WO2011052122A1 - 非水電解質二次電池用集電体、電極、及び非水電解質二次電池、並びにその製造方法 - Google Patents

非水電解質二次電池用集電体、電極、及び非水電解質二次電池、並びにその製造方法 Download PDF

Info

Publication number
WO2011052122A1
WO2011052122A1 PCT/JP2010/005139 JP2010005139W WO2011052122A1 WO 2011052122 A1 WO2011052122 A1 WO 2011052122A1 JP 2010005139 W JP2010005139 W JP 2010005139W WO 2011052122 A1 WO2011052122 A1 WO 2011052122A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
region
distance
short
long
Prior art date
Application number
PCT/JP2010/005139
Other languages
English (en)
French (fr)
Inventor
琢也 中嶋
裕 天明
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to KR1020117012704A priority Critical patent/KR101207723B1/ko
Priority to CN2010800035814A priority patent/CN102246337A/zh
Priority to US13/132,806 priority patent/US20110236748A1/en
Priority to JP2011511548A priority patent/JPWO2011052122A1/ja
Publication of WO2011052122A1 publication Critical patent/WO2011052122A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/654Means for temperature control structurally associated with the cells located inside the innermost case of the cells, e.g. mandrels, electrodes or electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6553Terminals or leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • H01M4/742Meshes or woven material; Expanded metal perforated material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery typified by a lithium ion secondary battery, and more particularly to an improvement of a current collector and an electrode for improving cycle characteristics of the non-aqueous electrolyte secondary battery.
  • lithium ion secondary batteries have been widely used as power sources for portable electronic devices and portable communication devices.
  • a material capable of inserting and extracting lithium such as a carbonaceous material, is used for the negative electrode active material.
  • a composite oxide (lithium-containing composite oxide) of a transition metal such as LiCoO 2 (lithium cobaltate) and lithium is used as the positive electrode active material.
  • electrodes that are power generation elements of a lithium ion secondary battery are manufactured as follows.
  • a positive electrode active material or a negative electrode active material, a binder, and a conductive material added as necessary are dispersed in a dispersion medium to prepare a mixture paint.
  • the prepared mixture paint is applied to one or both sides of the current collector and dried to form an active material layer.
  • the current collector on which the active material layer is formed is pressed so that the entire thickness becomes a predetermined thickness.
  • the binding force between the active material layer and the current collector is gradually increased. It may be reduced. This is because the active material falls off from the current collector. The decrease in the binding force between the active material layer and the current collector is caused by the expansion and contraction of the active material with repeated charge / discharge.
  • Patent Document 1 proposes the following technique. Heat generation of the current collector due to energization is greatest at the lead installation portion (current collection location) where current is concentrated. For this reason, the thickness of the current collector is maximized at a portion close to the current collection location, and the thickness of the current collector is reduced as the distance from the current collection location increases. According to Patent Document 1, this makes it possible to minimize resistance and heat generated in the current collector.
  • a metal foil (copper foil, aluminum foil, etc.) having a thickness of about 5 to 15 ⁇ m may be used as a current collector. It is very difficult to process such a metal foil having a very small thickness so as to gradually change the thickness. Therefore, even if the technique of Patent Document 1 is theoretically correct, it can be said that it is actually a technique that is very difficult to put into practical use.
  • the present invention suppresses heat generation due to energization, can improve the cycle characteristics of the nonaqueous electrolyte secondary battery, and is easy to manufacture, and a current collector for such a nonaqueous electrolyte secondary battery.
  • An object of the present invention is to provide an electrode using an electric body, a nonaqueous electrolyte secondary battery, and a method for manufacturing the same.
  • the present invention is a current collector for a non-aqueous electrolyte secondary battery,
  • the current collector includes a metal foil having a plurality of through holes,
  • the metal foil has a current collecting region for supporting an electrode active material, and a connection portion with an external terminal,
  • the current collecting region (I) a long-distance region having a large distance from the connection point; and (ii) a short-distance region having the same area as the long-distance region and a short distance from the connection point.
  • the present invention includes (a) a step of preparing a metal foil having a current collecting region for supporting an electrode active material and a connection portion with an external terminal, and (b) forming a plurality of through holes in the metal foil. Including the steps of: In the step b, the metal foil is (I) a long-distance region having a large distance from the connection point; and (ii) a short-distance region having the same area as the long-distance region and a short distance from the connection point.
  • a method for manufacturing a current collector for a non-aqueous electrolyte secondary battery which includes distributing the plurality of through holes so that an aperture ratio of the long-distance region is larger than an aperture ratio of the short-distance region.
  • the metal foil has a larger opening ratio in the long-distance region than in the short-distance region.
  • the electrical resistance in the short distance region is smaller than the electrical resistance in the long distance region.
  • the difference in current density between the long distance area and the short distance area becomes small. Therefore, the difference in the heat generation amount between the long distance region and the short distance region can be reduced, and the heat generation amount due to energization in each part of the current collector can be made uniform.
  • the current collector of the present invention is a current collector for a non-aqueous electrolyte secondary battery, and includes a metal foil having a plurality of through holes.
  • the metal foil has a current collecting region for supporting the electrode active material and a connection portion with an external terminal.
  • the current collecting area is divided into two areas: (i) a long-distance area having a large distance from the connection place, and (ii) a short-distance area having the same area as the long distance area and a short distance from the connection place.
  • the plurality of through holes are distributed so that the aperture ratio in the long-distance region is larger than the aperture ratio in the short-distance region.
  • the absolute amount of current is larger in the short distance region than in the long distance region.
  • the aperture ratio of the long-distance region is larger than the aperture ratio of the short-distance region, the effective cross-sectional area of the conductive path from each part of the current collection region to the connection point is farther in the short-distance region. It becomes larger than the distance region. Therefore, the difference between the current density in the short distance region and the current density in the long distance region can be reduced. Even when the secondary battery is charged, for the same reason, the difference between the current density in the short-distance region and the current density in the long-distance region can be reduced.
  • the current collector of one embodiment of the present invention has a strip shape in which the metal foil has a pair of long end portions and a pair of short end portions, and the connection portion is provided along one of the long end portions. It has been.
  • the current collecting area is divided into two so that the boundary between the short distance area and the long distance area is a straight line parallel to the longitudinal end.
  • a pair of longitudinal end portions refers to portions along a pair of long sides of a strip-shaped metal foil.
  • a pair of short ends refers to a portion along a pair of short sides of a strip-shaped metal foil.
  • the current collector according to another aspect of the present invention has a strip shape in which the metal foil has a pair of long end portions and a pair of short end portions, and the connection point is along one of the short end portions. Is provided.
  • the current collecting area is divided into two so that the boundary between the short distance area and the long distance area is a straight line parallel to the short edge.
  • the metal foil has a strip shape having a pair of long end portions and a pair of short end portions, and the connection points are one and the other of the short end portions. Are provided at positions separated from each other by a predetermined distance. And the current collection area
  • the ratio A / B of the aperture ratio A in the short distance region and the aperture ratio B in the long distance region is in the range of 0.1 to 0.8. If A / B is smaller than 0.1, the aperture ratio B in the long-distance region may become too large, and in that case, the strength of the current collector may be reduced. On the other hand, if A / B is greater than 0.8, the difference between A and B is too small, and it may be difficult to eliminate the difference in current density to a sufficient extent.
  • the diameter of the plurality of through holes is preferably 0.01 to 5 mm. If the diameter of the through hole exceeds 5 mm, the strength of the current collector may be greatly reduced. On the other hand, if the diameter of the through hole is less than 0.01 mm, the number of through holes required for eliminating the difference in current density to a sufficient extent becomes enormous. Therefore, the amount of work in the process of forming a through hole increases.
  • the metal foil has a plurality of through holes distributed so that the aperture ratio increases in proportion to the distance from the connection location.
  • the present invention relates to a non-aqueous electrolyte secondary battery electrode including the current collector for a non-aqueous electrolyte secondary battery and an electrode active material supported on one or both sides thereof.
  • the electrode active material layers formed on both surfaces of the metal foil are bonded through a plurality of through holes. Thereby, dropping of the electrode active material layer from the current collector can be suppressed.
  • the present invention provides an electrode group configured by laminating or winding a positive electrode, a negative electrode, and a separator interposed between both electrodes, a non-aqueous electrolyte, and an opening that accommodates the electrode group and the non-aqueous electrolyte.
  • the present invention relates to a non-aqueous electrolyte secondary battery including a battery case having a sealing body and a sealing body that seals an opening.
  • at least one of the positive electrode and the negative electrode is composed of the electrode for a nonaqueous electrolyte secondary battery.
  • the present invention includes (a) a step of preparing a metal foil having a current collecting region for supporting an electrode active material and a connection portion with an external terminal, and (b) forming a plurality of through holes in the metal foil.
  • the metal foil is divided into (i) a long-distance region having a large distance from the connection point, and (ii) a short-distance region having a small area from the connection point having the same area as the long-distance region. Distributing a plurality of through holes so that the aperture ratio of the long-distance region is larger than the aperture ratio of the short-distance region when the two are divided.
