WO2011043563A2 - 열교환기 - Google Patents

열교환기 Download PDF

Info

Publication number
WO2011043563A2
WO2011043563A2 PCT/KR2010/006741 KR2010006741W WO2011043563A2 WO 2011043563 A2 WO2011043563 A2 WO 2011043563A2 KR 2010006741 W KR2010006741 W KR 2010006741W WO 2011043563 A2 WO2011043563 A2 WO 2011043563A2
Authority
WO
WIPO (PCT)
Prior art keywords
tube
fixing plate
heat exchanger
tubes
protrusion
Prior art date
Application number
PCT/KR2010/006741
Other languages
English (en)
French (fr)
Other versions
WO2011043563A3 (ko
Inventor
신현길
민명기
Original Assignee
주식회사 경동나비엔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 경동나비엔 filed Critical 주식회사 경동나비엔
Publication of WO2011043563A2 publication Critical patent/WO2011043563A2/ko
Publication of WO2011043563A3 publication Critical patent/WO2011043563A3/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/40Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water tube or tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0417Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with particular circuits for the same heat exchange medium, e.g. with the heat exchange medium flowing through sections having different heat exchange capacities or for heating/cooling the heat exchange medium at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0209Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • F28F9/18Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding
    • F28F9/182Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding the heat-exchange conduits having ends with a particular shape, e.g. deformed; the heat-exchange conduits or end plates having supplementary joining means, e.g. abutments

Definitions

  • the present invention relates to a heat exchanger, and more particularly, to increase the welding area at the connection portion between the heat exchange tube and the tube fixing plate and the connection portion between the tube fixing plate and the flow cap to fix the tube connection portion more firmly and minimize the gap between the tubes. It relates to a heat exchanger to maximize the heat exchange efficiency by increasing the heat transfer area of the tube.
  • a combustion apparatus having a configuration capable of heating a heating water flowing along an inside of a heat exchange tube in a combustion chamber by using a burner may include a boiler and a water heater.
  • a boiler used in a general home or a public building is used for heating or hot water, and a water heater heats cold water to a predetermined temperature within a short time so that a user can conveniently use hot water.
  • combustors such as boilers and water heaters use oil or gas as fuel to combust through a burner, and then heat water using combustion heat generated during the combustion process, and the heated water is used according to a user's needs.
  • Such a combustion apparatus is provided with a heat exchanger to absorb the heat of combustion generated from the burner, and various methods have been proposed to improve the heat transfer efficiency of the heat exchanger.
  • a common heat exchanger is a pair of head tanks spaced up and down spaced parallel to each other and the heat exchange fluid is introduced or discharged, and a plurality of tubes connected between the pair of head tanks by a tube fixing plate, and the tube And a heat transfer fin installed between the heat sinks to improve heat transfer area to the fluid passing through the inside of the tube.
  • a plurality of fixing holes are formed in the tube fixing plate by punching, one end of the tube is fitted into the fixing hole, and the tube fixing plate is fixed to the tube fixing plate by welding between the fixing holes and the tube.
  • FIG. 1 is a cross-sectional view of a heat exchanger equipped with a heating fin in a conventional tube
  • FIG. 2 is a perspective view of a heat exchanger using a conventional round tube.
  • the heat exchanger is composed of a structure having a flow path cap (4) for separating the flow path of the heating water, such a heat exchanger is provided with a plurality of heat transfer fins (2) in the tube (1), so that the gap between the tubes (3) It is relatively large.
  • the heating water flowing through the inside of the tube 5 is configured by widening the heat transfer area by fixing the round tube 5 to the tube fixing plate 6 in a zigzag manner. It is composed of structure that raises thermal efficiency by giving resistance to.
  • 3 to 6 are cross-sectional views illustrating a tube connection structure of a conventional heat exchanger.
  • the tube connecting structure according to FIG. 3 forms a fixing hole 14 into which the tube 10 can be fitted by punching the tube fixing plate 12 to fix the tube 10 as described above, and then the fixing hole.
  • the tube 10 is inserted in the 14 and the edge of the fixing hole 14 and the tube 10 are welded and fixed.
  • the area of the welding portion W between the tube 10 and the tube fixing plate 12 is determined by the thickness of the tube fixing plate 12.
  • the welding area is reduced. Small weld portion (W) of the tube 10 and the tube fixing plate 12 is easy to fall there is a problem that the durability is poor.
  • a fixing hole 34 is formed in the tube fixing plate 32 by burring, and a tube (Burr) is formed on the inner side of the protrusion 33 (Burr) formed at the edge of the fixing hole 34.
  • 30 is inserted and fixed by welding, it is compared with the interval d1 between the inner diameter D1 of the tubes 10 and 20 and the tubes 10 and 20 in the connection structure shown in FIGS. 3 and 4.
  • the inner diameter D2 of the tube 30 is reduced and the distance d2 between the tubes 30 is wider, resulting in a lower heat transfer efficiency.
  • the welding area is wider than that of the connection structure shown in FIGS. 3 and 4, so that the welding strength may be relatively improved, but the inner surface of the protrusion 33 and the tube 30 may be improved. Since welding is made only between the outer surfaces of the, there is a problem that there is a certain limit to firmly fixed.
  • the applicant's prior application heat exchanger (application number: 10-2008-47735) has a structure in which a tube is fitted to the outside of the protrusion (burr) to fix the contact surface between the outer surface of the protrusion and the inner surface of the tube by brazing welding.
  • a tube connection structure has a problem in that there is a limitation to firmly fix the tube because the configuration that can fix the connection between the end of the tube and the tube fixing plate is insufficient.
  • the heat exchanger is provided with a plurality of flow path caps 50a and 50b for separating the flow path of the heating water passing through the inside of the tube 30 to the outside of the tube fixing plate 32 and for sealing the heat exchanger internal flow path from the outside of the heat exchanger. do.
  • the flow path caps 50a and 50b are installed at regular intervals so as to surround the outside of the group of tubes 30 forming the flow path in the same direction.
  • the connecting portion 50c between the flow path caps 50a and 50b is assembled by welding in contact with the tube fixing plate 32.
  • the welding area is widened.
  • the gap between the tubes 30 is increased so that the heat exchange area is reduced.
  • the end of the tube 30 must be precisely assembled to be the same height as the tube fixing plate 32, so that the installation of a plurality of tubes 30 There is a problem that the assembly operation is not easy.
  • the tube connection structure that can improve the heat transfer efficiency by minimizing the gap between the tube 30 while ensuring a sufficient welding area between the connecting portion 50c of the flow path cap (50a, 50b) and the outer surface of the tube fixing plate 32 The situation is required to develop a heat exchanger having a.
  • an object of the present invention is to provide a heat exchanger that can firmly secure the connection between the heat exchange tube and the tube fixing plate and the connection between the tube fixing plate and the flow path cap.
  • the heat exchanger of the present invention for realizing the above object has a plurality of sidewalls arranged side by side at regular intervals so that the width of the side where the heating water passes through and the width of the side in contact with the combustion gas is larger than the height and parallel to each other.
  • a tube fixing plate coupled to both ends of the tube, wherein the tube fixing plate is fixed at regular intervals, wherein the tube fixing plate is provided with a plurality of long hole fixing holes corresponding to the tube shape.
  • the projection is formed vertically at the edge of the fixing hole toward the tube connection, the inner side of the tube is in contact with the outside of the protrusion, the end of the tube is in contact with the flat portion of the tube fixing plate do.
  • the protrusion formed perpendicular to the edge of the fixing hole of the tube fixing plate is characterized by the burring process.
  • the outer side of the tube fixing plate is provided with a plurality of passage caps for separating the flow passage of the heating water passing through the inside of the tube and for sealing the inner passage of the heat exchanger, the connection portion between the passage caps outside the tube fixing plate
  • the flat portion of the contact is characterized in that it is fixed by brazing welding.
  • the heat exchanger it is possible to secure a large welding area at the connection portion between the heat exchange tube and the tube fixing plate and the connection portion between the tube fixing plate and the channel cap to increase the welding strength, and the gap between the heat exchange tube and the tube fixing plate in the welding portion. Since it is possible to prevent the condensate of the acidic component to penetrate or build up in advance, there is an advantage that can improve the corrosion resistance and durability of the heat exchanger.
  • the rectangular tube As the rectangular tube is used, a larger number of tubes can be installed on the tube fixing plate, thereby increasing the heat transfer area to maximize heat exchange efficiency, and simplifying the manufacture of the tube connection part. Since it can be manufactured adjacently, there is an advantage that can reduce the design constraints.
  • FIG. 1 is a cross-sectional view of a heat exchanger equipped with a heating fin in a conventional tube
  • FIG. 2 is a perspective view of a heat exchanger using a conventional round tube
  • 3 to 6 is a cross-sectional view illustrating a tube connection structure of a conventional heat exchanger
  • FIG. 7 is a cross-sectional view illustrating a problem of a heat exchanger to which the tube connecting structure shown in FIG. 5 is applied;
  • FIG. 8 is an exploded perspective view of a heat exchanger using an elongated tube according to the present invention.
  • FIG. 9 is a cross-sectional view showing a tube connection structure of the heat exchanger according to the present invention.
  • FIG. 10 is a cross-sectional view showing a state in which the flow path cap is installed in the tube connecting structure of FIG.
  • FIG. 11 is a cross-sectional view showing the overall configuration of a heat exchanger according to the present invention.
  • FIG. 12 is a cross-sectional view taken along the line A-A of FIG.
  • protrusion 120a inner flat part
  • FIG. 8 is an exploded perspective view of a heat exchanger using an elongated tube according to the present invention
  • FIG. 9 is a sectional view showing a tube connection structure of the heat exchanger according to the present invention
  • FIG. I is a cross-sectional view showing.
  • the heat exchanger 100 has a plurality of tubes 110 having a long hole cross section with a width of a side contacting the combustion gas compared with a height, and are coupled to both ends of the tube 110 so that the tube ( It includes a tube fixing plate 120 for fixing the 110 at regular intervals.
  • the tube fixing plate 120 is formed with a plurality of long fixing holes 130 corresponding to the shape of the tube 110 through the burring process, the tube 110 is connected to the edge of the fixing hole 130 through the burring process
  • the protrusion 125 is formed to be.
  • the protrusion 125 is formed by bending a portion of the tube fixing plate 120 formed at the edge of the fixing hole 130 vertically.
  • the protrusions 125 are formed at the edges of the plurality of fixing holes 130 formed in the tube fixing plate 120, the plurality of protrusions 125 are formed at regular intervals, and the tube 110 is formed on the outer circumference of the protrusion 125. ) Is fitted so that the fixing hole 130 in which the protrusion 125 is formed is smaller than the inner diameter of the tube 110.
  • the fixing hole 130 is formed in the tube fixing plate 120 by punching, if the hole is formed several times, the tube fixing plate 120 to which the tube 110 is connected is not held flat by the punching tube fixing plate 120 Because of the decrease in weldability between the tube and the tube 110, a plurality of fixing holes 130 are formed by a single punch when burring, and the tube fixing plate 120 is deformed by the punching when forming the fixing hole 130. Burring processing is performed so that the interval h between the fixing holes 130 that is not fixed, that is, the interval h between the protrusions 125 formed in the fixing hole 130, is kept constant.
  • the protrusions 125 formed in the fixing holes 130 also maintain a constant interval h. Is formed.
  • d3 the thickness of the tube 120 is t
  • the thickness of the protrusion 125 is T between the tubes 120 fitted on the outer circumference of the protrusion 125
  • the present invention when fixing a plurality of tubes 110 to the tube fixing plate 120 of the same size, as compared to the heat exchanger according to the prior art it is possible to install a larger number of long hole tube 110 so Since the heat exchange area is wide, it is possible to improve the heat exchange efficiency of the heat exchanger.
  • the tube 110 in forming the protrusion 125 at the edge of the fixing hole 130 of the tube fixing plate 120, the tube 110 based on the flat portion 120a inside the tube fixing plate 120 through a burring process. Since it is bent to form a right angle in the direction toward, when assembling the tube 110 to the outside of the protrusions 125, the inner surface (110a) of the tube 110 and the outer surface (125a) of the protrusions 125 At the same time, the end portion 110b of the tube 110 and the flat portion 120a inside the tube fixing plate 120 also come into contact with each other, so that the surfaces in contact with each other are in close contact with each other.
  • the welding area can be increased to increase the brazing welding strength.
  • the pH of the condensate is about 3 to 4 when the heat exchanger 100 generates acidic condensate (when gas is used as a fuel).
  • the pH of condensed water is applied to about 2 ⁇ 3
  • the tube 110 is inserted into the outside of the protrusion 125 to be welded, so that the end of the tube 120 has a tube fixing plate.
  • the inner flat portion 120a of the 120 is tightly fixed and the outer flat portion 120b of the tube fixing plate 120 is assembled in a state in which the tube 120 is assembled so that the flow path as shown in FIG.
  • Flat contact surfaces are provided to fix the connecting portions 150c of the caps 150a and 150b.
  • the heat exchanger 100 of the present invention comprises a heat exchange tube 110 in the form of a flat long hole and minimizes the gap between the tubes 110 to widen the heat exchange area, while connecting portions of the flow path caps 150a and 150b (The contact surface between the 150c) and the outer flat portion 120b of the tube fixing plate 120 can be configured to have a sufficient width of the flat structure.
  • FIG. 11 is a cross-sectional view showing the overall configuration of a heat exchanger according to the present invention
  • Figure 12 is a cross-sectional view taken along the line A-A of FIG.
  • the heat exchanger 100 of the present invention has a left side inside a plurality of long hole tubes 110 arranged side by side with a predetermined interval spaced up and down by the heating water introduced through the heating water inlet 101. In the process of flowing out through the heating water outlet 102 to pass through while switching the flow path in the right direction or right to left in the heat exchange is made in contact with the combustion gas.
  • the tube 110 constituting the heat exchanger 100 of the present invention is configured to have a flat rectangular cross-section, unlike the heat exchanger with a conventional heat transfer fins ensures a large heat transfer area
  • the gap between the tubes 110 is configured to be narrow, and unlike the conventional tube structure having a circular cross section, there is a difference in that the tubes 110 are installed side by side at a predetermined interval.
  • connection part of the tube can be more firmly fixed, and the assembly method of the connection part can be simplified, thereby reducing the manufacturing time and cost of the heat exchanger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Geometry (AREA)

Abstract

본 발명은 열교환 튜브와 튜브고정판 간의 연결부 및 튜브고정판과 유로캡 간의 연결부에서의 용접면적을 증대시켜 튜브 연결부분을 보다 견고하게 고정시킴과 아울러 튜브 간의 간격을 최소화시켜 튜브의 전열면적을 증대시킴으로써 열교환 효율을 극대화할 수 있도록 하는 열교환기에 관한 것이다. 이를 실현하기 위한 본 발명의 열교환기는, 난방수가 내부를 통과하고 연소가스와 접촉되는 변의 폭이 높이에 비해 큰 장공형의 단면을 가지며 서로 평행하도록 일정 간격으로 나란하게 설치되는 복수의 튜브;및 상기 튜브의 양측 끝단에 결합되어, 상기 튜브가 일정 간격으로 고정되는 튜브고정판;을 포함하는 열교환기에 있어서, 상기 튜브고정판에는 상기 튜브 형상에 대응되는 다수의 장공형 고정구멍이 형성됨과 동시에 상기 고정구멍의 가장자리에는 상기 튜브가 연결되는 쪽으로 돌출부가 수직으로 형성되어, 상기 돌출부의 외측에 상기 튜브의 내측이 접촉되고, 상기 튜브의 끝단부가 상기 튜브고정판의 평탄부에 접촉된 것을 특징으로 한다.

Description

열교환기
본 발명은 열교환기에 관한 것으로서, 더욱 상세하게는 열교환 튜브와 튜브고정판 간의 연결부 및 튜브고정판과 유로캡 간의 연결부에서의 용접면적을 증대시켜 튜브 연결부분을 보다 견고하게 고정시킴과 아울러 튜브 간의 간격을 최소화시켜 튜브의 전열면적을 증대시킴으로써 열교환 효율을 극대화할 수 있도록 하는 열교환기에 관한 것이다.
주지하는 바와 같이 연소실 내에서 열교환 튜브 내부를 따라 흐르는 난방수를 버너를 이용하여 가열할 수 있는 구성을 가진 연소기기에는 크게 보일러와 온수기 등을 들 수 있다.
즉, 일반 가정이나 공공건물 등에 사용되는 보일러는 난방용이나 온수용으로 이용되고, 온수기는 냉수를 단시간 내에 소정의 온도로 가열하여 사용자가 편리하게 온수를 사용할 수 있도록 하는 것이다.
이러한 보일러 및 온수기와 같은 연소기기는 대부분 기름 혹은 가스를 연료로 사용하여 버너를 통해 연소시킨 다음, 이 연소과정에서 발생하는 연소열을 이용하여 물을 가열하고, 이 가열된 온수를 사용자의 필요에 따라 제공할 수 있는 시스템을 가지고 있다.
상기와 같은 연소기기에는 버너로부터 발생한 연소열을 흡수하기 위하여 열교환기가 구비되어 있는데, 종래부터 열교환기의 열전달 효율을 향상시키기 위한 다양한 방법들이 제안되어 왔다.
일반적인 열교환기는 상하로 일정간격 이격되어 서로 평행하게 나란히 배치되어 열교환 유체가 유입되거나 배출되는 한 쌍의 헤드탱크와, 상기 한 쌍의 헤드탱크 사이에 튜브고정판에 의해 연결되는 다수의 튜브와, 상기 튜브들 사이에 설치되어 튜브의 내부를 통과하는 유체로의 전열면적을 향상시키기 위한 전열핀을 포함한다.
상기 튜브고정판에는 펀칭에 의해 다수의 고정구멍이 형성되고, 상기 고정구멍에 튜브의 일단부가 끼워지며, 고정구멍과 튜브 사이를 용접함으로써 튜브고정판에 튜브를 고정하는 구조로 이루어져 있다.
도 1은 종래 튜브에 전열핀이 구비된 열교환기의 단면도, 도 2는 종래 원형 튜브를 사용한 열교환기의 사시도이다.
도 1을 참조하면, 종래 튜브(1)에 전열핀(2)이 구비된 열교환기의 경우 튜브고정판(3)에 튜브(1)의 양단이 일정간격으로 고정되고, 튜브고정판(3)의 외측에는 난방수의 유로를 구분하는 유로캡(4)이 구비된 구조로 이루어져 있으며, 이러한 열교환기는 튜브(1)에 다수의 전열핀(2)이 구비되어 열전달이 이루어지므로 튜브(3) 간의 간격이 비교적 크게 구성된다.
도 2를 참조하면, 종래 원형 튜브(5)를 사용한 열교환기의 경우 튜브고정판(6)에 원형 튜브(5)가 지그재그로 고정되어 전열면적이 넓어지도록 구성됨으로써 튜브(5) 내부를 흐르는 난방수에 저항을 주어 열효율을 상승시키는 구조로 이루어져 있다.
여기서, 열교환기의 내구성을 향상시키고 제작비를 절감하기 위해서는 튜브고정판과 튜브 간의 연결구조를 어떻게 구성하는지가 매우 중요하다.
도 3 내지 도 6은 종래 열교환기의 튜브 연결구조를 예시한 단면도이다.
도 3에 따른 튜브 연결구조는 상기와 같이 튜브(10)를 고정하기 위해서 튜브고정판(12)에 펀칭으로 튜브(10)가 끼워질 수 있는 고정구멍(14)을 형성한 다음에, 이 고정구멍(14)에 튜브(10)를 끼우고, 고정구멍(14)의 가장자리와 튜브(10)를 용접하여 고정하게 된다.
이러한 연결구조에 의하면, 튜브(10)와 튜브고정판(12) 간의 용접부위(W)의 면적이 튜브고정판(12)의 두께에 의해 결정되는데, 튜브고정판(12)의 두께가 얇게 되면 용접면적이 작아서 튜브(10)와 튜브고정판(12)의 용접부위(W)가 쉽게 떨어지게 되어 내구성이 떨어지는 문제점이 있다.
이러한 문제를 방지하기 위하여 도 4에 도시된 바와 같이 튜브고정판(22)의 두께를 두껍게 형성할 경우에는 고정구멍(24)을 형성하기 위해서 펀칭을 하면 튜브(20)가 끼워져 접촉되는 고정구멍(24)의 내주면에 파단면(26)이 발생되어 용접성이 떨어지는 문제점이 있다.
또한, 도 5에 도시된 바와 같이 튜브고정판(32)에 버링(Burring)가공으로 고정구멍(34)을 형성하고, 고정구멍(34)의 가장자리에 형성된 돌출부(33,Burr)의 내측에 튜브(30)를 끼워서 용접으로 고정하는 구조에 의하면, 도 3과 도 4에 도시된 연결구조에서 튜브(10,20)의 내경(D1) 및 튜브(10,20) 사이의 간격(d1)과 비교할 때, 도 5에 도시된 연결구조에서는 튜브(30)의 내경(D2)은 감소하고 튜브(30) 사이의 간격(d2)은 더 벌어지게 되어 열전달 효율이 떨어지는 문제점이 있다.
또한, 도 5에 도시된 연결구조에서는 도 3과 도 4에 도시된 연결구조에 비해 용접면적이 넓어져 용접 강도를 상대적으로 향상시킬 수는 있지만, 돌출부(33)의 내측면과 튜브(30)의 외측면 사이에서만 용접이 이루어지므로 견고하게 고정시키는데는 일정한 한계가 있는 문제점이 있다.
또한, 도 6에 도시된 바와 같이 원형 튜브(40)를 사용하는 열교환기 중 튜브연결부에서 고정구멍(44)과 튜브(40) 간의 동심도를 맞추기 위해 버링을 테이퍼지게 가공하여 적용한 경우에는 튜브고정판(42)의 돌출부(43)의 외측에 튜브(40)를 끼워 용접하게 되는 구조로 이루어져, 튜브(40)의 내경을 크게 할 수는 있으나, 용접부위(W)가 선접촉되는 부위로 제한되므로 용접 강도가 현저히 떨어지는 문제점이 있다.
한편, 본 출원인의 선출원 열교환기(출원번호:10-2008-47735)에는 돌출부(버,burr)의 외측에 튜브가 끼워져 돌출부의 외측면과 튜브의 내측면 간의 접촉면에 브레이징 용접으로 고정하는 구조가 개시되어 있으나, 이러한 튜브 연결구조는 튜브의 끝단부와 튜브고정판 간의 연결부를 고정시킬 수 있는 구성이 미비하여 튜브를 견고하게 고정시키는데 한계가 있는 문제점이 있었다.
이하에서는 상기 튜브 연결구조 중에서 도 5에서 설명된 튜브 연결구조를 적용하여 열교환기를 제작할 경우의 문제점을 도 7를 참조하여 설명한다.
열교환기는 튜브고정판(32)의 외측으로 튜브(30)의 내부를 통과하는 난방수의 유로를 구분하고 열교환기의 외부로부터 열교환기 내부 유로를 밀폐하기 위한 복수의 유로캡(50a,50b)이 설치된다.
상기 유로캡(50a,50b)은 동일방향의 유로를 형성하는 일군의 튜브(30)의 외측을 둘러싸도록 일정간격으로 설치된다.
여기서, 상기 유로캡(50a,50b) 간의 연결부(50c)는 튜브고정판(32)에 맞닿아 용접으로 조립되는데, 상기 연결부(50c)와 맞닿는 튜브고정판(32)의 면적을 넓게 하면 용접면적이 넓어져 보다 견고한 용접이 가능하겠지만, 이 경우에는 튜브(30) 사이의 간격이 그만큼 벌어지게 되어 열교환 면적이 감소되는 문제점 있다.
그리고, 도 5에 따른 튜브 연결구조에서 튜브(30) 사이의 간격을 좁게 구성할 경우에, 만일 도 7에 도시된 바와 같이 튜브(30)의 끝단부가 튜브고정판(32)의 뒤쪽으로 튀어나온다면 상기 유로캡(50a,50b)의 연결부(50c)와 맞닿게 되는 튜브고정판(32) 부위가 편평하게 형성되지 못하여 연결부(50c)와 튜브(30) 간에 간섭이 발생되므로 용접 강도가 떨어지게 되는 문제점이 있다.
또한, 이러한 연결구조에서 용접강도가 저하되는 문제점을 방지하기 위해서는 튜브(30)의 끝단부를 튜브고정판(32)과 동일한 높이가 되도록 정밀하게 조립해야 하므로 다수의 튜브(30)를 일일이 설치함에 있어서 그 조립작업이 용이하지 않은 문제점이 있다.
따라서, 유로캡(50a,50b)의 연결부(50c)와 튜브고정판(32) 외측면 간의 용접면적을 충분히 확보하면서도 튜브(30) 사이의 간격이 최소화되도록 하여 열전달 효율을 향상시킬 수 있는 튜브 연결구조를 구비한 열교환기의 개발이 요구되는 상황이다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 열교환 튜브와 튜브고정판 간의 연결부 및 튜브고정판과 유로캡 간의 연결부를 견고하게 고정시킬 수 있는 열교환기를 제공함에 그 목적이 있다.
본 발명의 또 다른 목적은, 한정된 면적의 튜브고정판에 연결되는 튜브의 전열면적을 증대시켜 열교환 효율을 향상시킬 수 있도록 하는 열교환기를 제공함에 그 목적이 있다.
상술한 바와 같은 목적을 구현하기 위한 본 발명의 열교환기는, 난방수가 내부를 통과하고 연소가스와 접촉되는 변의 폭이 높이에 비해 큰 장공형의 단면을 가지며 서로 평행하도록 일정 간격으로 나란하게 설치되는 복수의 튜브;및 상기 튜브의 양측 끝단에 결합되어, 상기 튜브가 일정 간격으로 고정되는 튜브고정판;을 포함하는 열교환기에 있어서, 상기 튜브고정판에는 상기 튜브 형상에 대응되는 다수의 장공형 고정구멍이 형성됨과 동시에 상기 고정구멍의 가장자리에는 상기 튜브가 연결되는 쪽으로 돌출부가 수직으로 형성되어, 상기 돌출부의 외측에 상기 튜브의 내측이 접촉되고, 상기 튜브의 끝단부가 상기 튜브고정판의 평탄부에 접촉된 것을 특징으로 한다.
상기 튜브고정판의 고정구멍의 가장자리에 수직으로 형성된 돌출부는 버링 가공에 의한 것을 특징으로 한다.
상기 돌출부의 외측과 상기 튜브의 내측 사이에서 브레이징이 되는 것을 특징으로 한다.
상기 튜브의 끝단부와 상기 튜브고정판의 평탄부 사이에서 브레이징이 되는 것을 특징으로 한다.
상기 튜브고정판의 외측에는 상기 튜브의 내부를 통과하는 난방수의 유로를 구분함과 아울러 열교환기 내부유로를 밀폐하기 위한 복수의 유로캡이 추가로 구비되고, 상기 유로캡 간의 연결부는 상기 튜브고정판 외측의 평탄부에 맞닿아 브레이징 용접으로 고정되는 것을 특징으로 한다.
본 발명에 따른 열교환기에 의하면, 열교환 튜브와 튜브고정판 간의 연결부 및 튜브고정판과 유로캡 간의 연결부에서의 용접면적을 넓게 확보할 수 있게 되어 용접 강도를 높일 수 있고, 열교환 튜브와 튜브고정판 간의 용접부위에 틈새가 생기지 않으므로 산성 성분의 응축수가 침투하거나 고이게 되는 것을 미연에 방지할 수 있게 되어 열교환기의 내식성과 내구성을 향상시킬 수 있는 장점이 있다.
또한, 본 발명에 의하면 장방형 튜브를 사용함에 따라 튜브고정판에 보다 많은 수의 튜브를 설치할 수 있게 되므로 전열면적이 증대되어 열교환 효율을 극대화할 수 있을 뿐만 아니라, 튜브 연결부분의 제조가 간편하고 튜브를 인접하게 제작할 수 있어 설계상의 제약을 감소시킬 수 있는 장점이 있다.
도 1은 종래 튜브에 전열핀이 구비된 열교환기의 단면도,
도 2는 종래 원형 튜브를 사용한 열교환기의 사시도,
도 3 내지 도 6은 종래 열교환기의 튜브 연결구조를 예시한 단면도,
도 7은 도 5에 도시된 튜브 연결구조를 적용한 열교환기의 문제점을 설명하기 위한 단면도,
도 8은 본 발명에 따른 장공형 튜브를 사용한 열교환기의 분해 사시도,
도 9는 본 발명에 따른 열교환기의 튜브 연결구조를 보여주는 단면도,
도 10은 도 9의 튜브 연결구조에 유로캡이 설치된 모습을 보여주는 단면도,
도 11은 본 발명에 따른 열교환기의 전체 구성을 보여주는 단면도,
도 12는 도 11의 A-A 선 기준 단면도이다.
<도면의 주요 부분에 대한 부호의 설명>
10,20,30,40,110 : 튜브 12,22,32,42,120 : 튜브고정판
14,24,34,44,130 : 고정구멍 26 : 파단면
33,43,125 : 돌출부 120a : 내측 평탄부
120b : 외측 평탄부 50a,50b,150a,150b : 유로캡
50c,150c : 연결부 100 : 열교환기
101 : 난방수 유입구 102 : 난방수 유출구
W : 용접부위
이하 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대한 구성 및 작용을 상세히 설명하면 다음과 같다.
도 8은 본 발명에 따른 장공형 튜브를 사용한 열교환기의 분해 사시도, 도 9는 본 발명에 따른 열교환기의 튜브 연결구조를 보여주는 단면도, 도 10은 도 9의 튜브 연결구조에 유로캡이 설치된 모습을 보여주는 단면도이다.
본 발명에 따른 열교환기(100)는 연소가스와 접촉되는 변의 폭이 높이에 비해 큰 장공형의 단면을 갖는 복수의 튜브(110)와, 상기 튜브(110)의 양측 끝단에 결합되어 상기 튜브(110)를 일정 간격으로 고정시키는 튜브고정판(120)을 포함한다.
튜브고정판(120)에는 버링가공을 통해 튜브(110)의 형상에 대응되는 다수의 장공형 고정구멍(130)이 형성되고, 고정구멍(130)의 가장자리에는 버링가공을 통해 튜브(110)가 연결되는 쪽으로 돌출부(125)가 형성된다.
돌출부(125)는 고정구멍(130)의 가장자리에 형성된 튜브고정판(120)의 일부가 수직으로 절곡 형성된 것이다.
튜브고정판(120)에 형성되는 다수의 고정구멍(130)의 가장자리에 돌출부(125)를 형성할 때, 다수의 돌출부(125)는 일정한 간격으로 형성되는데, 돌출부(125)의 외주로 튜브(110)가 끼워지도록 되어 있어, 돌출부(125)가 형성된 고정구멍(130)은 튜브(110)의 내경보다 작게 형성되는 것이 바람직하다.
한편, 고정구멍(130)을 튜브고정판(120)에 펀칭으로 형성할 때, 여러번 타공하여 형성하면 튜브(110)가 연결되는 튜브고정판(120)이 타공에 의해 편평하게 유지되지 않아 튜브고정판(120)과 튜브(110) 사이의 용접성이 저하되기 때문에, 버링가공시 단발 타공으로 다수의 고정구멍(130)을 성형하게 되는데, 고정구멍(130)의 성형시 타공에 의해 튜브고정판(120)이 변형되지 않는 고정구멍(130) 간의 간격 즉, 고정구멍(130)에 형성되는 돌출부(125) 간의 간격(h)이 일정하게 유지되도록 버링가공을 하게 된다.
즉, 튜브고정판(120)에 튜브(110)를 고정하기 위한 고정구멍(130)들이 일정한 간격으로 형성되면, 고정구멍(130)에 형성된 돌출부(125)들도 일정한 간격(h)을 유지한 채로 형성된다. 여기서, 돌출부(125)의 외주에 끼워지는 튜브(120)들 사이의 간격을 d3, 튜브(120)의 두께를 t, 돌출부(125)의 두께를 T라고 하면, 튜브(120)들 사이의 간격(d3)은 식 d3=h-2t 로 나타낼 수 있다.
반면에, 종래의 도 5에 도시된 바와 같은 튜브 연결구조에서는 튜브(30)가 고정구멍(34)에 형성된 돌출부(33)의 내주에 끼워지기 때문에, 튜브(30)들 사이의 간격(d2)은 식 d2=h+2T 로 나타낼 수 있다.
즉, 본 발명에 따른 열교환기(100)에서는 튜브(110)들 사이의 거리가 종래에 비해 (d2-d3)=(2T+2t) 만큼 더 가까운 간격을 두고 형성됨을 알 수 있다.
따라서, 본 발명에 따르면 동일한 크기의 튜브고정판(120)에 다수의 튜브(110)를 고정할 경우, 종래기술에 따른 열교환기와 비교하여 보다 더 많은 수의 장공형 튜브(110)를 설치할 수 있으므로 그만큼 열교환 면적이 넓어져 열교환기의 열교환 효율을 향상시킬 수 있게 된다.
한편, 본 발명에서는 튜브고정판(120)의 고정구멍(130) 가장자리에 돌출부(125)를 형성함에 있어서, 버링가공을 통해 튜브고정판(120) 내측의 평탄부(120a)를 기준으로 튜브(110)를 향하는 방향으로 직각이 되도록 절곡형성하게 되므로, 돌출부(125)의 외측에 튜브(110)를 끼워 조립할 때, 튜브(110)의 내측면(110a)과 돌출부(125)의 외측면(125a)이 맞닿아 접촉됨과 동시에 튜브(110)의 끝단부(110b)와 튜브고정판(120) 내측의 평탄부(120a) 또한 맞닿게 되므로 서로 접촉되는 면 사이에는 빈틈없이 밀착된 상태로 접촉하게 된다.
이에 따라, 돌출부(125)의 외측으로 튜브(110)를 끼운 후에, 튜브(110)의 내측면(110a)과 돌출부(125)의 외측면(125a)이 맞닿는 접촉면 뿐만 아니라, 튜브(110)의 끝단부(110b)와 튜브고정판(120) 내측의 평탄부(120a)가 맞닿는 접촉면에서도 브레이징 용접으로 고정시킬 수 있게 되므로 용접면적이 넓어져 브레이징 용접 강도를 높일 수 있게 된다.
이렇게 돌출부(125)가 수직으로 가공되어 용접면에서의 기밀이 유지되는 구조에 의하면, 열교환기(100)가 산성의 응축수가 발생되는 환경(가스를 연료로 하는 경우 응축수의 pH는 약 3~4, 기름을 연료로 하는 경우 응축수의 pH는 약 2~3)에 적용되더라도 용접부위(W)에 모세관 현상 등에 의하여 응축수가 침투 또는 고이는 현상을 방지할 수 있게 되어 산성의 응축수로 인한 용접 부위의 부식을 방지할 수 있으며, 이에 따라 열교환기(100)의 내식성과 내구성을 향상시킬 수 있게 된다.
또한, 본 발명에서는 버링가공을 통해 튜브고정판(120)에 돌출부(125)를 수직으로 형성하여 튜브(110)를 돌출부(125)의 외측에 끼워 용접하게 되므로, 튜브(120)의 끝단부는 튜브고정판(120)의 내측 평탄부(120a)에 밀착되어 고정되며, 튜브(120)를 조립한 상태에서 튜브고정판(120)의 외측 평탄부(120b)는 편평한 구조가 되므로 도 10에 도시된 바와 같이 유로캡(150a,150b)의 연결부(150c)를 고정할 수 있는 편평한 접촉면이 마련된다.
즉, 본 발명의 열교환기(100)는 열교환 튜브(110)를 납짝한 장공형으로 구성하고 튜브(110) 간의 간격을 최소화하여 열교환 면적을 넓게 구성하면서도, 유로캡(150a,150b)의 연결부(150c)와 튜브고정판(120)의 외측 평탄부(120b) 간의 접촉면을 편평한 구조의 충분한 넓이를 갖도록 구성할 수 있게 된다.
도 11은 본 발명에 따른 열교환기의 전체 구성을 보여주는 단면도, 도 12는 도 11의 A-A 선 기준 단면도이다.
도 11에 도시된 바와 같이, 본 발명의 열교환기(100)는 난방수유입구(101)를 통해 유입된 난방수가 상하로 일정간격 이격되어 나란하게 배치된 복수의 장공형 튜브(110) 내부를 좌측에서 우측방향으로 또는 우측에서 좌측방향으로 유로를 전환하면서 통과하여 난방수유출구(102)를 통해 유출되는 과정에서 연소가스와의 접촉으로 열교환이 이루어지게 된다.
또한, 도 12에 도시된 바와 같이 본 발명의 열교환기(100)를 구성하는 튜브(110)는 장방형의 납짝한 단면을 갖도록 구성되어, 종래 전열핀이 구비된 열교환기와는 달리 전열면적을 넓게 확보하기 위해서 튜브(110) 간의 간격이 좁게 구성되고, 종래 원형 단면을 갖는 튜브 구조와 달리 튜브(110)가 일정 간격을 두고 서로 나란하게 설치되는 점에서 차이가 있다.
상술한 바와 같이 본 발명을 적용하여 열교환기를 제작하면, 튜브의 연결부분을 보다 견고하게 고정할 수 있게 되고, 연결부위의 조립 방식이 간편하여 열교환기의 제조 시간과 비용을 줄일 수 있게 된다.
또한, 종래 원형 튜브를 사용하여 열교환기를 제작할 경우, 튜브의 배열을 지그재그 형태로 구성하거나, 전열핀을 연결하는 등의 방법으로 열매체에 저항을 주어 열효율을 향상시킬 수 있지만, 본 발명과 같이 장공형 튜브를 설치하여 열교환기를 제작할 경우에는 상술한 튜브 연결구조를 적용함으로써 장공형 튜브를 인접하게 다수 설치할 수 있게 되어 열교환 효율을 더욱 향상시킬 수 있을 뿐만 아니라 조립의 용이성을 확보할 수 있게 된다.

Claims (5)

  1. 난방수가 내부를 통과하고 연소가스와 접촉되는 변의 폭이 높이에 비해 큰 장공형의 단면을 가지며 서로 평행하도록 일정 간격으로 나란하게 설치되는 복수의 튜브;및
    상기 튜브의 양측 끝단에 결합되어, 상기 튜브가 일정 간격으로 고정되는 튜브고정판;을 포함하는 열교환기에 있어서,
    상기 튜브고정판에는 상기 튜브 형상에 대응되는 다수의 장공형 고정구멍이 형성됨과 동시에 상기 고정구멍의 가장자리에는 상기 튜브가 연결되는 쪽으로 돌출부가 수직으로 형성되어, 상기 돌출부의 외측에 상기 튜브의 내측이 접촉되고, 상기 튜브의 끝단부가 상기 튜브고정판의 평탄부에 접촉된 것을 특징으로 하는 열교환기.
  2. 제1항에 있어서,
    상기 튜브고정판의 고정구멍의 가장자리에 수직으로 형성된 돌출부는 버링 가공에 의한 것을 특징으로 하는 열교환기.
  3. 제2항에 있어서,
    상기 돌출부의 외측과 상기 튜브의 내측 사이에서 브레이징이 되는 것을 특징으로 하는 열교환기.
  4. 제1항 내지 제3항 중 어느 하나의 항에 있어서,
    상기 튜브의 끝단부와 상기 튜브고정판의 평탄부 사이에서 브레이징이 되는 것을 특징으로 하는 열교환기.
  5. 제1항에 있어서,
    상기 튜브고정판의 외측에는 상기 튜브의 내부를 통과하는 난방수의 유로를 구분함과 아울러 열교환기 내부유로를 밀폐하기 위한 복수의 유로캡이 추가로 구비되고, 상기 유로캡 간의 연결부는 상기 튜브고정판 외측의 평탄부에 맞닿아 브레이징 용접으로 고정되는 것을 특징으로 하는 열교환기.
PCT/KR2010/006741 2009-10-07 2010-10-04 열교환기 WO2011043563A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0095336 2009-10-07
KR1020090095336A KR20110037773A (ko) 2009-10-07 2009-10-07 열교환기

Publications (2)

Publication Number Publication Date
WO2011043563A2 true WO2011043563A2 (ko) 2011-04-14
WO2011043563A3 WO2011043563A3 (ko) 2011-09-09

Family

ID=43857258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/006741 WO2011043563A2 (ko) 2009-10-07 2010-10-04 열교환기

Country Status (2)

Country Link
KR (1) KR20110037773A (ko)
WO (1) WO2011043563A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105546806A (zh) * 2016-02-25 2016-05-04 武汉商学院 Ptc平行流加热器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200473452Y1 (ko) * 2014-04-16 2014-07-04 양용식 열매체전기보일러

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038336A (ja) * 2004-07-27 2006-02-09 T Rad Co Ltd 高温熱交換器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07324887A (ja) * 1994-05-31 1995-12-12 Tsuchiya Mfg Co Ltd 多管式の熱交換器コアおよびその製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038336A (ja) * 2004-07-27 2006-02-09 T Rad Co Ltd 高温熱交換器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105546806A (zh) * 2016-02-25 2016-05-04 武汉商学院 Ptc平行流加热器

Also Published As

Publication number Publication date
WO2011043563A3 (ko) 2011-09-09
KR20110037773A (ko) 2011-04-13

Similar Documents

Publication Publication Date Title
WO2010123247A2 (ko) 열교환기
EP1318362B1 (en) Compact high efficiency clam shell heat exchanger
WO2017171276A1 (ko) 관체형 열교환기
CN105486125A (zh) 换热器和热水器
CN210569238U (zh) 一种换热器及具有该换热器的热水器
KR20090047906A (ko) 평면형 열교환기
WO2011043563A2 (ko) 열교환기
CN105698387A (zh) 一种燃气全预混冷凝式壁挂炉的环形热交换器
WO2010147288A1 (ko) 열교환기
KR20110107014A (ko) 가스 보일러용 열교환기
WO2017052094A1 (ko) 라운드 플레이트 열교환기
KR20110019173A (ko) 응축형 열교환기의 케이스
US20100307727A1 (en) Heat exchanger and manufacturing method of heat exchanging pipe composing it
KR200284927Y1 (ko) 고효율 폐열회수장치
CN214371878U (zh) 全预混冷凝换热器及燃气热水装置
WO2012026664A1 (ko) 열교환기의 결합구조
CN210569237U (zh) 一种热交换装置及具有该装置的热水器
WO2009061085A2 (en) Heat exchanger and heat exchanging pipe composing it
CN111649487A (zh) 热交换结构及燃气热水器
WO2014065478A1 (ko) 물집 열교환기
CN212566310U (zh) 热交换结构及燃气热水器
CN216523332U (zh) 换热片、换热器及燃气热水设备
CN220912063U (zh) 一种双系统主换热器及其燃气采暖热水炉
CN219810324U (zh) 换热片及燃气热水设备
CN217004923U (zh) 应用于燃气热水器的热交换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10822208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10822208

Country of ref document: EP

Kind code of ref document: A2