WO2011050736A1 - 永磁悬浮轴承和永磁悬浮轴承组件 - Google Patents

永磁悬浮轴承和永磁悬浮轴承组件 Download PDF

Info

Publication number
WO2011050736A1
WO2011050736A1 PCT/CN2010/078203 CN2010078203W WO2011050736A1 WO 2011050736 A1 WO2011050736 A1 WO 2011050736A1 CN 2010078203 W CN2010078203 W CN 2010078203W WO 2011050736 A1 WO2011050736 A1 WO 2011050736A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
inner ring
radial
outer ring
ring
Prior art date
Application number
PCT/CN2010/078203
Other languages
English (en)
French (fr)
Inventor
张平
关家树
Original Assignee
张思维
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张思维 filed Critical 张思维
Publication of WO2011050736A1 publication Critical patent/WO2011050736A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C39/00Relieving load on bearings
    • F16C39/06Relieving load on bearings using magnetic means
    • F16C39/063Permanent magnets

Definitions

  • the invention relates to a permanent magnet suspension bearing and a permanent magnet suspension bearing assembly. Background technique
  • Rotational motion is a common form of motion in mechanical motion.
  • bearings are widely used in order to meet the requirements for relative rotational motion between two components.
  • conventional bearings such as rolling bearings
  • the inevitable friction loss will inevitably lead to a decrease in transmission efficiency and Problems such as reduced component life.
  • Cid-Open Publication No. CN1350128A discloses a magnetic suspension bearing.
  • a radial moving magnetic ring is disposed on the supported shaft, and a radial moving magnetic ring is disposed on the bearing seat.
  • Two sets of radial stable magnetic rings are formed to the moving magnetic ring and the radial moving magnetic ring to achieve a radial stable state; and between the two sets of radially stable magnetic rings, an axial moving magnetic ring is disposed on the supported shaft
  • An axial static magnet ring is arranged on the bearing housing, and the axial dynamic magnetic ring and the axial static magnetic ring form a set of axially stabilized magnetic rings to achieve an axial stable state.
  • An object of the present invention is to provide a permanent magnet suspension bearing and a permanent magnet suspension bearing assembly which are relatively simple in construction.
  • a permanent magnet suspension bearing comprising: an inner ring, the inner ring is a permanent magnet; an outer ring, the inner ring is sleeved in the outer ring, the inner ring The thickness is smaller than the thickness of the outer ring, the outer diameter of the inner ring is smaller than the inner diameter of the outer ring; the first radial permanent magnet, the first radial permanent magnet is fixedly disposed on the outer ring, the first a magnetic permanent attraction between the radial permanent magnet and the inner ring in a radial direction; a plurality of axial permanent magnets fixed on the outer ring and respectively located in the inner ring axially Both sides of the direction, so that the inner ring is in a state of force balance in the axial direction.
  • a permanent magnet suspension bearing comprising: an inner ring having an outer circumferential surface fixedly fitted with at least one pair of permanent magnet rings, adjacent to each other The magnetic ring bodies are spaced apart from each other in the axial direction; the outer ring, the inner ring is sleeved in the outer ring, the outer diameter of the inner ring is smaller than the inner diameter of the outer ring; at least one pair of first radial permanent magnets, At least one pair of first radial permanent magnets fixedly disposed on the outer ring, the at least one pair of first radial permanent magnets respectively magnetically attracting in a radial direction between the at least one pair of permanent magnet rings; An axial permanent magnet fixed to the outer ring and located between the at least one pair of permanent magnet rings, respectively, such that the inner ring is in a force-balanced manner in an axial direction status.
  • a permanent magnet suspension bearing assembly comprising a disc-shaped housing and at least one permanent magnet suspension bearing provided by the present invention, the permanent magnet suspension bearing being fixedly disposed Within the housing, the housing has an aperture through the wall of the housing along a central axis of the permanent magnet suspension bearing.
  • the inner ring of the inner ring is realized by the magnetic force acting as the permanent magnet or the inner ring provided with the permanent magnet ring body and the axial permanent magnet and the radial permanent magnet Position control and radial position control.
  • axial permanent magnets and radial permanent magnets A magnetic force is applied to the same component, the inner ring, to achieve positional control of the inner ring and the shaft supported by the inner ring.
  • it has a simpler structure than the conventional permanent magnet suspension bearing, and therefore the manufacturing process is relatively easy.
  • FIG. 1 is an exploded perspective view of a permanent magnet suspension bearing according to an embodiment of the present invention
  • FIG. 2 is an axial sectional view of the permanent magnet suspension bearing of FIG.
  • Figure 3 is a schematic view of the outer ring of the permanent magnet suspension bearing of Figure 1;
  • Figure 4 is a perspective view of the first radial permanent magnet of the permanent magnet suspension bearing of Figure 1;
  • Figure 5 is a plan view of the first radial permanent magnet of Figure 4 in the axial direction;
  • the permanent magnet suspension bearing provided by the present invention comprises:
  • Inner ring 1, the inner ring 1 is a permanent magnet
  • the outer ring 2 the inner ring 1 is sleeved in the outer ring 2, the thickness of the inner ring 1 along the axial direction of the outer ring 2 is smaller than the thickness of the outer ring 2 in the axial direction, the inner ring
  • the outer diameter of the ring 1 is smaller than the inner diameter of the outer ring 2;
  • first radial permanent magnet 3 fixedly disposed on the outer ring 2, the first radial permanent magnet 3 a magnetic attraction between the first radial permanent magnet 3 and the inner ring 1 in a radial direction;
  • a plurality of axial permanent magnets 4 fixed to the outer ring 2 and respectively located on both sides of the inner ring 1 in the axial direction, so that the inner ring 1 is in the axial direction It is in a state of balance of force.
  • the inner ring 1 of the permanent magnet suspension bearing is a permanent magnet
  • the inner ring 1 is generally used as a rotating member in a bearing, that is, a rotor.
  • the shaft supported by the inner ring 1 can rotate together with the inner ring 1.
  • the inner ring 1 may be a ring member or a cylindrical member to which a permanent magnet is attached, and may be used as a rotor when the inner ring 1 is suspended in a loaded state by using a permanent magnet.
  • the outer ring 2 may be made of a non-magnetic material (such as an aluminum alloy or the like) or a magnetically conductive material (such as steel or alloy steel).
  • the thickness of the inner ring 1 is smaller than the thickness of the outer ring 2, and the outer diameter of the inner ring 1 is smaller than the inner diameter of the outer ring 2, so that the inner ring 1 is fitted in the outer ring 2.
  • a first radial permanent magnet 3 is fixedly mounted on the outer ring 2, and the first radial permanent magnet 3 and the inner ring 1 are magnetically attracted to each other.
  • the first radial permanent magnet 3 can be fixedly mounted to the outer ring 2 in a plurality of ways, for example, a notch can be machined in the outer ring 2, and the first radial permanent magnet 3 can be embedded in the notch, and then the adhesive can be utilized. Or the filler securely fixes the first radial permanent magnet 3.
  • the first radial permanent magnet 3 is not limited to the above-described mounting manner.
  • the first radial permanent magnet 3 may also be fixedly disposed on the outer circumferential surface of the outer ring 2. . Therefore, the fixed mounting manner of the first radial permanent magnet 3 and the outer ring 2 can be selected depending on the specific application, which will be described in more detail below.
  • the attraction force of the first radial permanent magnet 3 to the inner ring 1 is actually the attraction to the inner ring 1 in the radial direction.
  • the force is used to overcome the load experienced by the inner ring 1, which will be described in detail below.
  • a plurality of axial permanent magnets 4 are fixedly disposed on the outer ring 2, and the inner ring 1 is located between the plurality of axial permanent magnets 4 in the axial direction, so that the inner ring 1 can be in a force balance state in the axial direction. .
  • the axial permanent magnet 4 can be fixed in place on the outer ring 2 in a variety of ways.
  • the axial permanent magnet 4 may be fixed to the inner circumferential surface of the outer ring 2.
  • at least one axial permanent magnet 4 may be fixed on the end face 6 of the first end of the outer ring 2 in the axial direction, and at least one axial permanent magnet 4 may be fixed to the end face 7 of the second end of the outer ring 2 in the axial direction.
  • an axial permanent magnet can also be embedded in the outer ring 2, similar to the first radial permanent magnet 3.
  • the axial permanent magnets located on both sides in the axial direction of the inner ring 1 have the same number and may have the same shape to easily achieve a force balance state of the inner ring 1 in the axial direction.
  • the number of the axial permanent magnets 4 on the end face 6 of the first end is equal to the number of the axial permanent magnets 4 on the end face 7 of the second end, as may be one.
  • the two axial permanent magnets 4 respectively located on the end face 6 and the end face 7 have the same shape.
  • the inner ring 1 magnetically acts on the axial permanent magnets 4 on both sides in the axial direction, and magnetically interacts with the first radial permanent magnets 3 in the radial direction.
  • position control of the inner ring 1 as a rotor can be realized, for example, the inner ring 1 is suspended. Therefore, the permanent magnet suspension bearing provided by the present invention has a simpler structure, is easier to manufacture, and is relatively less expensive than conventional permanent magnet suspension bearings.
  • the magnetic force of the axial permanent magnet 4 to the inner ring 1 may be a repulsive force or a gravitational force, but in the preferred case, the magnetic force of the axial permanent magnet 4 to the inner ring 1 is a repulsive force, thereby ensuring the inner ring. 1 maintains a suitable distance from the axial permanent magnet 4.
  • the repulsive force of the axial permanent magnet 4 provided on the end of the inner ring 1 is increased, and another The additional axial permanent magnet 4 provided on one end reduces the repulsive force of the inner ring 1, thereby pushing the inner ring 1 back to the equilibrium state in the axial direction.
  • the inner ring 1 and the shaft supported by the inner ring 1 can carry a predetermined axial load in a suspended state.
  • the combined force of the repulsive force of the axial permanent magnet 4 on both sides of the inner ring 1 to the inner ring 1 in the radial direction may be Zero; can also be zero.
  • the repulsive force of the axial permanent magnet 4 on the end face 6 of the first end to the inner ring 1 and the repulsive force of the axial permanent magnet 4 on the end face 7 of the second end to the inner ring 1 are radial
  • the direction of the resultant force in the direction is the same as the direction of the suction of the first radial permanent magnet 3 to the inner ring 1.
  • each of the axial permanent magnets 4 and the magnetic field strength of the generated magnetic field are the same, and the distribution of the respective permanent magnets in the axial permanent magnets 4 on the end face 6 of the first end is located at the same.
  • the distribution of the respective permanent magnets in the axial permanent magnets 4 on the end faces 7 of the two ends is symmetrical with respect to the central cross section 8 of the outer ring 2, thereby facilitating the zero force of the inner ring 1 in the axial direction.
  • the arrangement of the axial permanent magnets 4 is not limited thereto.
  • two axial permanent magnets 4 may be fixedly disposed on the end surface 6, and an axial permanent magnet 4 may be fixedly disposed on the end surface 7.
  • the inner ring 1 can achieve an axial force balance state.
  • the end face 6 of the first end of the outer ring 2 in the axial direction and the end face 7 of the second end of the outer ring 2 in the axial direction are both parallel to the central cross section 8, and relative to the The central cross section 8 is symmetrical.
  • the first radial permanent magnet 3 is used to apply a magnetic attraction to the inner ring 1.
  • the shape of the first radial permanent magnet 3 is not particularly limited as long as it can be magnetically attracted to the inner ring 1. In the case where the first radial permanent magnet 3 balances the magnetic attraction force of the inner ring 1 with the load of the inner ring 1, the inner ring 1 (and the shaft supported by the inner ring 1, if any) can be suspended. .
  • the inventors of the present invention have found through intensive research that the conventional permanent magnet suspension bearing is not suitable for practical engineering applications, because the past designers are pursuing how to realize the suspension state of a certain component, such as a Chinese invention patent.
  • How to achieve the suspension state of the shaft supported by the bearing is mentioned in the publication CN1350128A, however, it is not realized that this suspension state is achieved without carrying. Therefore, in the non-loaded state, the above-mentioned magnetic suspension bearing can realize the suspension state of the supported shaft, but if the supported bearing is subjected to the load, the original axial stable state and the radial stable state are obviously broken, thereby The supported shaft cannot be followed Continue to remain in suspension.
  • the inventors of the present invention have realized the erroneous design of the conventional permanent magnet suspension bearing, and have further proposed a preferred technical solution of the present invention. In other words, the inventors of the present invention believe that such a permanent magnet suspension bearing has practical engineering application value only in the state of suspension of the supported components in the loaded state.
