WO2011052018A1 - 撮像装置の照明光学系 - Google Patents
撮像装置の照明光学系 Download PDFInfo
- Publication number
- WO2011052018A1 WO2011052018A1 PCT/JP2009/005789 JP2009005789W WO2011052018A1 WO 2011052018 A1 WO2011052018 A1 WO 2011052018A1 JP 2009005789 W JP2009005789 W JP 2009005789W WO 2011052018 A1 WO2011052018 A1 WO 2011052018A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- optical system
- prism
- imaging
- illumination optical
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B15/00—Special procedures for taking photographs; Apparatus therefor
- G03B15/02—Illuminating scene
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
- G06K7/10544—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
- G06K7/10712—Fixed beam scanning
- G06K7/10722—Photodetector array or CCD scanning
- G06K7/10732—Light sources
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B2215/00—Special procedures for taking photographs; Apparatus therefor
- G03B2215/05—Combinations of cameras with electronic flash units
- G03B2215/0564—Combinations of cameras with electronic flash units characterised by the type of light source
- G03B2215/0575—Ring shaped lighting arrangements
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B2215/00—Special procedures for taking photographs; Apparatus therefor
- G03B2215/05—Combinations of cameras with electronic flash units
- G03B2215/0589—Diffusors, filters or refraction means
- G03B2215/0592—Diffusors, filters or refraction means installed in front of light emitter
Definitions
- the present invention relates to an illumination optical system of an imaging apparatus that irradiates light on an imaging object in order to receive reflected light from the imaging object with an imaging element.
- an information reading imaging device that reads biological information such as printed information on paper such as barcodes and palm veins
- biological information such as printed information on paper
- barcodes and palm veins it is an area that should be originally uniform in the reflected light of the light illuminated on the medium surface. Nevertheless, if a local high-intensity part occurs, the reflected component becomes image noise, which is not desirable.
- FIG. 1 shows a configuration of a conventional imaging apparatus in which an illumination optical system is arranged around the imaging optical system.
- This imaging device 110 has an illumination optical system 115 in which a plurality of light emitting elements (LEDs) 114-1, 114-2,... Are arranged around an imaging optical system 113 including an image sensor 111 and a lens 112. is doing.
- LEDs light emitting elements
- the light L1, L2, L3 from the light emitting element 114-1 illuminates the object 116
- the emitted light L1, L2, L3 is reflected at points A, B, and C of the object 116.
- the light reflected at the points A, B, and C is received by the image sensor 111, and images at the points A, B, and C are formed.
- the light reflected in the direction indicated by the solid line is specular reflection light
- the light reflected in the direction indicated by the broken line is scattered reflection light.
- the regular reflection light is stronger than the scattered reflection light.
- specularly reflected light at points A and C does not enter the lens 112, but specularly reflected light at point B enters the lens 112. For this reason, a local high-brightness area
- a plurality of light emitting elements 114-1, 114-2,... are arranged around the imaging optical system 113 as an illumination light source.
- 114-2,..., 114-2,..., 114-2,... are emitted from the upper end surface via a light guide (not shown).
- imaging of point B on the object 116 will be considered based on FIG.
- the illumination light L4 from the light emitting element 114-2 becomes scattered reflected light as indicated by a broken line at point B.
- an image of point B is created by this scattered reflected light.
- the regular reflection light (solid line) of the light L2 from the light emitting element 114-1 is superimposed on this image as noise. This regular reflection noise becomes larger as the regular reflection light is stronger than the scattered reflection light.
- FIG. 3A shows an example of the optical axis and intensity distribution of the emitted light from the light emitting element 114
- FIG. 3B shows an example of the optical axis and intensity distribution of the emitted light from the light guide 117. That is, both the outgoing light L from the light emitting element 114 and the outgoing light L from the light guide (transparent cylindrical body that guides light) 117 have the maximum intensity on the optical axis O ′, and the light from the optical axis O ′. As the angle increases, the strength in that direction decreases.
- FIG. 4 shows an example of regular reflection noise in the image sensor 111.
- point B on the object 116 between the light emitting element 114-1 and the lens 112 is a regular reflection point. Therefore, an annular regular reflection noise region S is generated as shown in FIG. 4 for the light emitting elements 114-1, 114-2,.
- the width W of the regular reflection noise region S (the width of the regular reflection region) W depends on the diffusivity of the surface of the object 116 and the size of the entrance pupil (effective aperture) of the lens 112, and is not necessarily an annular shape. For example, it may be circular.
- FIG. 5 shows a conventional example of an illumination optical system in which regular reflection noise is reduced.
- the illumination does not generate regular reflection noise.
- a light source area wider than the imaging area is required, and the apparatus becomes large.
- the composition of illumination rapidly collapses and the resulting image changes (shallow depth).
