WO2011049128A1 - 半導体装置および半導体装置の製造方法 - Google Patents

半導体装置および半導体装置の製造方法 Download PDF

Info

Publication number
WO2011049128A1
WO2011049128A1 PCT/JP2010/068478 JP2010068478W WO2011049128A1 WO 2011049128 A1 WO2011049128 A1 WO 2011049128A1 JP 2010068478 W JP2010068478 W JP 2010068478W WO 2011049128 A1 WO2011049128 A1 WO 2011049128A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor device
die pad
lead frame
semiconductor chip
Prior art date
Application number
PCT/JP2010/068478
Other languages
English (en)
French (fr)
Inventor
基治 芳我
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to JP2011537281A priority Critical patent/JPWO2011049128A1/ja
Priority to US13/503,027 priority patent/US9666501B2/en
Publication of WO2011049128A1 publication Critical patent/WO2011049128A1/ja
Priority to US15/498,463 priority patent/US9847280B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49503Lead-frames or other flat leads characterised by the die pad
    • H01L23/49513Lead-frames or other flat leads characterised by the die pad having bonding material between chip and die pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4821Flat leads, e.g. lead frames with or without insulating supports
    • H01L21/4842Mechanical treatment, e.g. punching, cutting, deforming, cold welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3142Sealing arrangements between parts, e.g. adhesion promotors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/4827Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49503Lead-frames or other flat leads characterised by the die pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49548Cross section geometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49579Lead-frames or other flat leads characterised by the materials of the lead frames or layers thereon
    • H01L23/49582Metallic layers on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04026Bonding areas specifically adapted for layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/2908Plural core members being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/2908Plural core members being stacked
    • H01L2224/29083Three-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29113Bismuth [Bi] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/335Material
    • H01L2224/33505Layer connectors having different materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48617Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48638Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48639Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48638Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48647Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48817Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48824Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48838Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48839Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48838Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48847Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83439Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83444Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83455Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83909Post-treatment of the layer connector or bonding area
    • H01L2224/83948Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/85439Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0133Ternary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/1016Shape being a cuboid
    • H01L2924/10162Shape being a cuboid with a square active surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/1576Iron [Fe] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/183Connection portion, e.g. seal
    • H01L2924/18301Connection portion, e.g. seal being an anchoring portion, i.e. mechanical interlocking between the encapsulation resin and another package part