  • the through-hole can be formed by at least one selected from the group consisting of pressing, etching, and laser processing.
  • FIG. 1 is a plan view showing a schematic configuration of a current collector for a nonaqueous electrolyte secondary battery according to Embodiment 1 of the present invention.
  • the current collector 10 in the illustrated example is composed of a strip-shaped metal foil 11. A plurality of through holes 12 are formed in the metal foil 11 in a predetermined arrangement.
  • the current collector 10 has an electrode lead (not shown) attached to one end 13 in the width direction. That is, the current collector 10 has one end portion (one of the longitudinal end portions) 13 in the width direction serving as a connection portion with an external terminal where current is concentrated.
  • the other part of the current collector 10 is a current collecting region 22 for supporting an active material.
  • the band shape refers to a shape having a pair of long end portions and a pair of short end portions.
  • the through-hole 12 is formed in the current collection area
  • the aperture ratio is a value obtained by dividing the opening area of the through hole 12 in each region by the area of the entire region when the current collecting region 22 is equally divided in the width direction and divided into a predetermined number of regions. Say. At this time, the boundary line of each region is parallel to the longitudinal end portion of the metal foil 11.
  • the area closer to the one end portion 13 is made smaller in the total opening area of the through hole 12.
  • the through hole 12 is formed in the current collecting region 22 so that the aperture ratio in the region near the one end portion 13 is smaller than the aperture ratio in the region far from the one end portion 13.
  • the ratio A / B of the aperture ratio A in the region near the one end 13 to the aperture ratio B in the region far from the one end 13 is preferably in the range of 0.1 to 0.8.
  • the aperture ratio decreases as it approaches the one end portion 13 between the four regions obtained by dividing the current collecting region 22 into four in the width direction of the current collector 10.
  • the aperture ratio between the two regions obtained by dividing the current collecting region 22 into two equal parts in the width direction is smaller in the region near the one end portion 13.
  • the current collector 10 in the illustrated example has the through-holes 12 in the current collecting region 22 so that the aperture ratio decreases as the width of the current collector 10 approaches the one end 13 in the width direction, which is a connection point with the external terminal. Is formed.
  • the electrical resistance is relatively small in the current collecting region 22 in the vicinity of the connection location.
  • the electrical resistance is relatively large at a portion away from the connection location.
  • the current collector 10 when the current collector 10 is used to form an electrode and the electrode is used to form a non-aqueous electrolyte secondary battery, the non-aqueous electrolyte secondary battery is charged and discharged.
  • the difference in current density in each part of the current collecting region 22 can be reduced. Therefore, the difference in the amount of heat generated in each part of the current collector 10 can be reduced.
  • the active material can be filled into the through hole 12, even if the thickness of the current collector 10 is slightly increased, the amount of the active material inside the battery is not reduced. Thereby, the emitted-heat amount in the part of the current collection area
  • the through holes 12 should be formed so that the current densities of the respective portions of the current collecting region 22 are all equal. Therefore, it is preferable to form the through-hole 12 so that the resistance value of each part of the current collecting region 22 is proportional to the distance from the one end portion 13 that is the connection location.
  • the diameter, shape, and area of the through hole 12 are not particularly limited.
  • the through holes 12 may all have the same diameter, shape, and area, or the through holes 12 may have different diameters, shapes, and areas.
  • the density of the through holes 12 in the current collection region 22 may be constant, and the diameter of the through holes 12 may be increased as the distance from the connection location of the current collection region 22 increases.
  • the shape of the through hole 12 is not particularly limited, and may be any shape such as a triangle, a square, a rectangle, a rhombus, a parallelogram other than these, a trapezoid, and a pentagon or more polygon.
  • the through holes 12 are preferably circular or elliptical. The most preferable is a circular shape, which can suppress a decrease in strength of the current collecting region 22.
  • the diameter (maximum diameter) of the through hole 12 is preferably 0.01 to 5 mm. If the diameter of the through hole 12 exceeds 5 mm, the strength of the current collector 10 is greatly reduced. On the contrary, if the diameter of the through hole 12 is less than 0.01 mm, the number of the through holes 12 required to obtain a desired effect becomes enormous. Therefore, the work amount in the process of forming the through hole 12 increases. As a result, the manufacturing cost increases. Therefore, by setting the diameter of the through hole 12 to 0.01 to 5 mm, an increase in manufacturing cost of the current collector 10 can be suppressed, and a decrease in strength can be suppressed.
  • the thickness D0 of the current collector 10 is preferably larger than that of the current collector that does not include the through hole 12. If the minimum thickness required for the current collector not provided with the through hole 12 is D1, the thickness D0 of the current collector 10 is preferably 120 to 600% of D1.
  • the active material can be held in the through-hole 12, so that the battery performance can be prevented from deteriorating.
  • FIG. 2 is a plan view illustrating a schematic configuration of the current collector for a nonaqueous electrolyte secondary battery according to the second embodiment. 2, the same elements as those in FIG. 1 are denoted by the same reference numerals.
  • the current collector 10 ⁇ / b> A in the illustrated example is also composed of a strip-shaped metal foil 11, similar to the current collector 10 of FIG. 1, and a plurality of through holes 12 are formed in the metal foil 11.
  • the current collector 10A is different from the current collector 10 of FIG. 1 in that an electrode lead (not shown) is connected to one end portion (one of the short end portions) 13A in the longitudinal direction. That is, in the current collector 10A, one end portion 13A in the longitudinal direction is a connection portion with the external terminal.
  • the other part of the current collector 10A is a current collection region 22A for carrying the active material.
  • the aperture ratio of the current collecting region 22A becomes smaller as it approaches the one end portion 13A that is a connection location. That is, when considering a predetermined number (typically two) of regions in which the current collecting region 22A is equally divided in the longitudinal direction of the current collector 10A, the aperture ratio becomes smaller as the region is closer to the one end portion 13A. ing.
  • region is parallel to the short edge part of 10 A of electrical power collectors.
  • connection portion is formed at one end in the longitudinal direction of the current collector.
  • FIG. 3 is a plan view illustrating a schematic configuration of the current collector for a nonaqueous electrolyte secondary battery according to the third embodiment. 3, the same elements as those in FIG. 1 are denoted by the same reference numerals.
  • the current collector 10B in the illustrated example is also made of a metal foil 11 like the current collector 10 in FIG. 1, and a plurality of through holes 12 are formed in the metal foil 11.
  • the current collector 10B is different from the current collector 10 of FIG. 1 in that an electrode lead (not shown) is connected to the intermediate portion 13B in the longitudinal direction. That is, in the current collector 10B, the intermediate portion 13B in the longitudinal direction is a connection location with the external terminal.
  • the other part of the current collector 10B is a current collection region 22B for carrying an active material. In the current collector 10B, the current collecting region 22B is divided into two by the intermediate portion 13B.
  • each of the current collecting region 22B decreases as it approaches the intermediate portion 13B, which is a connection location. That is, in each of the portions 14A and 14B obtained by equally dividing the current collector 10B into two at the center, each of the current collection regions 22B is equally divided in the longitudinal direction of the current collector 10B. Think of an area. In all of these areas, the aperture ratio is smaller as the area is closer to the intermediate portion 13 ⁇ / b> B that is the connection location. In addition, the boundary line of each area
  • the electrode is a positive electrode
  • a foil made of aluminum or an aluminum alloy can be used as a material for the positive electrode current collector.
  • the thickness can be 5 ⁇ m to 30 ⁇ m.
  • a positive electrode mixture paint is applied to one or both surfaces of the positive electrode current collector using a die coater, dried, and then rolled by a press until the total thickness reaches a predetermined thickness to produce a positive electrode.
  • the positive electrode mixture paint is prepared by mixing and dispersing a positive electrode active material, a positive electrode conductive material, and a positive electrode binder in a dispersion medium using a dispersing machine such as a planetary mixer.
  • Examples of the positive electrode active material include lithium cobaltate and modified products thereof (such as lithium cobaltate in which aluminum or magnesium is dissolved), lithium nickelate and modified products thereof (in which a part of nickel is replaced with cobalt). Etc.), lithium-containing transition metal oxides such as lithium manganate and modified products thereof can be used.
  • the positive electrode conductive material for example, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, and other carbon black, and various graphites can be used alone or in combination.
  • the positive electrode binder for example, polyvinylidene fluoride (PVdF), a modified polyvinylidene fluoride, polytetrafluoroethylene (PTFE), and rubber particles having an acrylate unit can be used.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • rubber particles having an acrylate unit can be used.
  • an acrylate monomer or an acrylate oligomer into which a reactive functional group is introduced can be mixed in the binder.
  • the electrode is a negative electrode, rolled copper foil, electrolytic copper foil, or the like can be used as a material for the negative electrode current collector.
  • the thickness can be 5 ⁇ m to 30 ⁇ m.
  • a negative electrode mixture paint is applied to one side or both sides of the negative electrode current collector using a die coater, dried, and then rolled to a predetermined thickness by a press to obtain a negative electrode.
  • the negative electrode mixture paint is prepared by mixing and dispersing a negative electrode active material, a negative electrode binder, and, if necessary, a negative electrode conductive material and a thickener in a dispersion medium using a disperser such as a planetary mixer.
  • carbon materials such as graphite, alloy materials, and the like are preferably used.
  • alloy material silicon oxide, silicon, silicon alloy, tin oxide, tin, tin alloy and the like can be used. Of these, silicon oxide is particularly preferable.
  • the silicon oxide is represented by the general formula SiO x and desirably has a composition satisfying 0 ⁇ x ⁇ 2, preferably 0.01 ⁇ x ⁇ 1.
  • the metal element other than silicon in the silicon alloy is preferably a metal element that does not form an alloy with lithium, such as titanium, copper, or nickel.
  • the negative electrode binder various binders including PVdF and modified products thereof can be used. From the viewpoint of improving lithium ion acceptability, styrene-butadiene copolymer rubber particles (SBR) and modified products thereof can also be used.
  • SBR styrene-butadiene copolymer rubber particles
  • a material having viscosity when used as an aqueous solution such as polyethylene oxide (PEO) and polyvinyl alcohol (PVA) can be used, and is not particularly limited.
  • PEO polyethylene oxide
  • PVA polyvinyl alcohol
  • the thickness of the active material layer varies depending on the required characteristics of the nonaqueous electrolyte secondary battery to be produced, but is preferably in the range of 5 to 150 ⁇ m, and more preferably in the range of 10 to 120 ⁇ m.
  • the active material layer on one side of the current collector and the active material layer on the other side are preferably bonded through the through hole 12.
  • the bond strength between the active material layer and the current collector can be increased. Therefore, the active material can be prevented from dropping from the current collector. Therefore, the cycle characteristics of the nonaqueous electrolyte secondary battery can be improved.
  • the through hole 12 it is preferable to fill the through hole 12 with an active material.
  • the quantity of the active material which can be accommodated in the battery case of predetermined volume can be enlarged. Therefore, the battery performance of the nonaqueous electrolyte secondary battery can be improved.
  • the through-hole 12 is naturally filled with the active material in the step of pressing the electrode to a predetermined thickness. Therefore, battery performance can be improved without particularly increasing the number of steps.
  • FIG. 4 shows an example of such a nonaqueous electrolyte secondary battery.
  • the illustrated secondary battery 70 includes a positive electrode 75 in which a positive electrode active material layer is formed on a positive electrode current collector, and a negative electrode 76 in which a negative electrode active material layer is formed on a negative electrode current collector.
  • the electrode group 80 is configured by winding the positive electrode 75 and the negative electrode 76 in a spiral shape with a separator 77 interposed therebetween.
  • a positive electrode lead 75 a is bonded to the positive electrode 75, and a negative electrode lead 76 a is bonded to the negative electrode 76.
  • the electrode group 80 is housed inside a bottomed cylindrical battery case 71 with the insulating plates 78A and 78B arranged on the top and bottom.
  • the negative electrode lead 76 a led out from the lower part of the electrode group 80 is connected to the bottom of the battery case 71.
  • the positive electrode lead 75 a led out from the upper part of the electrode group 80 is connected to a sealing body 72 that seals the opening of the battery case 71.
  • a predetermined amount of non-aqueous electrolyte (not shown) is injected into the battery case 71.
  • the nonaqueous electrolytic solution is injected after the electrode group 80 is stored in the battery case 71.
  • a sealing body 72 with a sealing gasket 73 attached to the periphery is inserted into the opening of the battery case 71, and the opening of the battery case 71 is crimped so as to be bent inward.
  • a lithium ion secondary battery 70 is configured.
  • the separator 77 is not particularly limited as long as it is a composition that can be used as a separator for a nonaqueous electrolyte secondary battery.
  • a fine through-hole film of an olefin resin such as polyethylene or polypropylene can be used singly or in combination.
  • the thickness of the separator 77 is not particularly limited. A preferable thickness of the separator 77 is 10 to 30 ⁇ m.
  • the non-aqueous electrolyte can use various lithium compounds such as LiPF 6 and LIBF 4 as electrolyte salts. Further, ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and methyl ethyl carbonate (MEC) can be used alone or in combination as a solvent. Further, in order to form a good film on the surface of the positive electrode 75 or the negative electrode 76, or to ensure stability during overcharge, vinylene carbonate (VC), cyclohexylbenzene (CHB), and a modified product thereof are used as a non-aqueous electrolyte. It is also preferable to add to.
  • VC vinylene carbonate
  • CHB cyclohexylbenzene
  • Example 1 A lithium ion secondary battery was produced as follows. (Preparation of positive electrode) As a material for the positive electrode current collector, an aluminum foil having a thickness of 20 ⁇ m, a width of 50 mm, and a length of 600 mm was prepared. The intermediate part of the positive electrode current collector was used as a connection point with an external terminal, and a plurality of through holes were formed in the positive electrode current collector in the manner shown in FIG. The shape of the through hole was circular and the diameter was 2 mm.
  • the aperture ratio becomes smaller as the region is closer to the intermediate portion.
  • a through hole was formed in the positive electrode current collector. That is, the aperture ratio of the nearest region adjacent to the intermediate portion was 10%, and the aperture ratio of the farthest region adjacent to the one end portion was 60%. And the aperture ratio of four area
  • the aperture ratio is smaller as the region is closer to the intermediate portion.
  • a through hole was formed in the positive electrode current collector. That is, the aperture ratio of the nearest region adjacent to the intermediate portion was 10%, and the aperture ratio of the farthest region adjacent to the one end portion was 60%. And the aperture ratio of four area
  • a positive electrode was produced using the positive electrode current collector processed as described above.
  • a lithium-containing composite oxide represented by a composition of LiNi 0.85 Co 0.12 Al 0.03 O 2 having an average particle diameter of 0.8 ⁇ m was used as the positive electrode active material.
  • a positive electrode active material ink was prepared by adding 5 parts by mass of a positive electrode active material to 100 parts by mass of N-methyl-2-pyrrolidone (NMP) as a dispersion medium, and thoroughly stirring and dispersing the mixture.
  • NMP N-methyl-2-pyrrolidone
  • PVDF “# 1320 (trade name)” N-methyl-2-pyrrolidone (NMP) solution containing 12% by mass of PVDF
  • a positive electrode binder ink was prepared by adding 5 parts by mass (solid content) of PVDF to 100 parts by mass of NMP, and sufficiently stirring and mixing them.
  • acetylene black having an average particle diameter of 50 nm was used as the conductive material.
  • a conductive material ink was prepared by sufficiently stirring and mixing 5 parts by mass of acetylene black with respect to 100 parts by mass of NMP.
  • the obtained positive electrode active material ink, positive electrode binder ink, and conductive material ink were applied to the surface of the positive electrode current collector by an ink jet coating apparatus except for the intermediate portion.
  • application coating was repeated in multiple times in order to form the mixture layer of predetermined thickness.
  • the formed coating film was dried on 100 degreeC and the conditions for 1 hour. The dried coating film was rolled using a roll press to form a positive electrode mixture layer having a thickness of 40 ⁇ m except for the intermediate portion. Similarly, a positive electrode mixture layer was formed on the other surface. In addition, the positive electrode mixture layer was entirely formed on the other surface. Then, an electrode lead was attached to the intermediate portion where the current collector was exposed.
  • a copper foil having a thickness of 15 ⁇ m, a width of 60 mm, and a length of 700 mm was prepared as a material for the negative electrode current collector.
  • One end portion in the longitudinal direction of the negative electrode current collector was assumed to be a connection location, and a plurality of through holes were formed in the negative electrode current collector in the manner shown in FIG. The shape of the through hole was circular and the diameter was 2 mm.
  • a negative electrode was fabricated using the negative electrode current collector processed as described above. Artificial graphite having an average particle diameter of 1 ⁇ m was used as the negative electrode active material. 5 parts by mass of artificial graphite was added to 100 parts by mass of deionized water as a dispersion medium, and the mixture was dispersed by sufficiently stirring and mixing. Then, an appropriate amount of a 1% by mass aqueous solution of carboxymethylcellulose (CMC) was added to prepare a negative electrode active material ink.
  • CMC carboxymethylcellulose
  • SBR styrene butadiene rubber
  • CMC carboxymethylcellulose
  • the obtained negative electrode active material ink and negative electrode binder ink were apply
  • coating was repeated in multiple times in order to form the mixture layer of predetermined thickness.
  • the formed coating film was dried on 100 degreeC and the conditions for 1 hour. The dried coating film was rolled using a roll press to form a negative electrode mixture layer having a thickness of 50 ⁇ m except for the one end. Similarly, a negative electrode mixture layer was formed on the other surface. Note that the negative electrode mixture layer was entirely formed on the other surface. Then, an electrode lead was attached to the one end where the current collector was exposed.
  • Lithium hexafluorophosphate LiPF 6 was dissolved at a concentration of 1 mol / L in a mixed solvent containing ethylene carbonate and methyl ethyl carbonate in a volume ratio of 1: 3 to prepare a nonaqueous electrolytic solution.
  • lithium ion secondary batteries shown in FIG. 4 were produced using the produced electrode group and the electrolyte prepared above.
  • the charge / discharge of 300 cycles was performed on 100 lithium ion secondary batteries of Example 1 and Comparative Example 1, respectively.
  • constant current charging was performed to a final voltage of 0.05 C, and constant current discharging was performed at 0.2 C to 2.5 V.
  • the discharge capacity at this time was defined as the initial discharge capacity.
  • charging / discharging was performed on the conditions that the electric current value at the time of discharge shall be 1C, and charging / discharging cycles are repeated.
  • Example 1 the average value of the capacity maintenance rate was 93%, whereas in Comparative Example 1, the average value of the capacity maintenance rate was 81%. Thus, it was confirmed that the cycle characteristics were remarkably improved by applying the present invention.
  • the difference in the amount of heat generated by energization is small between a portion where the distance from the connection portion with the external terminal is small and a portion where the distance is large. Therefore, the deterioration of the active material and the decomposition of the electrolytic solution due to heating can be suppressed particularly in the vicinity of the connection location. Therefore, the present invention is suitable for application to a non-aqueous electrolyte secondary battery in which good cycle characteristics are desired as a power source for portable devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 集電体は、金属箔に複数の貫通孔を形成して構成されている。金属箔を、外部端子との接続箇所からの距離が大きい遠距離領域、並びに遠距離領域と面積の等しい、接続箇所からの距離が小さい近距離領域の2つの領域に区分すると、金属箔は、遠距離領域の開口率が、近距離領域の開口率よりも大きくなっている。これにより、近距離領域の電気抵抗を、遠距離領域の電気抵抗よりも小さくすることができる。したがって、近距離領域の通電による発熱を抑えることができる。