- an illumination optical system is formed by combining ring-shaped light guides 117 with light emitting elements 114-1, 114-2,. 115. This is because the light from the light emitting element 114 is prevented from deviating from the optical path by the light guide 117.
- the illumination optical system 115 is disposed around the imaging optical system 113 including the lens 112 and the image sensor 111.
- an arrow R in FIG. 6 indicates the emission direction of the illumination optical system.
- a ring-shaped light guide 117 is installed around the imaging optical system 113, and illumination light R is emitted from the upper end surface of the light guide 117.
- the light emitting element 114 and the light guide 117 are configured to be axially centered on the lens optical axis O.
- the optical axis of the illumination light exists in the radial direction connecting the exit point on the light guide 117 and the lens optical axis O.
- FIG. 7 shows the relationship between the illumination light and the reflected light from the object 116.
- the reflected light from the vicinity of the point B strong regular reflection noise is generated on the lens optical axis O of the image pickup system, but the direct reflected light from the light source is normal even with the reflected light from the point C and the point A. There may be reflection noise. This is because the directly reflected light enters the lens optical axis O depending on the surface state of the point C or the point A.
- Patent Document 1 two prism sheets constituting a surface light source are stacked with the prism strip forming surfaces facing each other inward and the extending directions of the prism strips intersecting each other by 90 degrees.
- the light emitted from the prism sheet is refracted to become light having directivity in two directions, thereby preventing strong light from being reflected locally on the surface of the reading target.
- Patent Document 2 a light-diffusing translucent sheet, a light-emitting element disposed behind the translucent sheet, and a prism surface disposed between the light-emitting element and the translucent sheet emit light.
- a backlight device configured with a prism sheet facing the element side.
- Patent Document 1 there are two prism sheets, and the emitted light has directivity in two directions, but the illumination light that is one of the emitted lights separated in two directions is applied to the surface of the object. On the other hand, it emits in a substantially vertical direction. For this reason, direct light from the light source enters the lens, and specular reflection noise increases.
- Patent Document 2 the light emitted from the prism sheet is refracted in a direction away from the normal line of the flat portion, but the direct light from the light source enters the lens, and the regular reflection noise is large. That is, both Patent Document 1 and Patent Document 2 have a problem that specular reflection noise is large.
- the present invention provides an illumination optical system of an imaging apparatus that can reduce specular reflection noise in a small and low cost.
- the present invention provides an illumination optical system of an imaging apparatus that irradiates the imaging target with light reflected by the imaging target to receive the reflected light from the imaging element, and a plurality of light emitting elements arranged around the imaging sensor.
- a ring in which a prism surface having a plurality of ridge lines in the radial direction is formed on the periphery in order to irradiate the imaging object with light from the element and the plurality of light emitting elements.
- a prism plate having a shape.
- the ring-shaped prism plate can be formed on a conical cylindrical inclined surface. Furthermore, you may form a micro uneven
- the minute uneven portion can be formed by blasting.
- an illumination optical system of an image pickup apparatus that can reduce specular reflection noise with a small size and low cost.
- FIG. 1 It is a figure which shows the example which the ring-shaped prism board comprised from the some prism piece of another body. It is a simple control block diagram of an imaging device. It is sectional drawing of the imaging device of 2nd Embodiment. It is a figure which shows the illumination optical system of 2nd Embodiment. It is a figure which shows the external appearance of a prism board same as the above. It is a B section enlarged perspective view same as the above.
- FIG. 8 is a cross-sectional view of an imaging apparatus to which the illumination optical system of the present invention is applied.
- the imaging device 10 is a device that irradiates an imaging target object (for example, a palm) 11 with light and receives the reflected light with an image sensor 12 as an imaging device to capture an image.
- This image sensor 12 is mounted on a circuit board 13.
- This imaging device 10 includes a plurality of LEDs 14 as light emitting elements arranged around an image sensor 12, a ring-shaped light guide 15 that guides light from the plurality of LEDs 14 to an imaging object 11, and the light guide.
- a ring-shaped prism plate 22 disposed on the light emission surface 15 and an optical unit 17 that is received in the ring of the prism plate 22 and guides the reflected light from the imaging object 11 to the image sensor 12. Yes.
- the ring-shaped light guide 15 is supported by a support member 16.
- a visible light cut filter plate 18 is provided above the light guide 15 and the optical unit 17.
- the illumination optical system 20 of the imaging apparatus 10 is configured by the LED 14, the light guide 15, and the prism plate 22, which will be described later.
- the illumination optical system 20 and the optical unit 17 are mounted together on one circuit board 13. As a result, the device is reduced in size and cost.
- the image sensor 12 is provided in the center of the circuit board 13, and a plurality of LEDs 14 are mounted in a ring around the image sensor 12. Further, the circuit board 13 is provided with a light receiving element (not shown) for performing automatic power control so that the amount of light from the LED 14 becomes a predetermined value.
