WO2011050505A1 - 一种提高水热稳定性的双组元改性分子筛及制备方法 - Google Patents

一种提高水热稳定性的双组元改性分子筛及制备方法 Download PDF

Info

Publication number
WO2011050505A1
WO2011050505A1 PCT/CN2009/001353 CN2009001353W WO2011050505A1 WO 2011050505 A1 WO2011050505 A1 WO 2011050505A1 CN 2009001353 W CN2009001353 W CN 2009001353W WO 2011050505 A1 WO2011050505 A1 WO 2011050505A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
component modified
aqueous solution
modified molecular
phosphorus
Prior art date
Application number
PCT/CN2009/001353
Other languages
English (en)
French (fr)
Inventor
高雄厚
季东
张海涛
段宏昌
李荻
谭争国
苏怡
唐志诚
汪毅
马燕青
孙艳波
Original Assignee
中国石油天然气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气股份有限公司 filed Critical 中国石油天然气股份有限公司
Priority to US13/505,219 priority Critical patent/US9895686B2/en
Priority to JP2012535574A priority patent/JP5677446B2/ja
Priority to CA2779312A priority patent/CA2779312C/en
Publication of WO2011050505A1 publication Critical patent/WO2011050505A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/28Phosphorising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/061Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing metallic elements added to the zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/068Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/12Noble metals
    • B01J29/126Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/44Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • B01J29/7415Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/026After-treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • C07C4/06Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/24After treatment, characterised by the effect to be obtained to stabilize the molecular sieve structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/37Acid treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/40Special temperature treatment, i.e. other than just for template removal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • C07C2529/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • C07C2529/12Noble metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • C07C2529/20Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing iron group metals, noble metals or copper
    • C07C2529/22Noble metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C07C2529/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing iron group metals, noble metals or copper
    • C07C2529/44Noble metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
    • C07C2529/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65 containing iron group metals, noble metals or copper
    • C07C2529/74Noble metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1044Heavy gasoline or naphtha having a boiling range of about 100 - 180 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins

Definitions

  • Double-twist modified molecular sieve for improving water heat stability and preparation method thereof Double-twist modified molecular sieve for improving water heat stability and preparation method thereof
  • the invention belongs to the technical field of molecular sieve modification, and particularly relates to a two-component modified molecular sieve and a preparation method for improving hydrothermal stability.
  • ZSM-5 zeolite molecular sieves USP 3,702,886
  • ZSM-5 zeolite molecular sieves have been developed due to their high silicon to aluminum ratio, unique pore structure and excellent thermal and hydrothermal stability. It has been widely used in petrochemical processes such as selective cracking of hydrocarbons (CN 1872415A), thiolation, isomerization, disproportionation, catalytic dewaxing, and etherification.
  • the addition of ZSM-5 zeolite in particular to conventional catalytic cracking catalysts or auxiliaries, can substantially increase the yield and enthalpy of low olefins (USP 5,997,728).
  • ZSM-5 zeolite molecular sieves are easily deactivated under catalytic cracking hydrothermal conditions, affecting their stability and selectivity. Therefore, a lot of research has been done on the modification of ZSM-5 zeolite molecular sieves.
  • diammonium hydrogen phosphate or ammonium dihydrogen phosphate is mixed with NHU-ZSM-5 and dried, and then calcined at 500 ° C to prepare phosphorus-modified ZSM-5.
  • the zeolite is used in the xylene isomerization reaction to significantly improve the selectivity of its para-product.
  • a modified ZSM-5 molecular sieve impregnated with a phosphorus compound is disclosed in USP 5,171,921, which is useful as a catalytically active component for the conversion of olefins or aliphatic hydrocarbons to C 2 -C 5 olefins.
  • HZSM-5 is modified with trimethyl phosphite to increase the selectivity of the reaction.
  • CN85102828 reports that the ZSM-5 molecular sieve is modified by impregnation and evaporation, and the shape-selective catalytic activity of the alkylation of methylstyrene by the modification of phosphorus is greatly improved.
  • CN97120271 reports a phosphorus-containing faujasite hydrocarbon cracking catalyst prepared by uniformly mixing faujasite with an aqueous solution of a phosphorus-containing compound, drying, and baking at 450-600 ° C for 0.5 hours or more. And has good catalytic activity.
  • CN98117286 reports a phosphorus-containing zeolite containing 90-99.9 by weight of aluminosilicate zeolite and 0.1 to 10% by weight of phosphorus in terms of P 2 0 5 , which has high hydrocarbon conversion activity and selectivity to diesel. And better resistance to heavy metals such as vanadium and nickel.
  • CN 1211469A and CN 1211470A report a molecular sieve composition for the production of propylene and ethylene, characterized in that a five-membered ring molecular sieve is added to an aqueous solution of a compound containing phosphorus and an alkaline earth metal ion and/or a transition metal ion.
  • the mixture is uniformly mixed and obtained by an immersion reaction, and the composition is composed of 85 to 95% by weight of a five-membered ring molecular sieve, 2 to 10% by weight of phosphorus, 0.3 to 5% by weight of an alkaline earth metal, and an oxide. It is composed of 0.3-5 wt% of transition metal elements.
  • CN 1072031C and CN 1072032C also report a five-membered ring molecular sieve composition for producing propylene and ethylene (especially ethylene) from 88 to 95% by weight of a five-membered ring molecular sieve, 2 to 8% by weight of an oxide.
  • the preparation method of the composition is a one-step impregnation method, the process is simple, the stability is good, and the ethylene yield is obviously improved.
  • the catalytic cracking catalysts for industrial applications have low yields of low-carbon olefins, especially propylene, and cannot meet the actual needs of refining and chemical production. Therefore, it is of great significance to greatly increase the yield of propylene.
  • the modification of functional shape-selective cracking molecular sieves is the most effective way to increase the production of low-carbon olefins by catalytic cracking.
  • the object of the present invention is to provide a two-component modified molecular sieve and a preparation method for greatly improving hydrothermal stability against existing molecular sieve materials and techniques.
  • a method for modifying a two-component modified molecular sieve for improving hydrothermal stability, adding a molecular sieve to a phosphorus-containing aqueous solution, followed by filtering, drying and calcining comprising adding a molecular sieve to a phosphorus-containing aqueous solution, Reaction pressure conditions at pH 1 to 10 (preferably 2 to 7), reaction temperature 70 to 200 ° C (preferably 90 to 160 ° C), and 0.2 to 1.2 MPa (preferably 0.2 to 0.8 MPa)
  • the reaction is carried out for 10 to 200 minutes, and then filtered, dried and calcined to obtain a phosphorus-modified molecular sieve; the phosphorus-modified molecular sieve is added to an aqueous solution containing silver ions at a reaction temperature of 0 to 100 ° C (preferably 20 to 60 ° C).
  • the reaction is protected from light for 30 to 150 minutes, and then filtered, dried and calcined to obtain a two-component modified mo
  • the filtration, drying and roasting in the modification process are all in the prior art.
  • the present invention is not particularly limited in terms of the process and technical parameters used, and the recommended drying temperature is
  • the baking temperature is 200 ⁇ 800 °C
  • the baking time is 0.5 ⁇ 10 hours.
  • the invention is distinguished from the modification conditions required by the conventional phosphorus modification method, which is high temperature and has a certain pressure at the same time, and the synergistic effect of high temperature and pressure can further enhance the diffusion of the modified component in the pores of the molecular sieve, so that the modification The component enters the deeper molecular sieve pores and reacts with the B acid sites on the surface, but the high temperature or low temperature pressure does not achieve satisfactory results.
  • the premise is that water is required as the medium.
  • the phosphorus-containing aqueous solution is not particularly limited in the method of the present invention, and usually a phosphorus-containing aqueous solution used for the phosphorus-modified molecular sieve may be used.
  • the phosphorus compound in the phosphorus-containing aqueous solution is not particularly limited as long as it is soluble in water.
  • the phosphorus-containing aqueous solution may be a phosphoric acid solution, a phosphorous acid solution, a soluble phosphate aqueous solution, an aqueous phosphite solution, or the like, and may be one or more of them, and the soluble phosphate aqueous solution and the aqueous phosphite solution may be ammonium phosphate or hydrogen phosphate.
  • An aqueous solution of a phosphate or a phosphite such as diammonium or ammonium dihydrogen phosphate.
  • the weight ratio of the phosphorus-containing aqueous solution to the molecular sieve is preferably (2 ⁇ 5):1.
  • the aqueous silver ion-containing solution of the present invention may be an aqueous solution of one or a mixture of silver nitrate and silver acetate.
  • the weight ratio of the aqueous solution containing silver ions to the molecular sieve is preferably (2 ⁇ 10):1, and the concentration of the aqueous solution containing silver ions is preferably 0.01-0.1 mol/L.
  • the present invention does not need to limit the molecular sieve species and composition thereof, the composition of phosphorus, and the composition of silver in the process, depending on the needs.
  • the molecular sieve is preferably one of ZSM type, ⁇ type, Y type, MCM type molecular sieves, preferably ZSM type and ⁇ type molecular sieve, and the ratio of silicon to aluminum is 15 ⁇ 100, preferably 15 ⁇ 60.
  • the present invention also claims a modified molecular sieve obtained by applying the modification method of the present invention. And providing a modified molecular sieve obtained by using the modification method of the invention: a molecular sieve having a dry content of 88 to 99% by weight, a silica to alumina ratio of 15 to 60, and a phosphorus content of 0.5 to 10% by weight of the oxide The oxide is 0.012% by weight of silver, and the two-component modified molecular sieve has good hydrothermal stability and activity.
  • Elemental analysis was carried out by X-ray fluorescence spectrometry (XRF).
  • XRF X-ray fluorescence spectrometry
  • the instrument used was a ZSX primus X-ray fluorescence spectrometer.
  • Stability evaluation was judged by the change of relative crystallinity (ZSM-5%) before and after hydrothermal aging at 800 ° C for 4 hours and 800 ° C for 7 hours.
  • the crystallinity was determined on D/max-3C X-ray diffractometer of Rigaku Co., Japan. . 3.
  • the activity evaluation was determined by the micro-reverse assessment device produced by Beijing Huayang Company.
  • the raw material oil was Dagang light diesel oil.
  • the evaluation conditions were as follows: The catalyst was treated at 800 ° C and 100% steam for 4 hours and 17 hours. 5 g, reaction temperature 460 ° C, reaction time 70 seconds, the ratio of agent to oil was 3.2.
  • PZ-3 molecular sieve was added to the silver-containing solution, and the reaction was stirred at 60 ° C for 60 minutes in the dark, filtered, dried, and then calcined at 500 ° C for 2 hours to obtain a two-component modification.
  • Molecular sieve APZ-3 Then kaolin (45%), aluminum sol (15%) and APZ-3 (40%) It was added to steaming water in a fixed proportion, beaten, dried at 120 Torr, calcined at 450 ° C for 1 hour, and then crushed and sieved. The obtained catalyst sample was recorded as C-3. Take 20 ⁇ 40 mesh particle catalyst for micro activity investigation. The composition of the sample, the crystallinity before and after aging, and the microreactor activity of the model catalyst are shown in Tables 1-3.
  • the invention provides a modified molecular sieve obtained by using the modification method of the invention: a molecular sieve having a dry content of 88-99% by weight and a silica-alumina ratio of 15 ⁇ 60, 0.5-10% by weight of the oxide Phosphorus and oxide are 0.01 to 2% by weight of silver.
  • Crystallinity retention rate Relative crystallinity after hydrothermal treatment Relative crystallinity before ice heat treatment X 100% Table 2 Hydrothermal stability of two-component modified molecular sieve
  • Crystallinity retention rate Relative crystallinity after hydrothermal treatment / Relative crystallinity before hydrothermal treatment X 100%
  • CD-5 25 24 It was found through research that the introduction of phosphorus inhibits the dealuminization of the ZSM-5 zeolite framework under hydrothermal conditions, significantly increasing the acid retention on the zeolite, thereby increasing its catalytic activity and selectivity; In order to further greatly improve the hydrothermal stability of the molecular sieve and at the same time realize the surface acidity of the modified zeolite, it is necessary to introduce a second modified element to modify it. After the transition metal silver ion is introduced into the ZSM-5 molecular sieve, its oxidation is beneficial to the formation of normal carbon ions, which makes the reaction easier to initiate, thereby increasing the reactivity; compared with other transition metals, the adsorption of silver on olefins is weak.
  • the invention has the advantages that the method can prevent the phosphorus-modified molecular sieve from losing a large amount of the phosphorus component in the transition metal ion exchange modification, and the modified two-component modified molecular sieve and the model catalyst thereof are excellent. Hydrothermal stability and catalytic activity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