Description

非水電解質二次電池用集電体、電極、及び非水電解質二次電池、並びにその製造方法
 本発明は、リチウムイオン二次電池に代表される非水電解質二次電池に関するものであり、特に、非水電解質二次電池のサイクル特性を向上させるための集電体及び電極の改良に関する。
 近年、携帯用電子機器及び携帯用通信機器の電源としてリチウムイオン二次電池が広く使用されている。リチウムイオン二次電池は、負極活物質に、リチウムの吸蔵及び放出が可能な材料、例えば炭素質材料を使用している。また、正極活物質には、LiCoO2(コバルト酸リチウム)等の遷移金属とリチウムとの複合酸化物(リチウム含有複合酸化物)を使用している。これにより、リチウムイオン二次電池においては、高電圧かつ高放電容量の電池特性を実現することが可能である。
 しかしながら、近年、電子機器及び通信機器は益々多機能化している。それに伴って、リチウムイオン二次電池等の二次電池の電池特性の更なる向上が求められている。特に、充放電の繰り返しにより電池性能(容量及び電圧)が低下する性質(以下、サイクル特性という)についての更なる改善が望まれている。
 以下、リチウムイオン二次電池のサイクル特性について概説する。
 一般的に、リチウムイオン二次電池の発電要素である電極(正極及び負極)は以下の通りにして作製される。
 正極活物質または負極活物質、結着材、並びに必要に応じて加えた導電材を分散媒に分散させて合剤塗料を調製する。調製された合剤塗料を、集電体の片面もしくは両面に塗布し、乾燥させて、活物質層を形成する。活物質層が形成された集電体を、全体の厚みが所定厚となるようにプレスする。
 以上のような工程で作製される電極を使用して製造された二次電池の電池性能が、使用とともに低下する主な要因として、活物質層と集電体との間の結着力が徐々に低下することが挙げられる。それにより、活物質が集電体から脱落するからである。活物質層と集電体との間の結着力の低下は、充放電の繰り返しに伴って、活物質が膨張と収縮を繰り返すことにより引き起こされる。
 また、非水電解質二次電池の電池性能が、使用とともに低下する別の要因として、通電による集電体の発熱が挙げられる。集電体が発熱すると、その周囲の活物質の劣化が促進されるとともに、電解液の分解が促進される。これにより、電池性能が低下する。
 この点に関連して、特許文献1は、以下の技術を提案している。
 通電による集電体の発熱は、電流の集中するリード設置部(集電箇所)において最も大きい。このため、集電体の厚みを、集電箇所に近い部分において最も大きくし、集電箇所から遠ざかるほど集電体の厚みを小さくする。
 特許文献1は、これにより、集電体で生じる抵抗や発熱を最小限にとどめることが可能となるとしている。
特開平9-199177号公報
 リチウムイオン二次電池においては、集電体として、厚みが5~15μm程度の金属箔(銅箔、アルミニウム箔等)を使用することがある。このように厚みが極めて小さい金属箔を、その厚みを徐々に変化させるように加工することは、非常に困難なことである。したがって、特許文献1の技術は、たとえ理論的には正しくとも、実際には、実用化が非常に困難な技術であるといえる。
 そこで、本発明は、通電による発熱を抑えて、非水電解質二次電池のサイクル特性を向上させることができ、かつ製造の容易な非水電解質二次電池用集電体、並びにそのような集電体を使用した電極、及び非水電解質二次電池、並びにその製造方法を提供することを目的としている。
 本発明は、非水電解質二次電池用集電体であって、
 前記集電体は、複数の貫通孔を有する金属箔を含み、
 前記金属箔は、電極活物質を担持させる集電領域と、外部端子との接続箇所とを有し、
 前記集電領域を、
 (i)前記接続箇所からの距離が大きい遠距離領域、並びに
 (ii)前記遠距離領域と面積の等しい、前記接続箇所からの距離が小さい近距離領域の2つに区分したときに、
 前記遠距離領域の開口率が、前記近距離領域の開口率よりも大きくなるように、前記複数の貫通孔が分配されている、集電体を提供する。
 また、本発明は、(a)電極活物質を担持させる集電領域と、外部端子との接続箇所とを有する金属箔を準備する工程、並びに
 (b)前記金属箔に複数の貫通孔を形成する工程、を含み、
 前記工程bは、前記金属箔を、
 (i)前記接続箇所からの距離が大きい遠距離領域、並びに
 (ii)前記遠距離領域と面積の等しい、前記接続箇所からの距離が小さい近距離領域の2つに区分したときに、
 前記遠距離領域の開口率が、前記近距離領域の開口率よりも大きくなるように、前記複数の貫通孔を分配することを含む非水電解質二次電池用集電体の製造方法を提供する。
 本発明によれば、金属箔は、遠距離領域の開口率が、近距離領域の開口率よりも大きくなっている。これにより、近距離領域の電気抵抗は、遠距離領域の電気抵抗よりも小さくなる。その結果、遠距離領域及び近距離領域の電流密度の差異は小さくなる。したがって、遠距離領域及び近距離領域における発熱量の差異を小さくすることができ、集電体の各部分における、通電による発熱量を均一化することができる。
 よって、集電体の特定の部分、特に外部端子との接続箇所の近傍の領域で、活物質の劣化が促進されるのを防止することができるとともに、電解液の分解が促進されるのを防止することができる。したがって、非水電解質二次電池のサイクル特性を向上させることができる。
本発明の一実施形態に係る非水電解質二次電池用集電体の概略構成を示す平面図である。 本発明の別の実施形態に係る非水電解質二次電池用集電体の概略構成を示す平面図である。 本発明の更に別の実施形態に係る非水電解質二次電池用集電体の概略構成を示す平面図である。 本発明の一実施形態に係る非水電解質二次電池の概略構成を示す縦断面図である。
 本発明の集電体は、非水電解質二次電池用集電体であって、複数の貫通孔を有する金属箔を含んでいる。その金属箔は、電極活物質を担持させる集電領域と、外部端子との接続箇所とを有する。ここで、集電領域を、(i)上記接続箇所からの距離が大きい遠距離領域、並びに(ii)遠距離領域と面積の等しい、上記接続箇所からの距離が小さい近距離領域の2つに区分したとき、複数の貫通孔は、遠距離領域の開口率が近距離領域の開口率よりも大きくなるように分配されている。
 二次電池が放電されるとき、集電体には、集電領域の各部の電極活物質の起電力により電流が流れる。よって、電流の絶対量は、近距離領域の方が遠距離領域よりも大きくなる。ここで、遠距離領域の開口率が近距離領域の開口率よりも大きくなっていることで、集電領域の各部から接続箇所に向かう導電経路の有効断面積は、近距離領域の方が遠距離領域よりも大きくなる。よって、近距離領域の電流密度と、遠距離領域の電流密度との差異を小さくすることができる。二次電池が充電されるときにも、同様の理由により、近距離領域の電流密度と、遠距離領域の電流密度との差異を小さくすることができる。
 本発明の一形態の集電体は、金属箔が、一対の長手端部と、一対の短手端部と、を有する帯状であり、接続箇所は、その長手端部の一方に沿って設けられている。そして、近距離領域と遠距離領域との境界は、長手端部と平行な直線になるように、集電領域を2つに区分している。一対の長手端部とは、帯状の金属箔の一対の長辺に沿った部分をいう。一対の短手端部とは、帯状の金属箔の一対の短辺に沿った部分をいう。
 本発明の他の形態の集電体は、金属箔が、一対の長手端部と、一対の短手端部と、を有する帯状であり、接続箇所は、その短手端部の一方に沿って設けられている。そして、近距離領域と遠距離領域との境界は、短手端部と平行な直線になるように、集電領域を2つに区分している。
 本発明のさらに他の形態の集電体は、金属箔が、一対の長手端部と、一対の短手端部と、を有する帯状であり、接続箇所は、短手端部の一方および他方から、それぞれ所定の距離を介して離れた位置に設けられている。そして、近距離領域と遠距離領域との境界が、短手方向と平行な直線になるように、集電領域を2つに区分している。
 ここで、近距離領域の開口率Aと、遠距離領域の開口率Bとの比、A/Bは、0.1~0.8の範囲とするのが好ましい。A/Bが0.1よりも小さいと、遠距離領域の開口率Bが大きくなりすぎる場合があり、その場合には、集電体の強度の低下を招く場合がある。一方、A/Bが0.8よりも大きいと、AとBとの差が小さすぎて、電流密度の差異を十分な程度に解消することが困難となる場合がある。
 さらに、複数の貫通孔の径は、0.01~5mmであるのが好ましい。貫通孔の径が、5mmを超えると、集電体の強度が大きく低下する場合がある。逆に、貫通孔の径が、0.01mmを下回ると、電流密度の差異を十分な程度に解消するために必要とされる貫通孔の数が膨大となる。よって、貫通孔を形成する工程における作業量が増大する。
 本発明のさらに他の形態の集電体においては、金属箔は、接続箇所からの距離に比例して開口率が増大するように、複数の貫通孔が分配されている。開口率がそのように変化するように金属箔における貫通孔の分布を設定することで、集電体各部の電流密度をより均一化することができる。
 さらに、本発明は、上記非水電解質二次電池用集電体、及びその片面または両面に担持された電極活物質を含む非水電解質二次電池用電極に関する。
 本発明の一形態の非水電解質二次電池用電極においては、金属箔の両面に形成された電極活物質層が、複数の貫通孔を通して結合している。これにより、電極活物質層の集電体からの脱落を抑えることができる。
 さらに、本発明は、正極、負極および両電極の間に介在されるセパレータを積層または巻回して構成された電極群と、非水電解質と、電極群および非水電解質を収納する、開口部を有する電池ケースと、開口部を封口する封口体と、を備えた非水電解質二次電池に関する。本発明の非水電解質二次電池は、正極及び負極の少なくとも一方が、上記非水電解質二次電池用電極から構成されている。
  さらに、本発明は、(a)電極活物質を担持させる集電領域と、外部端子との接続箇所とを有する金属箔を準備する工程、並びに(b)金属箔に複数の貫通孔を形成する工程、を含む。ここで、工程(b)は、金属箔を、(i)接続箇所からの距離が大きい遠距離領域、並びに(ii)遠距離領域と面積の等しい、接続箇所からの距離が小さい近距離領域の2つに区分したときに、遠距離領域の開口率が、近距離領域の開口率よりも大きくなるように、複数の貫通孔を分配することを含む。
 ここで、貫通孔は、プレス加工、エッチング加工、及びレーザー加工よりなる群から選択される少なくとも1種により形成することができる。
 以下、本発明の実施形態を、図面を参照しながら説明する。
 (実施形態1)
 図1に、本発明の実施形態1に係る非水電解質二次電池用集電体の概略構成を平面図により示す。
 図示例の集電体10は、帯状の金属箔11からなる。金属箔11には所定の配置で複数の貫通孔12が形成されている。