- four distance measuring light emitting elements are provided at the four corners of the circuit board 13. From the four distance measuring light emitting elements, the distance and inclination of the imaging object (the palm in the present embodiment) 11 are detected.
- the ring-shaped light guide 15 is provided above the plurality of LEDs 14 arranged on the circuit board 13.
- the light guide 15 is made of, for example, resin (or glass), guides light from the plurality of LEDs 14 upward, and irradiates the imaging object 11 with uniform light through the prism plate 22. This is because the light from the LED 14 is guided so as not to leak from the optical path. For this reason, the light guide 15 is formed in a ring shape in accordance with the arrangement of the LEDs 14.
- the ring shape refers to a ring shape having a hole in the center, and includes, for example, a circular ring, a square ring, an elliptical ring, an oval ring, and the like.
- the optical unit 17 is attached to the circuit board 13 above the image sensor 12 at the approximate center of the circuit board 13 and in the ring-shaped light guide 15.
- the optical unit 17 has a lens optical system such as a condenser lens.
- the light guide 15 has a ring shape, the optical unit 17 is accommodated in the ring, so that the size of the apparatus is reduced.
- a hood 19 is attached to the visible light cut filter plate 18 in order to prevent light from outside the imaging range from entering the optical unit 17 and intrusion of light leaked from the light guide plate 15.
- the visible light cut filter plate 18 cuts visible light components that enter the image sensor 12 from the outside. Thereby, even if it suppresses LED14 to low output, the fall of imaging accuracy can be prevented. This is because the noise component due to light from the outside is small.
- FIG. 9 is a plan view of the illumination optical system 20 and the optical unit 17,
- FIG. 10 is a perspective view of the illumination optical system 20, and
- FIG. 11 is a plan view of the prism plate 22.
- the illumination optical system 20 includes a plurality of LEDs 14 arranged in an annular shape, a ring-shaped light guide 15, and a ring-shaped prism plate 22 disposed on the emission surface 15 a of the light guide 15. ing.
- the prism plate 22 has a prism surface 24 in which a prism array having a large number of ridge lines 23 in the radial direction is formed on the circumference, and the prism surface 24 faces the LED 14 (the light exit surface 15a of the light guide 15). (See FIG. 10).
- the prism surface 24 is overlapped so as to face the light exit surface 15a of the light guide 15 (no adhesion, overlap with the air layer interposed), and illumination light is incident on the prism surface 24.
- the ring-shaped prism plate 22 has an annular shape, but may be, for example, a square ring shape having a through hole at the center, an elliptical ring shape, an oval ring shape, or the like. .
- the prism surface 24 has a large number of ridge lines 23 in the radial direction, and it is preferable that the large number of ridge lines 23 are equally spaced. However, it does not necessarily have to be equally spaced. Moreover, although it is preferable that many ridgelines 23 are formed in radial direction centering
- prism plates 22 such as a square ring shape, an elliptical ring shape, and an oval ring shape.
- the outgoing optical axis of the illumination light from the prism plate 22 is directed not in the radial direction of the center G but in the tangential direction (see arrow T in FIG. 9).
- the illumination light from the prism plate 22 is directed in a direction orthogonal to the ridge line 23 so as not to go in the direction of the ridge line 23.
- FIG. 12 is a diagram illustrating the relationship between the illumination light P to the imaging object 11 and the reflected light Q from the imaging object 11.
- the illumination light P (incident) on the imaging object 11 at the height Z is in the direction of the axis y ′ in the figure. Incidently inclined.
- specularly reflected light does not enter the center (Z axis) of the optical unit 17, and only scattered light (reflected light Q) enters.
- the light that has passed through the prism plate 22 does not exit in a direction orthogonal to the exit surface.
- the specularly reflected light since the range of the specularly reflected light depends on the diffusivity of the surface of the imaging target 11 and the entrance pupil diameter of the lens of the optical unit 17, the specularly reflected light is completely incident on the center of the optical unit 17. Although it cannot be said that it does not do, it can be said that it is reduced at least.
- FIG. 13A is a diagram illustrating a control state of the emission direction of illumination light by the prism plate 22.
- the prism surface 24 of the prism plate 22 is overlapped with the light exit surface 15a of the light guide 15 so as to face each other (no adhesion, overlap with an air layer interposed), and illumination light is irradiated onto the prism surface 24 from below. Is incident, all the light L directed upward is inclined and emitted in the inclined L ′ direction.
- the prism surface 24 is formed with a prism row having a large number of ridge lines 23 in the radial direction on the circumference.
- FIG. 13B is a diagram illustrating a state in which minute uneven portions are formed on the exit surface of the prism plate 22.