一种提高水热稳 件的双绚元改性分子筛及制备方法 技术领域
本发明属于分子筛改性技术领域,特别涉及一种提高水热稳定性的双组元改性分 子筛及制备方法。
背景技术
近年来,国内外炼油催化剂的研究人员和生产商长期致力于采用各种类型结构的 分子筛来改善 FCC催化剂性能的研究, 提高 FCC装置的低碳烯烃产率。这是由于传 统制乙烯和丙烯主要方法即蒸汽裂解是通过自由基反应进行的,温度高、对原料要求 苛刻。然而,催化裂解制低碳烯烃成本较低,是目前国内外研究增产低碳烯烃的热点。 功能择形分子筛作为该类催化转化催化剂的主要活性组分受到广泛关注。
自从 1972年, 美国 Mobil公司开发了 ZSM-5沸石分子筛 (USP 3,702,886)后, 由 于其具有较高的硅铝比、 独特的孔道结构和优异的热和水热稳定性, ZSM-5沸石分 子筛已在烃类的择形裂化 (CN 1872415A)、 浣基化、 异构化、 歧化、 催化脱蜡、 醚化 等石油化工过程中得到了极其广泛的应用。尤其在常规催化裂化催化剂或助剂中添加 ZSM-5沸石能大幅度提高低碳烯烃的产率和辛垸值(USP 5,997,728)。
然而, ZSM-5 沸石分子筛在催化裂化水热条件下容易失活, 影响其稳定性和选 择性。 所以, 人们对 ZSM-5沸石分子筛的改性进行了大量的研究。
USP 4,399,059中用磷酸氢二铵或磷酸二氢铵与 NHU-ZSM-5混合并烘干后, 经 500°C焙烧制成磷改性 ZSM-5。 该沸石用于二甲苯异构化反应时可显著改善其对位产 物的选择性。
USP 5,171,921中公开了一种用磷化合物浸渍改性 ZSM-5分子筛, 改性后可用作 将烯烃或脂肪烃转化为 C2~C5烯烃的催化活性组分。
USP 3,972,382和 USP 3,965,208公开了 HZSM-5采用亚磷酸三甲酯改性后,反应 选择性提高。
CN85102828报道了釆用浸渍蒸干法改性 ZSM-5分子筛,经磷改性后对甲苯乙烯 烷基化制取对甲乙苯择形催化活性大大提高。
CN97120271报道了一种含磷八面沸石烃类裂化催化剂, 所述含磷八面沸石是将 八面沸石与含磷化合物水溶液混合均匀后, 干燥, 于 450~600°C焙烧 0.5小时以上制 备的, 且有较好的催化活性。 CN98117286报道了一种含有 90-99.9重的硅铝酸盐沸石和以 P205计, 0.1~10重 %的磷的含磷沸石, 该沸石具有较高的烃转化活性、对柴油选择性和较好的抗钒、 镍 等重金属的性能。
CN 1211469A和 CN 1211470A报道了一种多产丙烯和乙烯的分子筛组合物, 其 特征在于将一种五元环分子筛加入到一种含有磷以及碱土金属离子和 /或过渡金属离 子的化合物的水溶液中混合均匀并浸渍反应得到,该组合物由 85~95重%的五元环分 子筛、 以氧化物计 2~10重%的磷、 以氧化物计 0.3~5重%的碱土金属、 以氧化物计 0.3-5重%的过渡金属元素所组成。
CN 1072031C和 CN 1072032C也报道了一种多产丙烯和乙烯 (特别是乙烯) 的 五元环分子筛组合物, 由 88~95重%的五元环分子筛、 以氧化物计 2〜8重%的磷、 以 氧化物计 0.3~3重%的碱土金属、 以氧化物计 0~3重%的过渡金属元素所组成。 此组 合物制备方法为一步浸渍法, 工艺较简单, 稳定性好, 乙烯产率有明显的提高。
现在工业应用的催化裂化催化剂的低碳烯烃,尤其是丙烯的产率偏低,还不能满 足炼油和化工生产的实际需要, 因此大幅度提高丙烯的产率意义重大。 目前看来, 对 功能择形裂化分子筛的改性是催化裂化增产低碳烯烃最有效的途径。
然而, 目前常规的磷改性分子筛在通过离子交换引入第二改性组分时,分子筛中 的磷元素会大量地流失而不能实现双组元改性分子筛的目的,从而影响分子筛的稳定 性以及催化活性。
发明内容
本发明的目的在于针对现有分子筛材料与技术,提供一种大幅提高水热稳定性的 双组元改性分子筛及制备方法。
一种提高水热稳定性的双组元改性分子筛的改性方法,将分子筛加入到含磷水溶 液, 然后经过滤、 干燥和焙烧, 其特征在于该方法是将分子筛加入到含磷水溶液中, 在 pH值为 1~10(最好是 2~7)、反应温度 70~200°C (最好是 90~160°C )以及 0.2~1.2MPa (最好是 0.2~0.8MPa)反应压力条件下反应 10~200分钟,然后经过滤、干燥和焙烧, 得到磷改性分子筛;将磷改性分子筛加入到含银离子水溶液中,反应温度 0~100°C (最 好是 20~60°C )条件下避光反应 30~150分钟, 然后经过滤、 干燥和焙烧, 得到双组 元改性分子筛。
在本发明所提供的方法中,改性过程中的过滤、干燥和焙烧均是采用现有技术中 通常使用的工艺过程和技术参数, 本发明并不特别加以限制, 推荐的干燥温度为
100~120°C , 焙烧温度为 200~800°C, 焙烧时间为 0.5~10小时。
本发明区别于常规磷改性方法要求的改性条件, 其为高温并且同时带一定的压 力, 通过高温和带有压力的协同效果可进一步加强改性组分在分子筛孔道中的扩散, 使改性组分进入更深的分子筛孔道中与其表面的 B酸位发生反应, 只是高温或低温 带有压力均不能达到令人满意的效果, 当然其前提还是需要以水作为介质。
本发明所提供的方法中对含磷水溶液并不特别加以限定,通常磷改性分子筛所用 的含磷水溶液均可。含磷水溶液中的磷化合物并不特别限定, 只要能溶于水即可。含 磷水溶液如可以是磷酸溶液、亚磷酸溶液, 可溶性磷酸盐水溶液、亚磷酸盐水溶液等 等, 可以是其中一种或多种, 可溶性磷酸盐水溶液、 亚磷酸盐水溶液可以是磷酸铵、 磷酸氢二铵、磷酸二氢铵等磷酸盐、亚磷酸盐的水溶液。含磷水溶液与分子筛重量比 最好为 (2~5):1。
本发明所说的含银离子水溶液可以为硝酸银、乙酸银中一种或两种混合物的水溶 液。 含银离子水溶液与分子筛重量比最好为 (2~10):1, 含银离子水溶液浓度最好为 0.01-0.1 mol/L。
本发明并不需限定该方法中分子筛种类及其组成、磷的组成、银的组成,根据需 要而定。所述的分子筛最好是 ZSM型、 β型、 Y型、 MCM型分子筛中的一种, 优选 ZSM型与 β型分子筛, 其硅铝比为 15~100, 优选 15~60。
本发明还要求保护应用本发明的改性方法得到的改性分子筛。并提供一种使用本 发明的改性方法得到最佳改性分子筛:含有干基含量 88~99重%、硅铝比为 15~60的 分子筛、 以氧化物计 0.5~10重%的磷与氧化物计 0.01 2重%的银, 该双组元改性分 子筛具有很好的水热稳定性和活性。
具体实施方式
本发明各实施例和对比例的分析评价方法为 -