 集電体10は、幅方向の一端部13に図示しない電極リードが取り付けられる。つまり、集電体10は、幅方向の一端部(長手端部の一方)13が、電流の集中する、外部端子との接続箇所となっている。集電体10のそれ以外の部分は、活物質を担持させる集電領域22となっている。ここで、帯状とは、一対の長手端部と、一対の短手端部と、を有する形状をいう。
 貫通孔12の配置については、外部端子との接続箇所である一端部13に近づくほどに、開口率が小さくなるように、集電領域22に貫通孔12を形成するのが好ましい。ここで、開口率とは、集電領域22を幅方向に等分して所定個数の領域に区分したときに、各領域における貫通孔12の開口面積を、その領域全体の面積で割った値をいう。このとき、各領域の境界線は、金属箔11の長手端部と平行である。
 つまり、一端部13に近い領域ほど、貫通孔12の総開口面積を小さくする。例えば、集電領域22を集電体10の幅方向に2等分した2つの領域を考える。この場合には、一端部13に近い領域における開口率が、一端部13から遠い領域における開口率よりも小さくなるように、集電領域22に貫通孔12を形成する。このとき、一端部13に近い領域における開口率Aと、一端部13から遠い領域における開口率Bとの比、A/Bは、0.1 ~0.8の範囲とするのが好ましい。これにより、上記2つの領域の電流密度の差異を小さくして、一端部13に近い領域における、通電による発熱量を小さくすることができる。
 図1の例では、集電領域22を集電体10の幅方向に4等分した、4つの領域の間で、開口率は、一端部13に近づくほどに小さくなっている。また、集電領域22を幅方向に2等分した、2つの領域の間においても、開口率は、一端部13に近い領域の方が小さくなっている。
 以上のように、図示例の集電体10は、外部端子との接続箇所である幅方向の一端部13に近づくほどに、開口率が小さくなるように、集電領域22に貫通孔12が形成されている。これにより、集電領域22の、接続箇所の近傍の部分で電気抵抗は相対的に小さくなっている。一方、接続箇所から離れた部分で電気抵抗は相対的に大きくなっている。
 その結果、この集電体10を使用して電極を構成し、その電極を使用して非水電解質二次電池を構成した場合に、その非水電解質二次電池の充電及び放電を行ったときの、集電領域22の各部における電流密度の差を小さくすることができる。よって、集電体10の各部分における発熱量の差を小さくすることができる。
 このとき、活物質は、貫通孔12の内部にも充填できるので、たとえ集電体10全体の厚みをわずかに大きくしても、電池の内部の活物質の量は削減されない。これにより、電池性能を低下させることなく、集電領域22の、接続箇所の近傍の部分における発熱量を抑えることができる。よって、接続箇所の近傍の部分の活物質及び電解質が強く加熱されて、活物質の劣化が促進されたり、電解液が分解されたりするのを避けることができる。したがって、非水電解質二次電池の電池性能の低下を抑制することが可能となり、サイクル特性が向上する。
 理想的には、集電領域22の各部分の電流密度が全て等しくなるように、貫通孔12を形成するのがよい。したがって、集電領域22の各部分の抵抗値が、接続箇所である一端部13からの距離と比例するように貫通孔12を形成するのがよい。そのように集電領域22の各部分の抵抗値を設定することによって、通電による発熱量を、集電領域22の全域に亘ってより均一なものとすることが可能となる。その結果、非水電解質二次電池のサイクル特性をより顕著に向上させることができる。
 ここで、貫通孔12は、径、形及び面積は特に限定されない。また、貫通孔12は、径、形及び面積は全て等しくしてもよいし、貫通孔12毎に径、形及び面積を異ならせてもよい。例えば、集電領域22に貫通孔12を設ける密度は一定にして、集電領域22の、接続箇所からの距離が大きくなる程に、貫通孔12の径を大きくするようにしてもよい。
 しかしながら、多数の貫通孔12を形成するときの加工の容易さを考えれば、貫通孔12は、全て同じ径、形及び面積とするのが好ましい。これにより、製造コストの増大を抑えることができる。
 貫通孔12の形は、特に限定されず、三角形、正方形、長方形、菱形、これら以外の平行四辺形、台形、及び五角形以上の多角形等、任意の形状とすることができる。しかしながら、多数の貫通孔12を集電領域22に形成したときに、集電体10の強度ができるだけ低下しないようにするためには、貫通孔12は円形または楕円形とするのが好ましい。最も好ましいのは円形であり、これにより、集電領域22の強度の低下を抑えることができる。
 また、貫通孔12の径(最大径)は、0.01~5mmとするのが好ましい。貫通孔12の径が、5mmを超えると、集電体10の強度が大きく低下する。逆に、貫通孔12の径が、0.01mmを下回ると、所望の効果を得るために必要とされる貫通孔12の数が膨大となる。よって、貫通孔12を形成する工程における作業量が増大する。その結果、製造コストが増大する。したがって、貫通孔12の径を、0.01~5mmとすることによって、集電体10の製造コストの増大を抑えることができるとともに、強度の低下を抑えることができる。
 また、貫通孔12を設けることによる強度の低下を抑えるために、集電体10の厚みD0は、貫通孔12を備えていない集電体と比較して、大きくするのが好ましい。貫通孔12を備えていない集電体に必要とされる最低限の厚みをD1とすれば、集電体10の厚みD0は、D1の120~600%とするのがよい。
 このように、集電体10の厚みを通常よりも大きくしても、貫通孔12の中に活物質を保持することができるので、電池性能の低下を抑えることができる。
 (実施形態2)
 次に、本発明の実施形態2を説明する。
 図2に、実施形態2の非水電解質二次電池用集電体の概略構成を平面図により示す。図2において、図1と同様の要素は同じ符号により示している。
 図示例の集電体10Aもまた、図1の集電体10と同様に、帯状の金属箔11からなり、金属箔11には、複数の貫通孔12が形成されている。集電体10Aが、図1の集電体10と異なるのは、長手方向の一端部(短手端部の一方)13Aに図示しない電極リードが接続される点である。つまり、集電体10Aは、長手方向の一端部13Aが外部端子との接続箇所となっている。集電体10Aのそれ以外の部分は、活物質を担持させる集電領域22Aとなっている。
 集電体10Aにおいても、集電領域22Aの開口率は、接続箇所である一端部13Aに近づくほどに小さくなっている。つまり、集電領域22Aを集電体10Aの長手方向に等分した、所定個数(代表的には2個)の領域を考えたときに、一端部13Aに近い領域ほど、開口率は小さくなっている。なお、各領域の境界線は集電体10Aの短手端部と平行である。
 以上の構成により、接続箇所が集電体の長手方向の一端部に形成される場合にも、実施形態1と同様の効果を達成することが可能となる。
 (実施形態3)
 次に、本発明の実施形態3を説明する。
 図3に、実施形態3の非水電解質二次電池用集電体の概略構成を平面図により示す。図3において、図1と同様の要素は同じ符号により示している。
 図示例の集電体10Bもまた、図1の集電体10と同様に、金属箔11からなり、金属箔11には、複数の貫通孔12が形成されている。集電体10Bが、図1の集電体10と異なるのは、長手方向の中間部13Bに図示しない電極リードが接続される点である。つまり、集電体10Bは、長手方向の中間部13Bが、外部端子との接続箇所となっている。集電体10Bのそれ以外の部分は、活物質を担持させる集電領域22Bとなっている。なお、集電体10Bにおいては、集電領域22Bは、中間部13Bにより2分割されている。
 集電体10Bにおいても、各集電領域22Bの開口率は、接続箇所である中間部13Bに近づくほどに小さくなっている。つまり、集電体10Bを中央で2等分した各部分14A及び14Bにおいて、集電領域22Bのそれぞれを集電体10Bの長手方向に等分した、所定個数(代表的には2個)の領域を考える。これらの領域も全て、接続箇所である中間部13Bに近い領域ほど開口率は小さくなっている。なお、各領域の境界線は集電体10Bの短手端部と平行である。
 次に、集電体に正極活物質または負極活物質を担持させて作製される非水電解質二次電池用電極について説明する。
 電極が正極であれば、正極集電体の素材として、アルミニウムまたはアルミニウム合金製の箔を用いることができる。その厚みは5μm~30μmとすることができる。正極集電体の片面または両面に、ダイコーターを用いて、正極合剤塗料を塗布し、乾燥した後、プレスにより、全体の厚みが所定厚みとなるまで圧延して、正極が作製される。正極合剤塗料は、正極活物質、正極導電材、及び正極結着材を分散媒中にプラネタリーミキサー等の分散機により混合分散させて調製される。
 正極活物質としては、例えばコバルト酸リチウム及びその変性体(コバルト酸リチウムにアルミニウムやマグネシウムを固溶させたものなど)、ニッケル酸リチウム及びその変性体(ニッケルの一部をコバルトと置換させたものなど)、マンガン酸リチウム及びその変性体などのリチウム含有遷移金属酸化物を使用することができる。
 正極導電材としては、例えばアセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック、並びに各種グラファイトを単独あるいは組み合わせて使用することができる。
 正極結着材としては、例えばポリフッ化ビニリデン(PVdF)、ポリフッ化ビニリデンの変性体、ポリテトラフルオロエチレン(PTFE)、及びアクリレート単位を有するゴム粒子を用いることができる。この際に、反応性官能基を導入したアクリレートモノマー、またはアクリレートオリゴマーを結着材中に混入させることも可能である。
 電極が負極であれば、負極集電体の素材として、圧延銅箔、及び電解銅箔等を用いることができる。その厚みは、5μm~30μmとすることができる。負極集電体の片面または両面に、ダイコーターを用いて負極合剤塗料を塗布し、乾燥した後、プレスにより全体の厚みが所定厚みとなるように圧延して、負極が得られる。負極合剤塗料は、負極活物質、負極結着材、並びに必要に応じて負極導電材及び増粘剤を分散媒中にプラネタリーミキサー等の分散機により混合分散させて調製される。
 負極活物質としては、黒鉛などの炭素材料、並びに合金系材料などが好ましく用いられる。合金系材料としては、ケイ素酸化物、ケイ素、ケイ素合金、スズ酸化物、スズ、スズ合金などを用いることができる。なかでも特に、ケイ素酸化物が好ましい。ケイ素酸化物は、一般式SiOxで表され、0<x<2、好ましくは0.01≦x≦1を満たす組成を有することが望ましい。ケイ素合金中のケイ素以外の金属元素は、リチウムと合金を形成しない金属元素、例えばチタン、銅、ニッケルが望ましい。
 負極結着材としては、PVdF及びその変性体をはじめとする各種バインダーを用いることができる。リチウムイオン受入れ性向上の観点からは、スチレン-ブタジエン共重合体ゴム粒子(SBR)及びその変性体を用いることもできる。