- a minute concavo-convex portion 25a is formed on the emission surface 25 of the prism plate 22 opposite to the prism surface 24 by blasting (for example, sandblasting) to form a diffusion surface.
- the prism surface 24 is formed with a prism array having a large number of ridge lines 23 on the circumference in the radial direction.
- the minute uneven portion 25a refers to a portion in which relatively minute concave and convex portions are continuously formed in an array or randomly by, for example, sandblasting.
- various shapes such as a hemispherical shape, a spherical shape, a cone (trapezoid) shape, or a pyramid (trapezoid) shape can be considered as the shape of the convex portion.
- the pitch and height (depth) of the concave and convex portions of the minute concavo-convex portion 25a can be determined in consideration of the luminance distribution of light from the emission surface 25 and the like.
- the brightness distribution when the exit surface 25 is a diffusing surface can be obtained by controlling the injection pressure and the injection time of the sand to be used.
- the description is omitted here.
- the present invention is not limited thereto.
- the minute uneven portion 25a can be formed as the diffusion surface, it is not always necessary to use the sand blasting process, and a forming means or other means may be used.
- FIG. 14 is a diagram showing an example in which the ring-shaped prism plate 22 is composed of a plurality of separate (four in the present embodiment) prism pieces 22a to 22d.
- Each prism piece 22a to 22d has a prism surface 24 in which a prism row having a large number of ridge lines 23 is formed toward the image sensor 12 side.
- a large number of ridge lines 23 of the prism pieces 22a to 22d are formed substantially parallel to the radial direction (on the image sensor 12 side). Even with the prism plate 22 composed of such a plurality of prism pieces 22a to 22d, an illumination optical system that reduces the occurrence of regular reflection noise on the imaging optical system side can be obtained.
- the drive control system of the imaging device 10 is a digital value obtained from an LED output unit 51 that drives a plurality of LEDs 14, a distance measurement LED drive unit 52 that drives an LED 14 ′ for distance measurement, and an analog output of each pixel of the image sensor 12. And an A / D converter 53 for converting to a microcomputer, and a microcontroller (MCU) 50.
- MCU microcontroller
- the LED drive unit 51 receives light from the LED 14 by the light receiving element 54 and performs automatic power control according to the received light intensity.
- the microcontroller (MCU) 50 includes an MPU, a ROM, and a RAM, and calculates a distance and an inclination of an imaging target (a palm in the present embodiment), and then performs processing such as image processing.
- the microcontroller (MCU) 50 determines whether or not the distance of the imaging target is appropriate (whether it is at a predetermined focal length within the imaging range) and the imaging target before driving the LED 14 for illumination. It is determined whether the inclination of the object is appropriate. When the distance and inclination of the object to be imaged are appropriate, the LED 14 emits light and illuminates the object with illumination light.
- the image sensor 12 captures an image in the imaging range, and stores the image in the memory via the A / D converter 53. Then, features are extracted from this image. For example, in extracting a blood vessel image, blood vessel image data is extracted from the image.
- a plurality of LEDs 14 arranged in a ring around the image sensor 12 and a prism surface 24 in which a prism row having a large number of ridge lines 23 in the radial direction is formed on the circumference are directed toward the plurality of LEDs 14. Therefore, it is possible to obtain the illumination optical system 20 of the imaging apparatus having a compact configuration and capable of reducing the occurrence of regular reflection noise on the imaging optical system side.
- FIG. 16 is a cross-sectional view of the imaging apparatus of the present embodiment.
- symbol is attached
- the light guide 15 has a conical cylindrical shape, and its emission surface 15a is formed on an inclined surface.
- the prism plate 22 is disposed with its prism surface 24 facing the light exit surface 15 a of the light guide 15.
- FIG. 17 shows the illumination optical system of the present embodiment
- FIGS. 18A and 18B show the appearance of the prism plate 22.
- the exit surface 15a of the light guide 15 is a conical cylindrical inclined surface to optimize the illumination light distribution.
- the ring-shaped prism plate 22 disposed so as to overlap the light exit surface 15 a of the light guide 15 has a three-dimensional shape.
- the prism plate 22 has a prism surface 24 in which a prism row having a large number of ridge lines 23 in the radial direction is formed on the circumference, as in the first embodiment. ing.
- the number of prism rows is, for example, 180 at a vertex angle of 90 degrees and a depth of 0.2 mm (prism row pitch of 2 °). Also in this case, similarly to the prism plate 22 shown in FIG. 11, the illumination optical system 20 that reduces the occurrence of regular reflection noise on the imaging optical system side can be obtained.
- the illumination light that has passed through the prism plate 22 is all inclined in the tangential direction orthogonal to the direction of the ridge line 23 (radial direction), and the light does not go in the radial direction. Thereby, generation
- the surface opposite to the prism surface 24 (outgoing surface 25) of the prism plate 22 may be a diffusing surface.