  • the permanent magnet suspension bearing of the present invention is designed to: the first radial permanent magnet 3 and the inner ring 1 in the non-loaded state of the inner ring 1
  • the magnetic attraction force in the radial direction enables the inner ring 1 to be in contact with the outer ring 2 or the first radial permanent magnet 3; in the loaded state, the inner ring 1 can It is suspended in the outer ring 2 for free rotation.
  • the inner ring is attracted by the first radial permanent magnet and is in an eccentric position in the outer ring, and usually the inner ring directly fits under the action of the magnetic force.
  • a radial permanent magnet on or on the outer ring, but in the axial direction may be located at a stable position between the two end faces of the outer ring.
  • the inner ring 1 In the loaded state, that is, when a load acts on the inner ring 1 (such as a shaft mounted in the inner ring 1), the magnetic attraction of the first radial permanent magnet received by the inner ring 1 and the gravity of the inner ring itself And the load acting on the inner ring is in a state of force balance, so that the inner ring is at a center position of the outer ring or a position close to the center position, thereby causing the inner ring to be in a suspended state. At the same time, the inner ring is still in a steady state in the axial direction.
  • the suspension of the inner ring can be achieved by the technical solution of the present invention, and the inner ring can be rotated with almost no friction under load (e.g., together with the supported rotating shaft).
  • the above technical solution can be applied to engineering practice because the inner ring can be suspended in the loaded state.
  • permanent magnet suspension bearings with different parameters can be designed to adapt the permanent magnet suspension bearings to the application of the work.
  • the shape of the first radial permanent magnet 3 and each of the axial permanent magnets 4 is not particularly required, so that the positional control of the inner ring 1 can be realized by a magnetic force.
  • the above magnet may have a rectangular parallelepiped shape, a strip shape, a ring shape, or the like.
  • the first radial permanent magnet 3 is an annular segment, as shown in FIG.
  • the so-called annular segment body means that the projection of the first radial permanent magnet 3 is a part of the ring shape when viewed in the axial direction, and at the same time, the first diameter of the ring segment body in the axial direction of the outer ring 2
  • the permanent magnet 3 also has a thickness d3 as shown in FIGS. 4 and 5.
  • the central axis of the annular segment of the first radial permanent magnet 3 is the same as the central axis of the outer ring 2, so that the magnetic attractive force distribution of the first radial permanent magnet 3 received by the inner ring 1 is relatively Evenly.
  • the first radial permanent magnet 3 of the annular segment can be placed on the outer ring 2 in a suitable manner as long as the magnetic attraction to the inner ring 1 is satisfied without affecting the rotation of the inner ring 1.
  • the first radial permanent magnet 3 may be embedded in the outer ring 2; or it may be firmly adhered to the outer ring 2 by an adhesive.
  • the width w3 (shown in FIG. 5) of the first radial permanent magnet 3 in the radial direction of the outer ring 2 is the same as the width of the outer ring 2 in the radial direction, and the first radial direction is always
  • the inner circumferential surface of the magnet 3 is aligned with the inner circumferential surface of the outer ring 2.
  • the outer circumferential surface of the first radial permanent magnet 3 is also aligned with the outer circumferential surface of the outer ring 2. In this configuration, in the unloaded state, the inner ring 1 can be attracted to the inner circumferential surface of the first radial permanent magnet 3, as shown in Fig. 2.
  • a notch or groove 13 may be previously provided in the outer ring 2, and then the first radial permanent magnet 3 may be fitted into the groove 13 for fixing during assembly.
  • the first radial permanent magnet 3 of the annular segment is placed in the outer ring 2, usually in two structural forms.
  • the first way is the annular segment shown in Figures 1, 4 and 5, wherein the two end faces 9, 10 of the first radial permanent magnet 3 of the annular segment are also Parallel to each other) parallel to the central axis of the outer ring 2.
  • the circumferential direction of the inner circumferential surface of the annular segment The central angle corresponding to the arc of the arc is different from the central angle of the arc of the circumferential direction of the outer circumferential surface.
  • the central axis of the outer ring 2 is located in the plane of the two end faces 9, 10 of the first radial permanent magnet 3 of the annular segment, that is, the center of the outer ring 2.
  • the axis is the intersection of the planes of the two end faces 9 and 10 of the first radial permanent magnet 3.
  • the central angle corresponding to the circular arc in the circumferential direction of the inner circumferential surface of the annular segment is the same as the central angle corresponding to the circular arc in the circumferential direction of the outer circumferential surface.
  • the circumferential arc of the inner circumferential surface of the annular segment of the first radial permanent magnet 3 is 60 to 100 degrees.
  • the circular arc corresponding to the circumferential direction of the inner circumferential surface of the annular segment of the first radial permanent magnet 3 corresponds to a central angle of 90 degrees.
  • the first radial permanent magnet 3 is located at an intermediate position in the outer ring 2 in the axial direction, and thus, the central cross section 8 of the outer ring 2 also divides the first radial permanent magnet 3 into three Two parts that are symmetrical with respect to the central cross section 8.
  • the first radial permanent magnet 3 located at the intermediate position in the axial direction in the outer ring 2 is also located at the intermediate position in the outer ring 2 in the axial direction. Therefore, with the magnetic attraction force, the first radial permanent magnet 3 can function to position the inner ring 1 in the axial direction, thereby ensuring that the inner ring 1 is in the correct position in the axial direction to a greater extent.
  • the thickness d3 of the first radial permanent magnet 3 in the axial direction is 1/3 to 2/3 of the thickness of the outer ring 2 in the axial direction, and the first radial permanent magnet 3
  • the thickness in the axial direction is equal to the thickness of the inner ring 1 in the axial direction, as shown in Figs. 4 and 7.
  • the thickness d3 of the first radial permanent magnet 3 is 1/2 of the thickness of the outer ring 2.
  • the thickness of the first radial permanent magnet 3 in the axial direction of the outer ring 2 equal to the thickness of the inner ring 1 in the axial direction, It is sufficient to obtain a stable magnetic attraction force for the inner ring 1, thereby facilitating ensuring that the inner ring 1 is in a stable state in the radial direction and/or the axial direction.
  • the arrangement of the first radial permanent magnet 3 of the permanent magnet suspension bearing of the present invention and its action have been described in detail above.
  • the axial permanent magnet 4 will be described in detail below.
  • the number of the axial permanent magnets 4 is plural.
  • the axial permanent magnets 4 can be designed in two, one of which can be located on one end face 6 of the outer ring 2, the other axis
  • the permanent magnet 4 can be located on the other end face 7 of the outer ring 2.
  • the present invention is not limited thereto.
  • the number of the axial permanent magnets 4 and the number of the axial permanent magnets 4 located on the end surface of the second end may be different as long as the inner ring 1 can be in a force balance state in the axial direction.
  • the magnetic force acting on the inner ring 1 of the two sets of axial permanent magnets 4 respectively located on the two end faces of the outer ring 2 is a repulsive force (or gravitational force), and the pair of repulsive forces (or gravitational forces) are in the axial direction (the force component) If they are equal in size and opposite in direction, the resultant force is zero in the axial direction, so that the stability of the inner ring 1 in the axial direction can be ensured.
  • the geometry of the axial permanent magnet 4 is not particularly required, as long as the axial stability of the inner ring 1 can be achieved.
  • the axial permanent magnet 4 is an annular segment, the central axis of the annular segment (ie, the central axis of the cylindrical surface where the inner or outer circumferential surface of the annular segment is located) and the outer ring
  • the center axis of 2 is the same.
  • the inner circumferential surface of the axial permanent magnet 4, the outer circumferential surface, and the inner circumferential surface and the outer circumferential surface of the outer ring 2 have a common central axis, so that the arrangement of the outer ring 2 does not affect the inner ring 1 and the load ( The connection such as the axis and its rotational movement.
  • the annular segment of the axial permanent magnet 4 is similar to the annular segment of the first radial permanent magnet 3 and will not be described in detail.
  • the outer circumferential surface of the annular segment of the axial permanent magnet 4 is aligned with the outer circumferential surface of the outer ring 2, as shown in FIG.
  • the width w4 of the annular segment of the axial permanent magnet 4 in the radial direction is larger than the outer ring. 2 the width in the radial direction such that the inner circumferential surface of the axial permanent magnet 4 protrudes from the inner circumferential surface of the outer ring 2 to bring the position of the axial permanent magnet 4 closer to the inner ring 1 to obtain an ideal Magnetic repulsion.
  • the distance between the central axis of the outer ring 2 and the inner circumferential surface of the axial permanent magnet 4 is smaller than the inner diameter of the outer ring 2 and larger than the inner diameter of the inner ring 1, thus facilitating each Assembly of parts.
  • the axial permanent magnet 4 protruding from the inner circumferential surface of the outer ring 2 does not interfere with the inner ring 1 and the shaft connected to the inner ring 1.
  • the inner ring 1 can be taken out from the outer ring 2 against the magnetic force received by the inner ring 1, and replacement work can be performed.
  • this may be made by making the width w4 of the axial direction of the axial permanent magnet 4 and the width of the outer ring 2 in the radial direction. The difference is smaller than the difference between the inner diameter of the outer ring 2 and the inner diameter of the inner ring 1.
  • the width w4 of the axial permanent magnet 4 in the radial direction is 1.5 to 2.5 times the width of the inner ring 1 in the radial direction. Further preferably, the width of the axial permanent magnet 4 in the radial direction is twice the width of the inner ring 1 in the radial direction.
  • the width w4 of the axial permanent magnet 4 is made larger than the width of the inner ring 1, so that the force balance of the inner ring 1 in the axial direction can be achieved, and the two sets of axial directions on both sides of the inner ring 1
  • the repulsive force of the permanent magnet 4 on the inner ring 1 also produces a resultant force in the radial direction, and this resultant force contributes to the inner ring 1 carrying a greater radial load.
  • the mounting position of the axial permanent magnet 4 on the outer ring 2 is such that it can axially stabilize the inner ring 1, and there is no special requirement.
  • the relative relationship between the position of the axial permanent magnet 4 at the outer ring 2 and the position of the first radial permanent magnet 3 on the outer ring 2 is: an orthographic view in the axial direction of the permanent magnetic suspension bearing
  • the projection of the inner circumferential surface of the first radial permanent magnet 3 is a first arc 11
  • the projection of the inner circumferential surface of the axial permanent magnet 4 is a second arc 12
  • the line L between the midpoint of the second arc 12 with respect to the midpoint of the first arc 11 and the second arc 12 is in FIG.
  • the left and right sides are symmetrical, and the openings of the first and second curved shapes 11 and 12 are opposed to each other.
  • the first arc 11 projected by the inner circumferential surface of the first radial permanent magnet 3 is the circular arc of the inner circumferential surface of the annular radial body of the first radial permanent magnet 3 ".
  • the central angle ⁇ of the first curved shape 11 is 60 degrees to 100 degrees, and further preferably 90 degrees.
  • the direction of the magnetic attraction of the first radial permanent magnet 3 to the inner ring 1 is mainly in the vector OC direction (upward in FIG. 6), and the repulsive force of the axial permanent magnet 4 on the inner ring 1 is in the axial direction.
  • the resultant force may be zero, and the resultant force of the axial force of the axial permanent magnet 4 to the inner ring 1 in the radial direction will mainly be along the vector DC direction.
  • the load can utilize the resultant force of the axial permanent magnet 4 against the repulsive force of the inner ring 1 in the radial direction and the first radial permanent magnet 3
  • the magnetic attraction of the inner ring 1 is supported together, and at the same time, the gravity of the inner ring 1 itself can be overcome, so that the permanent magnet suspension bearing provided by the present invention can be applied to the working condition in the loaded state.
  • the central angle of the second curved shape 12 (the central angle ⁇ shown in Fig. 6) is 120 degrees to 200 degrees. Further preferably, the central angle of the second curved shape 12 is 160 to 180 degrees, so that the inner ring 1 can obtain a more stable equilibrium state in the axial direction.
  • the permanent magnet suspension bearing further includes a second radial permanent magnet (not shown) fixedly mounted on the outer ring 2 (e.g., embedded in the outer ring 2), and the second radial permanent magnet and the first radial permanent magnet 3 are symmetrically disposed with respect to a central axis of the outer ring 2, the second radial permanent magnet and The inner ring 1 is magnetically repelled.