 増粘剤としては、ポリエチレンオキシド(PEO)及びポリビニルアルコール(PVA)等の水溶液としたときに粘性を有する材料を使用することができ、特に限定されない。しかしながら、合剤塗料の分散性及び増粘性の観点からは、カルボキシメチルセルロース(CMC)をはじめとするセルロース系樹脂及びその変性体を使用するのが好ましい。
 活物質層の厚みは、作製すべき非水電解質二次電池の要求特性によっても異なるが、5~150μmの範囲が好ましく、さらに10~120μmの範囲であることがより好ましい。
 また、活物質層を集電体の両面に形成する場合、集電体の一方の面の活物質層と、他方の面の活物質層とは、貫通孔12を通して結合させるのが好ましい。これにより、活物質層と集電体との間の結合強度を大きくすることができる。よって、活物質の集電体からの脱落を抑えることができる。したがって、非水電解質二次電池のサイクル特性を向上させることができる。
 また、貫通孔12に活物質を充填するのが好ましい。これにより、所定容積の電池ケースに収容し得る活物質の量を大きくすることができる。よって、非水電解質二次電池の電池性能を向上させることができる。なお、集電体に貫通孔12があいていれば、電極をプレスして所定厚みとする工程で、自然と貫通孔12に活物質が充填されることになる。したがって、特に工程数を増大させることなく、電池性能を向上させることが可能となる。
 次に、上述した実施形態1~3の非水電解質二次電池用集電体を使用して構成した非水電解質二次電池を説明する。
 図4に、そのような非水電解質二次電池の一例を示す。図示例の二次電池70は、正極集電体上に正極活物質層が形成された正極75と、負極集電体上に負極活物質層が形成された負極76とを含んでいる。正極75及び負極76を、セパレータ77を間に介在させて、渦巻状に巻回して、電極群80が構成される。また、正極75には正極リード75aが接合され、負極76には負極リード76aが接合されている。
 電極群80は、上下に絶縁板78A及び78Bを配した状態で、有底円筒形の電池ケース71の内部に収納される。電極群80の下部より導出した負極リード76aは、電池ケース71の底部に接続される。一方、電極群80の上部より導出した正極リード75aは、電池ケース71の開口部を封口する封口体72に接続される。また、電池ケース71には、所定量の非水電解液(図示せず)が注液される。非水電解液は、電極群80を電池ケース71に収納した後に注液される。非水電解液の注液が終了すると、電池ケース71の開口部に、封口ガスケット73を周縁に取り付けた封口体72を挿入し、電池ケース71の開口部を内方向に折り曲げるようにかしめて、リチウムイオン二次電池70が構成される。
 ここで、セパレータ77は、非水電解質二次電池用セパレータとしての使用に耐えうる組成であれば特に限定されない。好ましくは、セパレータ77には、ポリエチレン、ポリプロピレンなどのオレフィン系樹脂の微多貫通孔フィルムを、単一あるいは複合して用いることができる。セパレータ77の厚みは特に限定されない。好ましいセパレータ77の厚みは、10~30μmである。
 非水電解液は、電解質塩としてLiPF6及びLIBF4などの各種リチウム化合物を用いることができる。また溶媒としてエチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、及びメチルエチルカーボネート(MEC)を単独または組み合わせて用いることができる。また、正極75または負極76の表面に良好な皮膜を形成させる、あるいは過充電時の安定性を保証するために、ビニレンカーボネート(VC)やシクロヘキシルベンゼン(CHB)及びその変性体を非水電解液に添加することも好ましい。
 次に、上記実施形態1~3に関する実施例を説明する。本発明は、これら実施例に限定されるものではない。
 (実施例1)
 以下のようにして、リチウムイオン二次電池を作製した。
 (正極の作製)
 正極集電体の素材として、厚さ20μm、幅50mm、長さ600mmのアルミニウム箔を準備した。その正極集電体の中間部を、外部端子との接続箇所とするものとし、図3に示したような態様で、正極集電体に複数の貫通孔を形成した。貫通孔の形は円形とし、径は2mmとした。
 上記中間部から、正極集電体の長手方向の一端部(例えば図の右端部)までの部分を6等分した各領域において、開口率が、上記中間部に近い領域ほど小さくなるように、正極集電体に貫通孔を形成した。つまり、上記中間部に隣接する、最も近い領域の開口率を10%とし、上記一端部に隣接する、最も遠い領域の開口率を60%とした。そして、それらの間の4つの領域の開口率をそれぞれ、上記中間部に近い領域から順に、20%、30%、40%、及び50%とした。また、中間部から上記一端部までの部分を集電体
の長手方向に2等分した2つの領域を考えると、その開口率の比は0.375であった。
 同様に、上記中間部から、正極集電体の長手方向の他端部(例えば図の左端部)までの部分を6等分した各領域において、開口率が、上記中間部に近い領域ほど小さくなるように、正極集電体に貫通孔を形成した。つまり、上記中間部に隣接する、最も近い領域の開口率を10%とし、上記一端部に隣接する、最も遠い領域の開口率を60%とした。そして、それらの間の4つの領域の開口率をそれぞれ、上記中間部に近い領域から順に、20%、30%、40%、及び50%とした。また、中間部から上記一端部までの部分を集電体の長手方向に2等分した2つの領域を考えると、その開口率の比は0.375であった。
 以上のように加工した正極集電体を使用して、正極を作製した。
 正極活物質として平均粒径0.8μmのLiNi0.85Co0.12Al0.032の組成で表されるリチウム含有複合酸化物を用いた。分散媒であるN-メチル-2-ピロリドン(NMP)100質量部に対し、正極活物質5質量部を添加し、充分に撹拌混合して分散させることにより、正極活物質インクを調製した。
 正極結着剤として呉羽化学(株)製のPVDF「#1320(商品名)」(PVDFを12質量%含むN-メチル-2-ピロリドン(NMP)溶液)を用いた。NMP100質量部に対し、PVDF5質量部(固形分)を添加し、充分に撹拌混合して溶解させることにより、正極結着剤インクを調製した。
 導電材として平均粒径50nmのアセチレンブラックを用いた。NMP100質量部に対し、アセチレンブラック5質量部を充分に撹拌混合して分散させることにより、導電材インクを調製した。
 そして、得られた正極活物質インク、正極結着剤インク、及び導電材インクを、正極集電体の表面に、上記中間部を除いて、インクジェット塗布装置により塗布した。なお、塗布は所定の厚みの合剤層を形成するために複数回繰り返した。そして、形成された塗膜を100℃、1時間の条件で乾燥した。そして、乾燥された塗膜を、ロールプレス機を用いて圧延処理することにより、上記中間部を除いて、厚さ40μmの正極合剤層を形成した。同様にして他の一面にも正極合剤層を形成した。なお、他の一面は、全面的に正極合剤層を形成した。そして、集電体が露出している上記中間部に電極リードを取り付けた。
 (負極の作製)
 負極集電体の素材として、厚さ15μm、幅60mm、長さ700mmの銅箔を準備した。その負極集電体の長手方向の一端部を接続箇所とするものとし、図2に示したような態様で、負極集電体に複数の貫通孔を形成した。貫通孔の形は円形とし、径は2mmとした。
 負正極集電体の集電領域を長手方向に6等分した各領域において、開口率が、上記一端部に近い領域ほど小さくなるように、負極集電体に貫通孔を形成した。つまり、負極集電体の上記一端部に隣接する、最も近い領域の開口率を10%とし、負極集電体の他端部に隣接する、最も遠い領域の開口率を60%とした。そして、それらの間の4つの領域の開口率をそれぞれ、上記一端部に近い領域から順に、20%、30%、40%、及び50%とした。また、集電体を、長手方向に2等分した2つの領域を考えると、その開口率の比は0.375であった。
 以上のように加工した負極集電体を使用して、負極を作製した。
 負極活物質として平均粒径1μmの人造黒鉛を用いた。分散媒である脱イオン水100質量部に対し、人造黒鉛5質量部を添加し、充分に撹拌混合することにより分散させた。そして、カルボキシメチルセルロース(CMC)の1質量%水溶液を適量加えて負極活物質インクを調製した。
 負極結着剤としてJSR(株)製のスチレンブタジエンゴム(SBR)(固形分40質量%の水性分散液)を用いた。脱イオン水100質量 部に対し、SBR1質量部を添加し、充分に撹拌混合することにより分散させた。そして、カルボキシメチルセルロース(CMC)の1質量%水溶液を適量加え て負極結着剤インクを調製した。
 そして、得られた負極活物質インク、及び負極結着剤インクを、負極集電体の表面に、上記一端部を除いて、インクジェット塗布装置20により塗布した。なお、塗布は所定の厚みの合剤層を形成するために複数回繰り返した。そして、形成された塗膜を100℃、1時間の条件で乾燥した。そして、乾燥された塗膜を、ロールプレス機を用いて圧延処理することにより、上記一端部を除いて、厚さ50μmの負極合剤層を形成した。同様にして他の一面にも負極合剤層を形成した。なお、他の一面は、全面的に負極合剤層を形成した。そして、集電体が露出している上記一端部に電極リードを取り付けた。
 (電解液の調製)
 エチレンカーボネートと、メチルエチルカーボネートとを、体積比1:3で含む混合溶媒に、六フッ化リン酸リチウム(LiPF6)を1mol/Lの濃度で溶解し、非水電解液を調製した。
 次に、正極と負極とを、セパレータを間に介在させながら渦巻状に巻回して、電極群を作製した。作製した電極群と、上記調製した電解液を用いて、図4により示したリチウムイオン二次電池を100個作製した。
 (比較例1)
 正極集電体及び負極集電体に貫通孔を形成しなかったこと以外は、実施例1と同様にしてリチウムイオン二次電池を100個作製した。
 実施例1及び比較例1の、それぞれ100個のリチウムイオン二次電池に対して300サイクルの充放電を行った。このとき、20℃の環境下において、0.7Cで4.2Vまで定電流充電した後、終止電圧0.05Cまで定電圧充電し、0.2Cで2.5Vまで定電流放電した。このときの放電容量を初回放電容量とした。その後、放電時の電流値を1Cとし充放電サイクルを繰り返す、という条件で充放電を行った。
 その結果、実施例1においては、容量維持率の平均値が93%であるのに対して、比較例1においては、容量維持率の平均値が81%であった。これにより、本発明を適用することによって、サイクル特性が顕著に向上することが確かめられた。
 本発明に係る非水電解質二次電池用集電体においては、外部端子との接続箇所からの距離が小さい部分と大きい部分との間で、通電による発熱量の差異が小さくなっている。したがって、特に、接続箇所の近傍において、加熱による活物質の劣化及び電解液の分解を抑制することができる。よって、本発明は、携帯機器用の電源として良好なサイクル特性が望まれる非水電解質二次電池に適用するのに好適である。
 10 集電体
 11 金属箔
 12 貫通孔
 70 二次電池

Claims (12)

  1.  非水電解質二次電池用集電体であって、
     前記集電体は、複数の貫通孔を有する金属箔を含み、
     前記金属箔は、電極活物質を担持させる集電領域と、外部端子との接続箇所とを有し、
     前記集電領域を、
     (i)前記接続箇所からの距離が大きい遠距離領域、並びに
     (ii)前記遠距離領域と面積の等しい、前記接続箇所からの距離が小さい近距離領域の2つに区分したときに、
     前記遠距離領域の開口率が、前記近距離領域の開口率よりも大きくなるように、前記複数の貫通孔が分配されている、集電体。
  2.  前記金属箔は、一対の長手端部と、一対の短手端部と、を有する帯状であり、
     前記接続箇所は、前記長手端部の一方に沿って設けられており、
     前記近距離領域と前記遠距離領域との境界が、前記長手端部と平行な直線になるように、前記集電領域を2つに区分する、請求項1記載の集電体。
  3.  前記金属箔は、一対の長手端部と、一対の短手端部と、を有する帯状であり、
     前記接続箇所は、前記短手端部の一方に沿って設けられており、
     前記近距離領域と前記遠距離領域との境界が、前記短手端部と平行な直線になるように、前記集電領域を2つに区分する、請求項1記載の集電体。
  4.  前記金属箔は、一対の長手端部と、一対の短手端部と、を有する帯状であり、
     前記接続箇所は、前記短手端部の一方および他方から、それぞれ所定の距離を介して離れた位置に設けられており、
     前記近距離領域と前記遠距離領域との境界が、前記短手方向と平行な直線になるように、前記集電領域を2つに区分する、請求項1記載の集電体。
  5.  前記近距離領域の開口率Aと、前記遠距離領域の開口率Bとの比、A/Bが、0.1~0.8の範囲である、請求項1~4のいずれかに記載の集電体。
  6.  前記複数の貫通孔の径が、0.01~5mmである請求項1~5のいずれかに記載の集電体。
  7.  前記金属箔は、前記接続箇所からの距離に比例して開口率が増大するように、前記複数の貫通孔が分配されている請求項1~6のいずれかに記載の集電体。
  8.  請求項1~7のいずれかに記載の非水電解質二次電池用集電体、及びその片面または両面に担持された電極活物質を含む非水電解質二次電池用電極。
  9.  前記金属箔の両面に形成された電極活物質層が、前記複数の貫通孔を通して結合している請求項8記載の非水電解質二次電池用電極。
  10.  正極、負極および両電極の間に介在されるセパレータを積層または巻回して構成された電極群と、
     非水電解質と、
     前記電極群および非水電解質を収納する、開口部を有する電池ケースと、
     前記開口部を封口する封口体と、を備え、
     前記正極及び負極の少なくとも一方が、請求項8または9記載の非水電解質二次電池用電極から構成される非水電解質二次電池。
  11.  (a)電極活物質を担持させる集電領域と、外部端子との接続箇所とを有する金属箔を準備する工程、並びに
     (b)前記金属箔に複数の貫通孔を形成する工程、を含み、
     前記工程bは、前記金属箔を、
     (i)前記接続箇所からの距離が大きい遠距離領域、並びに
     (ii)前記遠距離領域と面積の等しい、前記接続箇所からの距離が小さい近距離領域の2つに区分したときに、
     前記遠距離領域の開口率が、前記近距離領域の開口率よりも大きくなるように、前記複数の貫通孔を分配することを含む非水電解質二次電池用集電体の製造方法。
  12.  前記貫通孔を、プレス加工、エッチング加工、及びレーザー加工よりなる群から選択される少なくとも1種により形成する請求項11記載の非水電解質二次電池用集電体の製造方法。
PCT/JP2010/005139 2009-10-26 2010-08-20 非水電解質二次電池用集電体、電極、及び非水電解質二次電池、並びにその製造方法 WO2011052122A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020117012704A KR101207723B1 (ko) 2009-10-26 2010-08-20 비수전해질 이차전지용 집전체, 전극, 및 비수전해질 이차전지, 및 그 제조방법
CN2010800035814A CN102246337A (zh) 2009-10-26 2010-08-20 非水电解质二次电池用集电体、电极、非水电解质二次电池及其制造方法
US13/132,806 US20110236748A1 (en) 2009-10-26 2010-08-20 Current collector for non-aqueous electrolyte secondary battery, electrode, non-aqueous electrolyte secondary battery, and method for producing the same
JP2011511548A JPWO2011052122A1 (ja) 2009-10-26 2010-08-20 非水電解質二次電池用集電体、電極、及び非水電解質二次電池、並びにその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-245622 2009-10-26
JP2009245622 2009-10-26