- the diffusing surface can be formed by forming the minute uneven portions 25a (see FIG. 13B) by sandblasting or the like on the emission surface 25 side of the prism plate 22 made of acrylic.
- the illumination light is directed in the radial direction, and specularly reflected light is incident on the imaging center.
- its intensity is weak and specular noise is small.
- the intensity is weak, and the purpose is not impaired by the regular reflection noise.
- the light which goes to each center from each regular reflection point is weak diffused light
- the functions and effects of the diffusion surface described above also apply to the first embodiment.
- the illumination optical system 20 of the imaging apparatus that can reduce the occurrence of regular reflection noise on the imaging optical system side while having a small and low-cost configuration is obtained. Can do.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- General Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Theoretical Computer Science (AREA)
- Image Input (AREA)
- Studio Devices (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Description
この撮像装置110は、イメージセンサ111及びレンズ112を含む撮像光学系113の周囲に、複数の発光素子(LED)114-1,114-2,・・・が配された照明光学系115を有している。
例えば、発光素子114-2からの照明光L4は、B点で破線で示すように散乱反射光となる。そして、この散乱反射光によってB点の画像が作られる。しかし、この画像に発光素子114-1からの光L2の正反射光(実線)がノイズとなって重畳する。この正反射ノイズは、散乱反射光に比べて正反射光が強いほど大きくなる。
すなわち、発光素子114からの出射光L、ならびに導光体(光を導く透明な円筒体)117からの出射光Lは、いずれも光軸O’の強度が最大で、光軸O’からの角度が大きくなるに従い、その方向の強度が低下している。
また、図4は、イメージセンサ111における正反射ノイズの例を示している。
図5のように、発光素子114-1,114-2を撮像光学系113から遠ざけ、物体116を斜めから照射すると、正反射ノイズを発生しない照明となる。しかし、この場合は、撮像領域よりも広い光源領域が必要となり、装置が大型化する。
この図6では、撮像光学系113の周囲にリング状の導光体117が設置され、この導光体117の上端面から照明光Rが出射される。また、レンズ光軸Oを中心として発光素子114も導光体117も軸対象に構成されている。さらに、照明光の光軸は導光体117上の出射点とレンズ光軸Oを結ぶ半径方向に存在している。
この場合、B点近傍からの反射光によると、撮像系のレンズ光軸Oには強い正反射ノイズが発生するが、C点やA点からの反射光でも、光源からの直接反射光が正反射ノイズとなる場合がある。C点やA点の表面状態によっては、直接反射光がレンズ光軸Oに入るためである。
特許文献1では、面光源を構成する2枚のプリズムシートを、プリズム条形成面を相互に内側に向けて、かつ各プリズム条の延びる方向を90度交差させて積層している。これにより、プリズムシートから出射された光は、屈折されて2方向の指向性を持つ光となり、読取対象の表面に局所的に強い光が写り込むことを防止するというものである。
すなわち、特許文献1及び特許文献2のいずれにおいても、正反射ノイズが大きいという課題を有する。
本発明は、撮像対象物からの反射光を撮像素子で受光して撮像すべく前記撮像対象物に光を照射する撮像装置の照明光学系において、前記撮像素子の周囲に配置された複数の発光素子と、前記複数の発光素子からの光を前記撮像対象物に照射すべく、半径方向に多数の稜線を有するプリズム列が周上に形成されたプリズム面を前記複数の発光素子に向けたリング状のプリズム板と、を有することを特徴とする。
図8は、本発明の照明光学系が適用された撮像装置の断面図である。
撮像装置10は、撮像対象物(例えば手のひら)11に光を照射してその反射光を撮像素子としてのイメージセンサ12で受光して撮像する装置である。このイメージセンサ12は回路基板13に搭載されている。
なお、LED14、導光体15、プリズム板22によって撮像装置10の照明光学系20が構成されているが、これについては後述する。また、本実施の形態では、1枚の回路基板13に、照明光学系20と光学ユニット17等をまとめて搭載している。これにより、装置の小型化、低コスト化を図っている。
さらに、光学ユニット17は、回路基板13の略中央のイメージセンサ12の上方、かつリング状の導光体15内で回路基板13に取付けられている。この光学ユニット17は、集光レンズ等のレンズ光学系を有している。
図9は、照明光学系20及び光学ユニット17の平面図、図10は、照明光学系20の斜視図、図11は、プリズム板22の平面図である。
こうして、このプリズム面24は、導光体15の出射面15aに対向するようにして重ねられ(接着なし、空気層を挟んだまま重ねる)、このプリズム面24に照明光が入射される。
図12において、照明光Pの光軸が導光体15の接線方向に傾いているため、高さZにある撮像対象物11への(入射する)照明光Pは、図の軸y’方向に傾いて入射する。
同図に示すように、プリズム板22のプリズム面24を導光体15の出射面15aに向かい合わせて重ね(接着なし、空気層を挟んだまま重ねる)、このプリズム面24に下方から照明光を入射させると、真上に向かう光Lが全て傾斜したL’方向に傾いて出射する。
同図に示すように、例えば、プリズム板22のプリズム面24と反対側の出射面25に、ブラスト処理(例えばサンドブラスト)により微小凹凸部25aを形成して拡散面としている。なお、この場合も、プリズム面24は、半径方向に多数の稜線23を有するプリズム列が円周上に形成されている。