Definitions

  • the present invention relates to a semiconductor device and a manufacturing method thereof.
  • solder balls in BGA Bit Grid Array
  • lead is used.
  • lead is used as an internal constituent material used inside the device, such as a bonding material between a semiconductor chip and a lead frame inside the package.
  • lead-free products with lead content below a certain ratio have been almost achieved through research on alternative materials.
  • lead-containing metals such as Pb-xSn-yAg (x and y are positive numbers) are used.
  • Bi easily reacts with metal elements such as Au, Ag, and Ni that are normally contained in the metal layer formed at the bonding portion of the semiconductor chip and the lead frame to the bonding material. Bi forms compounds with these metal elements or forms a eutectic composition. Therefore, if a metal element such as Au, Ag, or Ni is exposed on the outermost surface of the metal layer, when Bi is used as the bonding material, Bi comes into contact with the metal element, and Bi and the metal element The alloy layer (intermetallic compound) may be formed near the interface of the bonding material with the metal layer. Moreover, the bonding material may have a eutectic composition of Bi and the metal element as a whole.
  • the melting point of the eutectic composition of Bi and the above metal element is lower than the melting point of Bi alone.
  • the melting point of Bi alone is about 271 ° C.
  • the melting point of the eutectic composition of Bi and Au is about 241 ° C.
  • the melting point of the eutectic composition of Bi and Ag is about 262 ° C. is there. Therefore, the bonding material may be remelted during reflow (peak temperature is about 260 ° C.) when mounting the semiconductor device.
  • a semiconductor device capable of maintaining a high melting point of a layer and a method for manufacturing the same are provided.
  • a semiconductor device of the present invention includes a die pad having a surface made of Cu, a Cu layer forming a back surface, a semiconductor chip disposed to face the surface of the die pad, and the die pad.
  • the bonding layer for bonding the die pad and the semiconductor chip is made of the Cu alloy and Bi-based material not containing Pb, the bonding layer can be made lead-free. Further, the Bi-based material layer in the bonding layer is in contact with these alloy layers by being sandwiched by Cu alloy layers not containing Pb from both sides in the opposing direction of the die pad and the semiconductor chip.
  • the Bi-based material layer is in contact with the Cu alloy layer, Cu hardly reacts with Bi, so there is almost no risk of the melting point of the bonding layer being lowered or the temperature cycle resistance being lowered due to the contact between these layers. Absent. Further, even if a metal layer containing an inhibitory metal element such as Au, Ag, or Ni that may deteriorate the characteristics of the Bi-based material layer is formed on the die pad or the semiconductor chip, the Bi-based material is formed by the Cu alloy layer. Contact between the layer and the metal layer can be prevented. As a result, formation of an intermetallic compound of Bi and the inhibitory metal element and formation of a eutectic composition of Bi and the inhibitory metal element can be prevented. Therefore, the temperature cycle resistance of the bonding layer can be improved and the melting point of the bonding layer can be kept high.
  • the semiconductor device described above can be manufactured, for example, by the method for manufacturing a semiconductor device of the present invention. That is, the Cu layer is prepared through a step of preparing a semiconductor chip including a Cu layer on the back surface, and a bonding material containing a dissimilar metal not containing Cu and Pb and a Bi-based material on a die pad whose surface is made of Cu. And the bonding material can be manufactured by a method for manufacturing a semiconductor device, including a step of bonding the semiconductor chip and a step of heat-treating the die pad after bonding of the semiconductor chip.
  • the semiconductor chip is bonded to the die pad so that the Cu layer of the semiconductor chip and the bonding material are in contact with each other, and then the die pad is heat-treated.
  • each of Cu forming the Cu layer of the semiconductor chip and the surface of the die pad reacts with a dissimilar metal (metal not containing Cu and Pb) in the bonding material, and Cu is formed near the surface of the Cu layer and the die pad.
  • An alloy layer is formed.
  • components other than the dissimilar metal in the bonding material hardly react with Cu, they remain as Bi-based material layers sandwiched between these alloy layers.
  • the bonding layer In forming the bonding layer, components (Bi-based material and dissimilar metal) in the bonding material do not come into contact with metal elements other than Cu, and further, on both sides of the Bi-based material layer in the facing direction of the die pad and the semiconductor chip. An alloy layer is formed. Therefore, even if a metal layer containing an inhibitory metal element such as Au, Ag, or Ni is formed on the die pad or the semiconductor chip, contact between the Bi-based material layer and the inhibitory metal element can be prevented.
  • an inhibitory metal element such as Au, Ag, or Ni
  • At least one of the Cu alloy layers can be formed as a Cu—Sn alloy layer.
  • Zn is contained as a dissimilar metal in the bonding material
  • at least one of the Cu alloy layers can be formed as a Cu—Zn alloy layer.
  • Such Cu—Sn alloys and Cu—Zn alloys are not hard and brittle metals such as Bi—Au alloys and Bi—Ag alloys, but high strength metals. Therefore, the bonding strength between the semiconductor chip and the die pad and the bonding layer can be improved by these alloy layers.
  • the semiconductor chip includes a Si substrate having the Cu layer formed on the back surface side
  • a metal layer capable of ohmic contact with the Si semiconductor is formed between the Si substrate and the Cu layer. It is preferable. Thereby, the Cu layer and the Si substrate can be conducted through the metal layer. As a result, the Si substrate and the die pad can be electrically connected.
  • the semiconductor device of such an aspect is, for example, a metal layer capable of making ohmic contact with the Si semiconductor on the back surface of the Si substrate in the step of preparing the semiconductor chip of the semiconductor device manufacturing method of the present invention described above. It can manufacture by performing the process of forming, and the process of forming the said Cu layer on the said metal layer.
  • the die pad may constitute a lead frame in cooperation with leads arranged around the die pad. That is, the die pad may be a part of the lead frame.
  • the back surface of the lead frame is an exposed surface exposed from the resin package, and the surface of the lead frame is the resin package.
  • the die pad and / or the lead of the lead frame is formed by deforming the sealing surface by pressing a peripheral portion of the sealing surface from the sealing surface side.
  • it includes a deformed portion and a projecting portion formed on a side of the deformed portion and projecting from the side surface in the resin package.
  • the protruding portion protrudes from the side surface of the lead frame in the resin package that seals the side surface of the lead frame, and the protruding portion bites into the resin package. Therefore, when a force toward the package lower surface side (exposed surface side of the lead frame) is applied to the lead frame in the facing direction between the sealing surface (lead frame surface) and the exposed surface (back surface of the lead frame), the resin package The protruding part that bites into is caught. As a result, the lead frame can be prevented from coming off.
  • the entire sealing surface of the lead frame is not coplanar, and has a deformed portion at the peripheral edge. Therefore, depending on the shape of the deformed portion, when a force is applied to the lead frame in the lateral direction intersecting the opposing direction of the sealing surface and the exposed surface, the peripheral portion of the sealing surface has resistance to the lateral force. Become. As a result, the lateral displacement of the lead frame can be suppressed as compared with the case where the entire sealing surface of the lead frame is the same plane.
  • the deformable portion may be a recess formed by the sealing surface being recessed in the thickness direction of the lead frame.
  • the resin package since the recess is formed in the sealing surface, the resin package enters the recess, so that a part of the resin package is fitted in the recess. Therefore, when the lateral force is applied to the lead frame, the recess is caught on the resin package in the recess. As a result, the lateral displacement of the lead frame can be prevented.
  • the peripheral part of the said recessed part in the said sealing surface protrudes.
  • a part of the sealing surface is raised in the facing direction as the peripheral portion of the recess is raised. Therefore, when the lateral force is applied to the lead frame, the raised portion becomes a resistance against lateral displacement. As a result, the lateral displacement of the lead frame can be prevented more reliably.
  • a protrusion is formed in the recess.
  • the protrusion protrudes into the resin package in the recess.
  • the lead frame can be bitten into the resin package in the recess. Therefore, the fitting structure between the recess and the resin package can be complicated. As a result, the fitting strength of the resin package with respect to the recess can be improved.
  • the lead frame may be made of Cu.
  • the surface of the lead frame may be an uncoated surface that is not covered with a metal layer by a process such as plating or sputtering. That is, Cu constituting the lead frame may be exposed on the entire surface of the lead frame.
  • a die pad on which a semiconductor chip is mounted may have a laminated structure including a metal layer not containing Cu and a frame-side Cu layer, which are sequentially laminated toward the surface side.
  • the metal layer include an Ag layer, an Au layer, and a Ni layer.
  • the metal layer be exposed on the outermost surface of the lead.
  • the step of bonding the semiconductor chip may include bonding the semiconductor chip to the die pad of a lead frame including the die pad and a plurality of leads arranged around the die pad.
  • the process of carrying out may be included.
  • the semiconductor device manufacturing method of the present invention is executed prior to the step of bonding the semiconductor chip, and the peripheral portion of the surface is connected to the wire bonder from the die pad and / or the surface side of the lead of the lead frame.
  • the method may further include sealing the front surface side of the lead frame with a resin package so that the back surface of the lead frame is exposed after heat treatment of the frame.
  • the deformed portion and the protruding portion are formed by pressing the peripheral portion of the surface of the lead frame with the stamping tool. Therefore, even if the back surface of the lead frame (the surface that will be exposed from the resin package) is covered and it is difficult to etch from the back surface side, the protruding portion (prevention structure for preventing the lead frame) ) Can be reliably formed.
  • the lead frame is pressed by using a wire bonder capillary or a stamping tool that is attached to the wire bonder in place of the capillary, the lead frame can be easily and precisely deformed by focusing on the peripheral edge of the lead frame. it can.
  • an electrode pad may be formed on the surface of the semiconductor chip.
  • the electrode pad may be made of a metal material containing Al.
  • the metal layer formed between the Si substrate and the Cu layer may be an Au layer.
  • the thickness of the Si substrate may be 220 ⁇ m to 240 ⁇ m.
  • the lead frame is formed by a plating method. In that case, the thickness of the lead frame may be 10 ⁇ m to 50 ⁇ m.
  • the die pad may have a square shape in plan view, and the plurality of leads may be disposed so as to surround four sides of the die pad. That is, the semiconductor device of the present invention may be a semiconductor device to which QFN (Quad Flat Non-leaded) is applied. In this case, it is preferable that the die pad has a square shape larger than the semiconductor chip in plan view, and the peripheral portion of the sealing surface of the die pad surrounds the semiconductor chip.
  • QFN Quad Flat Non-leaded
  • the total thickness of the bonding layer which is the sum of the thickness of the Bi-based material layer and the thickness of the Cu alloy layer, may be 12 ⁇ m to 36 ⁇ m. Further, the thickness of the Bi-based material layer may be 10 ⁇ m to 30 ⁇ m.
  • the Cu alloy layer may have a thickness of 1 ⁇ m to 3 ⁇ m.
  • FIG. 1 is a schematic plan view of a semiconductor device according to the first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the semiconductor device according to the first embodiment of the present invention, showing a cross section taken along the line AA of FIG.
  • FIG. 3 is an enlarged view of a main part of a portion surrounded by a broken-line circle B in FIG.
  • FIG. 4 is an enlarged view of a main part of a portion surrounded by a broken-line circle C in FIG.
  • FIG. 6B is a schematic cross-sectional view showing a step subsequent to FIG. 6A.
  • FIG. 6C is a schematic cross-sectional view showing a step subsequent to FIG. 6B.
  • FIG. 6D is a schematic cross-sectional view showing a step subsequent to FIG. 6C.
  • FIG. 6E is a schematic cross-sectional view showing a step subsequent to FIG. 6D.
  • FIG. 6F is a schematic cross-sectional view showing a step subsequent to FIG. 6E.
  • FIG. 6G is a schematic cross-sectional view showing a step subsequent to FIG. 6F.
  • FIG. 7 is a view showing a first modification of the lead shown in FIG.
  • FIG. 8 is a view showing a second modification of the lead shown in FIG. FIG.
  • FIG. 9 is a diagram showing a third modification of the lead shown in FIG.
  • FIG. 10 is a view showing a fourth modification of the lead shown in FIG.
  • FIG. 11 is a diagram showing a modification of the arrangement of pin recesses shown in FIG.
  • FIG. 12 is a schematic plan view of a semiconductor device according to the second embodiment of the present invention.
  • FIG. 13 is a schematic cross-sectional view of a semiconductor device according to the second embodiment of the present invention, and shows a cross section taken along the line A′-A ′ of FIG.
  • FIG. 14 is a view showing a modification of the lead frame shown in FIG.
  • FIG. 15 is an enlarged view of a main part of a portion surrounded by a broken-line circle F in FIG.
  • FIG. 16 is an enlarged view of a main part of a portion surrounded by a broken-line circle G in FIG.
  • FIG. 1 is a schematic plan view of a semiconductor device according to the first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the semiconductor device according to the first embodiment of the present invention, showing a cross section taken along the line AA of FIG.
  • FIG. 3 is an enlarged view of a main part of a portion surrounded by a broken-line circle B in FIG.
  • FIG. 4 is an enlarged view of a main part of a portion surrounded by a broken-line circle C in FIG.
  • FIG. 5 is an enlarged view of a main part of a portion surrounded by a broken-line circle D in FIG.
  • FIG. 1 shows a state where the resin package is removed.
  • the semiconductor device 1 is a semiconductor device to which QFN (Quad Flat Non-leaded) is applied.
  • the semiconductor device 1 includes a semiconductor chip 2 having a front surface 21 and a back surface 22, a die pad 3 on which the semiconductor chip 2 is mounted, a plurality of electrode leads 4 arranged around the die pad 3, and the semiconductor chip 2 and the electrode lead 4 And a resin package 6 for sealing them.
  • the semiconductor chip 2 includes a Si substrate 7 having a square shape in plan view (for example, a square of about 2.3 mm ⁇ 2.3 mm).
  • the thickness of the Si substrate 7 is, for example, 220 ⁇ m to 240 ⁇ m (preferably about 230 ⁇ m).
  • a multilayer wiring structure (not shown) is formed by laminating a plurality of wiring layers with an interlayer insulating film interposed therebetween.
  • the outermost surface of the multilayer wiring structure is a surface protective film (Not shown).
  • a plurality of pad openings 8 for exposing the uppermost wiring layer in the multilayer wiring structure are formed.
  • the pad openings 8 have a square shape in plan view, and the same number (4 in FIG. 1) is provided on each edge of the semiconductor chip 2.
  • the pad openings 8 are arranged at equal intervals along each side of the semiconductor chip 2. A part of the wiring layer is exposed from each pad opening 8 as an electrode pad 9 of the semiconductor chip 2.
  • the surface on which the pad opening 8 is formed forms the surface 21 of the semiconductor chip 2.
  • the uppermost wiring layer exposed as the electrode pad 9 is made of, for example, a metal material containing Al (aluminum), and specifically made of a metal material containing Al as a main component (for example, an Al—Cu alloy).
  • a back metal 10 is formed on the lower surface of the Si substrate 7 (the surface facing the die pad 3). The back metal 10 forms the back surface 22 of the semiconductor chip 2.
  • the back metal 10 has a three-layer structure in which an Au layer 11, a Ni layer 12, and a Cu layer 13 are laminated in this order from the Si substrate 7 side.
  • the Au layer 11 can make ohmic contact with the Si semiconductor and is in contact with the lower surface of the Si substrate 7.
  • the Ni layer 12 is formed closer to the Si substrate 7 than the Cu layer 13 that forms the outermost surface of the back metal 10, and prevents Si nodules from depositing Si in the Si substrate 7 on the outermost surface of the back metal 10. Layer.
  • the die pad 3 and the plurality of electrode leads 4 are formed as a lead frame 14 made of the same thin metal plate.
  • the lead frame 14 is formed by, for example, a plating method.
  • a metal material used for plating growth for example, a Cu-based material mainly containing Cu, specifically, high-purity copper having a purity of 99.9999% (6N) or more and a purity of 99.99% (4N) or more, An alloy of Cu and a dissimilar metal (for example, Cu—Fe—P alloy) and the like, for example, an Fe-based material such as 42 alloy (Fe—42% Ni), and the like can be mentioned.
  • the thickness of the lead frame 14 is, for example, less than 100 ⁇ m, and preferably 10 ⁇ m to 50 ⁇ m.
  • the die pad 3 has a square shape larger than that of the semiconductor chip 2 in plan view (for example, about 2.7 mm square in plan view), and a square annular peripheral portion 33 surrounds the semiconductor chip 2.
  • the surface 31 of the die pad 3 (sealing surface sealed by the resin package 6) is an uncoated surface that is not covered with a metal thin film by a process such as plating or sputtering, and the Cu-based material constituting the lead frame 14 is made of The entire surface 31 is exposed.
  • a plurality of minute pin recesses 34 (deformation portions) in which the surface 31 of the die pad 3 is recessed in the thickness direction of the lead frame 14 are formed in the peripheral portion 33 of the die pad 3.
  • the pin recesses 34 on the die pad 3 side are provided in the same number (six in FIG. 1) in each straight line portion of the peripheral edge portion 33.
  • the pin recesses 34 are arranged at equal intervals along each side of the peripheral edge 33.
  • Each pin recess 34 has a substantially bowl-like shape in a tapered cross section whose diameter is narrowed in the depth direction, and has a maximum diameter of 10 ⁇ m to 50 ⁇ m, for example, and a depth of 5 ⁇ m to 25 ⁇ m.
  • an annular peripheral surface 35 surrounding each pin recess 34 is raised with respect to the mounting surface 36 on which the semiconductor chip 2 is mounted.
  • the mounting surface 36 is a surface parallel to the back surface 32 (mounting surface on the wiring board) of the die pad 3.
  • a retaining portion 38 protruding portion that protrudes in a direction orthogonal to the thickness direction of the lead frame 14 is formed at each position facing each pin recess 34 of the peripheral edge portion 33. ing.
  • Each retaining portion 38 is formed on the upper side in the thickness direction of the lead frame 14 and is adjacent to each pin recess 34 in a cross-sectional view.
  • the semiconductor chip 2 and the die pad 3 are formed so that the lower surface 22 and the front surface 31 of the Si substrate 7 are opposed to each other as a bonding surface with the lower surface of the Si substrate 7 (the rear surface 22 of the semiconductor chip 2) and the front surface 31 (the mounting surface 36) of the die pad 3 They are joined to each other by interposing the joining layer 15 therebetween. Thereby, the semiconductor chip 2 is supported by the die pad 3 with the surface 21 facing upward.
  • the bonding layer 15 includes a Bi-based material layer 16 as a relatively thick main layer and Cu—Sn alloy layers 17 and 18 as relatively thin sublayers.
  • the Bi-based material layer 16 contains Bi as a main component, and may contain Sn, Zn, Co, or the like in an amount that does not affect the physical properties of Bi as a subcomponent.
  • the Cu—Sn alloy layers 17 and 18 are made of an alloy of Cu and Sn, which is a dissimilar metal not containing Cu and Pd, and contains Cu as a main component.
  • the Cu—Sn alloy layer 17 on the semiconductor chip 2 side is formed over the entire region in the vicinity of the interface between the back metal 10 and the Cu layer 13 in the bonding layer 15. Thereby, the Cu—Sn alloy layer 17 is in contact with the Cu layer 13 of the back metal 10.
  • the Cu—Sn alloy layer 17 has a laminated structure represented by Cu 6 Sn 5 / Cu 3 Sn from the Bi-based material layer 16 side toward the semiconductor chip 2 side in the facing direction of the die pad 3 and the semiconductor chip 2. ing.
  • the Cu—Sn alloy layer 18 on the die pad 3 side is formed over the entire region in the vicinity of the interface with the surface 31 of the die pad 3 in the bonding layer 15. Thereby, the Cu—Sn alloy layer 18 is in contact with the surface 31 of the die pad 3.
  • the Cu—Sn alloy layer 18 has, for example, a laminated structure represented by Cu 6 Sn 5 / Cu 3 Sn from the Bi-based material layer 16 side to the die pad 3 side in the facing direction of the die pad 3 and the semiconductor chip 2. Yes.
  • the Cu—Sn alloy layers 17 and 18 are partially formed in the vicinity of the interface with the surface 31 of the die pad 3 in the bonding layer 15 and in the vicinity of the interface with the Cu layer 13 of the back metal 10 in the bonding layer 15. May be.
  • the Bi-based material layer 16 and the Cu—Sn alloy layers 17 and 18 are formed between the die pad 3 and the semiconductor chip 2 between the surface 31 of the die pad 3 and the Cu layer 13 of the back metal 10.
  • a three-layer structure (Cu—Sn alloy layer 17 / Bi-based material layer 16 / Cu—Sn alloy layer 18) sandwiched between Cu—Sn alloy layers 17 and 18 is formed from both sides in the facing direction.
  • the melting point of the bonding layer 15 as described above is, for example, 260 ° C. to 265 ° C., preferably 265 ° C. to 271 ° C.
  • the total thickness T of the bonding layer 15 (the sum of the thickness of the Bi-based material layer 16 and the thickness of the Cu—Sn alloy layers 17 and 18) is, for example, , 12 ⁇ m to 36 ⁇ m.
  • the thickness of each layer for example, the thickness of the Bi-based material layer 16 is 10 ⁇ m to 30 ⁇ m, and the thickness of the Cu—Sn alloy layers 17 and 18 is 1 ⁇ m to 3 ⁇ m.
  • the back surface 32 (mounting surface on the wiring board) of the die pad 3 is exposed from the resin package 6.
  • a die pad back surface plating 19 made of a metal material such as tin (Sn) or tin-silver alloy (Sn—Ag) is formed.
  • the electrode leads 4 are arranged around the die pad 3 by being provided on both sides in each direction orthogonal to the side surfaces 37 of the die pad 3.
  • the electrode leads 4 facing each side surface 37 of the die pad 3 are arranged at equal intervals in a direction parallel to the facing side surface 37.
  • Each electrode lead 4 is formed in a rectangular shape in plan view that is long in the direction orthogonal to the side surface 37 of the die pad 3 (the direction facing the die pad 3), and the length in the facing direction (the length on the back surface 42 side). ) Is, for example, about 450 ⁇ m.
  • the surface 41 of the electrode lead 4 (the connection surface of the bonding wire 5) is an uncoated surface that is not covered with a metal thin film by a process such as plating or sputtering, and the Cu constituting the lead frame 14.
  • the system material forms the entire surface 41.
  • the pin recess 44 on the electrode lead 4 side has a substantially bowl-like shape in cross section whose diameter is narrowed in the depth direction, and has, for example, a maximum diameter of 10 ⁇ m to 50 ⁇ m and a depth of 5 ⁇ m to 25 ⁇ m.
  • an annular peripheral surface 45 that surrounds each pin recess 44 is raised with respect to the connection surface 46 to which the bonding wire 5 is connected on the surface 41.
  • the connection surface 46 is a surface parallel to the back surface 42 (mounting surface on the wiring board) of the electrode lead 4.
  • a retaining portion 48 protruding portion that protrudes in a direction orthogonal to the thickness direction of the lead frame 14 is formed so as to surround the pin recess 44 of the edge portion 43 in plan view.
  • Each retaining portion 48 is formed on the upper side in the thickness direction of the lead frame 14 and is adjacent to the pin recess 44 in a sectional view.
  • the back surface 42 (mounting surface on the wiring board) of the electrode lead 4 is exposed from the resin package 6.
  • the exposed back surface 42 is formed with a lead back surface plating 20 made of a metal material such as tin (Sn) or tin-silver alloy (Sn—Ag).
  • the bonding wire 5 is made of, for example, copper (for example, high-purity copper having a purity of 99.9999% (6N) or more, purity 99.99% (4N) or more, and may contain a small amount of impurities). .
  • the bonding wire 5 connects one electrode pad 9 and one electrode lead 4 on a one-to-one basis.
  • the resin package 6 forms the outer shape of the semiconductor device 1 and is formed in a substantially rectangular parallelepiped shape.
  • the resin package 6 has a planar size of, for example, about 4 mm square and a thickness of, for example, about 0.85 mm.
  • Such a resin package 6 is made of, for example, a known mold resin such as an epoxy resin, covers the front surfaces 31 and 41 and the side surfaces 37 and 47 of the lead frame 14, and exposes the back surfaces 32 and 33.
  • the chip 2, the bonding wire 5 and the lead frame 14 are sealed.
  • the resin package 6 enters the pin recess 34 and the pin recess 44 at each of the peripheral edge 33 of the die pad 3 and the edge 43 of each electrode lead 4.
  • 6A to 6G are schematic cross-sectional views showing the manufacturing steps of the semiconductor device shown in FIGS. 1 and 2 in the order of steps.
  • the lead frame 14 is formed.
  • 6A to 6G the overall view of the lead frame 14 is omitted, and only one unit of the die pad 3 and electrode lead 4 necessary for mounting one semiconductor chip 2 is shown.
  • the stamping tool 24 is struck perpendicularly to the surface 41 on the edge 43 of the electrode lead 4 on the die pad 3 side.
  • the stamping tool 24 is attached to a wire bonder used for wire bonding, which will be described later, in exchange for a capillary.
  • a pin recess 44 on the electrode lead 4 side is formed at the edge 43 of the electrode lead 4 as a dent of the stamping tool 24.
  • the peripheral portion of the electrode recess 4 in the electrode lead 4 is pushed and spread to the stamping tool 24, so that the peripheral surface 45 of the electrode lead 4 surrounding the pin recess 44 is raised and the pin recess A retaining portion 48 protrudes from a side surface 47 of the electrode lead 4 adjacent to 44.
  • the load applied to the electrode lead 4 by the stamping tool 24 varies depending on the target depth of the pin recess 44, but is, for example, about 200 g to 400 g.
  • a stamping capillary for example, manufactured by TOTO, etc.
  • FIG. 6C the same steps as in FIG. 6B are performed on the remaining electrode leads 4, whereby pin recesses 44 are formed in the edge portions 43 of all the electrode leads 4.
  • the stamping tool 24 is sequentially struck along the respective sides of the peripheral portion 33 of the die pad 3 by the same process as in FIG. 6B.
  • the pin recess 34 on the die pad 3 side is formed, the peripheral surface 35 of the die pad 3 surrounding the pin recess 34 is raised, and the retaining portion 38 protrudes from the side surface 37 of the die pad 3 adjacent to the pin recess 34. .
  • the back metal 10 is formed by sequentially laminating the Au layer 11, the Ni layer 12, and the Cu layer 13 on the lower surface of the Si substrate 7. Thereby, the semiconductor chip 2 having the back metal 10 is prepared.
  • a bonding paste 25 as a bonding material made of a Bi-based material containing Sn is applied to the surface 31 of the die pad 3.
  • the content of Sn in the bonding paste 25 is preferably an amount that allows the entire amount to diffuse with respect to the Cu layer 13 of the back metal 10 and the Cu of the surface 31 of the die pad 3, for example, 4 wt% or less, It is 1 to 3 wt%, more preferably 1.5 to 2.5 wt%.
  • the bonding paste 25 is sandwiched between the semiconductor chip 2 and the die pad 3 so that the Cu layer 13 of the back metal 10 contacts the bonding paste 25 as shown in FIG. 6F.
  • reflow heat treatment
  • each of the Cu layer 13 of the back metal 10 and the Cu of the surface 31 of the die pad 3 reacts with the Sn in the bonding paste 25, and Cu is formed in the vicinity of the Cu layer 13 and the surface 31.
  • -Sn alloy layers 17 and 18 are formed.
  • Bi in the bonding paste 25 hardly reacts with Cu, it remains as a Bi-based material layer 16 sandwiched between the Cu—Sn alloy layers 17 and 18.
  • the electrode pads 9 of all the semiconductor chips 2 and the electrode leads 4 corresponding to the electrode pads 9 are connected by bonding wires 5.
  • the lead frame 14 is set in a molding die, and all the semiconductor chips 2 are sealed together with the lead frame 14 by the resin package 6.
  • the stainless steel substrate 23 and the lead frame 14 are peeled off.
  • the die pad back surface plating 19 is formed on the back surface 32 of the die pad 3 exposed from the resin package 6, and at the same time, the lead back surface plating 20 is formed on the back surface 42 of the electrode lead 4.
  • the lead frame 14 is cut into the size of each semiconductor device 1 together with the resin package 6 using a dicing saw, thereby obtaining the individual pieces of the semiconductor device 1 shown in FIG.
  • the bonding paste 25 applied to the surface 31 of the die pad 3 is sandwiched between the semiconductor chip 2 and the die pad 3 so as to come into contact with the Cu layer 13 of the back metal 10. Thereafter, by performing reflow (heat treatment), the bonding layer 15 including the Bi-based material layer 16 and the Cu—Sn alloy layers 17 and 18 is formed.
  • the components (Bi-based material and Sn) in the bonding paste 25 do not come into contact with a metal element other than Cu, and further, in the facing direction of the semiconductor chip 2 and the die pad 3, the Bi-based material.
  • Cu—Sn alloy layers 17 and 18 are formed on both sides of the layer 16.
  • the Bi-based material layer 16 is in contact with the Cu—Sn layers 17 and 18, since Cu hardly reacts with Bi, the melting point of the bonding layer 15 and the temperature cycle resistance are reduced by contact between these layers. There is almost no risk of decrease. Further, since the bonding layer 15 includes the Bi-based material layer 16 and the Cu—Sn alloy layers 17 and 18, the lead-free bonding layer 15 can be achieved.
  • the Cu—Sn alloy is not a hard and brittle metal such as a Bi—Au alloy or a Bi—Ag alloy, but a high strength metal. Therefore, the bonding strength between the semiconductor chip 2 and the lead frame 14 and the bonding layer 15 can be improved by the Cu—Sn alloy layers 17 and 18.
  • the Au layer 11 is in contact with the lower surface of the Si substrate 7, the Cu layer 13 and the Si substrate 7 can be conducted through the Au layer 11. Thereby, the Si substrate 7 and the die pad 3 can be electrically connected.
  • the lead frame 14 is manufactured in manufacturing the semiconductor device 1. Since it is not necessary to perform plating, sputtering, or the like, the cost can be reduced. Further, according to the configuration of the semiconductor device 1 according to this embodiment, the following problems can be solved.
  • a package for example, HQFN: Heat
  • HQFN Heat
  • a sinked quad flat non-leaded package has also been put into practical use.
  • the mounting surface of the lead frame that is packaged with the mold resin together with the semiconductor chip is exposed on the lower surface of the package. Therefore, there is a problem that the lead terminal and the die pad are easily removed from the package. For example, in a board bending test after package mounting, when an external force is applied to the package, the lead terminal or die pad may come off.
  • the side surfaces of the mold resin are bitten to prevent the lead terminal or die pad from coming off.
  • the cross-sectional shape as described above is obtained by, for example, etching the lead frame from the mounting surface side (back surface side) prior to packaging of the semiconductor chip and the lead frame, and removing a part of the side surface of the lead terminal or die pad. It is formed.
  • a metal thin plate of about 100 ⁇ m to 200 ⁇ m has been used as a lead frame, but in recent years, a lead frame formed by a plating method is being used.
  • a method of forming a lead frame by performing plating growth of a predetermined frame pattern on a substrate has been studied. In such a method, since the thickness of the lead frame can be precisely controlled, the package may be thinned by forming the lead frame thin.
  • the timing of peeling between the lead frame and the substrate is after the lead frame is packaged together with the semiconductor chip. Therefore, before packaging, the mounting surface of the lead frame (lead terminal and die pad) is covered with the substrate, so that it is difficult to etch the lead frame from the mounting surface side. On the other hand, after packaging, even if the substrate is peeled off, it is difficult to etch the side surface because the side surface of the lead frame is already covered with the mold resin.
  • each of the side surface 37 of the die pad 3 and the side surface 47 of the electrode lead 4 is sealed by the resin package 6, and the resin package 6 that seals the side surfaces 37, 47 includes the side surface 37.
  • a retaining portion 38 on the die pad 3 side and a retaining portion 48 on the electrode lead 4 side protrude from the side surface 47.
  • These retaining portions 38 and 48 bite into the resin package 6 in the lateral direction intersecting the thickness direction of the lead frame 14. For this reason, in the thickness direction of the lead frame 14, when a force toward the lower surface side (exposed surface side of the lead frame 14) of the resin package 6 is applied to the lead frame 14, the retaining portions 38 and 48 that bite into the resin package 6. Is caught. As a result, the lead frame 14 can be prevented from coming off.
  • the entire surface 31 of the die pad 3 is not coplanar, and a pin recess 34 is formed in the peripheral edge portion 33, and the resin package 6 enters the pin recess 34. Thereby, a part of the resin package 6 is fitted into the pin recess 34.
  • the surface 41 of the electrode lead 4 is not the same plane as the surface 31 of the die pad 3, and a pin recess 44 is formed at the edge 43, and the resin package 6 is placed in the pin recess 44. It has entered. Thereby, a part of the resin package 6 is fitted into the pin recess 44.
  • the pin recesses 34 and 44 are caught on the resin package 6 in the pin recesses 34 and 44.
  • the lateral displacement of the lead frame 14 can be prevented.
  • the peripheral surface 35 of the pin recess 34 is raised so that a part of the surface 31 is raised.
  • the peripheral surface 45 of the pin recess 44 is raised so that a part of the surface 41 is raised.
  • the stamping tool 24 is applied to the electrode lead 4 at the edge 43 of the surface 41 opposite to the back surface 42 exposed from the resin package 6.
  • the pin recess 44 and the retaining portion 48 are formed.
  • FIG. 6C like the electrode lead 4, a pin recess 34 and a retaining portion 38 are formed in the die pad 3.
  • the exposed surfaces (back surfaces 32, 42) of the lead frame 14 are covered with the stainless steel substrate 23, and etching processing from the back surfaces 32, 42 side is difficult. Even in this case, the retaining portions 38 and 48 (a retaining structure) can be reliably formed. Also, since the lead frame 14 is pressed by using a stamping tool 24 that can be replaced with a wire bonder capillary, the pin recesses 34 and 44 are simply formed by focusing on the peripheral edge 33 of the die pad 3 and the edge 43 of the electrode lead 4. And can be formed precisely.
  • the lead frame 14 is formed by a plating method, the lead frame 14 can be formed thin by controlling the plating growth time. As a result, the package can be thinned.
  • the deformed portion formed by deforming the electrode lead 4 by striking the stamping tool 24 is not limited to a minute circular pin recess, but is, for example, a linear recess. May be.
  • a capillary 26 (capillary 26 in which one minute hole 27 is formed in the center) is used at the edge 43 of the electrode lead 4 on the die pad 3 side. ) May be formed vertically to form a pin recess 29 having one protrusion 28 formed therein.
  • a stamping tool 51 in which a plurality of minute holes 50 are formed at the tip is vertically struck on the edge 43 on the die pad 3 side of the electrode lead 4.
  • a pin recess 53 having a plurality of protrusions 52 formed therein may be formed.
  • the protrusions 28 and 52 are formed in the pin recesses 29 and 53, the inside of the resin package 6 in the pin recesses 29 and 53.
  • the protrusions 28 and 52 are projected. With these protrusions 28 and 52, the electrode lead 4 (lead frame 14) can bite into the resin package 6 in the pin recesses 29 and 53. Therefore, the fitting structure between the pin recesses 29 and 53 and the resin package 6 can be complicated. As a result, the fitting strength of the resin package 6 with respect to the pin recesses 29 and 53 can be improved.
  • the pin recess does not need to have a tapered shape whose diameter is narrowed in the depth direction, and may be, for example, an inversely tapered shape whose diameter increases in the depth direction.
  • the stamping tool 24 is struck at an acute angle with respect to the surface 41 so that the surface 41 is not raised at the edge 43 on the die pad 3 side of the electrode lead 4, thereby spreading the electrode lead 4 toward the side surface 47.
  • the retaining portion 48 may be formed.
  • the stamp 41 of the stamping tool 24 does not remain on the surface 41 of the electrode lead 4.
  • An inclined surface 49 (deformed portion) can be formed.
  • the recess 54 can be formed on the surface 41 of the electrode lead 4 by largely adjusting the angle of the stamping tool 24 with respect to the surface 41.
  • the shapes of the first to fourth modifications of the lead shown in FIGS. 7 to 10 can also be applied to the case where the retaining portion 38 is formed on the side surface 37 of the die pad 3.
  • the number of pin recesses 44 formed in each electrode lead 4 is not limited to one and may be plural. In that case, the plurality of pin recesses 44 may be spaced apart from each other along each side of the edge 43 of each electrode lead 4, as shown as a modification in FIG.
  • the back metal 10 has a three-layer structure in which each of the Au layer 11, the Ni layer 12, and the Cu layer 13 is laminated one by one, the present invention is not limited to this. A plurality of at least one kind may be laminated. In that case, a plurality of layers may be laminated successively, or another kind of layer may be interposed between the plurality of layers.
  • the back metal 10 may include a layer different from the Au layer, the Ni layer, and the Cu layer. For example, an Ag layer, a Ti layer, or the like may be provided. Since the Ti layer can make ohmic contact with the Si semiconductor, it can be applied instead of the Au layer 11. Second Embodiment FIG.
  • FIG. 12 is a schematic plan view of a semiconductor device according to the second embodiment of the present invention.
  • FIG. 13 is a schematic cross-sectional view of a semiconductor device according to the second embodiment of the present invention, and shows a cross section taken along the line A′-A ′ of FIG. 12 and 13, the configuration described in the first embodiment is denoted by the same reference numeral, and the description thereof is omitted.
  • the semiconductor device 61 of the second embodiment has a lead frame 62 made of a thin metal plate.
  • the thin metal plate constituting the lead frame 62 is made of a Cu-based material mainly containing Cu. Specifically, for example, a high purity such as a purity of 99.9999% (6N) or more and a purity of 99.99% (4N) or more is used. Copper, an alloy of Cu and a dissimilar metal (for example, Cu—Fe—P alloy).
  • the metal thin plate may be, for example, an Fe-based material such as 42 alloy (Fe-42% Ni).
  • the thickness of the lead frame 62 (metal thin plate) is, for example, 190 ⁇ m to 210 ⁇ m (preferably about 200 ⁇ m).
  • the die pad 63 and the electrode lead 64 constituting the lead frame 62 are different from the first embodiment in that the surface 65 and the surface 66 are flat surfaces having no recesses.
  • Other configurations are the same as those of the first embodiment, and the operational effects are also the same.
  • the sublayer of the bonding layer 15 does not need to be the Cu—Sn alloy layers 17 and 18, and is, for example, a different metal that does not contain Cu and Cu and Pb. It may be a Cu—Zn alloy layer made of an alloy with Zn and containing Cu as a main component.
  • the surface of the lead frame 62 (the surface 65 of the die pad 63 and the surface 66 of the electrode lead 64) does not need to be an uncovered surface.
  • the coating layer 67 may be formed by performing plating or sputtering treatment.
  • the covering layer 67 has a two-layer structure in which an Ag layer 68 and a frame-side Cu layer 69 are laminated in this order from the die pad 63 side, as shown in FIG. By laminating the frame-side Cu layer 69 on the Ag layer 68, Cu can be exposed on the entire surface (front surface 65) of the die pad 63 facing the semiconductor chip 2.
  • the covering layer 67 has a single layer structure in which only the Ag layer 68 is formed, as shown in FIG. Thereby, Ag can be exposed to the whole connection surface of the bonding wire 5. Therefore, not only Cu wires but also various wires such as Au wires can be used as the bonding wires 5 connected to the electrode leads 4.
  • the frame side Cu layer 69 can be used as an example of the die pad of the present invention.
  • the lead frame 62 can be omitted (frameless).
  • this invention can also be implemented with another form.
  • the QFN type semiconductor device has been taken up in the above-described embodiments, the present invention is applied to other types of package type semiconductor devices such as QFP (Quad Flat Package), SOP (Small Outline Package), and the like. You can also.
  • SYMBOLS 1 ... Semiconductor device, 2 ... Semiconductor chip, 3 ... Die pad, 4 ... Electrode lead, 6 ... Resin package, 7 ... Si substrate, 9 ... Electrode pad, 10 * ..Back metal, 11 ... Au layer, 12 ... Ni layer, 13 ... Cu layer, 14 ... lead frame, 15 ... joining layer, 16 ... Bi-based material layer, 17 ... Cu-Sn alloy layer, 18 ... Cu-Sn alloy layer, 21 ... surface of (semiconductor chip), 22 ... back surface of (semiconductor chip), 24 ... stamping tool, ..Joint paste, 26... Capillary, 28... Projection, 29...
  • Pin recess 31... (Die pad) surface, 32. Peripheral edge, 34... Pin recess, 35. Peripheral surface, 37 ... (die pad) side surface, 38 ... (die pad) retaining part, 41 ... (electrode lead) surface, 42 ... (electrode lead) back surface, 43 ... -Edge of (electrode lead), 44 ... Pin recess, 45 ... Peripheral surface of (electrode lead), 47 ... Side surface of (electrode lead), 48 ... (Removal of electrode lead) , 49 ... inclined surface, 51 ... stamping tool, 52 ... projection, 53 ... pin recess, 54 ... recess, 61 ... semiconductor device, 62 ... lead frame, 63 ... Die pad, 64 ... Electrode lead, 65 ... (Die pad) surface, 66 ... (Electrode lead) surface, 67 ... Cover layer, 68 ... Ag layer, 69 ... ⁇ Frame side Cu layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Lead Frames For Integrated Circuits (AREA)
  • Die Bonding (AREA)
  • Wire Bonding (AREA)

Abstract

 本発明の半導体装置は、表面および裏面を有し、当該表面がCuからなるリードフレームと、表面および裏面を有し、当該裏面を形成するCu層を含み、当該裏面が前記リードフレームの前記表面に対向するように配置された半導体チップと、前記リードフレームと前記半導体チップとの間に介在された接合層とを含み、前記接合層は、Bi系材料層と、当該Bi系材料層に対して前記リードフレームと前記半導体チップとの対向方向の両側から前記Bi系材料層を挟みこむPbを含まないCu合金層とを含む積層構造を有する。

Description

半導体装置および半導体装置の製造方法
 本発明は、半導体装置およびその製造方法に関する。
 従来、環境負荷の観点から、半導体装置における鉛の使用量の低減が要求されている。
 半導体装置では、たとえば、SOP(Small Outline Package)、QFP(Quad Flat Package)におけるアウターリードの外装めっき、BGA(Ball Grid Array)における半田ボールなどのような、装置外部で使用される外部構成材に鉛が使用されている。また、パッケージ内部における半導体チップとリードフレームとの間の接合材などのような装置内部で使用される内部構成材に鉛が使用されている。
 外部構成材については、鉛の含有量を一定比率以下とする鉛フリー化が、代替材料の研究によってほぼ達成されている。これに対し、内部構成材については、代替に適した材料がない。そのため、たとえば、Pb-xSn-yAg(xおよびyは正数)など、鉛を含有する金属が使用されている。
特開2007-67158号公報
 Biは、半導体チップおよびリードフレームにおける接合材に対する接合部分に形成されたメタル層が通常含有するAu、Ag、Niなどの金属元素と反応しやすい。Biは、これらの金属元素と化合物を形成したり、共晶組成を形成したりする。
 そのため、Au、Ag、Niなどの金属元素がメタル層の最表面に露出していると、接合材としてBiを使用したとき、Biが上記金属元素に接触することにより、Biと上記金属元素との合金層(金属間化合物)が、接合材におけるメタル層との界面付近に形成される場合がある。また、接合材が、全体的にBiと上記金属元素との共晶組成になる場合がある。
 Biと上記金属元素との金属間化合物は、硬くて脆いため、半導体装置の温度サイクル試験(TCY試験)時に、破壊の起点になるおそれがある。
 また、Biと上記金属元素との共晶組成物の融点は、Bi単体の融点よりも低い。たとえば、Bi単体の融点が約271℃であるのに対し、BiとAuとの共晶組成物の融点は約241℃であり、BiとAgとの共晶組成物の融点は約262℃である。そのため、半導体装置を実装するときのリフロー(ピーク温度が約260℃)時に、接合材が再溶融するおそれがある。
 本発明の目的は、半導体チップとリードフレームとの間の接合層にBi系材料を用いることによって鉛フリー化を達成することができ、さらに、接合層の耐温度サイクル性を向上できながら、接合層の融点を高く維持することができる半導体装置およびその製造方法を提供することである。
 上記目的を達成するための本発明の半導体装置は、表面がCuからなるダイパッドと、裏面を形成するCu層を含み、前記ダイパッドの前記表面に対向するように配置された半導体チップと、前記ダイパッドと前記半導体チップとの間に接合層とを含み、前記接合層は、Bi系材料層と、当該Bi系材料層に対して前記ダイパッドと前記半導体チップとの対向方向の両側から前記Bi系材料層を挟みこむPbを含まないCu合金層とを含む。
 この構成によれば、ダイパッドと半導体チップとを接合する接合層が、Pbを含まないCu合金およびBi系材料からなるので、接合層の鉛フリー化を達成することができる。
 また、接合層におけるBi系材料層は、ダイパッドと半導体チップとの対向方向の両側から、Pbを含まないCu合金層により挟み込まれることによって、それらの合金層に接触している。
 Bi系材料層がCu合金層に接触しているが、CuはBiとほとんど反応しないので、これらの層同士の接触に起因する、接合層の融点低下や耐温度サイクル性の低下のおそれはほとんどない。
 また、ダイパッドや半導体チップに、Bi系材料層の特性を低下させるおそれのあるAu、Ag、Niなどの阻害金属元素を含むメタル層が形成されていても、上記Cu合金層により、Bi系材料層と上記メタル層との接触を防止することができる。その結果、Biと上記阻害金属元素との金属間化合物の形成およびBiと上記阻害金属元素との共晶組成物の形成を防止することができる。よって、接合層の耐温度サイクル性を向上できるとともに、接合層の融点を高く維持することができる。
 上記した半導体装置は、たとえば、本発明の半導体装置の製造方法により製造することができる。すなわち、裏面にCu層を含む半導体チップを準備する工程と、表面がCuからなるダイパッドに、CuおよびPbを含まない異種金属と、Bi系材料とを含有する接合材を介して、前記Cu層と前記接合材とが接触するように、前記半導体チップを接合する工程と、前記半導体チップの接合後、前記ダイパッドを熱処理する工程とを含む、半導体装置の製造方法により製造することができる。
 この方法によれば、半導体チップのCu層と接合材とが接触するように、ダイパッドに半導体チップが接合され、その後、ダイパッドが熱処理される。これにより、半導体チップのCu層およびダイパッドの表面を形成するCuのそれぞれと、接合材中の異種金属(CuおよびPbを含まない金属)とが反応して、Cu層およびダイパッドの表面近傍にCu合金層が形成される。一方、接合材中の異種金属以外の成分は、Cuとほとんど反応しないので、合金層の間に、これらに挟まれたBi系材料層として残存することとなる。
 接合層の形成にあたって、接合材中の成分(Bi系材料および異種金属)がCu以外の金属元素と接触することがなく、さらに、ダイパッドと半導体チップとの対向方向におけるBi系材料層の両側に合金層が形成される。そのため、ダイパッドや半導体チップにAu、Ag、Niなどの阻害金属元素を含むメタル層が形成されていても、Bi系材料層と上記阻害金属元素との接触を防止することができる。
 そして、接合材中の異種金属としてSnが含有されている場合、Cu合金層の少なくとも一つは、Cu-Sn合金層として形成することができる。また、接合材中の異種金属としてZnが含有されている場合、Cu合金層の少なくとも一つは、Cu-Zn合金層として形成することができる。
 このようなCu-Sn合金およびCu-Zn合金はいずれも、Bi-Au合金、Bi-Ag合金などのように硬くて脆い金属ではなく、高強度な金属である。そのため、これらの合金層によって、半導体チップおよびダイパッドと接合層との接合強度を向上させることができる。
 また、前記半導体チップが、前記Cu層が裏面側に形成されたSi基板を含む場合、前記Si基板と前記Cu層との間には、Si半導体に対してオーミック接触可能な金属層が形成されていることが好ましい。これにより、当該金属層を介してCu層とSi基板とを導通させることができる。その結果、Si基板とダイパッドとを電気的に接続することができる。
 そして、このような態様の半導体装置は、たとえば、上記した本発明の半導体装置の製造方法の前記半導体チップを準備する工程において、前記Si基板の裏面にSi半導体に対してオーミック接触可能な金属層を形成する工程と、当該金属層上に前記Cu層を形成する工程とを実行することにより製造することができる。
 また、本発明の半導体装置では、前記ダイパッドは、その周囲に配置されたリードと協働して、リードフレームを構成していてもよい。つまり、ダイパッドがリードフレームの一部であってもよい。
 また、本発明の半導体装置が、樹脂パッケージを有する樹脂封止型の半導体装置である場合、前記リードフレームの裏面が前記樹脂パッケージから露出する露出面とされ、前記リードフレームの表面が前記樹脂パッケージにより封止されており、前記リードフレームの前記ダイパッドおよび/または前記リードは、前記封止面側から前記封止面の周縁部が押圧されることにより、前記封止面が変形して形成された変形部と、前記変形部の側方に形成され、前記樹脂パッケージ内においてその側面から突出した突出部とを含むことが好ましい。
 この構成によれば、リードフレームの側面を封止する樹脂パッケージ内には、リードフレームの側面から突出部が突出しており、この突出部が樹脂パッケージに食い込んでいる。そのため、封止面(リードフレームの表面)と露出面(リードフレームの裏面)との対向方向において、パッケージ下面側(リードフレームの露出面側)へ向かう力がリードフレームに加わったとき、樹脂パッケージに食い込んだ突出部が引っ掛かる。その結果、リードフレームの抜けを抑制することができる。
 また、リードフレームの封止面は、その全域が同一平面ではなく、その周縁部に変形部を有している。そのため、変形部の形状によっては、封止面と露出面との対向方向に交差する横方向において、リードフレームに力が加わったとき、封止面の周縁部がその横方向の力に対する抵抗となる。その結果、リードフレームの封止面の全域が同一平面である場合に比べて、リードフレームの横ずれを抑制することができる。
 すなわち、この構成により、樹脂パッケージからのリードフレームの抜けを防止しつつ、リードフレームの横ずれを抑制することができる半導体装置を提供することができる。
 前記変形部は、前記封止面が前記リードフレームの厚さ方向に凹むことにより形成された凹部であってもよい。この場合、封止面に凹部が形成されているので、凹部内に樹脂パッケージが入り込むことにより、樹脂パッケージの一部が凹部に嵌合されている。そのため、上記横方向の力がリードフレームに加わったとき、凹部内の樹脂パッケージに凹部が引っ掛かる。その結果、リードフレームの横ずれを防止することができる。
 また、前記封止面における前記凹部の周辺部は、隆起していることが好ましい。この場合、凹部の周辺部が隆起することにより、上記対向方向において、封止面の一部が盛り上がっている。そのため、上記横方向の力がリードフレームに加わったとき、その盛り上がった部分が、横ずれに対する抵抗となる。その結果、リードフレームの横ずれをより確実に防止することができる。
 また、前記凹部内には、突起が形成されていることが好ましい。この場合、凹部内に突起が形成されているため、凹部内における樹脂パッケージ内には、突起が突出している。この突起により、凹部内において、樹脂パッケージに対してリードフレームを食い込ませることができる。そのため、凹部と樹脂パッケージとの嵌合構造を複雑にすることができる。その結果、凹部に対する樹脂パッケージの嵌合強度を向上させることができる。
 また、前記リードフレームは、Cuからなっていてもよい。その場合、リードフレームの表面は、めっきやスパッタなどの処理による金属層により被覆されていない非被覆面であってもよい。つまり、リードフレームを構成するCuが、リードフレームの表面全体に露出していてもよい。これにより、半導体装置の製造にあたって、リードフレームにめっきやスパッタなどの処理をする必要がないので、コストを低減することができる。
 また、Cuからなるリードフレームにおいて、半導体チップが搭載されるダイパッドは、その表面側へ向かって順に積層されたCuを含まない金属層とフレーム側Cu層とを含む積層構造を有していてもよい。
 金属層としては、例えば、Ag層、Au層、Ni層などが挙げられる。その場合、ダイパッドの周囲に配置された複数のリードでは、リードの最表面に金属層が露出していることが好ましい。金属層の種類を適切に選択することにより、リードに接続するボンディングワイヤとして、Auワイヤ、Cuワイヤなどさまざまなワイヤを利用することができる。
 また、本発明の半導体装置の製造方法では、前記半導体チップを接合する工程が、前記ダイパッドと、当該ダイパッドの周囲に配置された複数のリードとを含むリードフレームの前記ダイパッドに前記半導体チップを接合する工程を含んでいてもよい。
 その場合、本発明の半導体装置の製造方法は、前記半導体チップを接合する工程に先立って実行され、前記リードフレームの前記ダイパッドおよび/または前記リードの表面側から、前記表面の周縁部を、ワイヤボンダのキャピラリまたは前記ワイヤボンダに前記キャピラリと交換して装着されるスタンピングツールで押圧して前記表面を変形させることにより、変形部および前記リードフレームの側面から突出する突出部を形成する工程と、前記リードフレームの熱処理後、前記リードフレームの前記裏面が露出するように、前記リードフレームの前記表面側を樹脂パッケージにより封止する工程とをさらに含んでいてもよい。
 この方法によれば、リードフレームの表面の周縁部をスタンピングツールで押圧することにより、変形部および突出部が形成される。そのため、リードフレームの裏面(樹脂パッケージから露出することになる面)が覆われており、裏面側からのエッチング加工が困難な場合でも、リードフレームの抜けを抑制するための突出部(抜け止め構造)を確実に形成することができる。また、ワイヤボンダのキャピラリまたはワイヤボンダにキャピラリと交換して装着されるスタンピングツールを用いてリードフレームを押圧するため、リードフレームの周縁部に焦点を絞って、リードフレームを簡単かつ精密に変形させることができる。
 すなわち、この構成により、エッチングによりリードフレームに抜け止め構造を形成することが困難な場合でも、当該抜け止め構造を簡単かつ精密に形成することができる半導体装置の製造方法を提供することができる。
 また、本発明の半導体装置では、前記半導体チップの表面に、電極パッドが形成されていてもよい。この場合、前記電極パッドは、Alを含む金属材料からなっていてもよい。
 また、本発明の半導体装置では、前記Si基板と前記Cu層との間に形成された前記金属層が、Au層であってもよい。その場合、前記Si基板と前記Au層との間に形成されたNi層をさらに含んでいることが好ましい。また、Si基板の厚さは、220μm~240μmであってもよい。
 また、本発明の半導体装置では、前記リードフレームが、めっき法により形成されていることが好ましい。その場合、リードフレームの厚さは、10μm~50μmであってよい。
 また、本発明の半導体装置では、前記ダイパッドが平面視四角状であり、前記複数のリードが、当該ダイパッドの四方を取り囲むように配置されていてもよい。すなわち、本発明の半導体装置は、QFN(Quad Flat Non-leaded)が適用された半導体装置であってもよい。
 その場合、前記ダイパッドが、平面視で前記半導体チップよりも大きい四角状であり、前記ダイパッドの前記封止面の前記周縁部が、前記半導体チップを取り囲んでいることが好ましい。
 また、本発明の半導体装置では、前記Bi系材料層の厚さと前記Cu合金層の厚さとの合計である前記接合層の総厚さが、12μm~36μmであってもよい。また、前記Bi系材料層の厚さは、10μm~30μmであってもよい。また、前記Cu合金層の厚さが、1μm~3μmであってもよい。
図1は、本発明の第1実施形態に係る半導体装置の模式平面図である。 図2は、本発明の第1実施形態に係る半導体装置の模式断面図であって、図1のA-A切断面における断面を表している。 図3は、図2の破線円Bで囲まれた部分の要部拡大図である。 図4は、図2の破線円Cで囲まれた部分の要部拡大図である。 図5は、図2の破線円Dで囲まれた部分の要部拡大図である。 図6Aは、図1および図2に示す半導体装置の製造工程の一部を示す模式断面図である。 図6Bは、図6Aの次の工程を示す模式断面図である。 図6Cは、図6Bの次の工程を示す模式断面図である。 図6Dは、図6Cの次の工程を示す模式断面図である。 図6Eは、図6Dの次の工程を示す模式断面図である。 図6Fは、図6Eの次の工程を示す模式断面図である。 図6Gは、図6Fの次の工程を示す模式断面図である。 図7は、図3に示したリードの第1変形例を示す図である。 図8は、図3に示したリードの第2変形例を示す図である。 図9は、図3に示したリードの第3変形例を示す図である。 図10は、図3に示したリードの第4変形例を示す図である。 図11は、図1に示したピン凹部の配置形態の変形例を示す図である。 図12は、本発明の第2実施形態に係る半導体装置の模式平面図である。 図13は、本発明の第2実施形態に係る半導体装置の模式断面図であって、図12のA´-A´切断面における断面を表している。 図14は、図13に示したリードフレームの変形例を示す図である。 図15は、図14の破線円Fで囲まれた部分の要部拡大図である。 図16は、図14の破線円Gで囲まれた部分の要部拡大図である。
 以下では、本発明の実施の形態を、添付図面を参照して詳細に説明する。
<第1実施形態>
 図1は、本発明の第1実施形態に係る半導体装置の模式平面図である。図2は、本発明の第1実施形態に係る半導体装置の模式断面図であって、図1のA-A切断面における断面を表している。図3は、図2の破線円Bで囲まれた部分の要部拡大図である。図4は、図2の破線円Cで囲まれた部分の要部拡大図である。図5は、図2の破線円Dで囲まれた部分の要部拡大図である。なお、図1は、樹脂パッケージが取り外された状態を表している。
 半導体装置1は、QFN(Quad Flat Non-leaded)が適用された半導体装置である。半導体装置1は、表面21および裏面22を有する半導体チップ2と、半導体チップ2が搭載されるダイパッド3と、ダイパッド3の周囲に配置された複数の電極リード4と、半導体チップ2と電極リード4とを電気的に接続するボンディングワイヤ5と、これらを封止する樹脂パッケージ6とを備えている。
 半導体チップ2は、平面視四角状(たとえば、2.3mm×2.3mm程度の四角形)のSi基板7を備えている。Si基板7の厚さは、たとえば、220μm~240μm(好ましくは、230μm程度)である。Si基板7の上面には、複数の配線層が層間絶縁膜を介して積層されてなる多層配線構造(図示せず)が形成されており、その多層配線構造の最表面は、表面保護膜(図示せず)で覆われている。
 当該表面保護膜には、多層配線構造における最上の配線層を露出させるためのパッド開口8が複数形成されている。パッド開口8は、平面視四角状であり、半導体チップ2の各縁に同数ずつ(図1では、4つずつ)設けられている。各パッド開口8は、半導体チップ2の各辺に沿って等間隔に配置されている。そして、配線層の一部が、半導体チップ2の電極パッド9として、各パッド開口8から露出されている。なお、パッド開口8が形成された面が、半導体チップ2の表面21を形成している。
 電極パッド9として露出する最上の配線層は、たとえば、Al(アルミニウム)を含む金属材料からなり、具体的には、Alを主成分とする金属材料(たとえば、Al-Cu合金など)からなる。
 一方、Si基板7の下面(ダイパッド3との対向面)には、裏メタル10が形成されている。この裏メタル10が半導体チップ2の裏面22を形成している。
 裏メタル10は、図3に示すように、Si基板7の側から順に、Au層11、Ni層12およびCu層13が積層された3層構造を有している。Au層11は、Si半導体に対してオーミック接触可能であり、Si基板7の下面に接触している。Ni層12は、裏メタル10の最表面をなすCu層13よりもSi基板7側に形成されており、Si基板7中のSiが裏メタル10の最表面に析出するSiノジュールを防止するための層である。
 ダイパッド3および複数の電極リード4は、同一の金属薄板からなるリードフレーム14として形成されている。リードフレーム14は、たとえば、めっき法により形成されている。めっき成長に用いられる金属材料としては、たとえば、Cuを主として含有するCu系素材、具体的には、純度99.9999%(6N)以上、純度99.99%(4N)以上といった高純度銅、Cuと異種金属との合金(たとえば、Cu-Fe-P合金など)など、たとえば、42アロイ(Fe-42%Ni)などのFe系素材などが挙げられる。また、リードフレーム14の厚さは、たとえば、100μm未満であり、好ましくは、10μm~50μmである。
 ダイパッド3は、平面視で半導体チップ2よりも大きい四角状(たとえば、平面視で2.7mm角程度)であり、四角環状の周縁部33が半導体チップ2を取り囲んでいる。
 ダイパッド3の表面31(樹脂パッケージ6により封止される封止面)は、めっきやスパッタなどの処理による金属薄膜により被覆されていない非被覆面であり、リードフレーム14を構成するCu系素材が表面31全体に露出している。
 ダイパッド3の周縁部33には、図4に示すように、ダイパッド3の表面31がリードフレーム14の厚さ方向に凹んだ微小なピン凹部34(変形部)が複数形成されている。
 このダイパッド3側のピン凹部34は、周縁部33の各直線部に同数ずつ(図1では、6つずつ)設けられている。各ピン凹部34は、周縁部33の各辺に沿って等間隔に配置されている。各ピン凹部34は、深さ方向に向かって径が窄むテーパ状の断面視略椀状をなし、たとえば、10μm~50μmの最大径、5μm~25μmの深さを有している。ダイパッド3の表面31において、各ピン凹部34を取り囲む平面視円環状の周辺面35は、表面31において半導体チップ2が搭載される搭載面36に対して隆起している。搭載面36は、ダイパッド3の裏面32(配線基板への実装面)に対して平行な面である。
 また、ダイパッド3の側面37には、周縁部33の各ピン凹部34と対向する各位置に、リードフレーム14の厚さ方向と直交する方向に突出した抜け止め部38(突出部)が形成されている。各抜け止め部38は、リードフレーム14の厚さ方向上側に形成され、断面視において、各ピン凹部34に隣接している。
 そして、半導体チップ2およびダイパッド3は、Si基板7の下面(半導体チップ2の裏面22)およびダイパッド3の表面31(搭載面36)が接合面として互いに対向した状態で、裏面22と表面31との間に接合層15を介在させることによって、互いに接合されている。これにより、半導体チップ2は、表面21を上方に向けた姿勢でダイパッド3に支持されている。
 接合層15は、図3に示すように、相対的に厚い主層としてのBi系材料層16と、相対的に薄い副層としてのCu-Sn合金層17,18とを備えている。
 Bi系材料層16は、主成分としてBiを含有しており、副成分として、Biの物性に影響を与えることのない程度の量のSn、Zn、Coなどが含有されていてもよい。
 Cu-Sn合金層17,18は、Cuと、CuおよびPdを含まない異種金属であるSnとの合金からなり、Cuが主成分として含有されている。
 半導体チップ2側のCu-Sn合金層17は、接合層15における裏メタル10のCu層13との界面近傍において、その全域にわたって形成されている。これにより、Cu-Sn合金層17は、裏メタル10のCu層13に接触している。Cu-Sn合金層17は、たとえば、ダイパッド3と半導体チップ2との対向方向において、Bi系材料層16の側から半導体チップ2側へ向かって、Cu6Sn5/Cu3Snで表される積層構造を有している。
 一方、ダイパッド3側のCu-Sn合金層18は、接合層15におけるダイパッド3の表面31との界面近傍において、その全域にわたって形成されている。これにより、Cu-Sn合金層18は、ダイパッド3の表面31に接触している。Cu-Sn合金層18は、たとえば、ダイパッド3と半導体チップ2との対向方向において、Bi系材料層16の側からダイパッド3側へ向かって、Cu6Sn5/Cu3Snで表される積層構造を有している。
 なお、Cu-Sn合金層17,18は、接合層15におけるダイパッド3の表面31との界面近傍および接合層15における裏メタル10のCu層13との界面近傍のそれぞれにおいて、それら部分的に形成されていてもよい。
 そして、Bi系材料層16およびCu-Sn合金層17,18は、ダイパッド3の表面31と裏メタル10のCu層13との間において、Bi系材料層16をダイパッド3と半導体チップ2との対向方向の両側から、Cu-Sn合金層17,18で挟み込んだ3層構造(Cu-Sn合金層17/Bi系材料層16/Cu-Sn合金層18)をなしている。
 上記のような接合層15の融点は、たとえば、260℃~265℃、好ましくは、265℃~271℃である。また、半導体チップ2とダイパッド3とが接合された状態において、接合層15の総厚さT(Bi系材料層16の厚さとCu-Sn合金層17,18の厚さとの合計)は、たとえば、12μm~36μmである。各層の厚さは、たとえば、Bi系材料層16の厚さが10μm~30μmであり、Cu-Sn合金層17,18の厚さが1μm~3μmである。
 ダイパッド3の裏面32(配線基板への実装面)は、樹脂パッケージ6から露出されている。露出した裏面32には、たとえば、錫(Sn)、錫-銀合金(Sn-Ag)などの金属材料からなるダイパッド裏面めっき19が形成されている。
 電極リード4は、図1に示すように、ダイパッド3の各側面37と直交する各方向における両側に設けられることにより、ダイパッド3の周囲に配置されている。ダイパッド3の各側面37に対向する電極リード4は、その対向する側面37と平行な方向に等間隔に配置されている。各電極リード4は、ダイパッド3の側面37と直交する方向(ダイパッド3との対向方向)に長尺な平面視長方形状に形成されており、その対向方向における長さ(裏面42側の長さ)は、たとえば、450μm程度である。
 電極リード4の表面41(ボンディングワイヤ5の接続面)は、図5に示すように、めっきやスパッタなどの処理による金属薄膜により被覆されていない非被覆面であり、リードフレーム14を構成するCu系素材が表面41全体を形成している。
 各電極リード4におけるダイパッド3側の縁部43には、電極リード4の表面41(樹脂パッケージ6により封止される封止面)がリードフレーム14の厚さ方向に凹んだ微小なピン凹部44(変形部)が複数形成されている。
 この電極リード4側のピン凹部44は、深さ方向に向かって径が窄む断面視略椀状をなし、たとえば、10μm~50μmの最大径、5μm~25μmの深さを有している。電極リード4の表面41において、各ピン凹部44を取り囲む平面視円環状の周辺面45は、表面41においてボンディングワイヤ5が接続される接続面46に対して隆起している。接続面46は、電極リード4の裏面42(配線基板への実装面)に対して平行な面である。
 また、電極リード4の側面47には、平面視で縁部43のピン凹部44を取り囲むように、リードフレーム14の厚さ方向と直交する方向に突出した抜け止め部48(突出部)が形成されている。各抜け止め部48は、リードフレーム14の厚さ方向上側に形成され、断面視においてピン凹部44に隣接している。
 電極リード4の裏面42(配線基板への実装面)は、樹脂パッケージ6から露出されている。露出した裏面42には、たとえば、錫(Sn)、錫-銀合金(Sn-Ag)などの金属材料からなるリード裏面めっき20が形成されている。
 ボンディングワイヤ5は、たとえば、銅(たとえば、純度99.9999%(6N)以上、純度99.99%(4N)以上といった高純度銅などであり、微量の不純物を含む場合はある。)からなる。ボンディングワイヤ5は、一つの電極パッド9と一つの電極リード4とを1対1で接続している。
 樹脂パッケージ6は、半導体装置1の外形をなし、略直方体状に形成されている。樹脂パッケージ6の大きさは、その平面サイズが、たとえば、4mm角程度であり、その厚さが、たとえば、0.85mm程度である。このような樹脂パッケージ6は、たとえば、エポキシ樹脂など公知のモールド樹脂からなり、リードフレーム14の各表面31,41および各側面37,47を覆い、各裏面32,33を露出させるように、半導体チップ2、ボンディングワイヤ5およびリードフレーム14を封止している。樹脂パッケージ6は、ダイパッド3の周縁部33および各電極リード4の縁部43のそれぞれにおいて、ピン凹部34およびピン凹部44に入り込んでいる。
 図6A~図6Gは、図1および図2に示す半導体装置の製造工程を工程順に示す模式断面図である。
 上記した半導体装置1を製造するには、たとえば、図6Aに示すように、めっき法により、ステンレス基板23上に、リードフレーム14の材料を、ダイパッド3および電極リード4を有するユニットを複数備えるパターンで成長させることにより、リードフレーム14が形成される。なお、図6A~図6Gでは、リードフレーム14の全体図は省略し、半導体チップ2を1つ搭載するのに必要な1ユニット分のダイパッド3および電極リード4のみを示す。
 次いで、図6Bに示すように、スタンピングツール24が、電極リード4のダイパッド3側の縁部43に、表面41に対して垂直に打ち付けられる。このスタンピングツール24は、後述するワイヤボンディングに使用されるワイヤボンダに、キャピラリと交換して装着されるものである。スタンピングツール24の打ち付けにより、電極リード4の縁部43にスタンピングツール24の打痕として、電極リード4側のピン凹部44が形成される。また、ピン凹部44の形成と同時に、電極リード4におけるピン凹部44の周辺部分がスタンピングツール24に押し広げられることにより、ピン凹部44を取り囲む電極リード4の周辺面45が隆起するとともに、ピン凹部44に隣接する電極リード4の側面47から抜け止め部48が突出する。
 なお、スタンピングツール24により電極リード4に印加される荷重は、目標とされるピン凹部44の深さにより異なるが、たとえば、200g~400g程度である。また、スタンピングツール24としては、たとえば、ワイヤなどを挿通する孔を持たないスタンピングキャピラリ(たとえば、TOTO社製など)などを適用することができる。
 その後は、図6Cに示すように、図6Bと同様の工程が残りの電極リード4にも行なわれることにより、全ての電極リード4の縁部43にピン凹部44が形成される。
 次いで、図6Cに示すように、図6Bと同様の工程により、ダイパッド3の周縁部33に、その各辺に沿ってスタンピングツール24が順に打ち付けられる。これにより、ダイパッド3側のピン凹部34が形成されて、ピン凹部34を取り囲むダイパッド3の周辺面35が隆起するとともに、ピン凹部34に隣接するダイパッド3の側面37から抜け止め部38が突出する。
 一方、図6Dに示すように、Si基板7の下面にAu層11、Ni層12およびCu層13が順に積層されることにより、裏メタル10が形成される。これにより、裏メタル10を有する半導体チップ2が準備される。
 次いで、図6Eに示すように、Snを含有するBi系材料からなる接合材としての接合ペースト25が、ダイパッド3の表面31に塗布される。
 接合ペースト25におけるSnの含有量は、たとえば、裏メタル10のCu層13およびダイパッド3の表面31のCuに対して全量が拡散できる量であることが好ましく、たとえば、4wt%以下、好ましくは、1~3wt%、さらに好ましくは、1.5~2.5wt%である。
 接合ペースト25の塗布後、図6Fに示すように、裏メタル10のCu層13が接合ペースト25に接触するにように、半導体チップ2およびダイパッド3によって接合ペースト25を挟み込む。続いて、たとえば、290℃~300℃でリフロー(熱処理)が実行される。
 これにより、図6Gに示すように、裏メタル10のCu層13およびダイパッド3の表面31のCuのそれぞれと、接合ペースト25中のSnとが反応して、Cu層13および表面31近傍にCu-Sn合金層17,18が形成される。一方、接合ペースト25中のBiは、Cuとほとんど反応しないので、Cu-Sn合金層17,18の間に、これらに挟まれたBi系材料層16として残存することとなる。
 その後、全ての半導体チップ2の各電極パッド9と、各電極パッド9に対応する電極リード4とが、ボンディングワイヤ5によって接続される。
 全てのワイヤボンディング終了後、リードフレーム14が成形金型にセットされ、全ての半導体チップ2がリードフレーム14とともに、樹脂パッケージ6により一括して封止される。
 樹脂パッケージ6による封止後、ステンレス基板23とリードフレーム14とが剥離される。次いで、樹脂パッケージ6から露出するダイパッド3の裏面32にダイパッド裏面めっき19が形成され、同時に、電極リード4の裏面42にリード裏面めっき20が形成される。最後に、ダイシングソーを用いて、リードフレーム14が樹脂パッケージ6とともに各半導体装置1のサイズに切断されることにより、図1に示す半導体装置1の個片が得られる。
 以上のように、上記の方法によれば、ダイパッド3の表面31に塗布された接合ペースト25は、裏メタル10のCu層13に接触するにように、半導体チップ2およびダイパッド3によって挟み込まれる。その後、リフロー(熱処理)が実行されることによって、Bi系材料層16およびCu-Sn合金層17,18を有する接合層15が形成される。
 接合層15の形成にあたって、接合ペースト25中の成分(Bi系材料およびSn)がCu以外の金属元素と接触することがなく、さらに、半導体チップ2とダイパッド3との対向方向において、Bi系材料層16の両側にCu-Sn合金層17,18が形成される。
 そのため、Bi系材料層16の特性を低下させるおそれのある、裏メタル10のAu層11中のAuやNi層12中のNiなどの阻害金属元素とBi系材料層16との接触を防止することができる。その結果、Biと上記阻害金属元素との金属間化合物の形成およびBiと上記阻害金属元素との共晶組成物の形成を防止することができる。よって、接合層15の耐温度サイクル性を向上できるとともに、接合層15の融点を高く維持することができる。
 一方、Bi系材料層16がCu-Sn層17,18に接触しているが、CuはBiとほとんど反応しないので、これらの層同士の接触による、接合層15の融点低下や耐温度サイクル性の低下のおそれはほとんどない。
 また、接合層15が、Bi系材料層16およびCu-Sn合金層17,18からなるので、接合層15の鉛フリー化を達成することができる。
 また、Cu-Sn合金は、Bi-Au合金、Bi-Ag合金などのように硬くて脆い金属ではなく、高強度な金属である。そのため、Cu-Sn合金層17,18によって、半導体チップ2およびリードフレーム14と、接合層15との接合強度を向上させることができる。
 また、Si基板7の下面にAu層11が接触しているので、このAu層11を介してCu層13とSi基板7とを導通させることができる。これにより、Si基板7とダイパッド3とを電気的に接続することができる。
 また、ダイパッド3の表面31および電極リード4の表面41のいずれもが、めっきやスパッタなどの処理による金属薄膜により被覆されていない非被覆面であるため、半導体装置1の製造にあたって、リードフレーム14にめっきやスパッタなどの処理をする必要がないので、コストを低減することができる。
 また、この実施形態に係る半導体装置1の構成によれば、下記の課題を解決することができる。
 その課題とは、従来、半導体装置を配線基板上に高密度に実装するために、樹脂パッケージからのリードの延伸を排除し、パッケージ下面にリードフレームのリード端子(半導体チップと電気接続された端子部分)を露出させ、配線基板上への表面実装を可能とした高密度実装用のパッケージが用いられている。このような高密度実装用のパッケージとしては、たとえば、QFN(Quad Flat Non-leaded Package)やSON(Small Outlined Non-leaded Package)などのリードレスパッケージが知られている。
 このような半導体パッケージにおいて、さらに、半導体チップからの放熱性を高めるために、パッケージ下面に、リードフレームのダイパッド(半導体チップが搭載される支持部)を露出させる構造のパッケージ(たとえば、HQFN:Heat sinked Quad Flat Non-leaded Package)も実用化されている。
 これらの形態のパッケージでは、半導体チップとともにモールド樹脂でパッケージングされるリードフレームの実装面がパッケージ下面に露出する構成である。そのため、リード端子およびダイパッドがパッケージから抜けやすいという不具合がある。たとえば、パッケージ実装後の基板曲げ試験などにおいて、パッケージに外力が加わったときにリード端子やダイパッドが抜けるおそれがある。
 そこで、リード端子やダイパッドの断面形状を略逆テーパ状にすることによって、モールド樹脂にそれらの側面を食い込ませて、リード端子やダイパッドの抜け防止が図られている。
 上記のような断面形状は、たとえば、半導体チップおよびリードフレームのパッケージングに先立って、リードフレームを実装面側(裏面側)からエッチングし、リード端子やダイパッドの側面の一部を除去することによって形成される。
 リードフレームとして、従来から100μm~200μm程度の金属薄板が用いられているが、近年、めっき法により形成されるリードフレームが用いられつつある。たとえば、基板上に、所定のフレームパターンのめっき成長を行なうことにより、リードフレームを形成する方法が検討されている。このような方法では、リードフレームの厚さを精密に制御できるので、リードフレームを薄く形成することにより、パッケージの薄型化が図られるかもしれない。
 しかし、リードフレームと基板との剥離のタイミングは、リードフレームが半導体チップとともにパッケージングされた後である。そのため、パッケージング前においては、リードフレーム(リード端子およびダイパッド)の実装面が基板に覆われているので、リードフレームを実装面側からエッチング加工することが困難である。一方、パッケージング後においては、基板が剥離されても、リードフレームの側面がすでにモールド樹脂で覆われているので、側面をエッチング加工することが困難である。
 上記の理由から、めっき法によりリードフレームを形成する場合には、リードフレームの抜け止め構造を形成することが困難であるという不具合がある。
 また、従来のリードフレームは、実装面とは反対側の封止面全域が同一平面であり、モールド樹脂に対して平面状に接触しているため、モールド樹脂に対してリードフレームが横ずれしやすいという不具合もある。
 そこで、この実施形態では、ダイパッド3の側面37および電極リード4の側面47のそれぞれが樹脂パッケージ6により封止されており、側面37,47を封止する樹脂パッケージ6内には、側面37からダイパッド3側の抜け止め部38が、側面47から電極リード4側の抜け止め部48がそれぞれ突出している。
 これらの抜け止め部38,48は、リードフレーム14の厚さ方向に交差する横方向において、樹脂パッケージ6に食い込んでいる。そのため、リードフレーム14の厚さ方向において、樹脂パッケージ6の下面側(リードフレーム14の露出面側)へ向かう力がリードフレーム14に加わったとき、樹脂パッケージ6に食い込んだ抜け止め部38,48が引っ掛かる。その結果、リードフレーム14の抜けを抑制することができる。
 また、ダイパッド3の表面31は、その全域が同一平面ではなく、その周縁部33にピン凹部34が形成されており、ピン凹部34内に樹脂パッケージ6が入り込んでいる。これにより、樹脂パッケージ6の一部がピン凹部34に嵌合されている。また、電極リード4の表面41は、ダイパッド3の表面31と同様に、その全域が同一平面ではなく、その縁部43にピン凹部44が形成されており、ピン凹部44内に樹脂パッケージ6が入り込んでいる。これにより、樹脂パッケージ6の一部がピン凹部44に嵌合されている。
 そのため、上記横方向において、リードフレーム14に力が加わったとき、ピン凹部34,44内の樹脂パッケージ6にピン凹部34,44が引っ掛かる。その結果、リードフレーム14の横ずれを防止することができる。
 また、ダイパッド3の表面31において、ピン凹部34の周辺面35が隆起することにより、表面31の一部が盛り上がっている。また、電極リード4の表面41において、ピン凹部44の周辺面45が隆起することにより、表面41の一部が盛り上がっている。そのため、上記横方向の力がリードフレーム14に加わったとき、盛り上がった周辺面35,45が、横ずれに対する抵抗となる。その結果、リードフレーム14の横ずれをより確実に防止することができる。
 また、上記半導体装置1の製造方法によれば、図6Bに示すように、電極リード4に、樹脂パッケージ6から露出させる裏面42とは反対側の表面41の縁部43にスタンピングツール24を打ち付けることによって、ピン凹部44および抜け止め部48が形成される。また、図6Cに示すように、電極リード4と同様に、ダイパッド3にピン凹部34および抜け止め部38が形成される。
 そのため、たとえば、リードフレーム14をめっき成長により形成するために、リードフレーム14の露出面(裏面32,42)がステンレス基板23で覆われており、裏面32,42側からのエッチング加工が困難な場合でも、抜け止め部38,48(抜け止め構造)を確実に形成することができる。
 また、ワイヤボンダのキャピラリと交換可能なスタンピングツール24を用いてリードフレーム14を押圧するため、ダイパッド3の周縁部33および電極リード4の縁部43に焦点を絞って、ピン凹部34,44を簡単かつ精密に形成することができる。
 さらに、リードフレーム14がめっき法により形成されるので、めっき成長の時間を制御することにより、リードフレーム14を薄く形成することができる。その結果、パッケージの薄型化を図ることができる。
 なお、この第1実施形態では、たとえば、スタンピングツール24の打ち付けにより電極リード4が変形して形成される変形部分は、微小な円形のピン凹部に限られず、たとえば、直線状の凹部などであってもよい。
 また、ピン凹部である場合、その形状は、図4および図5に示した形状に限られない。
 たとえば、図7に第1変形例として示すように、電極リード4のダイパッド3側の縁部43に、ワイヤボンディングに使用されるキャピラリ26(中心に微小な孔27が1つ形成されたキャピラリ26)を垂直に打ち付けることにより、内部に突起28が1つ形成されたピン凹部29を形成してもよい。
 また、たとえば、図8に第2変形例として示すように、電極リード4のダイパッド3側の縁部43に、先端に微小な穴50が複数形成されたスタンピングツール51を垂直に打ち付けることにより、内部に突起52が複数形成されたピン凹部53を形成してもよい。
 図7および図8に示したリードの第1変形例および第2変形例では、ピン凹部29,53内に突起28,52が形成されているため、ピン凹部29,53内における樹脂パッケージ6内には、突起28,52が突出している。これらの突起28,52により、ピン凹部29,53内において、樹脂パッケージ6に対して電極リード4(リードフレーム14)を食い込ませることができる。そのため、ピン凹部29,53と樹脂パッケージ6との嵌合構造を複雑にすることができる。その結果、ピン凹部29,53に対する樹脂パッケージ6の嵌合強度を向上させることができる。
 また、ピン凹部は、深さ方向に向かって径が窄むテーパ状である必要はなく、たとえば、深さ方向に向かって径が広がる逆テーパ状であってもよい。
 また、たとえば、電極リード4のダイパッド3側の縁部43に、表面41を隆起させないように、表面41に対して鋭角にスタンピングツール24を打ち付けることにより、電極リード4を側面47側へ押し広げて抜け止め部48を形成してもよい。
 その場合、表面41に対するスタンピングツール24の角度を小さく調節することにより、図9に第3変形例として示すように、電極リード4の表面41に、スタンピングツール24の打痕が残らないように、傾斜面49(変形部)を形成することができる。
 一方、図10に第4変形例として示すように、表面41に対するスタンピングツール24の角度を大きく調節することにより、電極リード4の表面41に、凹部54を形成することができる。
 なお、図7~図10に示したリードの第1~第4変形例の形状は、ダイパッド3の側面37に抜け止め部38を形成する場合にも、適用することができる。
 また、各電極リード4に形成されるピン凹部44の数は1つに限られず、複数であってもよい。その場合、複数のピン凹部44は、図11に変形例として示すように、各電極リード4の縁部43の各辺に沿って互いに間隔を空けて配置されていてもよい。
 また、裏メタル10は、Au層11、Ni層12およびCu層13のそれぞれが1層ずつ積層された3層構造を有しているとしたが、これに限られず、たとえば、これらの層の少なくとも1種が複数積層されていてもよい。その場合、複数の層が連続して積層されていてもよいし、複数の層の間に別の種類の層が介在されていてもよい。
 また、裏メタル10は、Au層、Ni層およびCu層とは異なる層を備えていてもよい。たとえば、Ag層、Ti層などを備えていてもよい。Ti層は、Si半導体に対してオーミック接触可能なので、Au層11に代えて適用することができる。
<第2実施形態>
 図12は、本発明の第2実施形態に係る半導体装置の模式平面図である。図13は、本発明の第2実施形態に係る半導体装置の模式断面図であって、図12のA´-A´切断面における断面を表している。図12および図13において、前述の第1実施形態で説明した構成については、同一の参照符号を用いて表し、その説明を省略する。
 この第2実施形態の半導体装置61は、金属薄板からなるリードフレーム62を有している。リードフレーム62を構成する金属薄板は、Cuを主として含有するCu系素材からなり、具体的には、たとえば、純度99.9999%(6N)以上、純度99.99%(4N)以上といった高純度銅、Cuと異種金属との合金(たとえば、Cu-Fe-P合金など)からなる。なお、金属薄板は、たとえば、42アロイ(Fe-42%Ni)などのFe系素材などであってもよい。また、リードフレーム62(金属薄板)の厚さは、たとえば、190μm~210μm(好ましくは、200μm程度)である。
 また、このリードフレーム62を構成するダイパッド63および電極リード64は、それぞれの表面65および表面66が、第1実施形態とは異なり、凹部が形成されていない平坦面とされている。その他の構成は、第1実施形態と同様であり、また、作用効果も同様である。
 なお、第1および第2実施形態において、たとえば、接合層15の副層は、Cu-Sn合金層17,18である必要はなく、たとえば、Cuと、CuおよびPbを含まない異種金属であるZnとの合金からなり、Cuが主成分として含有されたCu-Zn合金層であってもよい。
 また、たとえば、リードフレーム62の表面(ダイパッド63の表面65および電極リード64の表面66)は、非被覆面である必要はない。その一例として、図14に第2実施形態の変形例として示すように、めっきやスパッタ処理が施されることにより被覆層67が形成されていてもよい。
 被覆層67は、ダイパッド63の表面65上においては、図15に示すように、ダイパッド63側から順にAg層68およびフレーム側Cu層69が積層された2層構造をなしている。Ag層68の上にフレーム側Cu層69を積層することにより、ダイパッド63における半導体チップ2との対向面(表面65)全体にCuを露出させることができる。
 一方、電極リード64の表面66上においては、被覆層67は、図16に示すように、Ag層68のみが形成された単層構造をなしている。これにより、ボンディングワイヤ5の接続面全体にAgを露出させることができる。そのため、電極リード4に接続するボンディングワイヤ5として、Cuワイヤだけではなく、Auワイヤなどさまざまなワイヤを利用することができる。
 この変形例の場合、たとえば、フレーム側Cu層69を、本発明のダイパッドの一例として利用することもできる。これにより、リードフレーム62を省略(フレームレス)することができる。 以上、本発明の実施形態を説明したが、本発明は他の形態で実施することもできる。
 たとえば、前述の実施形態では、QFNタイプの半導体装置を取り上げたが、本発明は、QFP(Quad Flat Package)、SOP(Small Outline Package)などといった他の種類のパッケージタイプの半導体装置に適用することもできる。
 また、本発明の実施形態は、本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の精神および範囲は添付の請求の範囲によってのみ限定される。
 また、本発明の各実施形態において表した構成要素は、本発明の範囲で組み合わせることができる。
 本出願は、2009年10月20日に日本国特許庁に提出された特願2009-241550号および2009年10月20日に日本国特許庁に提出された特願2009-241551号に対応しており、これらの出願の全開示はここに引用により組み込まれるものとする。
 1・・・半導体装置、2・・・半導体チップ、3・・・ダイパッド、4・・・電極リード、6・・・樹脂パッケージ、7・・・Si基板、9・・・電極パッド、10・・・裏メタル、11・・・Au層、12・・・Ni層、13・・・Cu層、14・・・リードフレーム、15・・・接合層、16・・・Bi系材料層、17・・・Cu-Sn合金層、18・・・Cu-Sn合金層、21・・・(半導体チップの)表面、22・・・(半導体チップの)裏面、24・・・スタンピングツール、25・・・接合ペースト、26・・・キャピラリ、28・・・突起、29・・・ピン凹部、31・・・(ダイパッドの)表面、32・・・(ダイパッドの)裏面、33・・・(ダイパッドの)周縁部、34・・・ピン凹部、35・・・(ダイパッドの)周辺面、37・・・(ダイパッドの)側面、38・・・(ダイパッドの)抜け止め部、41・・・(電極リードの)表面、42・・・(電極リードの)裏面、43・・・(電極リードの)縁部、44・・・ピン凹部、45・・・(電極リードの)周辺面、47・・・(電極リードの)側面、48・・・(電極リードの)抜け止め部、49・・・傾斜面、51・・・スタンピングツール、52・・・突起、53・・・ピン凹部、54・・・凹部、61・・・半導体装置、62・・・リードフレーム、63・・・ダイパッド、64・・・電極リード、65・・・(ダイパッドの)表面、66・・・(電極リードの)表面、67・・・被覆層、68・・・Ag層、69・・・フレーム側Cu層

Claims (28)

  1. 表面がCuからなるダイパッドと、
    裏面を形成するCu層を含み、前記ダイパッドの前記表面に対向するように配置された半導体チップと、
     前記ダイパッドと前記半導体チップとの間に接合層とを含み、
     前記接合層は、Bi系材料層と、当該Bi系材料層に対して前記ダイパッドと前記半導体チップとの対向方向の両側から前記Bi系材料層を挟みこむPbを含まないCu合金層とを含む、半導体装置。
  2. 表面および裏面を有し、当該表面がCuからなるダイパッドと、
    表面および裏面を有し、当該裏面を形成するCu層を含み、前記ダイパッドの前記表面に対向するように配置された半導体チップと、
     前記ダイパッドと前記半導体チップとの間に接合層とを含み、
     前記接合層は、Bi系材料層と、当該Bi系材料層に対して前記ダイパッドと前記半導体チップとの対向方向の両側から前記Bi系材料層を挟みこむPbを含まないCu合金層とを含む、半導体装置。
  3.  前記Cu合金層の少なくとも一つが、Cu-Sn合金層である、請求項1または2に記載の半導体装置。
  4.  前記Cu合金層の少なくとも一つが、Cu-Zn合金層である、請求項1または2に記載の半導体装置。
  5.  前記半導体チップが、前記Cu層が裏面側に形成されたSi基板を含み、
     前記Si基板と前記Cu層との間には、Si半導体に対してオーミック接触可能な金属層が形成されている、請求項1~3のいずれか一項に記載の半導体装置。
  6.  前記ダイパッドの周囲に配置された複数のリードをさらに含み、
     前記ダイパッドと複数の前記リードとが、協働してリードフレームを構成している、請求項1~5のいずれか一項に記載の半導体装置。
  7.  前記半導体装置が、樹脂パッケージを有する樹脂封止型の半導体装置であって、
     前記リードフレームの裏面が前記樹脂パッケージから露出する露出面とされ、前記リードフレームの表面が前記樹脂パッケージにより封止されており、
     前記リードフレームの前記ダイパッドおよび/または前記リードは、
      前記封止面側から前記封止面の周縁部が押圧されることにより、前記封止面が変形して形成された変形部と、
      前記変形部の側方に形成され、前記樹脂パッケージ内においてその側面から突出した突出部とを含む、請求項6に記載の半導体装置。
  8.  前記変形部は、前記封止面が前記リードフレームの厚さ方向に凹むことにより形成された凹部である、請求項7に記載の半導体装置。
  9.  前記封止面における前記凹部の周辺部が隆起している、請求項8に記載の半導体装置。
  10.  前記凹部内に突起が形成されている、請求項8または9に記載の半導体装置。
  11.  前記リードフレームが、Cuからなる、請求項8~10のいずれか一項に記載の半導体装置。
  12.  前記ダイパッドは、その表面を形成するフレーム側Cu層と、このフレーム側Cu層の直下に形成されたCuを含まない金属層との積層構造を有する、請求項11に記載の半導体装置。
  13.  前記半導体チップの表面には、電極パッドが形成されている、請求項1~12のいずれか一項に記載の半導体装置。
  14.  前記電極パッドが、Alを含む金属材料からなる、請求項13に記載の半導体装置。
  15.  前記Si基板と前記Cu層との間に形成された前記金属層が、Au層である、請求項5に記載の半導体装置。
  16.  前記Si基板と前記Au層との間に形成されたNi層をさらに含む、請求項15に記載の半導体装置。
  17.  前記Si基板の厚さが、220μm~240μmである、請求項5に係る請求項6~16のいずれか一項に記載の半導体装置。
  18.  前記リードフレームが、めっき法により形成されている、請求項7~12のいずれか一項および請求項7に係る請求項13~17のいずれか一項に記載の半導体装置。
  19.  前記リードフレームの厚さが、10μm~50μmである、請求項18に記載の半導体装置。
  20.  前記ダイパッドが平面視四角状であり、
     前記複数のリードが、当該ダイパッドの四方を取り囲むように配置されている、請求項7~12のいずれか一項および請求項7に係る請求項13~19のいずれか一項に記載の半導体装置。
  21.  前記ダイパッドが、平面視で前記半導体チップよりも大きい四角状であり、
     前記ダイパッドの前記封止面の前記周縁部が、前記半導体チップを取り囲んでいる、請求項20に記載の半導体装置。
  22.  前記Bi系材料層の厚さと前記Cu合金層の厚さとの合計である前記接合層の総厚さが、12μm~36μmである、請求項1~21のいずれか一項に記載の半導体装置。
  23.  前記Bi系材料層の厚さが、10μm~30μmである、請求項1~22のいずれか一項に記載の半導体装置。
  24.  前記Cu合金層の厚さが、1μm~3μmである、請求項1~23のいずれか一項に記載の半導体装置。
  25.  裏面にCu層を含む半導体チップを準備する工程と、
     表面がCuからなるダイパッドに、CuおよびPbを含まない異種金属と、Bi系材料とを含有する接合材を介して、前記Cu層と前記接合材とが接触するように、前記半導体チップを接合する工程と、
     前記半導体チップの接合後、前記ダイパッドを熱処理する工程とを含む、半導体装置の製造方法。
  26.  前記半導体チップが、Si基板を備えており、
     前記半導体チップを準備する工程が、
      前記Si基板の裏面にSi半導体に対してオーミック接触可能な金属層を形成する工程と、
      当該金属層上に前記Cu層を形成する工程とを含む、請求項25に記載の半導体装置の製造方法。
  27.  前記半導体チップを接合する工程が、前記ダイパッドと、当該ダイパッドの周囲に配置された複数のリードとを含むリードフレームの前記ダイパッドに前記半導体チップを接合する工程を含む、請求項25または26に記載の半導体装置の製造方法。
  28.  前記半導体チップを接合する工程に先立って実行され、前記リードフレームの前記ダイパッドおよび/または前記リードの表面側から、前記表面の周縁部を、ワイヤボンダのキャピラリまたは前記ワイヤボンダに前記キャピラリと交換して装着されるスタンピングツールで押圧して前記表面を変形させることにより、変形部および前記リードフレームの側面から突出する突出部を形成する工程と、
     前記リードフレームの熱処理後、前記リードフレームの前記裏面が露出するように、前記リードフレームの前記表面側を樹脂パッケージにより封止する工程とをさらに含む、請求項27に記載の半導体装置の製造方法。
PCT/JP2010/068478 2009-10-20 2010-10-20 半導体装置および半導体装置の製造方法 WO2011049128A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011537281A JPWO2011049128A1 (ja) 2009-10-20 2010-10-20 半導体装置および半導体装置の製造方法
US13/503,027 US9666501B2 (en) 2009-10-20 2010-10-20 Semiconductor device including a lead frame
US15/498,463 US9847280B2 (en) 2009-10-20 2017-04-26 Method for manufacturing semiconductor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-241550 2009-10-20
JP2009241551 2009-10-20
JP2009-241551 2009-10-20
JP2009241550 2009-10-20