  • a second radial permanent magnet (not shown) fixedly mounted on the outer ring 2 (e.g., embedded in the outer ring 2), and the second radial permanent magnet and the first radial permanent magnet 3 are symmetrically disposed with respect to a central axis of the outer ring 2, the second radial permanent magnet and The inner ring 1 is magnetically repelled.
  • the second radial permanent magnet Since the second radial permanent magnet is symmetrical with respect to the central axis of the outer ring 2, the second radial permanent magnet repels the magnetic force of the inner ring 1 and thus Second radial
  • the resultant force of the magnetic repulsive force of the permanent magnet to the inner ring 1 is the same as the resultant force of the magnetic attraction of the first radial permanent magnet to the inner ring 1, so that the inner ring 1 can be allowed to carry a larger load.
  • the outer ring 2 can be made of a magnetically permeable material.
  • the outer ring 2 made of the magnetically permeable material can make the magnetic force between the inner ring 1 and the radial permanent magnet 3 and the axial permanent magnet 4 larger, so that the inner ring 1 is more axially oriented. Stable, capable of carrying larger loads in the radial direction.
  • the first radial permanent magnet 3 and the inner ring 1 are magnetically attracted, and the inner ring 1 and the axial permanent magnet 4 are repelled (or attracted) to achieve suspension of the inner ring 1 under load. State, this can be achieved by the arrangement of the magnetic poles of the individual magnets.
  • the magnetic pole direction of each of the permanent magnet suspension bearings (such as the inner ring, the first radial permanent magnet 3 and the axial permanent magnet 4) (ie, in the magnet, the direction in which the N pole points to the S pole) Or the direction of the S pole pointing to the N pole) is in the axial direction.
  • the orientations in Figs. 2 and 7 are taken as an example for description.
  • the left end of the inner ring 1 is N pole, and the right end is S pole;
  • the left end of the first radial permanent magnet 3 is S pole, the right end is N pole;
  • the left side of the outer ring 2 is an axial permanent magnet 4
  • the left end is the S pole and the right end is the N pole;
  • the axial permanent magnet 4 on the right side of the outer ring 2 the left end is the S pole and the right end is the N pole.
  • it is completely feasible to invert the N and S poles of each magnet in Figure 7 ie, the N pole in Figure 7 is set to the S pole and the S pole in Figure 7 is set to the N pole).
  • the arrangement of the respective magnets can be facilitated, and on the other hand, by setting the magnetic pole directions of the respective magnetic poles in the axial direction, Corresponding different magnets (such as magnetically attracted magnets) form a closed magnetic field loop so that demagnetization does not occur and the magnetic field state can be stabilized for a longer period of time. This has a greater advantage than the arrangement of the magnetic pole direction in the radial direction of CN 1350128A.
  • the axial permanent magnet 4 is fixed to the outer ring 2 (eg, bonded together by an adhesive), in contrast to a conventional permanent magnet suspension bearing,
  • the radial permanent magnet 3 is fixed to the outer ring 2, so that the remaining components are fixedly connected as a whole except for the inner ring 1 within the outer ring 2. Therefore, the permanent magnet suspension bearing of the present invention is integrated, the structure is very compact, and the assembly process is relatively simple.
  • permanent magnets For different applications, permanent magnets, first (second) radial permanent magnets and axial permanent magnets capable of generating different magnetic field strengths can be selected.
  • the present invention also provides an alternative form of permanent magnet suspension bearing that is similar to the permanent magnetic suspension bearing shown in FIG. As shown in Figure 8, the permanent magnet suspension bearings include:
  • Inner ring 1 the outer circumference surface of the inner ring 1 is fixedly fitted with at least two permanent magnet ring bodies 31, and the adjacent permanent magnet ring bodies 31 are spaced apart from each other in the axial direction;
  • An outer ring 2 (not shown), the inner ring 1 is sleeved in the outer ring 2, and the inner ring 1 has an outer diameter smaller than the inner diameter of the outer ring 2 to allow the inner portion with the permanent magnet ring 31
  • the ring 1 is free to rotate within the outer ring 2 without interference;
  • At least two first radial permanent magnets 3 fixedly disposed on the outer ring 2, the at least two first radial permanent magnets 3 and the at least two Magnetically attracting magnetic rings between the permanent magnet ring bodies 31 in a radial direction;
  • At least one axial permanent magnet 4 the at least one axial permanent magnet 4 being fixed on the outer ring 2 and located between the permanent magnet ring bodies 31, respectively, such that the inner ring 1 is in the axial direction The state of force balance.
  • the main difference between the permanent magnet suspension bearing and the permanent magnet suspension bearing shown in FIG. 1 is that the inner ring 1 is sleeved with at least two permanent magnet ring bodies 31, and at least the outer ring 2 is provided with at least corresponding to the permanent magnet ring body 31, respectively.
  • the force balance state of the inner ring 1 in the axial direction is achieved by the axial permanent magnets 4 located between the adjacent two permanent magnet ring bodies 31.
  • the permanent magnet suspension bearing shown in Fig. 8 can be obtained by connecting the permanent magnet suspension bearings shown in Fig. 1 in series and removing the outermost axial permanent magnet.
  • the yong shown in Figure 9 The outermost axial permanent magnet 4 of the magnetic suspension bearing is removed, while the intermediate axial permanent magnet 4 (4') is retained to obtain a permanent magnetic suspension bearing of the same or similar structure as that shown in FIG.
  • the permanent magnet suspension bearing has a relatively large bearing capacity since it can form a relatively long extension length in the axial direction. Moreover, it also has relatively good stability in the axial direction. Although only two permanent magnet ring bodies 31, two first radial permanent magnets 3, and one axial permanent magnet 4 are shown in Fig. 8, the present invention is not limited thereto, and more may be provided.
  • the above various features relating to the axial permanent magnet, the radial permanent magnet, and the like can also be used in the above-described selected form of the permanent magnetic suspension bearing, and will not be described in detail herein.
  • the magnetic attraction force in the radial direction between the at least two first radial permanent magnets 3 and the at least two permanent magnet ring bodies 31 in the non-loaded state of the inner ring 1 The inner ring 1 can be brought into contact with the outer ring 2 or the first radial permanent magnet 3; the inner ring 1 can be suspended in the outer ring 2 when the inner ring 1 is in a loaded state, For free rotation.
  • the effects and implementation of this feature have been described in detail above and will not be described again here.
  • the permanent magnet suspension bearing assembly provided by the present invention includes at least one of the above-described permanent magnet suspension bearings provided by the present invention.
  • the permanent magnet suspension bearing assembly comprises a disc-shaped housing and at least one of the above-mentioned permanent magnet suspension bearings, the permanent magnet suspension bearing being fixedly disposed in the housing, the housing having a shell extending through a central axis of the permanent magnet suspension bearing A hole in the wall of the body to facilitate passage of the shaft supported by the inner ring 1.
  • the diameter of the hole is not smaller than the diameter of the cylindrical surface where the inner circumferential surface of the axial permanent magnet 4 is located.
  • the shaft to be supported by the inner ring 1 can enter the permanent magnet suspension bearing assembly through the bore of the housing to cooperate with the inner ring 1.
  • the permanent magnet suspension bearing assembly may include two permanent magnet suspension bearings as shown in FIG. 1 above, and the outer rings of the respective permanent magnet suspension bearings have the same central axis, wherein any two adjacent permanent magnets The suspension bearing shares an axial permanent magnet between the inner rings of the two adjacent permanent magnet suspension bearings.
  • the respective permanent magnet suspension bearings are the same, that is, the components (shape, size, and the like) of each of the permanent magnet suspension bearings, and the arrangement thereof, and the arrangement of the magnetic poles are It is the same, as shown in Figure 9.
  • the outer rings of the respective permanent magnet suspension bearings have the same central axis, wherein any two adjacent permanent magnet suspension bearings share an axial permanent magnet between the inner rings of the two adjacent permanent magnet suspension bearings.
  • the permanent magnet suspension bearing assembly includes two permanent magnet suspension bearings that share an intermediate axial permanent magnet 4 (4').
  • each of the permanent magnet suspension bearings may be a separate component, but preferably, the outer rings 2 of the respective permanent magnet suspension bearings are connected as an integral component to form a unitary body. Further, the inner rings 1 of the respective permanent magnet suspension bearings may be connected together by a ring member as an integral inner rotating member. Obviously, this is similar to the structure of the permanent magnet suspension bearing shown in FIG.
  • the permanent magnet suspension bearing assembly further includes a disc-shaped housing, the permanent magnet suspension bearing being located in the housing, the housing having a central axis extending along an outer circumferential surface of the housing and penetrating the housing The hole in the wall of the body.
  • the various components of the permanent magnet suspension bearing can be effectively protected.
  • the diameter of the hole penetrating the casing is not smaller than the diameter of the cylindrical surface where the inner circumferential surface of the axial permanent magnet 4 is located, thereby facilitating the connection of the inner ring 1 to the load (e.g., the shaft passing through the inner ring 1).
  • the housing typically includes two portions that are detachably coupled together.
  • the outer ring 2 is securely mounted in the cavity of the housing and has a common central axis with the bore extending through the housing and the inner circumferential surface of the outer ring 2 to facilitate the inner ring 1 of the permanent magnet suspension bearing after loading
  • the center of rotation of the loaded shaft is also substantially maintained on the central axis of the inner circumferential surface of the outer ring 2.
  • the housing It may be made of a magnetically permeable material to shield the magnetic field of the permanent magnet suspension bearing.
  • the housing can also be made of a non-magnetically permeable material.
  • the permanent magnet suspension bearing assembly further includes an auxiliary bearing mounted in a hole of the housing, the rotation of the auxiliary bearing
  • the central axis of rotation of the component is the same axis as the central axis of the outer ring 2.
  • the auxiliary bearing can also be used to assist in supporting the load through the shaft of the inner ring 1.
  • the specific analysis of the auxiliary bearings is as follows:
  • the inner ring 1 When the load carried by the inner ring 1 and the suction of the first radial permanent magnet 3 received by the inner ring 1, the repulsive force of the second radial permanent magnet (if any), and the repulsive force of the axial permanent magnet 4 in the radial direction
  • the resultant force is balanced (that is, when the inner ring 1 is subjected to the vertical ground-up magnetic force and the vertical ground-down gravity force of the loaded load is zero)
  • the inner ring 1 is located at the center position in the outer ring 2.
  • the auxiliary bearing does not need to support the shaft passing through the inner ring 1;
  • the auxiliary bearing can assist the shaft passing through the inner ring 1
  • the role of the support expands the scope of application of the permanent magnet suspension bearing of the present invention.
  • the permanent magnet suspension bearings and assemblies provided by the present invention may be used in pairs or in multiples.
  • both the housing and the auxiliary bearing described herein in a permanent magnet suspension bearing assembly including a plurality of permanent magnet suspension bearings can be used in a permanent magnet suspension bearing assembly including a permanent magnet suspension bearing.
  • the control of the inner ring 1 is realized by the first radial permanent magnet 3 (and the second radial permanent magnet) and the axial permanent magnet 4: when non-loaded In the state, the inner ring 1 is deviated from the center of the outer ring 2 in the radial direction by the magnetic force in the radial direction; and in the load state, the inner ring 1 can be assumed by the magnetic force received by the inner ring 1
  • the loaded load (and its own gravity) when the inner ring 1 is in the force balance state, the inner ring 1 is located at the center of the outer ring 2 or at a position slightly deviated from the center of the outer ring 2, and is in a suspended state.
  • the auxiliary bearing can also be used as an auxiliary support function, and a very small frictional rotation motion can be realized, which can be applied to a wide range of loads. .
  • the inner ring 1 In the axial direction, the inner ring 1 is in a stable state under the control of the magnetic force of the axial permanent magnet 4, whether in the non-loaded state or in the loaded state.
  • the permanent magnet suspension bearing and the permanent magnet suspension bearing assembly provided by the present invention are generally used in a state of being placed laterally, i.e., the axial direction of the outer ring 2 is parallel to the horizontal direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

永磁悬浮轴承和永磁悬浮轴承组件 技术领域
本发明涉及一种永磁悬浮轴承和永磁悬浮轴承组件。 背景技术
旋转运动是机械运动中常见的运动形式。在机械领域中, 为了满足两个 部件之间进行相对旋转运动的要求, 广泛使用有轴承。 然而, 在利用传统的 轴承(如滚动轴承) 的情况下, 在通过轴承装配在一起的两个部件做相对旋 转的过程中, 由于存在不可避免的摩擦损耗, 必然会导致传动效率的降低, 并使部件的使用寿命下降等问题。
因此, 为了尽可能地减少旋转运动中产生的摩擦损耗, 目前已经提出了 多种磁悬浮轴承。例如, 中国发明专利公开说明书 CN1350128A公开了一种 磁悬浮轴承。 在该磁悬浮轴承中, 为了使所支撑的轴处于轴向稳定状态和径 向稳定状态, 在所支撑的轴上设置有径向动磁环, 在轴承座上设置有径向动 磁环, 径向动磁环和径向动磁环形成两组径向稳定磁环, 以实现径向稳定状 态; 并且在两组径向稳定磁环之间, 所支撑的轴上设置有轴向动磁环, 在轴 承座上设置有轴向静磁环, 轴向动磁环和轴向静磁环形成一组轴向稳定磁 环, 以实现轴向稳定状态。
通过上述分析可知, 在 CN1350128A的技术方案中, 需要在所支撑的轴 上分别设置轴向动磁环和径向动磁环,而且在轴承座上还需要设置很多静磁 环, 从而造成所述磁悬浮轴承结构较为复杂, 因而制造难度相对较大且较为 繁琐。
有鉴于此,如何实现结构简单的永磁悬浮轴承成为本领域中迫切需要解 决的技术问题。 发明内容
本发明的目的在于提供一种结构较为简单的永磁悬浮轴承和永磁悬浮 轴承组件。
根据本发明的一个方面, 提供了一种永磁悬浮轴承, 其中该永磁悬浮轴 承包括: 内圈, 该内圈为永磁体; 外圈, 所述内圈套在该外圈内, 所述内圈 的厚度小于所述外圈的厚度, 所述内圈的外径小于所述外圈的内径; 第一径 向永磁体, 该第一径向永磁体固定设置在所述外圈上, 该第一径向永磁体与 所述内圈之间沿径向方向磁力相吸; 多个轴向永磁体, 该多个轴向永磁体固 定在所述外圈上并且分别位于所述内圈沿轴向方向的两侧,从而使所述内圈 在轴向方向上处于力平衡的状态。
根据本发明的另一方面, 还提供了一种永磁悬浮轴承, 该永磁悬浮轴承 包括: 内圈, 该内圈的外圆周表面上固定套装有至少一对的永磁环体, 相邻 的永磁环体沿轴向方向彼此间隔开; 外圈, 所述内圈套在该外圈内, 所述内 圈的外径小于所述外圈的内径; 至少一对第一径向永磁体, 该至少一对第一 径向永磁体固定设置在所述外圈上, 该至少一对第一径向永磁体分别与所述 至少一对永磁环体之间沿径向方向磁力相吸; 至少一个轴向永磁体, 该至少 一个轴向永磁体固定在所述外圈上并且分别位于所述至少一对永磁环体之 间, 从而使所述内圈在轴向方向上处于力平衡的状态。
根据本发明的再一方面, 提供了一种永磁悬浮轴承组件, 该永磁悬浮轴 承组件包括圆盘形的壳体以及至少一个本发明所提供的永磁悬浮轴承,所述 永磁悬浮轴承固定设置在所述壳体内, 该壳体具有沿所述永磁悬浮轴承的中 心轴线贯穿该壳体的壁的孔。
按照本发明所提供的永磁悬浮轴承和永磁悬浮轴承组件,利用作为永磁 体或设置有永磁环体的内圈与轴向永磁体和径向永磁体的磁力作用, 实现对 内圈的轴向位置控制和径向位置控制。 换句话说, 轴向永磁体和径向永磁体 对相同的部件即内圈施加磁力作用, 以实现内圈和由该内圈支撑的轴的位置 控制。 显然, 与传统的永磁悬浮轴承相比具有更为简单的结构, 因此制造工 艺也相对容易。 附图说明
图 1为根据本发明一种实施方式的永磁悬浮轴承的分解示意图; 图 2为图 1中永磁悬浮轴承的轴向截面图;
图 3为图 1中永磁悬浮轴承的外圈的示意图;
图 4为图 1中永磁悬浮轴承的第一径向永磁体的立体图;
图 5为图 4中第一径向永磁体的沿轴向的投影图;
图 6为永磁悬浮轴承轴向方向的正投影视图, 其中, 将外圈 2的部分剖 开以表示第一径向永磁体在外圈上与轴向永磁体在外圈上的相对位置关系; 图 7为表示图 1中永磁悬浮轴承的各个磁极的分布的示意图; 图 8为表示另一实施方式的永磁悬浮轴承组件的截面示意图; 和 图 9为表示本发明的永磁悬浮轴承组件的一种实施方式中各个磁极的分 布示意图。 具体实施方式
下面参考附图对本发明的具体实施方式进行详细地描述。
如图 1和图 2所示, 本发明所提供的永磁悬浮轴承包括:
内圈 1, 该内圈 1为永磁体;
外圈 2, 所述内圈 1套在所述外圈 2内, 所述内圈 1沿所述外圈 2轴向 方向的厚度小于所述外圈 2沿轴向方向的厚度,所述内圈 1的外径小于所述 外圈 2的内径;
第一径向永磁体 3, 该第一径向永磁体 3固定设置在所述外圈 2上, 该 第一径向永磁体 3与所述内圈 1之间沿径向方向磁力相吸;
多个轴向永磁体 4, 该多个轴向永磁体 4固定在所述外圈 2上, 并分别 位于所述内圈 1沿轴向方向的两侧, 从而使得内圈 1在轴向方向上处于力平 衡状态。
所述永磁悬浮轴承的内圈 1为永磁体, 内圈 1通常作为轴承中的旋转部 件, 即转子。 换句话说, 在所述永磁悬浮轴承工作时, 由内圈 1支撑的轴能 够与内圈 1一同旋转。 另外, 内圈 1也可以是安装有永磁体的环状件或筒状 件, 只要利用永磁体能够实现内圈 1的承载状态下的悬浮时用作转子即可。
外圈 2可以由非导磁材料制成 (如铝合金等), 也可以由导磁性材料制 成 (如钢或合金钢等)。 所述内圈 1的厚度小于所述外圈 2的厚度, 所述内 圈 1的外径小于所述外圈 2的内径, 从而将内圈 1套在外圈 2内。
此外, 在外圈 2上还固定安装有第一径向永磁体 3, 该第一径向永磁体 3与内圈 1相互磁性吸引。 第一径向永磁体 3可以通过多种方式固定安装到 外圈 2上, 例如可以外圈 2中机加工有缺口, 并将第一径向永磁体 3嵌入该 缺口中, 然后利用粘合剂或填料将第一径向永磁体 3牢固固定。 当然, 第一 径向永磁体 3并不限于上述这种安装方式,在外圈 2为导磁性材料制成的情 况下, 第一径向永磁体 3也可以固定设置在外圈 2的外圆周表面上。 因此, 第一径向永磁体 3与外圈 2的固定安装方式可以根据具体的应用场合而加以 选择, 这将在下文中进行更为详细地描述。
由于第一径向永磁体 3相对于内圈 1位于径向方向的位置, 因而, 第一 径向永磁体 3对内圈 1的吸引力实际上为对内圈 1的沿径向方向的吸引力, 以用于克服内圈 1所承受的载荷, 这将在下文中进行详细地描述。
在外圈 2上固定设置有多个轴向永磁体 4, 在轴向方向上, 内圈 1位于 多个轴向永磁体 4之间, 从而能够使内圈 1在轴向方向上处于力平衡状态。
轴向永磁体 4可以通过多种方式固定在外圈 2上的合适的位置。 例如, 轴向永磁体 4可以固定到外圈 2的内圆周表面上。 再如, 至少一个轴向永磁 体 4可以固定在外圈 2沿轴向方向的第一端的端面 6上, 至少一个轴向永磁 体 4可以固定在外圈 2沿轴向方向的第二端的端面 7上, 从而使内圈 1在轴 向方向上实现受力平衡状态。 另外, 轴向永磁体还可以嵌入外圈 2中, 与第 一径向永磁体 3类似。
优选地, 位于内圈 1轴向方向两侧的轴向永磁体具有相同的个数, 可以 具有相同的形状, 以容易实现内圈 1在轴向方向的力平衡状态。 例如, 优选 地,位于第一端端面 6上的轴向永磁体 4的个数等于位于第二端端面 7上的 轴向永磁体 4的个数, 如可以分别为一个。 进一步优选地, 分别位于端面 6 上和端面 7上的两个轴向永磁体 4具有相同的形状。
通过以上分析可知, 在本发明的技术方案中, 内圈 1在轴向方向上与两 侧的轴向永磁体 4产生磁性作用,在径向方向上与第一径向永磁体 3发生磁 性作用, 从而能够实现对作为转子的内圈 1的位置控制, 例如使内圈 1悬浮 起来。 因此, 与传统的永磁悬浮轴承相比, 本发明所提供的永磁悬浮轴承具 有更为简单的结构, 制造更为容易, 成本也相对更低。
下面对上述永磁悬浮轴承的原理进行更为详细地描述。
在轴向方向上, 轴向永磁体 4对内圈 1的磁性力可以为斥力或引力, 但 在优选情况下, 轴向永磁体 4对内圈 1的磁性力为斥力, 从而能够确保内圈 1保持与轴向永磁体 4之间具有合适的距离。 由于在轴向方向上, 内圈 1处 于平衡状态, 因此一旦内圈 1偏向外圈 2的某一端, 则该端上设置的轴向永 磁体 4对该内圈 1的斥力增大,且另一端上设置的另外的轴向永磁体 4对该 内圈 1的斥力减小, 从而在轴向方向上推动内圈 1又恢复到平衡状态。
也就是说, 利用轴向永磁体 4对内圈 1的斥力, 能够使内圈 1以及由该 内圈 1所支撑的轴在悬浮状态下承载预定的轴向载荷。
内圈 1两侧的轴向永磁体 4对内圈 1的斥力在径向方向上的合力可以为 零; 也可以不为零。 优选地, 位于第一端的端面 6上的轴向永磁体 4对所述 内圈 1的斥力和位于第二端的端面 7上的轴向永磁体 4对所述内圈 1的斥力 在径向方向上的合力的方向与第一径向永磁体 3对内圈 1 的吸力的方向相 同。
优选地,每个轴向永磁体 4的几何形状和所产生的磁场的磁场强度都是 相同的,且位于第一端的端面 6上的轴向永磁体 4中各个永磁体的分布与位 于第二端的端面 7上的轴向永磁体 4中各个永磁体的分布是相对于外圈 2的 中心横截面 8对称的, 从而便于实现内圈 1在轴向方向上的受力合力为零。
但在本发明中, 轴向永磁体 4的设置方式并不限于此, 例如, 在端面 6 上可以固定设置两个轴向永磁体 4, 而在端面 7上可以固定设置一个轴向永 磁体 4, 只要内圈 1能够实现轴向的力平衡状态即可。
如图 3所示,所述外圈 2沿轴向方向的第一端的端面 6和所述外圈 2沿 轴向方向的第二端的端面 7均与中心横截面 8平行,且相对于该中心横截面 8对称。
在径向方向上, 所述第一径向永磁体 3用于对内圈 1施加磁性吸引力。 该第一径向永磁体 3的形状没有特殊要求, 只要能够与内圈 1的磁性吸引即 可。在第一径向永磁体 3对内圈 1的磁性吸引力与内圈 1的负载平衡的情况 下, 能够使内圈 1 (和由该内圈 1支撑的轴, 如果有的话) 悬浮起来。
此外, 本发明的发明人经过深入研究发现, 传统的永磁悬浮轴承不适应 于工程实际应用场合,这是因为过去的设计人所孜孜追求的是如何实现某一 部件的悬浮状态,例如中国发明专利公开说明书 CN1350128A所提及的如何 实现该轴承所支撑的轴的悬浮状态,然而并没有意识到这种悬浮状态是在没 有承载的前提下来实现的。 因此, 在非承载状态下, 利用上述磁悬浮轴承能 够实现所支撑轴的悬浮状态, 但是如果使得所支撑的轴承受载荷作用的话, 显然会打破原先的轴向稳定状态和径向稳定状态, 从而使所支撑的轴不能继 续保持悬浮状态。
本发明的发明人意识到传统的永磁悬浮轴承的设计思路的误区,进而提 出本发明的优选的技术方案。 换句话说, 本发明的发明人认为, 只有在承载 状态下实现所支撑的部件的悬浮状态,这种永磁悬浮轴承才是具有实际工程 应用价值的。
有鉴于此, 在本发明的优选技术方案中, 将本发明的永磁悬浮轴承设计 为: 在所述内圈 1处于非承载状态下, 所述第一径向永磁体 3与所述内圈 1 之间沿径向方向的磁性吸引力能够使所述内圈 1与所述外圈 2或第一径向永 磁体 3接触; 在所述内圈 1处于承载状态下, 所述内圈 1能够在所述外圈 2 内悬浮起来, 以进行自由转动。
因此, 在非承载状态下, 本发明所提供的永磁悬浮轴承中, 内圈受到第 一径向永磁体的吸引而处于外圈中的偏心位置,通常内圈在磁力作用下直接 贴合在第一径向永磁体上或外圈上,但在轴向方向上可以位于外圈的两个端 面之间的稳定位置。
而在承载状态下, 即在内圈 1上作用有负载的情况下(如内圈 1中安装 有轴), 内圈 1所受的第一径向永磁体的磁性吸力、 内圈自身的重力以及作 用在内圈上的负载处于力平衡的状态,从而使内圈处于外圈的中心位置或靠 近该中心位置的位置, 进而使内圈处于悬浮状态。 同时, 在轴向方向上, 内 圈仍然处于稳定状态。
因而,在承载状态下,利用本发明的技术方案能够实现内圈的悬浮状态, 可以由内圈在负载状态下(如与所支撑的旋转轴一起)做几乎没有摩擦的转 动。
通过上述分析可知,上述技术方案由于能够实现内圈在承载状态下的悬 浮, 从而能够应用于工程实际中。 而且, 针对不同的应用场合, 可以设计选 择不同参数的永磁悬浮轴承, 以使永磁悬浮轴承适应于该工作场合的应用。 上述第一径向永磁体 3和各个轴向永磁体 4的形状并无特别要求, 以能 够通过磁性作用力来实现对内圈 1的位置控制即可。 例如, 上述磁体可以为 长方体形、 条形、 环形等。
但优选地, 为了便于第一径向永磁体 3在外圈 2的设置, 第一径向永磁 体 3为环形段状体,如图 1所示。所谓的环形段状体是指,在轴向方向上看, 该第一径向永磁体 3的投影为环形的一部分,同时,在外圈 2的轴向方向上, 环形段状体的第一径向永磁体 3还具有厚度 d3,如图 4和图 5所示。优选地, 第一径向永磁体 3的环形段状体的中心轴线与所述外圈 2的中心轴线相同, 以使内圈 1收到的第一径向永磁体 3的磁性吸引力分布较为均匀。
该环形段状体的第一径向永磁体 3可以以合适的方式设置在外圈 2上, 只要满足在对内圈 1施加磁性吸引力的同时, 不影响内圈 1的旋转即可。例 如, 如上所述, 第一径向永磁体 3可以嵌入外圈 2; 或者通过粘结剂牢固地 粘贴到外圈 2上。
优选地, 所述第一径向永磁体 3沿所述外圈 2径向方向的宽度 w3 (如 图 5所示)与所述外圈 2沿径向方向的宽度相同, 第一径向永磁体 3的内圆 周表面与外圈 2的内圆周表面对齐。 进一步优选地, 第一径向永磁体 3的外 圆周表面与外圈 2的外圆周表面也对齐。 在该结构中, 在非承载状态下, 内 圈 1能够被吸到第一径向永磁体 3的内圆周表面上, 如图 2所示。
通常, 为了安装第一径向永磁体 3, 可以在外圈 2中预先设置有缺口或 槽 13, 然后在装配过程中将第一径向永磁体 3装入该槽 13内固定即可。
将环形段状体的第一径向永磁体 3装入外圈 2中,通常采用两种结构方 式。
第一种方式如图 1、 图 4和图 5中所示的环形段状体, 其中, 该环形段 状体的第一径向永磁体 3的两个端面 9、 10 (该两个端面也彼此平行) 与外 圈 2的中心轴线相平行。在该结构中, 环形段状体的内圆周表面的圆周方向 的圆弧所对应的中心角与外圆周表面的圆周方向的圆弧所对应的中心角是 不同的。
另一种方式如图 6所示,外圈 2的中心轴线位于环形段状体的第一径向 永磁体 3的两个端面 9、 10所在的平面内, 也就是说, 外圈 2的中心轴线为 第一径向永磁体 3的两个端面 9和 10所在平面的交线。 在该结构中, 环形 段状体的内圆周表面的圆周方向的圆弧所对应的中心角与外圆周表面的圆 周方向的圆弧所对应的中心角是相同的。
为了使第一径向永磁体 3对内圈 1产生合适的足够的磁性吸引力,优选 地,所述第一径向永磁体 3的环形段状体的内圆周表面的圆周方向的圆弧 (如 图 5所示的弧 AB ) 所对应的中心角 (如图 6所示的中心角 α ) 为 60度至 100度。
进一步优选地,第一径向永磁体 3的环形段状体的内圆周表面的圆周方 向的圆弧所对应的中心角为 90度。
优选地,所述第一径向永磁体 3位于所述外圈 2中沿轴向方向的中间位 置, 因而, 所述外圈 2的中心横截面 8也将第一径向永磁体 3分为相对于该 中心横截面 8对称的两部分。 按照该结构, 在非承载状态下, 位于外圈 2中 沿轴向方向的中间位置的第一径向永磁体 3在轴向方向上也位于外圈 2内的 中间位置。 因此, 利用磁性吸引力, 第一径向永磁体 3在轴向方向上能够起 到对内圈 1定位的作用, 从而在更大程度上确保内圈 1在轴向方向上处于正 确的位置。
优选地, 所述第一径向永磁体 3沿轴向方向的厚度 d3为所述外圈 2沿 轴向方向的厚度的 1/3至 2/3, 所述第一径向永磁体 3沿轴向方向的厚度与 所述内圈 1沿轴向方向的厚度相等, 如图 4和图 7所示。 进一步优选地, 所 述第一径向永磁体 3的厚度 d3为所述外圈 2的厚度的 1/2。通过使第一径向 永磁体 3沿外圈 2轴向方向的厚度与所述内圈 1沿轴向方向的厚度相等, 能 够使内圈 1获得稳定的磁性吸引力, 从而有利于确保内圈 1在径向方向和 / 或轴向方向处于稳定状态。
以上对本发明的永磁悬浮轴承的第一径向永磁体 3的设置及其作用进行 了详细地描述。 下面对轴向永磁体 4进行详细地描述。
如上所述, 轴向永磁体 4的个数为多个。 但优选地, 为了简便轴向永磁 体 4与外圈 2的装配, 轴向永磁体 4可以设计为两个, 其中一个轴向永磁体 4可以位于外圈 2的一个端面 6上, 另一个轴向永磁体 4可以位于外圈 2的 另一端面 7上。但本发明并不限于此, 位于第一端端面上的轴向永磁体 4可 以为多个, 位于第二端端面上的轴向永磁体 4也可以为多个, 位于第一端端 面上的轴向永磁体 4的个数与位于第二端端面上的轴向永磁体 4的个数可以 不同, 只要能够实现内圈 1在轴向方向上处于力平衡状态即可。
分别位于外圈 2的两个端面上的两组轴向永磁体 4作用在内圈 1上的磁 力为斥力 (或引力), 该一对斥力 (或引力) 在轴向方向上 (的分力, 如果 有的话)大小相等、 方向相反, 因而在轴向方向上合力为零, 从而能够确保 内圈 1在轴向方向上的稳定。 轴向永磁体 4的几何形状并没有特殊要求, 只 要能够实现对内圈 1的轴向稳定即可。
优选地,所述轴向永磁体 4为环形段状体,该环形段状体的中心轴线(即 该环形段状体的内或外圆周表面所在的圆柱表面的中心轴线) 与所述外圈 2 的中心轴线相同。 因而, 轴向永磁体 4的内圆周表面、 外圆周表面以及外圈 2的内圆周表面和外圆周表面具有共同的中心轴线, 从而使外圈 2的设置不 会影响到内圈 1与负载 (如轴) 的连接及其旋转运动。 在这里, 轴向永磁体 4的环形段状体与上述第一径向永磁体 3的环形段状体结构类似, 因而不再 进行详细地描述。
优选地, 为了便于外圈 2的安装, 所述轴向永磁体 4的环形段状体的外 圆周表面与所述外圈 2的外圆周表面对齐, 如图 2所示。 优选地,为了使轴向永磁体 4对内圈 1施加理想的如斥力,如图 2所示, 所述轴向永磁体 4的环形段状体沿径向方向的宽度 w4大于所述外圈 2沿径 向方向的宽度,从而使轴向永磁体 4的内圆周表面突出于外圈 2的内圆周表 面, 以使轴向永磁体 4与内圈 1的位置更为接近, 以获得理想的磁性斥力。
而且, 优选地, 所述外圈 2的中心轴线与所述轴向永磁体 4的内圆周表 面之间的距离小于所述外圈 2的内径并大于所述内圈 1的内径, 因此便于各 个部件的装配。 而且, 一方面在承载状态下, 突出于外圈 2的内圆周表面的 轴向永磁体 4不会对内圈 1和与该内圈 1连接的轴造成干涉。 在另一方面, 在非承载状态下,能够克服内圈 1所受的磁性力将该内圈 1从外圈 2中取出, 以及进行更换作业。在轴向永磁体 4的外圆周面与外圈 2的外圆周面齐平的 情况中, 这可以通过使轴向永磁体 4的径向方向的宽度 w4与外圈 2沿径向 方向的宽度的差小于外圈 2的内径与内圈 1的内径的差来实现。
优选地, 所述轴向永磁体 4沿径向方向的宽度 w4为所述内圈 1沿径向 方向的宽度的 1.5-2.5倍。 进一步优选地, 所述轴向永磁体 4沿径向方向的 宽度为所述内圈 1沿径向方向的宽度的 2倍。 除了上述优点之外, 使轴向永 磁体 4的宽度 w4大于内圈 1的宽度, 既能够实现内圈 1在轴向方向上的受 力平衡, 而且, 内圈 1两侧的两组轴向永磁体 4对内圈 1的斥力在径向方向 上也会产生合力, 且该合力有助于使内圈 1承载更大的径向载荷。
轴向永磁体 4在外圈 2上的安装位置以能对内圈 1起到轴向稳定作用即 可, 没有特殊要求。
优选地, 如图 6所示, 轴向永磁体 4在外圈 2的位置与第一径向永磁体 3在外圈 2上的位置的相对关系为: 在该永磁悬浮轴承轴向方向的正投影视 图中,所述第一径向永磁体 3的内圆周表面的投影为第一弧形 11,所述轴向 永磁体 4的内圆周表面的投影为第二弧形 12, 该第一弧形 11和第二弧形 12 相对于所述第一弧形 11的中点与第二弧形 12的中点之间的连线 L在图 6中 左右对称, 且所述第一弧形 11和第二弧形 12的开口彼此相对。
实际上, 这里的第一径向永磁体 3 的内圆周表面所投影的第一弧形 11 即为上述第一径向永磁体 3 的 "环形段状体的内圆周表面的圆周方向的圆 弧"。
优选地, 第一弧形 11的中心角 α为 60度至 100度, 进一步优选地, 为 90度。按照该结构,第一径向永磁体 3对内圈 1的磁性吸力的方向主要沿向 量 OC方向 (在图 6中向上), 而轴向永磁体 4对内圈 1的斥力在轴向方向 上的合力可以为零,轴向永磁体 4对内圈 1的斥力在径向方向上的合力将主 要沿向量 DC方向。 也就是说, 位于内圈 1轴向方向两侧的轴向永磁体 4对 内圈 1的斥力在径向方向上的合力的方向与第一径向永磁体 3对内圈 1的磁 性吸力的方向相同, 从而在径向方向上起到辅助第一径向永磁体 3的作用。
在该情况下, 如果内圈 1上负有载荷 (如安装有轴), 该载荷可以利用 轴向永磁体 4对内圈 1的斥力在径向方向上的合力以及第一径向永磁体 3对 内圈 1的磁性吸力一同来支撑, 同时还能够克服内圈 1 自身的重力, 从而使 本发明提供的永磁悬浮轴承能够适用于承载状态的工作条件中。
优选地, 所述第二弧形 12的中心角 (图 6中所示的中心角 β ) 为 120 度至 200度。 进一步优选地, 所述第二弧形 12的中心角为 160度至 180度, 从而能够使内圈 1在轴向方向上获得更为稳定的平衡状态。
为了进一步提高本发明的永磁悬浮轴承的承载能力, 优选地, 所述永磁 悬浮轴承还包括第二径向永磁体 (未显示), 该第二径向永磁体固定安装在 所述外圈 2上 (如嵌入所述外圈 2内), 且该第二径向永磁体与所述第一径 向永磁体 3相对于所述外圈 2的中心轴线对称设置, 该第二径向永磁体与所 述内圈 1磁力相斥。
由于第二径向永磁体与所述第一径向永磁体 3相对于所述外圈 2的中心 轴线对称, 其该第二径向永磁体与所述内圈 1磁力相斥, 因而, 该第二径向 永磁体对内圈 1的磁性斥力的合力方向与第一径向永磁体对内圈 1的磁性吸 力的合力方向相同, 从而能够允许内圈 1承载更大的载荷。
优选地, 外圈 2可以由导磁性材料制成。利用该导磁性材料制成的外圈 2, 能够使内圈 1与径向永磁体 3和轴向永磁体 4之间的磁性作用力更大, 从而使内圈 1在轴向方向上更为稳固, 在径向方向上能够承载更大的载荷。
如上所述, 第一径向永磁体 3与内圈 1之间磁性相吸, 内圈 1与轴向永 磁体 4为相斥 (或相吸), 以实现内圈 1在承载状态下的悬浮状态, 这可以 通过各个磁体的磁极的设置来实现。
优选地, 所述永磁悬浮轴承中的每个磁体(如所述内圈、 第一径向永磁 体 3和轴向永磁体 4) 的磁极方向 (即在磁体内, N极指向 S极的方向或 S 极指向 N极的方向) 为沿轴向方向。
具体来说, 以图 2和图 7中的方位为例进行描述。 在轴向方向上, 内圈 1的左端为 N极, 右端为 S极; 第一径向永磁体 3的左端为 S极, 右端为 N 极; 对于外圈 2左侧的轴向永磁体 4来说, 左端为 S极, 右端为 N极; 对于 外圈 2右侧的轴向永磁体 4来说, 左端为 S极, 右端为 N极。 当然, 将图 7 中各个磁体的 N极和 S极反转 (即将图 7中的 N极设为 S极, 将图 7中的 S极设为 N极) 也是完全可行的。
由于所述各个磁体的磁极方向为沿轴向方向, 因此, 一方面能够方便各 个磁体的设置, 另一方面, 更为重要的是, 通过使各个磁极的磁极方向设置 为沿轴向方向, 能够使对应的不同磁体(如磁性相互吸引的磁体)形成闭合 的磁场回路,从而不会出现退磁现象,能够更为长久地使磁场状态保持稳定。 这与 CN 1350128A中磁极方向为沿径向方向的设置方式相比具有较大的优 势。
此外, 相对于传统的永磁悬浮轴承而言, 本发明所提供的永磁悬浮轴承 中, 轴向永磁体 4与外圈 2固定在一起 (如通过粘合剂粘结在一起), 第一 径向永磁体 3与外圈 2固定在一起, 因此除了外圈 2之内的内圈 1之外, 其 余的部件固定连接为整体。 因此, 本发明的永磁悬浮轴承为集成式的, 结构 非常紧凑, 装配过程也相对较为简便。
针对不同的应用场合, 可以选择能够产生不同的磁场强度的永磁体、第 一 (第二) 径向永磁体和轴向永磁体。
本发明还提供了一种可选择形式的永磁悬浮轴承,该永磁悬浮轴承与图 1所示的永磁悬浮轴承类似。 如图 8所示, 永磁悬浮轴承包括:
内圈 1, 该内圈 1的外圆周表面上固定套装有至少两个的永磁环体 31, 相邻的永磁环体 31沿轴向方向彼此间隔开;
外圈 2 (未示出), 所述内圈 1套在该外圈 2内, 所述内圈 1的外径小于 所述外圈 2的内径, 以允许带有永磁环体 31的内圈 1能够无干涉地在该外 圈 2内自由转动;
至少两个第一径向永磁体 3, 该至少两个第一径向永磁体 3固定设置在 所述外圈 2上, 该至少两个第一径向永磁体 3分别与所述至少两个永磁环体 31之间沿径向方向磁力相吸;
至少一个轴向永磁体 4, 该至少一个轴向永磁体 4固定在所述外圈 2上 并且分别位于所述永磁环体 31之间, 从而使所述内圈 1在轴向方向上处于 力平衡的状态。
该永磁悬浮轴承与图 1所示的永磁悬浮轴承的主要区别在于, 内圈 1上 套有至少两个永磁环体 31, 同时在外圈 2上设置有分别与永磁环体 31对应 的至少两个第一径向永磁体 3,从而对永磁环体 31产生径向方向的磁性吸引 力。 另外, 利用位于相邻的两个永磁环体 31之间的轴向永磁体 4来实现内 圈 1在轴向方向的力平衡状态。
实际上, 图 8中所示的永磁悬浮轴承可以通过将图 1中所示的永磁悬浮 轴承串联起来, 并去掉最外侧的轴向永磁体而获得。 例如, 将图 9所示的永 磁悬浮轴承的最外侧轴向永磁体 4去掉, 而保留中间的轴向永磁体 4 (4' ) 能够获得与图 8所示的相同或类似结构的永磁悬浮轴承。
在图 8所示的永磁悬浮轴承中, 由于可以形成轴向方向相对较长的延伸 长度, 因此, 该种永磁悬浮轴承具有相对较大的承载能力。 而且, 在轴向方 向上也具有相对较好的稳定性。虽然在图 8中仅表示了两个永磁环体 31、两 个第一径向永磁体 3和一个轴向永磁体 4, 但本发明并不限于此, 还可以设 置有更多个。
上述关于轴向永磁体、径向永磁体等各个特征也可用于上述选择形式的 永磁悬浮轴承中, 这里就不再进行详细描述。 例如, 优选地, 在所述内圈 1 处于非承载状态下,所述至少两个第一径向永磁体 3与所述至少两个永磁环 体 31之间沿径向方向的磁性吸引力能够使所述内圈 1与所述外圈 2或第一 径向永磁体 3接触; 在所述内圈 1处于承载状态下, 所述内圈 1能够在所述 外圈 2内悬浮起来, 以进行自由转动。 该特征的效果以及实现方式在上文中 已经详细进行了描述, 这里不再赘述。
以上描述了本发明所提供的永磁悬浮轴承的主要部件及其原理,下面对 本发明所提供的永磁悬浮轴承组件进行描述。本发明所提供的永磁悬浮轴承 组件包括至少一个本发明所提供的上述永磁悬浮轴承。
优选地,该永磁悬浮轴承组件包括圆盘形的壳体以及至少一个上述永磁 悬浮轴承, 所述永磁悬浮轴承固定设置在壳体内, 该壳体具有沿所述永磁悬 浮轴承的中心轴线贯穿该壳体的壁的孔, 以便于由内圈 1支撑的轴穿过。 该 孔的直径不小于所述轴向永磁体 4的内圆周表面所在的圆柱形表面的直径。 在使用时, 内圈 1所要支撑的轴可以通过壳体的孔而进入永磁悬浮轴承组件 中, 以与内圈 1配合。
例如,该永磁悬浮轴承组件可以包括两个上述图 1所示的永磁悬浮轴承, 各个永磁悬浮轴承的外圈具有相同的中心轴线, 其中, 任意两个相邻的永磁 悬浮轴承共用该两个相邻的永磁悬浮轴承的内圈之间的轴向永磁体。
在所述永磁悬浮轴承组件具有至少两个上述永磁悬浮轴承的情况下,各 个永磁悬浮轴承相同, 即各个永磁悬浮轴承的部件(形状、 尺寸等参数)及 其排列方式, 以及磁极的排列方式都是相同的, 例如图 9所示。 各个永磁悬 浮轴承的外圈具有相同的中心轴线, 其中, 任意两个相邻的永磁悬浮轴承共 用该两个相邻的永磁悬浮轴承的内圈之间的轴向永磁体。例如,如图 9所示, 该永磁悬浮轴承组件包括两个永磁悬浮轴承, 该两个永磁悬浮轴承共用中间 的轴向永磁体 4 (4' )。
各个永磁悬浮轴承的外圈 2可以为单独的部件, 但优选地, 各个永磁悬 浮轴承的外圈 2连接为一体部件, 从而形成一个整体。 另外, 各个永磁悬浮 轴承的内圈 1可以通过环形件连接在一起, 以作为一个整体的内旋转部件。 显然, 这与图 8中所示的永磁悬浮轴承的结构较为类似。
优选地, 所述永磁悬浮轴承组件还包括圆盘形的壳体, 所述永磁悬浮轴 承位于该壳体内,所述壳体具有沿所述壳体的外圆周表面的中心轴线延伸并 贯穿该壳体的壁的孔。
利用该壳体, 可以有效地保护永磁悬浮轴承的各个部件。 而且, 贯穿壳 体的孔的直径不小于轴向永磁体 4的内圆周表面所在的圆柱形表面的直径, 因而便于内圈 1与负载 (如穿过内圈 1的轴) 的连接。
该壳体通常包括可拆卸地连接在一起的两部分。外圈 2牢固地安装在壳 体的空腔内,并使贯穿壳体的孔与外圈 2的内圆周表面具有共同的中心轴线, 以便于该永磁悬浮轴承在承载后, 使内圈 1的承载的轴的旋转中心也基本保 持在外圈 2的内圆周表面的中心轴线上。
优选地, 为了避免第一径向永磁体 3、 内圈 1和轴向永磁体 4所产生的 磁场在工作场合中对周围邻近的部件或装置的运行有所影响, 优选地, 所述 壳体可以由导磁材料制成,从而将所述永磁悬浮轴承的磁场屏蔽起来。当然, 壳体也可以由非导磁材料制成。
为了提高永磁悬浮轴承的适应性,以能够承载大范围内的负载,优选地, 所述永磁悬浮轴承组件还包括辅助轴承, 该辅助轴承安装在所述壳体的孔 中, 该辅助轴承的旋转部件的旋转中心轴线与所述外圈 2的中心轴线为同一 轴线。
该辅助轴承同样可用于辅助支撑穿过内圈 1的轴的负载。对辅助轴承的 具体分析如下:
当内圈 1承载的负载与内圈 1受到的第一径向永磁体 3的吸力、第二径 向永磁体的斥力 (如果有的话), 以及轴向永磁体 4的斥力在径向方向的合 力平衡时(即内圈 1受到垂直地面向上的磁性力与受到的负载的垂直地面向 下的重力合力为零时), 内圈 1位于外圈 2内的中心位置。 在该情况下, 辅 助轴承无需对穿过内圈 1的轴进行支撑;
而当内圈 1承载的负载与内圈 1受到的第一径向永磁体 3的吸力、第二 径向永磁体的斥力 (如果有的话), 以及轴向永磁体 4的斥力在径向方向的 合力不平衡时(如, 内圈 1受到垂直地面向上的磁性力大于或小于受到的负 载的垂直地面向下的重力时), 则辅助轴承可以对穿过内圈 1 的轴起到辅助 支撑的作用, 从而扩大了本发明的永磁悬浮轴承的适用范围。
此外, 利用辅助轴承, 还可以承载轴向力, 从而确保本发明的永磁悬浮 轴承的工作稳定性。 在实际使用时, 本发明所提供的永磁悬浮轴承和组件可 以成对或者多个一起使用。
在具有辅助轴承的情况下, 由于负载的大部分载荷由永磁悬浮轴承来承 载, 因此利用传统轴承(如滚动轴承) 的辅助轴承的摩擦力非常小, 从而能 够极大程度上减少辅助轴承的摩擦损耗。
这里所描述的在包括多个永磁悬浮轴承的永磁悬浮轴承组件中使用的 壳体和辅助轴承都可用于包括一个永磁悬浮轴承的永磁悬浮轴承组件中。 通过以上描述可知, 在本发明所提供的永磁悬浮轴承中, 利用第一径向 永磁体 3 (和第二径向永磁体)、轴向永磁体 4实现对内圈 1的控制: 当非承 载状态时, 内圈 1受径向方向的磁性作用力而在径向方向上偏离于外圈 2的 中心; 而在承载状态时, 恰好能够利用内圈 1受到的磁性作用力来承担内圈 1受承载的负载 (及其自身的重力), 当该内圈 1处于力平衡状态时, 内圈 1 位于外圈 2的中心位置或位于稍微偏离于外圈 2中心的位置, 并处于悬浮状 态, 从而能够实现无摩擦的旋转。 当内圈 1受到的磁性作用力与承担内圈 1 受承载的负载不平衡时, 还可利用辅助轴承起到辅助支撑作用, 能够实现摩 擦非常小的旋转运动, 能够适用于较大范围的负载。
而在轴向方向上, 无论是非承载状态还是在承载状态, 内圈 1都在轴向 永磁体 4的磁性作用力的控制下处于稳定状态。本发明所提供的永磁悬浮轴 承和永磁悬浮轴承组件通常在横向放置的状态中使用, 即外圈 2的轴向方向 与水平方向平行。
以上对本发明所提供的永磁悬浮轴承组件进行了详细地描述。虽然本发 明已通过上述实施例所公开, 然而上述实施例并非用以限定本发明, 任何本 发明所属技术领域中的技术人员, 在不脱离本发明的精神和范围内, 应当可 作各种更动与修改。因此本发明的保护范围应当以所附权利要求书所界定的 范围为准。

Claims

权利要求书
1. 一种永磁悬浮轴承, 其特征在于, 该永磁悬浮轴承包括:
内圈 (1), 该内圈 (1) 为永磁体;
外圈 (2), 所述内圈 (1) 套在该外圈 (2) 内, 所述内圈 (1) 沿所述 外圈 (2)轴向方向的厚度小于所述外圈 (2) 沿轴向方向的厚度, 所述内圈 (1) 的外径小于所述外圈 (2) 的内径;
第一径向永磁体(3), 该第一径向永磁体(3)固定设置在所述外圈(2) 上, 该第一径向永磁体 (3) 与所述内圈 (1) 之间沿径向方向磁力相吸; 多个轴向永磁体(4), 该多个轴向永磁体(4)固定设置在所述外圈(2) 上并且分别位于所述内圈 (1) 沿轴向方向的两侧, 从而使所述内圈 (1)在 轴向方向上处于力平衡的状态。
2. 根据权利要求 1所述的永磁悬浮轴承, 其中,
在所述内圈 (1) 处于非承载状态下, 所述第一径向永磁体(3) 与所述 内圈(1)之间沿径向方向的磁性吸引力能够使所述内圈(1)与所述外圈(2) 或第一径向永磁体 (3) 接触;
在所述内圈 (1) 处于承载状态下, 所述内圈 (1) 能够在所述外圈 (2) 内悬浮起来, 以进行自由转动。
3. 根据权利要求 2所述的永磁悬浮轴承, 其中, 所述第一径向永磁体 (3) 为环形段状体, 该环形段状体的中心轴线与所述外圈 (2) 的中心轴线 相同, 其中, 所述第一径向永磁体 (3) 的内圆周表面与所述外圈 (2) 的内 圆周表面对齐; 和 /或所述第一径向永磁体 (3) 沿轴向方向的厚度为所述外 圈 (2) 沿轴向方向的厚度的 1/3至 2/3, 所述第一径向永磁体 (3) 沿所述 外圈 (2) 轴向方向的厚度与所述内圈 (1 ) 沿所述外圈 (2) 轴向方向的厚 度相等。
4. 根据权利要求 3所述的永磁悬浮轴承, 其中, 所述轴向永磁体 (4) 为环形段状体, 该环形段状体的中心轴线与所述外圈 (2) 的中心轴线相同, 其中, 所述外圈 (2) 的中心轴线与所述轴向永磁体 (4) 的内圆周表面之间 的距离小于所述外圈 (2) 的内径并大于所述内圈 (1 ) 的内径。
5. 根据权利要求 4所述的永磁悬浮轴承, 其中, 所述轴向永磁体 (4) 沿径向方向的宽度为所述内圈 (1 ) 沿径向方向的宽度的 1.5-2.5倍。
6. 根据权利要求 5所述的永磁悬浮轴承, 其中, 在该永磁悬浮轴承轴 向方向的正投影视图中, 所述第一径向永磁体 (3 ) 的内圆周表面的投影为 第一弧形(11 ),所述轴向永磁体(4)的内圆周表面的投影为第二弧形(12), 该第一弧形 (11 ) 和第二弧形 (12) 均相对于所述第一弧形 (11 ) 的中点与 第二弧形 (12) 的中点之间的连线对称, 且所述第一弧形 (11 ) 和第二弧形 ( 12) 的开口彼此相对。
7. 根据权利要求 6所述的永磁悬浮轴承, 其中, 所述第一弧形 (11 ) 的中心角为 60度至 100度, 所述第二弧形的中心角为 120度至 200度。
8. 根据权利要求 1所述的永磁悬浮轴承, 其中, 该永磁悬浮轴承还包 括第二径向永磁体, 该第二径向永磁体固定设置在所述外圈 (2) 上, 且该 第二径向永磁体与所述第一径向永磁体(3 )相对于所述外圈 (2) 的中心轴 线对称设置, 所述第二径向永磁体与所述内圈 (1 ) 沿径向方向磁力相斥。
9. 根据权利要求 1-8 中任意一项所述的永磁悬浮轴承, 其中, 该永磁 悬浮轴承内每个磁体的磁极方向均为沿轴向方向。
10. 一种永磁悬浮轴承, 其特征在于, 该永磁悬浮轴承包括:
内圈 (1), 该内圈 (1) 的外圆周表面上固定套装有至少两个的永磁环 体 (31), 相邻的永磁环体 (31) 沿轴向方向彼此间隔开;
外圈 (2), 所述内圈 (1) 套在该外圈 (2) 内, 所述内圈 (1) 的外径 小于所述外圈 (2) 的内径;
至少两个第一径向永磁体 (3), 该至少两个第一径向永磁体 (3) 固定 设置在所述外圈 (2) 上, 该至少两个第一径向永磁体 (3) 分别与所述至少 两个永磁环体 (31) 之间沿径向方向磁力相吸;
至少一个轴向永磁体 (4), 该至少一个轴向永磁体 (4) 固定设置在所 述外圈 (2)上并且分别位于所述永磁环体(31)之间, 从而使所述内圈 (1) 在轴向方向上处于力平衡的状态。
11. 根据权利要求 10所述的永磁悬浮轴承, 其中,
在所述内圈(1)处于非承载状态下, 所述至少两个第一径向永磁体(3) 与所述至少两个永磁环体(31)之间沿径向方向的磁性吸引力能够使所述内 圈 (1) 与所述外圈 (2) 或第一径向永磁体 (3) 接触;
在所述内圈 (1) 处于承载状态下, 所述内圈 (1) 能够在所述外圈 (2) 内悬浮起来, 以进行自由转动。
12. 一种永磁悬浮轴承组件, 该永磁悬浮轴承组件包括圆盘形的壳体以 及至少一个根据权利要求 1-11中任意一项所述的永磁悬浮轴承,所述永磁悬 浮轴承固定设置在所述壳体内, 该壳体具有沿所述永磁悬浮轴承的中心轴线 贯穿该壳体的壁的孔。
13. 根据权利要求 12所述的永磁悬浮轴承组件, 其中, 所述永磁悬浮 轴承组件还包括辅助轴承, 该辅助轴承安装在所述壳体的孔中。
PCT/CN2010/078203 2009-10-30 2010-10-28 永磁悬浮轴承和永磁悬浮轴承组件 WO2011050736A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 200910210408 CN102052402B (zh) 2009-10-30 2009-10-30 一种永磁悬浮轴承和永磁悬浮轴承组件
CN200910210408.0 2009-10-30

Publications (1)

Publication Number Publication Date
WO2011050736A1 true WO2011050736A1 (zh) 2011-05-05

Family

ID=43921348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078203 WO2011050736A1 (zh) 2009-10-30 2010-10-28 永磁悬浮轴承和永磁悬浮轴承组件

Country Status (2)

Country Link
CN (1) CN102052402B (zh)
WO (1) WO2011050736A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3096030A4 (en) * 2013-12-30 2017-11-15 Li, Guokun Pivoting micro-friction or friction-free radial permanent magnet floating bearing
CN108905179A (zh) * 2018-09-11 2018-11-30 广州市勇源运动用品科技有限公司 一种磁悬浮轮滑鞋

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109709444B (zh) * 2018-11-30 2021-08-13 平顶山学院 一种输电设备
CN114607704B (zh) * 2022-04-01 2023-08-04 李国坤 一种径向永磁悬浮轴承

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62114446A (ja) * 1985-11-13 1987-05-26 Shimadzu Corp 磁気浮上形回転機械
JPH01234618A (ja) * 1988-03-14 1989-09-19 Nippon Telegr & Teleph Corp <Ntt> 超電導磁気軸受
DE4234524A1 (de) * 1991-10-14 1993-04-15 Nsk Ltd Hybride supraleitende lagervorrichtung und dafuer vorgesehenes betriebsverfahren
CN1570409A (zh) * 2003-07-16 2005-01-26 黄克玉 磁悬浮轴承
CN1322244C (zh) * 2005-05-27 2007-06-20 南京航空航天大学 永磁偏置径向磁轴承
CN101092990A (zh) * 2007-07-13 2007-12-26 南京航空航天大学 一种永磁偏置轴向磁悬浮轴承
CN101149077A (zh) * 2007-11-07 2008-03-26 南京航空航天大学 永磁偏置轴向径向磁轴承
CN101235848A (zh) * 2008-02-29 2008-08-06 南京化工职业技术学院 低损耗永磁偏置轴向径向磁轴承
CN100510444C (zh) * 2007-10-16 2009-07-08 上海大学 智能磁力轴承
CN101555905A (zh) * 2008-04-08 2009-10-14 卓向东 磁悬浮轴承及被悬浮起来的转轴
CN201531526U (zh) * 2009-10-30 2010-07-21 张平 一种永磁悬浮轴承和永磁悬浮轴承组件

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62114446A (ja) * 1985-11-13 1987-05-26 Shimadzu Corp 磁気浮上形回転機械
JPH01234618A (ja) * 1988-03-14 1989-09-19 Nippon Telegr & Teleph Corp <Ntt> 超電導磁気軸受
DE4234524A1 (de) * 1991-10-14 1993-04-15 Nsk Ltd Hybride supraleitende lagervorrichtung und dafuer vorgesehenes betriebsverfahren
CN1570409A (zh) * 2003-07-16 2005-01-26 黄克玉 磁悬浮轴承
CN1322244C (zh) * 2005-05-27 2007-06-20 南京航空航天大学 永磁偏置径向磁轴承
CN101092990A (zh) * 2007-07-13 2007-12-26 南京航空航天大学 一种永磁偏置轴向磁悬浮轴承
CN100510444C (zh) * 2007-10-16 2009-07-08 上海大学 智能磁力轴承
CN101149077A (zh) * 2007-11-07 2008-03-26 南京航空航天大学 永磁偏置轴向径向磁轴承
CN101235848A (zh) * 2008-02-29 2008-08-06 南京化工职业技术学院 低损耗永磁偏置轴向径向磁轴承
CN101555905A (zh) * 2008-04-08 2009-10-14 卓向东 磁悬浮轴承及被悬浮起来的转轴
CN201531526U (zh) * 2009-10-30 2010-07-21 张平 一种永磁悬浮轴承和永磁悬浮轴承组件

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3096030A4 (en) * 2013-12-30 2017-11-15 Li, Guokun Pivoting micro-friction or friction-free radial permanent magnet floating bearing
CN108905179A (zh) * 2018-09-11 2018-11-30 广州市勇源运动用品科技有限公司 一种磁悬浮轮滑鞋

Also Published As

Publication number Publication date
CN102052402A (zh) 2011-05-11
CN102052402B (zh) 2013-06-19

Similar Documents

Publication Publication Date Title
US6227820B1 (en) Axial force null position magnetic bearing and rotary blood pumps which use them
WO2012094837A1 (zh) 一种永磁悬浮轴承及其安装结构
US7876010B2 (en) Passive magnetic bearing configurations
US9721710B2 (en) Axial magnetic suspension
US5894181A (en) Passive magnetic bearing system
US20080213104A1 (en) Motor
JPH07217653A (ja) 磁気軸受
US9765815B2 (en) Method and apparatus for hybrid suspension system
JP2005188735A (ja) 磁気軸受システム
WO2011050736A1 (zh) 永磁悬浮轴承和永磁悬浮轴承组件
JP3057047B2 (ja) 磁気懸架装置
US7135798B2 (en) Magnetic suspension bearing
CN111561519A (zh) 用于磁悬浮轴承的刚度增益机构、磁悬浮轴承和血泵
JP2001045707A (ja) 磁気部材を有するモータ
WO2012094836A1 (zh) 一种永磁悬浮轴承及其安装结构
CN202001498U (zh) 一种永磁悬浮轴承及其安装结构
CN209748435U (zh) 可控旋转的磁悬浮装置
JP2011217540A (ja) 電磁アクチュエータ
JP2004340361A (ja) 磁気浮上軸受
GB2417616A (en) A motor without bearing
CN108999929B (zh) 磁悬浮飞轮系统及球形机器人
JP2001041237A (ja) 磁気軸受装置
JP7258413B1 (ja) 微細霧発生装置
CN216642799U (zh) 磁浮轴承
WO2023189970A1 (ja) 磁気浮上モータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10826099

Country of ref document: EP

Kind code of ref document: A1