撮像装置10の駆動制御系は、複数のLED14を駆動するLED駆動部51と、距離計測用のLED14’を駆動する測距LED駆動部52と、イメージセンサ12の各画素のアナログ出力をデジタル値に変換するA/D変換器53と、マイクロコントローラ(MCU)50とを有する。
図16は、本実施の形態の撮像装置の断面図である。なお、第1の実施の形態と同一又は相当する部材には同一の符号を付して説明する。
本実施の形態では、導光体15の出射面15aを円錐筒状の傾斜面とし、照明光の分布を最適化している。図18Aに示すように、導光体15の出射面15aに重ねて配置されるリング状のプリズム板22は、立体形状である。また、図18Bに示すように、このプリズム板22は、第1の実施の形態と同様に、半径方向に多数の稜線23を有するプリズ
ム列が円周上に形成されたプリズム面24を有している。
そのためには、プリズム板22のプリズム面24と反対側の面(出射面25)を拡散面とすればよい。具体的には、アクリル製のプリズム板22の出射面25側に、サンドブラストなどで微小凹凸部25a(図13B参照)を形成することで拡散面を形成することができる。
上述した拡散面の機能および効果は、第一の実施の形態でも当てはまる。
Claims (4)
- 撮像対象物からの反射光を撮像素子で受光して撮像すべく前記撮像対象物に光を照射する撮像装置の照明光学系において、
前記撮像素子の周囲に配置された複数の発光素子と、
前記複数の発光素子からの光を前記撮像対象物に照射すべく、半径方向に多数の稜線を有するプリズム列が周上に形成されたプリズム面を前記複数の発光素子に向けたリング状のプリズム板と、を有する
ことを特徴とする撮像装置の照明光学系。 - 前記リング状のプリズム板は円錐筒状の傾斜面に形成されている
ことを特徴とする請求項1に記載の撮像装置の照明光学系。 - 前記リング状のプリズム板の前記プリズム面と反対側の面に微小凹凸部を形成した
ことを特徴とする請求項1又は2に記載の撮像装置の照明光学系。 - 前記微小凹凸部をブラスト処理により形成した
ことを特徴とする請求項3に記載の撮像装置の照明光学系。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200980161165.4A CN102483798B (zh) | 2009-10-30 | 2009-10-30 | 摄像装置的照明光学系统 |
KR1020127004901A KR101297897B1 (ko) | 2009-10-30 | 2009-10-30 | 촬상 장치의 조명 광학계 |
JP2011538121A JP5394504B2 (ja) | 2009-10-30 | 2009-10-30 | 撮像装置の照明光学系 |
PCT/JP2009/005789 WO2011052018A1 (ja) | 2009-10-30 | 2009-10-30 | 撮像装置の照明光学系 |
EP09850798.1A EP2495682B1 (en) | 2009-10-30 | 2009-10-30 | Illumination optical system of image capturing device |
US13/408,526 US20120154672A1 (en) | 2009-10-30 | 2012-02-29 | Illumination optical system of image capturing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/005789 WO2011052018A1 (ja) | 2009-10-30 | 2009-10-30 | 撮像装置の照明光学系 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/408,526 Continuation US20120154672A1 (en) | 2009-10-30 | 2012-02-29 | Illumination optical system of image capturing device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011052018A1 true WO2011052018A1 (ja) | 2011-05-05 |
Family
ID=43921462
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/005789 WO2011052018A1 (ja) | 2009-10-30 | 2009-10-30 | 撮像装置の照明光学系 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20120154672A1 (ja) |
EP (1) | EP2495682B1 (ja) |
JP (1) | JP5394504B2 (ja) |
KR (1) | KR101297897B1 (ja) |
CN (1) | CN102483798B (ja) |
WO (1) | WO2011052018A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103454768A (zh) * | 2012-05-29 | 2013-12-18 | 富士通株式会社 | 成像装置和电子设备 |
WO2014196044A1 (ja) * | 2013-06-05 | 2014-12-11 | 富士通フロンテック株式会社 | 撮像装置 |
WO2019163003A1 (ja) * | 2018-02-20 | 2019-08-29 | 富士通フロンテック株式会社 | 撮像装置用の照明光学系 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103546668B (zh) * | 2012-07-09 | 2017-03-01 | 联想(北京)有限公司 | 一种图像采集装置、电子设备及辅助拍摄方法 |
CN103676408A (zh) * | 2012-09-10 | 2014-03-26 | 富泰华工业(深圳)有限公司 | 电子装置 |
TWI572965B (zh) * | 2012-11-28 | 2017-03-01 | 鴻海精密工業股份有限公司 | 環形閃光燈結構 |
JP6075069B2 (ja) * | 2013-01-15 | 2017-02-08 | 富士通株式会社 | 生体情報撮像装置及び生体認証装置ならびに生体情報撮像装置の製造方法 |
AU2014223307B2 (en) * | 2013-03-01 | 2016-12-15 | Federation Enterprises (Wa) Pty Ltd | Bicycle camera |