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/503,027 A-371-Of-International US9666501B2 (en) 2009-10-20 2010-10-20 Semiconductor device including a lead frame
US15/498,463 Division US9847280B2 (en) 2009-10-20 2017-04-26 Method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
WO2011049128A1 true WO2011049128A1 (ja) 2011-04-28

Family

ID=43900351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068478 WO2011049128A1 (ja) 2009-10-20 2010-10-20 半導体装置および半導体装置の製造方法

Country Status (4)

Country Link
US (2) US9666501B2 (ja)
JP (1) JPWO2011049128A1 (ja)
TW (1) TWI480993B (ja)
WO (1) WO2011049128A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216813A (ja) * 2010-04-02 2011-10-27 Fujitsu Ltd はんだ接合方法、半導体装置及びその製造方法
JP2012253242A (ja) * 2011-06-03 2012-12-20 Panasonic Corp 接合構造体
CN103493190A (zh) * 2011-12-27 2014-01-01 松下电器产业株式会社 接合结构体
JP2020170736A (ja) * 2019-04-01 2020-10-15 富士電機株式会社 半導体装置
CN112317972A (zh) * 2020-09-30 2021-02-05 厦门大学 一种单向性耐高温焊接接头的低温快速制造方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102683221B (zh) * 2011-03-17 2017-03-01 飞思卡尔半导体公司 半导体装置及其组装方法
US10043960B2 (en) * 2011-11-15 2018-08-07 Cree, Inc. Light emitting diode (LED) packages and related methods
CN103681557B (zh) * 2012-09-11 2017-12-22 恩智浦美国有限公司 半导体器件及其组装方法
DE102015102453A1 (de) * 2015-02-20 2016-08-25 Heraeus Deutschland GmbH & Co. KG Bandförmiges Substrat zur Herstellung von Chipkartenmodulen, Chipkartenmodul, elektronische Einrichtung mit einem derartigen Chipkartenmodul und Verfahren zur Herstellung eines Substrates
JP6555927B2 (ja) * 2015-05-18 2019-08-07 大口マテリアル株式会社 半導体素子搭載用リードフレーム及び半導体装置の製造方法
JP6149072B2 (ja) 2015-07-07 2017-06-14 アオイ電子株式会社 半導体装置およびその製造方法
US9741617B2 (en) * 2015-11-16 2017-08-22 Amkor Technology, Inc. Encapsulated semiconductor package and method of manufacturing thereof
DE102016109349A1 (de) * 2016-05-20 2017-11-23 Infineon Technologies Ag Chipgehäuse, verfahren zum bilden eines chipgehäuses und verfahren zum bilden eines elektrischen kontakts
JP6857035B2 (ja) * 2017-01-12 2021-04-14 ローム株式会社 半導体装置
US9972558B1 (en) * 2017-04-04 2018-05-15 Stmicroelectronics, Inc. Leadframe package with side solder ball contact and method of manufacturing
US10008454B1 (en) * 2017-04-20 2018-06-26 Nxp B.V. Wafer level package with EMI shielding
US10079198B1 (en) * 2017-05-31 2018-09-18 Stmicroelectronics, Inc. QFN pre-molded leadframe having a solder wettable sidewall on each lead
US11367619B2 (en) * 2017-08-17 2022-06-21 Semiconductor Components Industries, Llc Semiconductor package electrical contacts and related methods
IT201700103511A1 (it) * 2017-09-15 2019-03-15 St Microelectronics Srl Dispositivo microelettronico dotato di connessioni protette e relativo processo di fabbricazione
JP2019083295A (ja) * 2017-10-31 2019-05-30 トヨタ自動車株式会社 半導体装置
TW201926608A (zh) * 2017-12-07 2019-07-01 晨星半導體股份有限公司 晶片封裝結構
US20190206770A1 (en) * 2017-12-29 2019-07-04 Texas Instruments Incorporated Integrated circuit package with lead lock
CN110265376A (zh) * 2018-03-12 2019-09-20 意法半导体股份有限公司 引线框架表面精整
US10763195B2 (en) * 2018-03-23 2020-09-01 Stmicroelectronics S.R.L. Leadframe package using selectively pre-plated leadframe
WO2019229829A1 (ja) * 2018-05-29 2019-12-05 新電元工業株式会社 半導体モジュール
US10777489B2 (en) * 2018-05-29 2020-09-15 Katoh Electric Co., Ltd. Semiconductor module
SG10201811582WA (en) * 2018-12-24 2020-07-29 Delta Electronics Int’L Singapore Pte Ltd Package structure and manufacturing method thereof
US11735512B2 (en) 2018-12-31 2023-08-22 Stmicroelectronics International N.V. Leadframe with a metal oxide coating and method of forming the same
US11837532B2 (en) * 2020-01-15 2023-12-05 Texas Instruments Incorporated Leadframe with delamination resistant feature
JP7451455B2 (ja) * 2021-03-19 2024-03-18 株式会社東芝 半導体装置
JP2022146270A (ja) * 2021-03-22 2022-10-05 ローム株式会社 半導体装置
TWI847658B (zh) * 2023-04-24 2024-07-01 強茂股份有限公司 具表面散熱結構的側面可濕潤半導體封裝元件及製法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001179483A (ja) * 1999-12-24 2001-07-03 Toyota Central Res & Dev Lab Inc 電子部品の実装構造体およびその製造方法
JP2006253732A (ja) * 2000-12-28 2006-09-21 Renesas Technology Corp 半導体装置
JP2007281412A (ja) * 2006-03-17 2007-10-25 Toyota Central Res & Dev Lab Inc パワー半導体モジュール
JP2008211101A (ja) * 2007-02-27 2008-09-11 Dowa Electronics Materials Co Ltd 半田層及びそれを用いたデバイス接合用基板並びにその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3062192B1 (ja) * 1999-09-01 2000-07-10 松下電子工業株式会社 リ―ドフレ―ムとそれを用いた樹脂封止型半導体装置の製造方法
JP3895570B2 (ja) 2000-12-28 2007-03-22 株式会社ルネサステクノロジ 半導体装置
US7358106B2 (en) * 2005-03-03 2008-04-15 Stellar Micro Devices Hermetic MEMS package and method of manufacture
JP4569423B2 (ja) 2005-08-31 2010-10-27 株式会社日立製作所 半導体装置の製造方法
US20090108443A1 (en) 2007-10-30 2009-04-30 Monolithic Power Systems, Inc. Flip-Chip Interconnect Structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001179483A (ja) * 1999-12-24 2001-07-03 Toyota Central Res & Dev Lab Inc 電子部品の実装構造体およびその製造方法
JP2006253732A (ja) * 2000-12-28 2006-09-21 Renesas Technology Corp 半導体装置
JP2007281412A (ja) * 2006-03-17 2007-10-25 Toyota Central Res & Dev Lab Inc パワー半導体モジュール
JP2008211101A (ja) * 2007-02-27 2008-09-11 Dowa Electronics Materials Co Ltd 半田層及びそれを用いたデバイス接合用基板並びにその製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216813A (ja) * 2010-04-02 2011-10-27 Fujitsu Ltd はんだ接合方法、半導体装置及びその製造方法
JP2012253242A (ja) * 2011-06-03 2012-12-20 Panasonic Corp 接合構造体
EP2717303A1 (en) * 2011-06-03 2014-04-09 Panasonic Corporation Bonded structure
EP2717303A4 (en) * 2011-06-03 2014-05-07 Panasonic Corp RELATED STRUCTURE
CN103493190A (zh) * 2011-12-27 2014-01-01 松下电器产业株式会社 接合结构体
EP2800129A4 (en) * 2011-12-27 2015-07-08 Panasonic Ip Man Co Ltd CONNECTION STRUCTURE
JP2020170736A (ja) * 2019-04-01 2020-10-15 富士電機株式会社 半導体装置
JP7338204B2 (ja) 2019-04-01 2023-09-05 富士電機株式会社 半導体装置
CN112317972A (zh) * 2020-09-30 2021-02-05 厦门大学 一种单向性耐高温焊接接头的低温快速制造方法
CN112317972B (zh) * 2020-09-30 2021-07-20 厦门大学 一种单向性耐高温焊接接头的低温快速制造方法

Also Published As

Publication number Publication date
US9847280B2 (en) 2017-12-19
TW201135890A (en) 2011-10-16
JPWO2011049128A1 (ja) 2013-03-14
US9666501B2 (en) 2017-05-30
US20170243811A1 (en) 2017-08-24
US20120205790A1 (en) 2012-08-16
TWI480993B (zh) 2015-04-11

Similar Documents

Publication Publication Date Title
WO2011049128A1 (ja) 半導体装置および半導体装置の製造方法
JP6800266B2 (ja) 半導体装置
US7508012B2 (en) Electronic component and method for its assembly
TWI533426B (zh) 導線架及半導體裝置
EP1748480B1 (en) Connection structure for attaching a semiconductor chip to a metal substrate, semiconductor chip and electronic component including the connection structure and methods for producing the connection structure
JP5601275B2 (ja) 接合材料、その製造方法、および接合構造の製造方法
US20070222040A1 (en) Leadless semiconductor package with electroplated layer embedded in encapsulant and the method for manufacturing the same
JP2006520103A (ja) 被覆ワイヤーで形成された、フリップチップ用被覆金属のスタッドバンプ
US20120306065A1 (en) Semiconductor package with pre-soldered grooves in leads
US7309909B2 (en) Leadframes for improved moisture reliability of semiconductor devices
US20080224290A1 (en) Low cost lead-free preplated leadframe having improved adhesion and solderability
TW201142994A (en) Semiconductor device and method of manufacturing the same
US7329944B2 (en) Leadframe for semiconductor device
TW201203397A (en) Semiconductor package without chip carrier and fabrication method thereof
US8786084B2 (en) Semiconductor package and method of forming
US7952198B2 (en) BGA package with leads on chip
US20100148367A1 (en) Semiconductor device and method for fabricating the same
US7109587B1 (en) Apparatus and method for enhanced thermal conductivity packages for high powered semiconductor devices
US8110931B2 (en) Wafer and semiconductor package
US6232651B1 (en) Lead frame for semiconductor device
CN113410201A (zh) 半导体装置、引线架以及半导体装置的制造方法
JPH0590465A (ja) 半導体装置
TWI436465B (zh) 銲線接合結構、銲線接合方法及半導體封裝構造的製造方法
JP2022113952A (ja) 半導体装置およびその製造方法
KR20020094965A (ko) 리드프레임 및 이를 이용한 반도체패키지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10824977

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011537281

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13503027

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10824977

Country of ref document: EP

Kind code of ref document: A1