1.元素分析采用 X射线荧光光谱法(XRF)测定, 所用仪器为日本理学 ZSX primus型 X射线荧光光谱仪。
2.稳定性评价通过 800°Cx4小时以及 800°Cxl7小时水热老化前后的相对结晶 度(ZSM-5%)变化判断, 结晶度在日本 Rigaku公司的 D/max-3C X射线衍射仪上测 定。 3. 活性评价通过北京华阳公司出品的微反评定装置上测定, 原料油采用大港轻 柴油, 评定条件: 催化剂经 800°C、 100%水蒸汽条件下处理 4小时、 17小时, 催化 剂装量 5克, 反应温度 460°C,反应时间 70秒, 剂油比为 3.2。
实施例 1
取 9.3克 (NH4)2HP04溶于 500克蒸熘水中, 搅拌的条件下将 ZSM-5分子筛样品 100克加入溶液中, pH值调节至 4。 在反应温度为 100°C, 反应压力为 0.2MPa搅拌 反应 60分钟后过滤, 烘干, 然后在 500Ό下焙烧 4小时,所得分子筛样品记为 PZ-1。
取 0.73克 AgN03溶于 350克蒸馏水中, 将 PZ-1分子筛加入到该含银溶液中, 在反应温度为 20Ό下避光搅拌反应 120分钟后过滤, 烘干, 然后在 500Ό下焙烧 2 小时, 得到双组元改性分子筛 APZ-1。 然后将高岭土 (45%)、 铝溶胶 (15%)以及 APZ-1(40%)按以上比例加入蒸馏水中打浆、 120°C干燥, 450Ό焙烧 1 小时后破碎过 筛, 所得催化剂样品记为 C-1 , 取 20~40目颗粒催化剂进行微活考察。 样品的组成、 老化前后的结晶度及模型催化剂微反活性见表 1~3。
实施例 2
取 18.6克 (N¾)2HP04溶于 400克蒸熘水中, 搅拌的条件下将 ZSM-5分子筛样品 100克加入溶液中, pH值调节至 3。 在反应温度为 120°C, 反应压力为 0.4MPa搅拌 反应 120分钟后过滤,烘干,然后在 550°C下焙烧 4小时,所得分子筛样品记为 PZ-2. 取 1.46克 AgN03溶于 350克蒸馏水中,将 PZ-2分子筛加入到该含银溶液中,在 反应温度为 40Ό下避光搅拌反应 100分钟后过滤,供干,然后在 500°C下焙烧 2小时, 得到双组元改性分子筛 APZ-2。 然后将高岭土 (45%)、 铝溶胶 (15%)以及 APZ-2 (40%) 按固定比例加入蒸馏水中打浆、 120°C干燥, 450Ό焙烧 1小时后破碎过筛,所得催化 剂样品记为 C-2。取 20~40目颗粒催化剂进行微活考察。样品的组成、老化前后的结 晶度及模型催化剂微反活性见表 1~3。
实施例 3
取 37.2克 (NH4)2HP04溶于 500克蒸馏水中,搅拌的条件下将 ZSM-5分子筛样品 100克加入溶液中, pH值调节至 2。 在反应温度为 140°C, 反应压力为 IMPa搅拌反 应 200分钟后过滤, 烘干, 然后在 450Ό下焙烧 6小时, 所得分子筛样品记为 PZ-3. 取 2.19克 AgN03溶于 400克蒸馏水中, 将 PZ-3分子筛加入到该含银溶液中, 在反应温度为 60°C下避光搅拌反应 60分钟后过滤, 烘干, 然后在 500°C下焙烧 2小 时,得到双组元改性分子筛 APZ-3。然后将高岭土 (45%)、铝溶胶 (15%)以及 APZ-3 (40%) 按固定比例加入蒸熘水中打浆、 120Ό干燥, 450°C焙烧 1小时后破碎过筛, 所得催化 剂样品记为 C-3。取 20~40目颗粒催化剂进行微活考察。样品的组成、 老化前后的结 晶度及模型催化剂微反活性见表 1~3。
实施例 4
取 25.1克 (NH4)2HP04溶于 500克蒸馏水中, 搅拌的条件下将 ZSM-5分子筛样品 100克加入溶液中, pH值调节至 3。 在反应温度为 140°C, 反应压力为 0.4MPa搅拌 反应.200分钟后过滤,烘干,然后在 550Ό下焙烧 4小时,所得分子筛样品记为 PZ-4. 取 2.19克 AgAc溶于 400克蒸熘水中, 将 PZ-4分子筛加入到该含银溶液中, 在 反应温度为 20°C下避光搅拌反应 300分钟后过滤,烘干,然后在 500Ό下焙烧 2小时, 得到双组元改性分子筛 APZ-4。 然后将高岭土 (45%)、 铝溶胶 (15%)以及 APZ-4 (40%) 按固定比例加入蒸馏水中打浆、 120°C干燥, 450Ό焙烧 1小时后破碎过筛, 所得催化 剂样品记为 C-4。 取 20~40目颗粒催化剂进行微活考察。样品的组成、 老化前后的结 晶度及模型催化剂微反活性见表 1~3。
实施例 5
取 16.2克 N H2P04溶于 250克蒸馏水中, 搅拌的条件下将 ZSM-5分子筛样品 100克加入溶液中, pH值调节至 2。 在反应温度为 120Ό , 反应压力为 0.4MPa搅拌 反应 60分钟后过滤,烘干, 然后在 600°C下焙烧 2小时,所得分子筛样品记为 PZ-5。
取 1.46克 AgN03溶于 300克蒸馏水中,将 PZ-5分子筛加入到该含银溶液中,在 反应温度为 20Ό下避光搅拌反应 200分钟后过滤,烘干,然后在 500Ό下焙烧 2小时, 得到双组元改性分子筛 APZ-5。 然后将高岭土 (45%)、 铝溶胶 (15%)以及 APZ-5(40%) 按固定比例加入蒸熘水中打浆、 120°C干燥, 450Ό焙烧 1小时后破碎过筛,所得催化 剂样品记为 C-5。 取 20~40目颗粒催化剂进行微活考察。样品的组成、 老化前后的结 晶度及模型催化剂微反活性见表 1~3。
实施例 6
取 28.2克 N H2P04溶于 500克蒸馏水中, 搅拌的条件下将 ZSM-5分子筛样品 100克加入溶液中, pH值调节至 2。 在反应温度为 130°C, 反应压力为 0.6MPa搅拌 反应 120分钟后过滤,烘干,然后在 600Ό下焙烧 2小时,所得分子筛样品记为 PZ-6。
取 2.19克 AgAc溶于 300克蒸馏水中, 将 PZ-6分子筛加入到该含银溶液中, 在 反应温度为 60Ό下避光搅拌反应 300分钟后过滤,烘干,然后在 500Ό下焙烧 2小时, 得到双组元改性分子筛 APZ-6。 然后将高岭土 (45%)、 铝溶胶 (15%)以及 APZ-6(40%) 3 按固定比例加入蒸馏水中打浆、 120°C干燥, 450°C焙烧 1小时后破碎过筛,所得催化 剂样品记为 C-6。 取 20〜40目颗粒催化剂进行微活考察。样品的组成、老化前后的结 晶度及模型催化剂微反活性见表 1~3。
实施例 7
取 16.2克 H3P04溶于 200克蒸馏水中, 搅拌的条件下将 ZSM-5分子筛样品 100 克加入溶液中, 调节 pH值调节至 2。在反应温度为 200°C , 反应压力为 l.OMPa搅拌 反应 60分钟后过滤, 烘干,然后在 450Ό下焙烧 6小时,所得分子筛样品记为 PZ-7。
取 1.46克 AgN03溶于 400克蒸馏水中, 将 PZ-7分子筛加入到该含银溶液中, 在反应温度为 4(TC下避光搅拌反应 240分钟后过滤, 烘干, 然后在 500Ό下焙烧 2 小时, 得到双组元改性分子筛 APZ-7。然后将高岭土 (45%)、铝溶胶 (15%)以及 APZ-7 (40%)按固定比例加入蒸馏水中打浆、 120Ό干燥, 450°C焙烧 1小时后破碎过筛, 所 得催化剂样品记为 C-7。取 20~40目颗粒催化剂进行微活考察。样品的组成、老化前 后的结晶度及模型催化剂微反活性见表 1~3。
实施例 8
取 28.2克 H3P04溶于 400克蒸馏水中, 搅拌的条件下将 ZSM-5分子筛样品 100 克加入溶液中, pH值调节至 2。 在反应温度为 120°C, 反应压力为 0.6MPa搅拌反应 200分钟后过滤, 烘干, 然后在 600°C下焙烧 2小时, 所得分子筛样品记为 PZ-8。
取 1.09克 AgAc与 1.07克 AgN03溶于 400克蒸馏水中, 将 PZ-8分子筛加入到 该含银溶液中, 在反应温度为 60Ό下避光搅拌反应 300分钟后过滤, 烘干, 然后在 500°C下焙烧 2小时,得到双组元改性分子筛 APZ-8。然后将髙岭土 (45%)、铝溶胶 (15%) 以及 APZ-8(40%)按固定比例加入蒸馏水中打浆、 120°C干燥, 450°C焙烧 1小时后破 碎过筛, 所得催化剂样品记为 C-8。取 20~40目颗粒催化剂进行微活考察。样品的组 成、 老化前后的结晶度及模型催化剂微反活性见表 1~3。
实施例 9
取 9.3克 (N )2HP04溶于 100克蒸馏水中, 搅拌的条件下将 β分子筛样品 100 克加入溶液中, pH值调节至 4。 在反应温度为 110°C, 反应压力为 0.4MPa搅拌反应 120分钟后过滤, 烘干, 然后在 500Ό下焙烧 6小时, 所得分子筛样品记为 Ρβ-1。
取 0.73克 AgN03溶于 300克蒸馏水中,将 Ρβ-l分子筛加入到该含银溶液中,在 反应温度为 20°C下避光搅拌反应 100分钟后过滤,烘干,然后在 500Ό下焙烧 2小时, 得到双组元改性分子筛 ΑΡβ-1。 然后将高岭土 (45%)、 铝溶胶 (15%)以及 ΑΡβ-1(40%) 按固定比例加入蒸馏水中打浆、 120°C干燥, 50CTC焙烧 1小时后破碎过筛, 所得催化 剂样品记为 C-9, 取 20~40目颗粒催化剂进行微活考察。样品的组成、老化前后的结 晶度及模型催化剂微反活性见表 1~3。
实施例 10
取 18.6克 (N )2HP04溶于 250克蒸馏水中, 搅拌的条件下将 β分子筛样品 100 克加入溶液中, ρΗ值调节至 3。 在反应温度为 160°C, 反应压力为 0.8MPa搅拌反应 60分钟后过滤, 供干, 然后在 450Ό下焙烧 6小时, 所得分子筛样品记为 Ρβ-2。
取 1.46克 AgN03溶于 300克蒸馏水中, 将 Ρβ-2分子筛加入到该含银溶液中, 在 反应温度为 20Ό下避光搅拌反应 200分钟后过滤,烘干,然后在 500Ό下焙烧 2小时, 得到双组元改性分子筛 ΑΡβ-2。 然后将高岭土 (45%)、 铝溶胶 (15%)以及 ΑΡβ-2(40%) 按固定比例加入蒸馏水中打桨、 120°C干燥, 500Ό焙烧 1小时后破碎过筛, 所得催化 剂样品记为 C-10, 取 20~40目颗粒催化剂进行微活考察。 样品的组成、 老化前后的 结晶度及模型催化剂微反活性见表 1~3。
实施例 11
取 18.6克(NH4)2HP04与 16.2克 ΝΗ4Η2Ρ04溶于 400克蒸熘水中, 搅拌的条件 下将 β分子筛样品 100克加入溶液中, ρΗ值调节至 5。在反应温度为 100°C, 反应压 力为 0.2MPa搅拌反应 180分钟后过滤, 烘干, 然后在 600Ό下焙烧 2小时, 所得分 子筛样品记为 Ρβ-3。
取 1.09克 AgAc与 1.07克 AgN03溶于 350克蒸馏水中, 将 Ρβ-3分子筛加入到 该含银溶液中,在反应温度为 20°C下避光搅拌反应 90分钟后过滤,烘干,然后在 500°C 下焙烧 2小时, 得到双组元改性分子筛 ΑΡβ-3。 然后将高岭土 (45%)、 铝溶胶 (15%) 以及 ΑΡβ-3(40%)按固定比例加入蒸馏水中打浆、 120Ό干燥, 50(TC焙烧 1小时后破 碎过筛, 所得催化剂样品记为 C-11 , 取 20~40 目颗粒催化剂进行微活考察。 样品的 组成、 老化前后的结晶度及模型催化剂微反活性见表 1~3。
对比例 1
取 18.6克 (NH4)2HP04溶于 400克蒸馏水中,搅拌的条件下将 100克 ZSM-5分子 筛加入该溶液中, pH值调节至 3。 反应温度为 90°C, 搅拌反应 120分钟后过滤, 烘 干, 然后在 55(TC下焙烧 4小时, 所得分子筛样品记为 PZD-1。
取 1.46克 AgN03溶于 350克蒸馏水中, 将 PZD-1分子筛加入到该含银溶液中, 在反应温度为 40°C下避光搅拌反应 100分钟后过滤, 烘干, 然后在 500°C下焙烧 2 小时, 得到双组元改性分子筛 APZD-1。 然后将高岭土、 铝溶胶以及 APZD-1(40%) 按固定比例加入蒸馏水中打浆、 120°C干燥, 450Ό焙烧 1小时后破碎过筛,所得催化 剂样品记为 CD-I , 取 20~40目颗粒催化剂进行微活考察。 样品的组成、 老化前后的 结晶度及模型催化剂微反活性见表 1~3。
对比例 2
取 18.6克 (N )2HP04溶于 400克蒸馏水中,搅拌的条件下将 100克 ZSM-5分子 筛加入该溶液中, pH值调节至 3。在反应温度为 20°C,反应压力为 0.4MPa搅拌反应 120分钟后过滤, 烘干, 然后在 550Ό下焙烧 4小时, 所得分子筛样品记为 PZD-2。
取 2.19克 AgN03溶于 400克蒸馏水中, 将 PZD-2分子筛加入到该含银溶液中, 在反应温度为 40Ό下避光搅拌反应 100分钟后过滤, 烘干, 然后在 500Ό下焙烧 2 小时, 得到双组元改性分子筛 APZD-2。 然后将高岭土 (45%)、 铝溶胶 (15%)以及 APZD-2(40%)按固定比例加入蒸熘水中打浆、 120°C干燥, 450°C焙烧 1小时后破碎过 筛,所得催化剂样品记为 CD-2, 取 20~40目颗粒催化剂进行微活考察。样品的组成、 老化前后的结晶度及模型催化剂微反活性见表 1〜3。
对比例 3
取 18.6克 (NH4)2HP04与 100克 ZSM-5分子筛充分机械混合, 然后在 550°C下焙 烧 4小时, 所得分子筛样品记为 PZD-3。
取 2.19克 AgN03溶于 400克蒸馏水中, 将 PZD-3分子筛加入到该含银溶液中, 在反应温度为 40°C下避光搅拌反应 100分钟后过滤, 烘干, 然后在 500°C下焙烧 2 小时, 得到双组元改性分子筛 APZD-3。 然后将高岭土 (45%)、 铝溶胶 (15%)以及 APZD-3(40%)按固定比例加入蒸熘水中打浆、 120Ό干燥, 450 °C焙烧 1小时后破碎过 筛,所得催化剂样品记为 CD-3, 取 20~40目颗粒催化剂进行微活考察。样品的组成、 老化前后的结晶度及模型催化剂微反活性见表 1〜3。
对比例 4
取 9.3克 (NH4)2HP04溶于 110克蒸馏水中, 将该溶液加入到 100克 ZSM-5分子 筛样品中, 浸渍 300分钟后烘干, 然后在 500°C下焙烧 4小时, 所得分子筛样品记为 PZD-4 o
取 1.46克 AgN03溶于 350克蒸馏水中, 将 PZD-4分子筛加入到该含银溶液中, 在反应温度为 40°C下避光搅拌反应 200分钟后过滤, 烘干, 然后在 50(TC下焙烧 2 小时, 得到双组元改性分子筛 APZD-4。 然后将高岭土 (45%)、 铝溶胶 (15%)以及 APZD-4(40%)按以上比例加入蒸馏水中打浆、 120°C干燥, 450°C焙烧 1小时后破碎过 筛, 所得催化剂样品记为 CD-4, 取 20~40目颗粒催化剂进行微活考察。样品的组成、 老化前后的结晶度及模型催化剂微反活性见表 1~3。
对比例 5
取 18.6克 N H2P04溶于 400克蒸馏水中, 搅拌的条件下将 β分子筛样品 100 克加入溶液中, ρΗ值调节至 2。在反应温度为 50Ό下, 搅拌反应 60分钟后过滤, 烘 干, 然后在 600Ό下焙烧 2小时, 所得分子筛样品记为 Ρβϋ-1。
取 2.19克 AgN03溶于 350克蒸馏水中, 将 PpD-l分子筛加入到该含银溶液中, 在反应温度为 40°C下避光搅拌反应 100分钟后过滤, 烘干, 然后在 500Ό下焙烧 2 小时,得到双组元改性分子筛 APpD-l。然后将高岭土 (45%)、铝溶胶 (15%)以及 ΑΡβϋ-1 (40%)按固定比例加入蒸馏水中打桨、 120°C干燥, 500Ό焙烧 1小时后破碎过筛, 所 得催化剂样品记为 CD-5, 取 20~40目颗粒催化剂进行微活考察。 样品的组成、 老化 前后的结晶度及模型催化剂微反活性见表 1~3。 '
对比例 6
取 18.6克 (N )2HP04溶于 400克蒸馏水中, 搅拌的条件下将 ZSM-5分子筛样品 100克加入溶液中, 然后加入含 1.46克 AgN03溶液 10ml, pH值调节至 3。在反应温 度为 120Ό , 反应压力为 0.4MPa搅拌反应 120分钟后过滤, 烘干, 然后在 550°C下 焙烧 4小时, 所得分子筛样品记为 APZD-5。
然后将高岭土 (45%)、 铝溶胶 (15%)以及 APZD-5(40%)按固定比例加入蒸熘水中 打浆、 120°C干燥, 450°C焙烧 1小时后破碎过筛,所得催化剂样品记为 CD-6。取 20~40 目颗粒催化剂进行微活考察。样品的组成、老化前后的结晶度及模型催化剂微反活性 见表 1~3。
工业实用性
本发明提供的一种使用本发明的改性方法得到最佳改性分子筛: 含有干基含量 88-99重%、硅铝比为 15~60的分子筛、以氧化物计 0.5~10重%的磷与氧化物计 0.01〜2 重%的银。
从表 1与表 2数据可以看出, 采用实施例 1~11的改性方法进行改性的分子筛通 过 17小时水热处理后, 均比其它方法改性的分子筛有较高的相对结晶度。 同时, 从 表 3数据也可以看出, 采用实施例 1〜11的方法改性的分子筛模型催化剂均比其它方 法改性的分子筛催化剂有较高的微活性能。 磷改性分子筛的水热稳定性
Figure imgf000012_0001
结晶度保留率 =水热处理后相对结晶度冰热处理前相对结晶度 X 100% 表 2 双组元改性分子筛的水热稳定性
Figure imgf000012_0002
APZ-6 2.6 1.0 89 84 94.4
APZ-7 2.0 0.7 90 84 93.3
APZ-8 2.5 0.9 88 81 92.0
ΑΡβ-1 1.6 0.3 93 88 94.6
ΑΡβ-2 1.9 0.7 91 87 95.6
ΑΡβ-3 2.5 0.9 88 84 95.5
APZD-1 0.2 0.8 97 81 83.5
APZD-2 0.3 1.3 94 78 83.0
APZD-3 9.7 1.4 82 65 79.3
APZD-4 0.2 0.9 95 80 84.2
APZD-5 0.4 0.9 95 79 83.2
ΑΡβϋ-1 0.3 1.2 96 82 85.4
*结晶度保留率 =水热处理后相对结晶度 /水热处理前相对结晶度 X 100%
表 3 改性分子筛模型催化剂的微活性能
样品编号 微活 (%, 800Ό水热老化 4小时) 微活 (%, 800°C水热老化 17小时)
C-1 42 41
C-2 42 41
C-3 44 42
C-4 43 42
C-5 42 40
C-6 46 44
C-7 43 41
C-8 43 40
C-9 46 44
C-10 47 46
C-11 46 46
CD-I 35 29
CD-2 34 28
CD-3 35 28 CD-4 36 30
CD-5 25 24 通过研究发现, 磷的引入抑制了 ZSM-5沸石骨架在水热条件下的脱铝作用, 显 著提高了沸石上的酸保留度, 从而提高了其催化活性和选择性; 另外, 为进一步大幅 提高分子筛的水热稳定性同时实现调变沸石的表面酸性,需要引入第二种改性元素对 其进行改性。 ZSM-5 分子筛中引入过渡金属银离子后, 其氧化作用有利于正碳离子 的生成, 使反应更容易引发, 从而提高了反应活性; 与其它过渡金属相比, 银对烯烃 的吸附较弱,可以减少氢转移反应的发生,有利于烯烃产率的提高, 并且银作为过渡 金属, 在反应中可以接受或给予电子, 转变成自由基, 再断裂生成烯烃, 其氧化-还 原作用能使反应按自由基机理进行, 因而可以提高低碳炼烃产率。
本发明的优点是在于该方法能够防止磷改性分子筛在进行过渡金属离子交换改 性中磷组分的大量流失,所改性制得的双组元改性分子筛及其模型催化剂有极好的水 热稳定性和催化活性。

Claims

权利要求书
1. 一种提高水热稳定性的双组元改性分子筛的制备方法, 将分子筛加入到含磷 水溶液, 然后经过滤、干燥和焙烧, 其特征在于: 该方法是将分子筛加入到含磷水溶 液中, 在 pH值为 1~10、 反应温度 70~200°C以及 0.2~1.2MPa反应压力条件下反应 10-200分钟, 然后经过滤、 干燥和焙烧, 得到磷改性分子筛; 将磷改性分子筛加入 到含银离子水溶液中, 反应温度 0~100°C条件下避光反应 30~150分钟, 然后经过滤、 干燥和焙烧, 得到双组元改性分子筛。 '
2. 根据权利要求 1所述的提高水热稳定性的双组元改性分子筛的制备方法, 其 特征在于: 分子筛是 ZSM型、 β型、 Υ型或 MCM型分子筛中的一种。
3. 根据权利要求 2所述的提高水热稳定性的双组元改性分子筛的制备方法,其 特征在于: 分子筛是 ZSM型或 β型的分子筛, 分子筛硅铝比为 15~100。
4. 根据权利要求 3所述的提高水热稳定性的双组元改性分子筛的制备方法, 其 特征在于: 分子筛硅铝比为 15~60。
5. 根据权利要求 1所述的提高水热稳定性的双组元改性分子筛的制备方法, 其 特征在于: 含磷水溶液为磷酸溶液、 亚磷酸溶液、 可溶性磷酸盐水溶液或 /和亚磷酸 盐水溶液。
6. 根据权利要求 6所述的提高水热稳定性的双组元改性分子筛的制备方法,其 特征在于: 可溶性磷酸盐为磷酸铵、 磷酸氢二铵、 磷酸二氢铵中的一种或几种。
7. 根据权利要求 1所述的提高水热稳定性的双组元改性分子筛的制备方法, 其 特征在于: 含银离子水溶液为硝酸银水溶液、 乙酸银水溶液中一种或两种。
8. 根据权利要求 1所述的提高水热稳定性的双组元改性分子筛的制备方法,其 特征在于: 分子筛加入到含磷水溶液中, 控制 pH值 2~7。
9. 根据权利要求 1所述的提高水热稳定性的双组元改性分子筛的制备方法,其 特征在于: 分子筛加入到含磷水溶液中, 控制反应温度为 90~160°C。
10. 根据权利要求 1所述的提高水热稳定性的双组元改性分子筛的制备方法,其 特征在于: 分子筛加入到含磷水溶液中, 控制反应压力为 0.2~0.8MPa。
11. 根据权利要求 1所述的提高水热稳定性的双组元改性分子筛的制备方法, 其 特征在于: 含磷水溶液浓度为 0.05~1.0 mol/L。
12. 根据权利要求 1所述的提高水热稳定性的双组元改性分子筛的制备方法, 其 特征在于: 含银离子水溶液与分子筛重量比为 (3~7):1。
13. 根据权利要求 1所述的提高水热稳定性的双组元改性分子筛的制备方法, 其 特征在于: 含银离子水溶液浓度为 0.01~0.1 mOl/L。
14. 一种使用权利要求 1所述的提高水热稳定性的双组元改性分子筛的制备方法 获得的双组元改性分子筛, 其特征在于: 双组元改性分子筛含有干基含量 88~99重% 的硅铝比为 15~60的分子筛、 以氧化物计 0.5~10重%的磷与氧化物计 0.01~2重%的 银。
PCT/CN2009/001353 2009-10-30 2009-12-01 一种提高水热稳定性的双组元改性分子筛及制备方法 WO2011050505A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/505,219 US9895686B2 (en) 2009-10-30 2009-12-01 Double-component modified molecular sieve with improved hydrothermal stability and production method thereof
JP2012535574A JP5677446B2 (ja) 2009-10-30 2009-12-01 改善された熱水安定性を有するニ成分修飾モレキュラーシーブ
CA2779312A CA2779312C (en) 2009-10-30 2009-12-01 Double-component modified molecular sieve with improved hydrothermal stability and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910237007.4 2009-10-30
CN200910237007A CN102050462B (zh) 2009-10-30 2009-10-30 一种提高水热稳定性的双组元改性分子筛及制备方法

Publications (1)

Publication Number Publication Date
WO2011050505A1 true WO2011050505A1 (zh) 2011-05-05

Family

ID=43921236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/001353 WO2011050505A1 (zh) 2009-10-30 2009-12-01 一种提高水热稳定性的双组元改性分子筛及制备方法

Country Status (5)

Country Link
US (1) US9895686B2 (zh)
JP (1) JP5677446B2 (zh)
CN (1) CN102050462B (zh)
CA (1) CA2779312C (zh)
WO (1) WO2011050505A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9895686B2 (en) 2009-10-30 2018-02-20 Petrochina Company Limited Double-component modified molecular sieve with improved hydrothermal stability and production method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110116021A (zh) * 2018-02-07 2019-08-13 中国石油天然气股份有限公司 一种fcc催化剂中分子筛的双组元改性方法及其改性分子筛
KR102079063B1 (ko) * 2018-06-20 2020-04-13 한국화학연구원 경질올레핀 제조용 촉매, 이의 제조방법, 및 이를 이용하여 경질올레핀을 제조하는 방법
CN112206810B (zh) * 2019-07-09 2022-01-04 中国石油化工股份有限公司 一种制备方法和一种稀土y型分子筛
CN113526522B (zh) * 2020-04-13 2023-02-21 中国石油化工股份有限公司 磷改性mfi结构分子筛及其制备方法
CN114715911B (zh) * 2021-01-05 2024-03-12 中国石油化工股份有限公司 含磷和金属的多级孔zsm-5分子筛及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4845063A (en) * 1982-10-15 1989-07-04 Mobil Oil Corporation Zeolite catalyst of improved hydrothermal stability
CN1317543A (zh) * 2000-04-07 2001-10-17 中国石油化工集团公司 多产乙烯和丙烯的烃类催化热裂解方法
US6307117B1 (en) * 1998-08-25 2001-10-23 Asahi Kasei Kogyo Kabushiki Kaisha Method for producing ethylene and propylene
CN1721505A (zh) * 2004-07-14 2006-01-18 中国石油化工股份有限公司 一种选择性制取小分子烯烃的催化转化方法
CN101537365A (zh) * 2008-03-19 2009-09-23 中国石油天然气股份有限公司 一种高效提高fcc催化剂中分子筛水热稳定性的改性方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3702886A (en) 1969-10-10 1972-11-14 Mobil Oil Corp Crystalline zeolite zsm-5 and method of preparing the same
US3972383A (en) 1974-06-19 1976-08-03 United Technologies Corporation Sound absorption with variable acoustic resistance means by oscillatory air pressure signal
US3965208A (en) 1975-01-06 1976-06-22 Mobil Oil Corporation Methylation of toluene
US4276438A (en) * 1980-05-27 1981-06-30 Mobil Oil Corporation Shape selective reactions with group IB modified zeolite catalysts
US4399059A (en) 1980-12-02 1983-08-16 Mobil Oil Corporation Zeolite catalysts modified with group IIIA metal
US4302622A (en) * 1980-12-02 1981-11-24 Mobil Oil Corporation Shape selective reactions utilizing group III a metal-modified zeolite catalyst
NZ205859A (en) * 1982-10-15 1986-04-11 Mobil Oil Corp Organic conversion using zeolite catalyst
CN85102828A (zh) 1985-04-01 1986-07-23 大连工学院 用磷改性zsm-5催化剂制取对甲乙苯
US5171921A (en) 1991-04-26 1992-12-15 Arco Chemical Technology, L.P. Production of olefins
US5997728A (en) 1992-05-04 1999-12-07 Mobil Oil Corporation Catalyst system for maximizing light olefin yields in FCC
US5427753A (en) * 1992-12-24 1995-06-27 Tosoh Corporation Process for removing nitrogen oxides from oxygen rich exhaust gas
JPH07289909A (ja) * 1994-04-28 1995-11-07 Idemitsu Kosan Co Ltd 排ガス浄化用触媒
JPH0824580A (ja) * 1994-07-20 1996-01-30 Tosoh Corp 窒素酸化物の除去方法
JP3664502B2 (ja) * 1994-10-28 2005-06-29 旭化成ケミカルズ株式会社 低級オレフィン及び単環芳香族炭化水素の製造法
US5898089A (en) * 1997-07-09 1999-04-27 Phillips Petroleum Company Hydrocarbon aromatization process using a zeolite
CN1072032C (zh) 1997-09-17 2001-10-03 中国石油化工总公司 多产乙烯和丙烯的五元环分子筛组合物
CN1072031C (zh) 1997-09-17 2001-10-03 中国石油化工总公司 一种五元环分子筛组合物的制备方法
US6080698A (en) * 1997-09-17 2000-06-27 China Petrochemical Corporation Pentasil-type molecular sieve containing composition and its preparation method
CN1072030C (zh) 1997-11-11 2001-10-03 中国石油化工总公司 含磷八面沸石烃类裂化催化剂及其制备方法
CN1088407C (zh) 1998-08-14 2002-07-31 中国石油化工集团公司 一种含磷沸石及其制备方法
JP2000281334A (ja) * 1999-04-01 2000-10-10 Nissan Motor Co Ltd 疎水性アルミノ珪酸塩組成物及びこれを用いた排ガス浄化用触媒
CN1176020C (zh) * 2002-06-27 2004-11-17 中国石油化工股份有限公司 一种含磷和过渡金属的mfi结构分子筛
CN1257769C (zh) * 2003-10-31 2006-05-31 中国石油化工股份有限公司 一种含磷和金属组分的mfi结构分子筛及其应用
US7285511B2 (en) * 2004-04-23 2007-10-23 Saudi Basic Industries Corporation Method of modifying zeolite catalyst
CN100425534C (zh) * 2005-05-31 2008-10-15 中国石油化工股份有限公司 一种改性β沸石
CN1872415A (zh) 2005-05-31 2006-12-06 北京惠尔三吉绿色化学科技有限公司 一种含zsm-5沸石的催化裂化多产丙烯助剂制备方法
CN102050462B (zh) 2009-10-30 2012-10-17 中国石油天然气股份有限公司 一种提高水热稳定性的双组元改性分子筛及制备方法
PT2948244T (pt) 2013-01-23 2020-05-19 Basf Corp Melhoria da atividade aditiva do zsm-5 pela interação melhorada de zeólito e fósforo

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4845063A (en) * 1982-10-15 1989-07-04 Mobil Oil Corporation Zeolite catalyst of improved hydrothermal stability
US6307117B1 (en) * 1998-08-25 2001-10-23 Asahi Kasei Kogyo Kabushiki Kaisha Method for producing ethylene and propylene
CN1317543A (zh) * 2000-04-07 2001-10-17 中国石油化工集团公司 多产乙烯和丙烯的烃类催化热裂解方法
CN1721505A (zh) * 2004-07-14 2006-01-18 中国石油化工股份有限公司 一种选择性制取小分子烯烃的催化转化方法
CN101537365A (zh) * 2008-03-19 2009-09-23 中国石油天然气股份有限公司 一种高效提高fcc催化剂中分子筛水热稳定性的改性方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9895686B2 (en) 2009-10-30 2018-02-20 Petrochina Company Limited Double-component modified molecular sieve with improved hydrothermal stability and production method thereof

Also Published As

Publication number Publication date
CA2779312C (en) 2016-09-20
JP5677446B2 (ja) 2015-02-25
JP2013509344A (ja) 2013-03-14
CN102050462A (zh) 2011-05-11
CA2779312A1 (en) 2011-05-05
US20120275994A1 (en) 2012-11-01
US9895686B2 (en) 2018-02-20
CN102050462B (zh) 2012-10-17

Similar Documents

Publication Publication Date Title
US9889439B2 (en) High light received heavy oil catalytic cracking catalyst and preparation method therefor
US9968918B2 (en) Catalytic cracking catalyst for high-efficiency conversion of heavy oil and preparation method thereof
US9844772B2 (en) Heavy oil catalytic cracking catalyst and preparation method therefor
US9968915B2 (en) Phosphorus-containing ultrastable Y-type rare earth molecular sieve and preparation method therefor
WO2011050505A1 (zh) 一种提高水热稳定性的双组元改性分子筛及制备方法
CN101537365B (zh) 一种高效提高fcc催化剂中分子筛水热稳定性的改性方法
WO2005042404A1 (fr) Tamis moleculaire a structure mfi contenant des composants phosphores et metalliques, procede de preparation et d'utilisation de ce dernier
CN107970991B (zh) 一种催化裂解催化剂及其制备方法
CN101823726A (zh) 一种改性y分子筛
CN107971017A (zh) 一种催化裂解催化剂及其制备方法
CN103566918B (zh) 一种多功能催化组合物
WO2011050504A1 (zh) 一种提高抗钠污染能力的改性分子筛及制备方法
CN103566962A (zh) 一种多功能催化组合物
CN103785459B (zh) 一种催化裂解催化剂及其制备方法
CN102166533B (zh) 一种提高了活性与水热稳定性的复合改性分子筛及制备方法
CN101590432A (zh) 一种改性粘土及其制备方法
JP2005504166A (ja) 有機化合物の接触分解におけるゼオライトitq−21の使用
CN107971004B (zh) 一种催化裂解催化剂及其制备方法
CN107970995B (zh) 一种催化裂解催化剂及其制备方法
CN112742385A (zh) 用于汽油催化转化的催化剂及其制备方法以及汽油催化转化的方法
CN106607075B (zh) 制备烯烃与芳烃的流化床催化剂及应用
CN112742455B (zh) 用于汽油催化转化多产乙烯丙烯的催化剂及其制备方法以及汽油催化转化的方法
CN112742462B (zh) 复合分子筛催化剂及其制备方法以及汽油催化转化的方法
TW202016021A (zh) 一種富含介孔的mfi結構分子篩、製備方法和含該分子篩的催化劑及其用途
CN103785454A (zh) 一种催化裂解催化剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09850712

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012535574

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2779312

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13505219

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09850712

Country of ref document: EP

Kind code of ref document: A1