Publications (1)

Publication Number Publication Date
WO2011052122A1 true WO2011052122A1 (ja) 2011-05-05

Family

ID=43921561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005139 WO2011052122A1 (ja) 2009-10-26 2010-08-20 非水電解質二次電池用集電体、電極、及び非水電解質二次電池、並びにその製造方法

Country Status (5)

Country Link
US (1) US20110236748A1 (ja)
JP (1) JPWO2011052122A1 (ja)
KR (1) KR101207723B1 (ja)
CN (1) CN102246337A (ja)
WO (1) WO2011052122A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019021495A (ja) * 2017-07-18 2019-02-07 福田金属箔粉工業株式会社 開孔金属箔
WO2019151063A1 (ja) * 2018-01-30 2019-08-08 シャープ株式会社 金属空気電池用負極
JPWO2021033537A1 (ja) * 2019-08-22 2021-02-25
US12002965B2 (en) 2019-08-22 2024-06-04 Fujifilm Corporation Aluminum foil

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9356294B2 (en) * 2012-03-02 2016-05-31 Samsung Sdi Co., Ltd. Secondary battery including collectors with pores and manufacturing method thereof
WO2015115531A1 (ja) * 2014-01-31 2015-08-06 富士フイルム株式会社 アルミニウム板の製造方法、アルミニウム板、蓄電デバイス用集電体および蓄電デバイス
JP6829130B2 (ja) * 2017-03-28 2021-02-10 太陽誘電株式会社 電気化学デバイス
JP6866202B2 (ja) 2017-03-28 2021-04-28 太陽誘電株式会社 電気化学デバイス
WO2024055187A1 (zh) * 2022-09-14 2024-03-21 宁德时代新能源科技股份有限公司 集流体、极片、电极组件、电池单体、电池以及用电装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247963A (ja) * 1985-08-26 1987-03-02 Shin Kobe Electric Mach Co Ltd 密閉形アルカリ蓄電池用極板の芯材
JP2001006688A (ja) * 1999-06-16 2001-01-12 Toshiba Battery Co Ltd ニッケル・水素二次電池
JP2003263989A (ja) * 2001-11-28 2003-09-19 Wilson Greatbatch Technologies Inc タブの位置に集束する徐々に寸法が拡大する開口を有する電気化学電池の集電器
JP2003317723A (ja) * 2002-04-22 2003-11-07 Matsushita Electric Ind Co Ltd 電極用基板および電極
JP2008269890A (ja) * 2007-04-18 2008-11-06 Nissan Motor Co Ltd 非水電解質二次電池用電極
JP2008311041A (ja) * 2007-06-13 2008-12-25 Nissan Motor Co Ltd 非水電解質二次電池用負極およびその製造方法
JP2010040370A (ja) * 2008-08-06 2010-02-18 Fuji Heavy Ind Ltd 蓄電デバイス

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100329560B1 (ko) * 1999-04-16 2002-03-20 김순택 집전체와 전극 및 이 전극을 이용한 이차전지
CN200959346Y (zh) * 2006-09-27 2007-10-10 万向电动汽车有限公司 一种聚合物锂离子动力电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247963A (ja) * 1985-08-26 1987-03-02 Shin Kobe Electric Mach Co Ltd 密閉形アルカリ蓄電池用極板の芯材
JP2001006688A (ja) * 1999-06-16 2001-01-12 Toshiba Battery Co Ltd ニッケル・水素二次電池
JP2003263989A (ja) * 2001-11-28 2003-09-19 Wilson Greatbatch Technologies Inc タブの位置に集束する徐々に寸法が拡大する開口を有する電気化学電池の集電器
JP2003317723A (ja) * 2002-04-22 2003-11-07 Matsushita Electric Ind Co Ltd 電極用基板および電極
JP2008269890A (ja) * 2007-04-18 2008-11-06 Nissan Motor Co Ltd 非水電解質二次電池用電極
JP2008311041A (ja) * 2007-06-13 2008-12-25 Nissan Motor Co Ltd 非水電解質二次電池用負極およびその製造方法
JP2010040370A (ja) * 2008-08-06 2010-02-18 Fuji Heavy Ind Ltd 蓄電デバイス

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019021495A (ja) * 2017-07-18 2019-02-07 福田金属箔粉工業株式会社 開孔金属箔
WO2019151063A1 (ja) * 2018-01-30 2019-08-08 シャープ株式会社 金属空気電池用負極
US11552301B2 (en) 2018-01-30 2023-01-10 Sharp Kabushiki Kaisha Negative electrode for metal-air battery
JPWO2021033537A1 (ja) * 2019-08-22 2021-02-25
WO2021033537A1 (ja) * 2019-08-22 2021-02-25 富士フイルム株式会社 アルミニウム箔
JP7190582B2 (ja) 2019-08-22 2022-12-15 富士フイルム株式会社 アルミニウム箔
US12002965B2 (en) 2019-08-22 2024-06-04 Fujifilm Corporation Aluminum foil

Also Published As

Publication number Publication date
JPWO2011052122A1 (ja) 2013-03-14
CN102246337A (zh) 2011-11-16
KR101207723B1 (ko) 2012-12-03
KR20110084977A (ko) 2011-07-26
US20110236748A1 (en) 2011-09-29

Similar Documents

Publication Publication Date Title
JP5519586B2 (ja) リチウムイオン二次電池用電極及びその製造方法、並びにリチウムイオン二次電池及びその製造方法
WO2011052122A1 (ja) 非水電解質二次電池用集電体、電極、及び非水電解質二次電池、並びにその製造方法
US20110104539A1 (en) Lithium secondary battery and manufacturing method for same
JP7281570B2 (ja) 非水電解液二次電池およびその製造方法
JP2010267540A (ja) 非水電解質二次電池
JP2013149403A (ja) リチウムイオン二次電池負極、リチウムイオン二次電池負極を用いたリチウムイオン二次電池、および、それらの製造方法
US10044072B2 (en) Lithium secondary battery pack, as well as electronic device, charging system, and charging method using said pack
WO2008037154A1 (fr) Accumulateur lithium-ion secondaire utilisant du métal en mousse en tant que collecteur de courant et ensemble d'accumulateur l'utilisant
WO2013038939A1 (ja) リチウム二次電池パック、並びにそれを用いた電子機器、充電システム及び充電方法
JP2016058247A (ja) リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP2011138729A (ja) 非水系二次電池
WO2017056734A1 (ja) リチウム二次電池
CN113206350A (zh) 一种隔膜以及包括该隔膜的锂离子电池
JP6609946B2 (ja) リチウムイオン二次電池用電極、その製造方法及びリチウムイオン二次電池
JP2007328977A (ja) 非水系二次電池用電極板とその製造方法および非水系二次電池
JP2019175657A (ja) リチウムイオン二次電池。
WO2012147647A1 (ja) リチウムイオン二次電池
WO2014128946A1 (ja) リチウムイオン二次電池負極、リチウムイオン二次電池負極を用いたリチウムイオン二次電池、および、それらの製造方法
JP2021103684A (ja) 負極活物質、負極、及び二次電池
JP2013137928A (ja) 電極、リチウム二次電池及び電極の製造方法
JP2011192506A (ja) 非水系二次電池用電極板およびこれを用いた非水系二次電池
JP2018160379A (ja) リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2015056311A (ja) 非水電解質二次電池の製造方法
WO2018135253A1 (ja) 正極活物質、正極およびリチウムイオン二次電池
JP6807321B2 (ja) 正極活物質、正極およびリチウムイオン二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080003581.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011511548

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117012704

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13132806

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10826262

Country of ref document: EP

Kind code of ref document: A1