US10288983B2 (en) * | 2016-04-26 | 2019-05-14 | Lumileds Llc | LED flash ring surrounding camera lens |
TWI760955B (zh) * | 2016-04-26 | 2022-04-11 | 荷蘭商露明控股公司 | 環繞攝影機透鏡之發光二極體閃光環及提供照明之方法 |
FR3079937B1 (fr) * | 2018-04-06 | 2021-07-09 | Coeur De Jeu | Dispositif de capture d’images multiples presentant chacune une exposition a la lumiere differente. |
TWI675248B (zh) * | 2018-04-09 | 2019-10-21 | 文曄科技股份有限公司 | 攝像裝置 |
US10950743B2 (en) | 2019-05-02 | 2021-03-16 | Stmicroelectronics (Research & Development) Limited | Time of flight (TOF) sensor with transmit optic providing for reduced parallax effect |
TWI806218B (zh) * | 2021-11-03 | 2023-06-21 | 群光電子股份有限公司 | 電子裝置及其電路板模組 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56125705A (en) * | 1980-02-07 | 1981-10-02 | Jitoreru Gmbh Unto Co | Paraboloidal reflecting mirror |
JP2002049324A (ja) | 2000-07-31 | 2002-02-15 | Nippon Seiki Co Ltd | バックライト装置 |
JP2004171192A (ja) | 2002-11-19 | 2004-06-17 | Denso Wave Inc | 光学的情報読取装置 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3129245B2 (ja) * | 1996-10-31 | 2001-01-29 | オムロン株式会社 | 撮像装置 |
JPH10161197A (ja) * | 1996-12-04 | 1998-06-19 | Omron Corp | 照明装置付きカメラ |
JP4323571B2 (ja) * | 1997-01-31 | 2009-09-02 | エックスワイ, インコーポレイテッド | 光学装置 |
JP3426226B1 (ja) * | 2002-01-10 | 2003-07-14 | 日本ライツ株式会社 | 導光部材および照明ユニットならびに計器 |
CN1720435A (zh) * | 2002-12-06 | 2006-01-11 | 株式会社英特埃库迅 | 固体摄像元件的测试装置 |
US7823783B2 (en) * | 2003-10-24 | 2010-11-02 | Cognex Technology And Investment Corporation | Light pipe illumination system and method |
JP2008089599A (ja) * | 2003-11-14 | 2008-04-17 | Olympus Corp | マルチスペクトル撮像装置、マルチスペクトル照明装置 |
US20060214673A1 (en) * | 2003-11-28 | 2006-09-28 | Shingo Tamai | Intrument for testing solid-state imaging device |
JP4677256B2 (ja) * | 2005-03-17 | 2011-04-27 | キヤノン株式会社 | 発光装置 |
WO2007040127A1 (ja) * | 2005-09-30 | 2007-04-12 | Sharp Kabushiki Kaisha | 液晶表示装置およびテレビジョン受信機 |
JP2007148231A (ja) * | 2005-11-30 | 2007-06-14 | Canon Inc | 照明装置および撮像装置 |
JP4566930B2 (ja) * | 2006-03-03 | 2010-10-20 | 富士通株式会社 | 撮像装置 |
JP4708220B2 (ja) * | 2006-03-03 | 2011-06-22 | 富士通株式会社 | 照明装置及びこれを用いた撮像装置 |
TW200739138A (en) * | 2006-03-17 | 2007-10-16 | Mitsubishi Rayon Co | Prism sheet, planar light source device and method for manufacturing the prism sheet |
US7551077B2 (en) * | 2006-07-31 | 2009-06-23 | Alcon, Inc. | RFID ring illumination system for surgical machine |
AU2008226060B2 (en) * | 2007-03-13 | 2011-04-21 | Thomas Merklein | Method for the camera-assisted detection of the radiation intensity of a gaseous chemical reaction product and uses of said method and corresponding device |
TWM324785U (en) * | 2007-04-16 | 2008-01-01 | Young Optics Inc | Illumination system |
US8613434B2 (en) * | 2008-01-28 | 2013-12-24 | Pascal Engineering Corporation | Work pallet positioning and fixing device |
WO2009153879A1 (ja) * | 2008-06-20 | 2009-12-23 | 平田機工株式会社 | スナップリング装着装置及びスナップリング装着用冶具 |
-
2009
- 2009-10-30 CN CN200980161165.4A patent/CN102483798B/zh active Active
- 2009-10-30 EP EP09850798.1A patent/EP2495682B1/en active Active
- 2009-10-30 WO PCT/JP2009/005789 patent/WO2011052018A1/ja active Application Filing
