマーゲル電解質およびそれを用いたポリマー二次電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0420534A (ja) * 1990-05-14 1992-01-24 Daikin Ind Ltd ポリテトラフルオロエチレン粉末の製法
JPH04282559A (ja) * 1991-03-11 1992-10-07 Furukawa Battery Co Ltd:The 水素吸蔵合金電極並にその製造法
JPH06108103A (ja) 1992-06-02 1994-04-19 Elf Atochem North America Inc 粉末被覆
JPH07295271A (ja) * 1994-04-25 1995-11-10 Canon Inc 電子写真感光体及び電子写真装置
JPH10298298A (ja) 1997-04-23 1998-11-10 Kureha Chem Ind Co Ltd ポリフッ化ビニリデン系樹脂の溶解方法
WO2002088227A1 (fr) * 2001-04-26 2002-11-07 Daikin Industries, Ltd. Poudre de polymere contenant du fluor, procede de production associe et article revetu
JP2003055467A (ja) * 2001-07-26 2003-02-26 Ausimont Spa ホモポリマー又は改質ptfeの熱加工不能な細粉の製造法
WO2009047969A1 (ja) 2007-10-11 2009-04-16 Kureha Corporation フッ化ビニリデン系ポリマー粉体及びその利用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2495273A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034581A1 (ja) * 2012-08-30 2014-03-06 東レ株式会社 フッ化ビニリデン樹脂微粒子の製造方法、およびフッ化ビニリデン樹脂微粒子
EP2891676A4 (en) * 2012-08-30 2016-04-06 Toray Industries PROCESS FOR THE PRODUCTION OF FINE VINYLIDENE FLUORIDE RESIN PARTICLES AND FINE PARTICLES OF VINYLIDENE FLUORIDE RESIN
US9920193B2 (en) 2012-08-30 2018-03-20 Toray Industries, Inc. Method for producing polyvinylidene difluoride particles, and polyvinylidene difluoride particles
CN108003265A (zh) * 2016-10-27 2018-05-08 浙江蓝天环保高科技股份有限公司 一种提高聚偏氟乙烯树脂溶解性的方法
WO2020054273A1 (ja) 2018-09-11 2020-03-19 株式会社クレハ フッ化ビニリデン系ポリマー粉末、バインダー組成物、電極合剤、および電極の製造方法
JP2020041065A (ja) * 2018-09-11 2020-03-19 株式会社クレハ フッ化ビニリデン系ポリマー粉末、バインダー組成物、電極合剤、および電極の製造方法
KR20210041115A (ko) 2018-09-11 2021-04-14 가부시끼가이샤 구레하 전극 합제, 전극 합제의 제조방법 및 전극의 제조방법
EP3851490A4 (en) * 2018-09-11 2021-10-27 Kureha Corporation VINYLIDEN FLUORIDE POLYMER POWDER, BINDER COMPOSITION, ELECTRODE MIX AND MANUFACTURING METHOD FOR ELECTRODE
JP7044673B2 (ja) 2018-09-11 2022-03-30 株式会社クレハ フッ化ビニリデン系ポリマー粉末、バインダー組成物、電極合剤、および電極の製造方法

Also Published As

Publication number Publication date
US20150137032A1 (en) 2015-05-21
TWI448490B (zh) 2014-08-11
KR20120088762A (ko) 2012-08-08
CN102597069B (zh) 2014-06-25
TW201124453A (en) 2011-07-16
JP5705126B2 (ja) 2015-04-22
HUE034985T2 (en) 2018-05-02
CN102597069A (zh) 2012-07-18
KR101413864B1 (ko) 2014-06-30
PL2495273T3 (pl) 2017-10-31
EP2495273B1 (en) 2017-07-05
US20120213915A1 (en) 2012-08-23
EP2495273A4 (en) 2013-10-09
JPWO2011052669A1 (ja) 2013-03-21
EP2495273A1 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
JP5705126B2 (ja) 熱処理済フッ化ビニリデン系重合体粉末の製造方法およびフッ化ビニリデン系重合体溶液の製造方法
JP5766120B2 (ja) フッ化ビニリデン系重合体粉末およびフッ化ビニリデン系重合体溶液
CN112585211B (zh) 偏氟乙烯系聚合物粉末、粘合剂组合物、电极合剂以及电极的制造方法
CN112567550B (zh) 电极合剂、电极合剂的制造方法以及电极的制造方法
JP6955362B2 (ja) 非水電解液二次電池用絶縁性多孔質層
JP7220023B2 (ja) 非水電解液二次電池用塗料
JP2020041065A5 (ja)
JP4608862B2 (ja) リチウムイオン二次電池電極用スラリー組成物の製造方法
US12060463B2 (en) Process for manufacturing heat treated PVDF
WO2024102352A2 (en) Alternative solvent/binder slurry compositions for manufacture of lithium-ion battery electrodes
CN108878744A (zh) 非水电解液二次电池用绝缘性多孔层

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080048628.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826801

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011538471

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13503890

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010826801

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010826801

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127013572

Country of ref document: KR

Kind code of ref document: A