- 2009-10-30 KR KR1020127004901A patent/KR101297897B1/ko active IP Right Grant
- 2009-10-30 JP JP2011538121A patent/JP5394504B2/ja active Active
-
2012
- 2012-02-29 US US13/408,526 patent/US20120154672A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56125705A (en) * | 1980-02-07 | 1981-10-02 | Jitoreru Gmbh Unto Co | Paraboloidal reflecting mirror |
JP2002049324A (ja) | 2000-07-31 | 2002-02-15 | Nippon Seiki Co Ltd | バックライト装置 |
JP2004171192A (ja) | 2002-11-19 | 2004-06-17 | Denso Wave Inc | 光学的情報読取装置 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103454768A (zh) * | 2012-05-29 | 2013-12-18 | 富士通株式会社 | 成像装置和电子设备 |
CN103454768B (zh) * | 2012-05-29 | 2016-10-26 | 富士通株式会社 | 成像装置和电子设备 |
WO2014196044A1 (ja) * | 2013-06-05 | 2014-12-11 | 富士通フロンテック株式会社 | 撮像装置 |
JP5956683B2 (ja) * | 2013-06-05 | 2016-07-27 | 富士通フロンテック株式会社 | 撮像装置 |
US9736343B2 (en) | 2013-06-05 | 2017-08-15 | Fujitsu Frontech Limited | Imaging apparatus with top cover |
WO2019163003A1 (ja) * | 2018-02-20 | 2019-08-29 | 富士通フロンテック株式会社 | 撮像装置用の照明光学系 |
US11526066B2 (en) | 2018-02-20 | 2022-12-13 | Fujitsu Frontech Limited | Illumination optical system for imaging device |
Also Published As
Publication number | Publication date |
---|---|
EP2495682A1 (en) | 2012-09-05 |
KR101297897B1 (ko) | 2013-08-22 |
JP5394504B2 (ja) | 2014-01-22 |
EP2495682B1 (en) | 2018-07-25 |
KR20120037503A (ko) | 2012-04-19 |
EP2495682A4 (en) | 2014-11-26 |
JPWO2011052018A1 (ja) | 2013-03-14 |
US20120154672A1 (en) | 2012-06-21 |
CN102483798B (zh) | 2015-01-28 |
CN102483798A (zh) | 2012-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5394504B2 (ja) | 撮像装置の照明光学系 | |
US9672399B2 (en) | Diffuse bright field illumination system for a barcode reader | |
JP4566929B2 (ja) | 撮像装置 | |
TWI609334B (zh) | 指紋取像系統 | |
JP4708220B2 (ja) | 照明装置及びこれを用いた撮像装置 | |
US9330290B2 (en) | Barcode reader having multiple illumination systems and multiple sets of imaging optics | |
US20100208954A1 (en) | Fingerprint identifying system | |
US6783257B2 (en) | Lighting apparatus for inspection of an object | |
JP4584312B2 (ja) | 光照射装置及び光学部材 | |
JP4975494B2 (ja) | 撮像装置 | |
JP5097912B2 (ja) | 光照射装置 | |
US8864034B1 (en) | Barcode reader having multiple illumination systems and multiple sets of imaging optics | |
JP6117324B2 (ja) | 撮像装置および照明装置 | |
JP2008518230A (ja) | 発光ダイ素子を容器に直接合焦させることによる容器検査 | |
JP2004319466A (ja) | 光照射装置 | |
WO2018079742A1 (ja) | 検査装置 | |
JP4112064B2 (ja) | 光路調整部材及びそれを備えた照明装置 | |
JP2711191B2 (ja) | 凹凸パターン読取装置 | |
WO2020262593A1 (ja) | 外観検査装置及び外観検査方法 | |
JP2011095998A (ja) | 画像読取装置 | |
JP2013069484A (ja) | 照明装置およびそれを備える読取装置 | |
TWI621998B (zh) | 指紋取像系統 | |
JP2008009903A (ja) | 画像読取装置 | |
JPH08202916A (ja) | 表面パターン読取装置における照明装置 | |
JP2005309122A (ja) | 拡散光源 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980161165.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09850798 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011538121 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009850798 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20127004901 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |