WO2011043250A1 - 光電変換素子、受光装置、受光システム及び測距装置 - Google Patents

光電変換素子、受光装置、受光システム及び測距装置 Download PDF

Info

Publication number
WO2011043250A1
WO2011043250A1 PCT/JP2010/067200 JP2010067200W WO2011043250A1 WO 2011043250 A1 WO2011043250 A1 WO 2011043250A1 JP 2010067200 W JP2010067200 W JP 2010067200W WO 2011043250 A1 WO2011043250 A1 WO 2011043250A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
light
charge
photoelectrons
electrode
Prior art date
Application number
PCT/JP2010/067200
Other languages
English (en)
French (fr)
Inventor
神山智幸
是角圭祐
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to DE112010003961.5T priority Critical patent/DE112010003961B4/de
Priority to US13/500,746 priority patent/US9025139B2/en
Publication of WO2011043250A1 publication Critical patent/WO2011043250A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14607Geometry of the photosensitive area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/1461Pixel-elements with integrated switching, control, storage or amplification elements characterised by the photosensitive area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type

Definitions

  • the present invention relates to a photoelectric conversion element that converts charges into an amount corresponding to the amount of light, a light receiving device that obtains luminance information for a certain period of light incident on the photoelectric conversion element, and the photoelectric conversion element
  • the present invention relates to a light receiving system in which the influence of ambient light is suppressed by using and a distance measuring device using the light receiving system and applying the principle of time of flight (TOF) method.
  • TOF time of flight
  • This image sensor has a configuration in which there are two transfer gates sandwiching one light receiving portion, and a signal charge storage portion is provided outside each transfer gate. Further, in this document 1, a structure is proposed in which the ratio of PG formed of polysilicon is reduced in order to improve sensitivity. That is, the example which made the shape of PG the comb-tooth shape is disclosed.
  • a ranging system that measures the distance to an object in a non-contact manner.
  • this distance measuring system one using a time of flight (TOF) method is known.
  • the TOF method emits light to an object, measures the period from when the light is emitted until it hits the object, and measures the distance to the object based on this period and the speed of light ( Ryohei Miyagawa, Takeo Kanade “CCD-Based Range-Finding Sensor”, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 44, NO. 10, October 1997, p.
  • This document 2 specifically explains the emission timing of the pulsed light and the operation timing of the two light receiving elements in the ranging system. That is, the emission and stop of emission of pulsed light are repeated at the same length (the driving duty of the light emitting element is 50%), and charges are alternately transferred in two directions in synchronization with the emission and stop of emission of pulsed light ( Refer to FIG. Based on the difference between the two output voltages, a period until the pulsed light is reflected by the object and returned is determined.
  • the image sensor described in Document 1 described above discloses an example in which the shape of the PG is a comb-like shape in order to improve sensitivity.
  • the PG portion of the light receiving unit has a function of transferring accumulated charges (photoelectrons) to the output side, but the portions other than the PG do not have such a function. Therefore, there is a problem that it takes time to transfer all the photoelectrons accumulated in the light receiving unit to the output side.
  • the charge is alternately emitted in two directions in synchronization with the emission of the modulated light and the emission stop. Need to be transferred.
  • S / N ratio signal / noise ratio
  • a photoelectric conversion element having a large light receiving area is required.
  • the distance to the output node becomes long, and it becomes difficult to transfer the photoelectrically converted photoelectrons to a desired node at a high speed.
  • the present invention has been made in consideration of such problems. Photoelectrons obtained by photoelectric conversion can be moved to a desired region at high speed and integrated, and measurement based on the principle of the TOF method is applied.
  • An object of the present invention is to provide a photoelectric conversion element that can realize a distance device and can be applied to various light receiving devices.
  • Another object of the present invention is to use the photoelectric conversion element having the above-described effect to obtain luminance information of incident light for a certain period with high accuracy, and to receive light having the function of an electronic shutter. To provide an apparatus.
  • Another object of the present invention is to provide a light receiving system capable of improving the S / N ratio, reducing the influence of noise components of ambient light, and detecting the necessary light components with high accuracy. There is to do.
  • Another object of the present invention is to provide a distance measuring device that can improve the S / N ratio, reduce the influence of noise components of ambient light, and can measure the distance to the object with high accuracy.
  • the purpose is to provide.
  • a photoelectric conversion element is a photoelectric conversion element that detects light and converts it into photoelectrons, and includes a first MOS having a first electrode formed on a semiconductor substrate via an insulator.
  • a plurality of second MOS diodes having a second electrode formed on the semiconductor substrate with an insulator interposed therebetween, and the first electrode of the first MOS diode has a single one when viewed from above.
  • Each of the second electrodes of the second MOS diode is separated from the first electrode when viewed from above, and has a comb-tooth shape branched from the electrode part into a plurality of branch parts.
  • Each of the plurality of branch portions of the electrode is arranged in a nested manner.
  • the potential under the first electrode of the first MOS diode and the potential under the second electrode of the second MOS diode are controlled independently, so that at least the second MOS diode The photoelectrons generated by the photoelectric conversion are moved to the first MOS diode.
  • a portion of the first MOS diode corresponding to a base portion of the one electrode portion in the first electrode is configured as a charge integration portion.
  • the branching portion of the first electrode in the first MOS diode and the second electrode of the second MOS diode each have a rectangular shape.
  • each branch portion of the first electrode in the first MOS diode has a shape in which the width gradually increases toward the one electrode portion when viewed from above.
  • Each of the second electrodes in the second MOS diode has a shape in which the width gradually decreases toward the one electrode portion of the first electrode when viewed from above.
  • a light-receiving device is a light-receiving device that obtains luminance information of incident light, the photoelectric conversion element that detects the incident light and converts it into photoelectrons, and the photoelectric device
  • a charge accumulation unit for collecting the photoelectrons generated by the conversion element; a capacitor for accumulating the photoelectrons for a certain period; a charge discharge unit for discharging the photoelectrons; and the charge accumulation unit and the capacitor.
  • the MOS-type first switching element that moves the photoelectrons collected in the charge accumulation unit to the capacitor, and is disposed between the charge accumulation unit and the charge discharge unit, and discharges the charge from the charge accumulation unit.
  • a second switching element of a MOS type that controls discharge of the photoelectrons to the unit the photoelectric conversion element having one first MOS diode having a first electrode and a second electrode.
  • a plurality of second MOS diodes, and the first electrode of the first MOS diode has a comb-tooth shape branched from one electrode part to a plurality of branch parts when viewed from above,
  • Each of the second electrodes of the 2MOS diode is separated from the first electrode when viewed from above, and is arranged in a nested manner between the plurality of branch portions of the first electrode, and the photoelectric conversion element
  • the photoelectrons from are selectively transferred to the capacitor by controlling the opening and closing of the first switching element and the second switching element, and incident on the basis of the amount (charge amount) of the photoelectrons transferred to the capacitor. It is characterized by obtaining light luminance information.
  • the charge accumulation unit is connected to the photoelectric conversion element, and the charge discharge unit is disposed to face the capacitor with the charge accumulation unit interposed therebetween.
  • the capacitor is configured by an MIM capacitor, a MOS capacitor, a buried photodiode structure, or a parasitic capacitance of a pn junction.
  • At least the charge integration unit, the first switching element, the second switching element, and the capacitor are formed in a light-shielded region.
  • a light receiving device is a light receiving device characterized by obtaining luminance information of incident light, wherein the photoelectric conversion element that detects the incident light and converts it into photoelectrons, and the photoelectric A charge accumulation unit for collecting the photoelectrons generated by the conversion element; a first capacitor and a second capacitor for accumulating the photoelectrons for a predetermined period; a charge discharge unit for discharging the photoelectrons; the charge accumulation unit; A MOS-type first switching element that is arranged between the capacitor and selectively distributes the photoelectrons collected in the charge integration unit to the first capacitor; and between the charge integration unit and the second capacitor.
  • a MOS-type second switching element that is arranged and selectively distributes the photoelectrons collected in the charge accumulation unit to the second capacitor, and the charge discharge unit from the charge accumulation unit
  • a third switching element of a MOS type that controls the discharge of the photoelectrons, and the photoelectric conversion element has one first MOS diode having a first electrode and a plurality of second MOS diodes having a second electrode.
  • the first electrode of the first MOS diode has a comb-like shape branched from one electrode portion to a plurality of branch portions when viewed from above, and each of the second electrodes of the second MOS diode includes: When viewed from above, the first electrode is separated from the first electrode, and is arranged in a nested manner between the plurality of branching portions of the first electrode, and the photoelectrons from the photoelectric conversion element are selectively The first switching element to the third switching element are controlled to be turned on / off and transferred to the first capacitor and the second capacitor, so that the first capacitor And wherein the obtaining luminance information of the incident light based on the amount of the light electrons transferred to the motor and the second capacitor (charge amount).
  • the charge accumulation unit is connected to the photoelectric conversion element, and the charge discharge unit is disposed to face the photoelectric conversion element with the charge accumulation unit interposed therebetween,
  • the first capacitor and the second capacitor are arranged to face each other with the charge accumulating unit interposed therebetween.
  • the first capacitor and the second capacitor are configured by an MIM capacitor, a MOS capacitor, a buried photodiode structure, or a parasitic capacitance of a pn junction. .
  • At least the charge integration unit, the first switching element to the third switching element, the first capacitor, and the second capacitor are formed in a light-shielded region.
  • a light receiving system includes: a light emitting device that emits pulsed light to an object; a light receiving device that receives reflected light of the pulsed light and performs output according to the amount of received light; A light receiving system including the light emitting device and a control device for controlling the light receiving device, wherein the light receiving device detects the reflected light and converts it into photoelectrons, and photoelectrons generated by the photoelectric conversion elements.
  • a charge accumulation unit for collecting the photoelectrons, a pair of capacitors for accumulating the photoelectrons for a certain period, a charge discharge unit for discharging the photoelectrons, and the charge accumulation unit and the pair of capacitors.
  • a pair of MOS type switching elements that selectively distribute the photoelectrons collected in the section to the pair of capacitors in synchronization with the driving of the light emitting device and the driving of the light emitting device
  • a third switching element of a MOS type that controls the discharge of the photoelectrons from the charge accumulation section to the charge discharge section, wherein the photoelectric conversion element includes one first MOS diode having a first electrode, and a second electrode A plurality of second MOS diodes, and the first electrode of the first MOS diode has a comb-tooth shape branched from one electrode part to a plurality of branch parts when viewed from above, Each of the second electrodes of the second MOS diode is separated from the first electrode when viewed from above, and is arranged in a nested manner between the plurality of branch portions of the first electrode.
  • Is configured to turn on the first switching element of the pair of switching elements in a first period in which the pulsed light is not emitted from the light emitting device. Then, the photoelectrons from the photoelectric conversion element are transferred to the first capacitor of the pair of capacitors, and the pair of the pair of capacitors is emitted in the second period of the period in which the pulsed light is emitted from the light emitting device.
  • the second switching element is turned on, and the photoelectrons from the photoelectric conversion element are transferred to the second capacitor of the pair of capacitors, and the other period than the first period and the second period During the period, the third switching element is turned on to control the photoelectrons from the photoelectric conversion element to be discharged to the charge discharging unit, and the amount of photoelectrons transferred to the first capacitor (charge amount) And luminance information of the reflected light is obtained based on the amount (charge amount) of photoelectrons transferred to the second capacitor.
  • the fourth aspect of the present invention is characterized by having a power source for setting the potential of the first capacitor and the second capacitor to an initial potential, and a first reset switch and a second reset switch having a MOS structure. .
  • the first and second amplifiers for converting the electric signals to levels corresponding to potentials based on the amounts of photoelectrons accumulated in the first capacitor and the second capacitor, respectively is characterized by.
  • the parasitic capacitance of the MOS capacitor or embedded photodiode structure that temporarily holds the photoelectrons transferred by the first switching element and the second switching element.
  • a light receiving system includes: a light emitting device that emits pulsed light to an object; a light receiving device that receives reflected light of the pulsed light and performs output according to the amount of received light; A light receiving system including the light emitting device and a control device for controlling the light receiving device, wherein the light receiving device detects the reflected light and converts it into photoelectrons, and photoelectrons generated by the photoelectric conversion elements.
  • a charge accumulation unit for collecting the photoelectrons, a first capacitor to a fourth capacitor for accumulating the photoelectrons for a certain period, a charge discharge unit for discharging the photoelectrons, the charge accumulation unit, the first capacitors to the fourth capacitors, Between the first capacitor to the fourth capacitor and the MOS type first switching element to the fourth capacitor that distribute the photoelectrons to the first to fourth capacitors in synchronization with the emission of the pulsed light.
  • An switching element a MOS type fifth switching element that is disposed between the charge accumulation unit and the charge discharge unit and controls the supply of the photoelectrons from the charge accumulation unit to the charge discharge unit
  • the photoelectric conversion element has one first MOS diode having a first electrode and a plurality of second MOS diodes having a second electrode, and the first electrode of the first MOS diode is 1 when viewed from above.
  • the second electrode of the second MOS diode is separated from the first electrode when viewed from above, and has a comb-tooth shape branched from one electrode part into a plurality of branch parts. Nested between the plurality of branch portions in one electrode, the control device emits the pulsed light by the light emitting device and the first switching element.
  • the fourth switching element is controlled to be turned on / off.
  • the fifth switching element is turned on to discharge the photoelectrons to the charge discharging unit.
  • the brightness information of the reflected light is obtained on the basis of the amount (charge amount) of the photoelectrons transferred to the first switching element to the fourth switching element.
  • the fifth aspect of the present invention includes a power source for setting the potential of the first capacitor to the fourth capacitor to an initial potential, and a first reset switch to a fourth reset switch having a MOS structure. .
  • the present invention includes first to fourth amplifiers that convert electrical signals to levels corresponding to potentials based on the amount of photoelectrons accumulated in the first to fourth capacitors, respectively. It is characterized by.
  • the parasitic capacitance of the MOS capacitor or embedded photodiode structure that temporarily holds the photoelectrons transferred by the first switching element to the fourth switching element.
  • the constituent elements of the light receiving device constitute constituent elements for one pixel of a line sensor array or a two-dimensional image sensor array provided with a plurality of pixels. It is characterized by.
  • a distance measuring device includes: a light emitting device that emits pulsed light to an object; a light receiving device that receives reflected light of the pulsed light and performs output according to the amount of light received;
  • a distance measuring device comprising: a control device that controls the light emitting device and the light receiving device; and an arithmetic device that calculates a distance to the object by a time-of-flight method using an output of the light receiving device.
  • the light-receiving device detects the reflected light and converts the photoelectric light into photoelectrons, a charge accumulation unit for collecting the photoelectrons generated by the photoelectric conversion elements, and a first accumulation of the photoelectrons for a certain period.
  • the photoelectrons are synchronized with the emission of the pulsed light.
  • the first electrode of the first MOS diode has a comb-like shape branched from one electrode portion to a plurality of branch portions when viewed from above, and each of the second MOS diodes The second electrode is separated from the first electrode when viewed from above, and is inserted between the plurality of branch portions of the first electrode.
  • the pulsed light emission start time is the time Teu
  • the pulsed light emission end time is the time Ted
  • the reflected light incident end time to the photoelectric conversion element is the time Trd
  • the first switching element to the The time point at which the fourth switching element is turned on is the time point Tg1u, Tg2u, Tg3u, Tg4u
  • the time point at which the first to fourth switching elements are turned off is the time point Tg1d, Tg2d, Tg3d, Tg4d
  • the time point Tg1u to the time point Tg1d is the time point Tg1d.
  • the period from time Tg2u to time Tg2d is the period P2, the period from time Tg3u to time Tg3d is the period P3, the period from time Tg4u to time Tg4d is the period P4, A period from time Tg4u to time Trd is a period Psr.
  • the amount of photoelectrons accumulated in the first capacitor during the period P1 is the amount of charge Q1
  • the amount of photoelectrons accumulated in the second capacitor during the period P2 is the amount of charge Q2
  • the amount of photoelectrons accumulated in the third capacitor during the period is the amount of charge Q3, the amount of photoelectrons accumulated in the fourth capacitor during the period P4 is the amount of charge Q4, and the pulse light is emitted.
  • the emission of the pulsed light by the light emitting device and the on / off of the first switching element to the fourth switching element are controlled
  • the fifth switching element is turned on to discharge the photoelectrons to the charge discharging unit, and the arithmetic unit is stored in the third capacitor and the charge amount Q3 corresponding to the ambient light and the reflected light.
  • acquiring the light quantity information of the reflected light in the period P3 based on the difference between the charge amount Q1 corresponding to the ambient light and stored in the first capacitor, and stored in the fourth capacitor, Based on the difference between the charge amount Q4 corresponding to the ambient light and the reflected light and the charge amount Q2 stored in the second capacitor and corresponding to the ambient light,
  • the light quantity information of the reflected light in the period Psr is acquired, and based on the ratio of the light quantity information of the reflected light in the period P3 and the light quantity information of the reflected light in the period Psr, and the ratio of the period P3 and the period Psr.
  • the round trip period ⁇ P is calculated, and the distance D is measured based on the round trip period ⁇ P.
  • ⁇ P [(Q4-Q2) / (Q3-Q1)] ⁇ P3- (Ted-Tg4u) (2)
  • control device causes the light-emitting device to emit the pulsed light a plurality of times for each measurement period, and the arithmetic device causes the first capacitor to the fourth capacitor to The round trip period ⁇ P is calculated using the charge amounts Q1 to Q4 after accumulating photoelectrons a plurality of times.
  • photoelectrons obtained by photoelectric conversion can be moved to a desired region at high speed and integrated, and ranging using the principle of the TOF method is possible.
  • the present invention can be applied to various light receiving devices.
  • the photoelectric conversion element having the above-described effect since the photoelectric conversion element having the above-described effect is used, it is possible to obtain the luminance information of the incident light for a certain period with high accuracy and also has the function of the electronic shutter. Can be made.
  • the S / N ratio can be improved and the influence of noise components of ambient light can be reduced, and the necessary light components can be detected with high accuracy.
  • the distance measuring apparatus it is possible to improve the S / N ratio and reduce the influence of noise components of ambient light, and to measure the distance to the object with high accuracy.
  • FIG. 4A is a potential diagram on the VIIA-VIIA line in FIG. 6, and FIG. 7B is a potential diagram on the VIIB-VIIB line in FIG. FIG.
  • FIG. 7 is a potential diagram on the line VIII-VIII in FIG. 6.
  • FIG. 4 is a potential diagram showing the operation of the second photoelectric conversion element (operation at time t4 in FIG. 3). It is a block diagram which shows a 1st light-receiving device and a 2nd light-receiving device. It is a figure which shows the 1st light-receiving part of a 1st light-receiving device seeing from an upper surface. It is a figure which shows the 2nd light-receiving part of a 2nd light-receiving device seeing from an upper surface. It is a block diagram which shows a 1st light reception system and a 2nd light reception system.
  • FIG. 17A is an explanatory diagram showing the basic principle of a method for reducing the influence of ambient light
  • FIG. 17B is an explanatory diagram showing the influence of sunlight shot noise.
  • FIG. 18A is an explanatory diagram showing a method for improving the S / N of the signal light component by repeating one cycle shown in FIG. 17A a plurality of times
  • FIG. 18B is an explanatory diagram showing the influence of random optical shot noise.
  • FIG. 12 is a timing chart showing an example of radiated light, reflected light, and on / off timings of the first to fifth switching elements in each second accumulation period Tca2.
  • FIG. 10 is a timing chart showing another example of the on / off timing of radiated light, reflected light, and first to fifth switching elements in each second accumulation period Tca2.
  • It is a circuit diagram which shows the structure of each pixel in the 4th light-receiving part of the 4th light-receiving device installed in a 2nd distance measuring device. It is sectional drawing which shows the modification of a photoelectric conversion element. It is a figure which shows a 3rd photoelectric conversion element seeing from an upper surface.
  • FIG. 30 is a cross-sectional view taken along the line XXX-XXX in FIG. 29.
  • FIG. 6 is a potential diagram showing the operation of the third photoelectric conversion element (operation at time t2 and the like in FIG. 3). It is a figure which shows a 4th photoelectric conversion element seeing from an upper surface.
  • FIG. 33 is a cross-sectional view taken along line XXXIII-XXXIII in FIG. 32. It is a potential diagram which shows operation
  • FIG. 36 is a cross-sectional view taken along the line XXXVI-XXXVI in FIG.
  • FIG. 38A is a potential diagram showing the operation of the fifth photoelectric conversion element (operation at time t11 in FIG. 37)
  • FIG. 38B is a potential diagram showing the operation at time t12
  • FIG. 38C is the potential diagram at time t11.
  • movement It is a figure which shows a 6th photoelectric conversion element seeing from an upper surface.
  • 40A is a potential diagram on the XLA-XLA line in FIG. 39
  • FIG. 40B is a potential diagram on the XLB-XLB line in FIG.
  • FIG. 40 is a potential diagram on the XLI-XLI line in FIG. 39.
  • FIG. 43 is a potential diagram on the XLIII-XLIII line in FIG. 42.
  • the photoelectric conversion element according to the first embodiment (hereinafter referred to as the first photoelectric conversion element 10A) is formed on an insulator 14 on a semiconductor substrate 12 (see FIG. 2). And a plurality of second MOS diodes 18b having a second electrode 16b formed on the semiconductor substrate 12 with an insulator 14 interposed therebetween.
  • the semiconductor substrate 12 has a p-type impurity diffusion region as shown in FIG.
  • first electrode 16a and second electrode 16b are formed, the above-described A first MOS diode 18a and a second MOS diode 18b are configured.
  • the first electrode 16a of the first MOS diode 18a has a comb-tooth shape branched from one electrode portion 20 to a plurality of branch portions 22, and each second electrode 16b of the second MOS diode 18b has When viewed from the top, the first electrode 16a is separated from each other, and the first electrode 16a is disposed between the plurality of branch portions 22 in a nested manner.
  • the branching portion 22 of the first electrode 16a in the first MOS diode 18a and the second electrode 16b of the second MOS diode 18b each have a rectangular shape.
  • a charge accumulating portion 26 for collecting photoelectrons generated by the first photoelectric conversion element 10A is formed at the base portion 24 (the central portion in the length direction) of one electrode portion 20 in the first electrode 16a.
  • the charge accumulation portion 26 is formed to extend from the base portion 24 of one electrode portion 20 in the direction opposite to the branch portion 22.
  • the charge accumulation unit 26 may or may not be included in the first photoelectric conversion element 10A due to its configuration.
  • first power supply terminal 28a of each branching portion 22 of the first electrode 16a in the first MOS diode 18a and the second power supply terminal 28b of each second electrode 16b in the second MOS diode 18b are charge integrated when viewed from above. It is formed at a position farthest from the portion 26. That is, it is formed at the end of each branch site 22 away from the charge accumulating portion 26.
  • a metal wiring (not shown) is provided so that the first voltage V1 is applied to the first power supply terminal 28a and the second voltage V2 is applied to the second power supply terminal 28b independently.
  • the first voltage V1 varies from the low level V1L to the high level V1H
  • the second voltage V2 varies from the low level V2L to the high level V2H.
  • the level relationship is at least V1H> V2H.
  • the relationship between V1L and V2L may be the same or V1L> V2L. Further, V1L and V2L may be 0V or a negative voltage.
  • FIGS. 4A to 4C and FIG. 5 are directed to the photoelectron 30 as the electric charge, so that the potential position 32 becomes lower as the electric potential is higher, as can be understood intuitively.
  • the first voltage V1 and the second voltage V2 are both at the low levels V1L and V2L. Therefore, as shown in FIG. 4A, the potential position 32a below the first electrode 16a and the second voltage V2L.
  • the potential position 32b under the electrode 16b is substantially the same.
  • the potential position 32a below the first electrode 16a and the potential below the second electrode 16b is lower than the potential position 32b under the second electrode 16b. That is, a potential gradient 34 in which the potential position decreases from below the second electrode 16b to below the first electrode 16a is formed. For this reason, the photoelectrons 30 generated under the second electrode 16 b move under the first electrode 16 a, that is, under the plurality of branch sites 22, due to the potential gradient 34.
  • the potential position 32a under the first electrode 16a rises, but the first feeding terminal of the first electrode 16a. Since 28a is formed at the position farthest from the charge accumulating portion 26, the potential position 32a of the portion immediately below the first power supply terminal 28a of the potential position 32a below the first electrode 16a rises quickly and gradually The potential position 32a closer to the charge accumulating portion 26 is raised. This is because, as a result of the positive charge of the first electrode 16a being sunk, the potential of the portion immediately below the first power supply terminal 28a decreases, and the potential decreases transiently across the entire first electrode 16a.
  • a potential gradient 34 is also formed in the length direction below the branching portion 22 of the first electrode 16a, and the potential gradient 34 translates toward the charge accumulating portion 26 with the passage of time, so that photoelectrons 30 moves to the charge accumulating unit 26 at a high speed.
  • the first voltage V1 applied to the first electrode 16a and the second voltage V2 applied to the second electrode 16b are independently controlled, so that the adjacent first Since the potential gradient 34 due to the difference between the potential positions formed under the electrode 16a and the second electrode 16b is formed, the photoelectrons 30 obtained by photoelectric conversion can be transferred at high speed with a residual charge under the electrode. It is possible to efficiently transfer and accumulate in the charge accumulation unit 26 without being generated.
  • the potential position 32a below the first electrode 16a is changed to the portion immediately below the first power supply terminal 28a. It becomes possible to raise continuously as a starting point. As the potential position 32a under the first electrode 16a rises, an electric field is generated, and the photoelectrons 30 under the first electrode 16a can be moved at high speed. As a result, for example, the photoelectrons 30 under the plurality of branch sites 22 under the first electrode 16a can be moved to the charge accumulation unit 26 at high speed.
  • the second photoelectric conversion element 10B has substantially the same configuration as the first photoelectric conversion element 10A described above, but the shape of the first electrode 16a and the second electrode 16b, particularly when viewed from the top. Different shapes.
  • each branch part 22 of the first electrode 16a has a shape in which the electrode width gradually increases toward one electrode part 20 when viewed from the upper surface, and each second electrode 16b is viewed from the upper surface. In some cases, the electrode width gradually decreases toward one electrode portion 20 of the first electrode 16a.
  • the portion with the narrow electrode width is affected by the surface potential of the semiconductor substrate 12 (silicon substrate) as shown in FIGS. 7A and 7B.
  • the potential position 32a1 of the portion becomes higher and the potential position 32c2 of the wider portion becomes lower. Accordingly, the potential position 32a of the branching portion 22 of the first electrode 16a decreases as the width increases, and gradually descends toward one portion 20 as shown in FIG.
  • first light receiving device 100A the light receiving device according to the first embodiment (hereinafter referred to as the first light receiving device 100A) will be described with reference to FIGS.
  • the first light receiving device 100A includes a lens 102 and a first light receiving unit 104A.
  • the incident light La that has passed through the lens 102 is condensed on the first light receiving unit 104A.
  • the lens 102 may be a plurality of lenses arranged linearly or in a matrix.
  • the first light receiving unit 104A includes a photoelectric conversion element 10, a charge accumulation unit 26 for collecting photoelectrons generated by the photoelectric conversion element 10, a capacitor Ca for accumulating photoelectrons for a certain period, and photoelectrons.
  • a second switching element SW2 that is disposed between the charge discharging unit 108 and controls the discharge of photoelectrons from the charge accumulating unit 26 to the charge discharging unit 108 is provided.
  • the charge discharging unit 108 is disposed opposite to the capacitor Ca with the charge accumulating unit 26 interposed therebetween.
  • the capacitor Ca and the charge discharging unit 108 are arranged in a line-symmetric position with respect to the center of the charge accumulating unit 26.
  • the capacitor Ca is configured by an MIM capacitor, a MOS capacitor, a buried photodiode structure, or a parasitic capacitance of a pn junction.
  • FIG. 11 shows an example in which the first photoelectric conversion element 10 ⁇ / b> A is used as the photoelectric conversion element 10.
  • the first switching element SW1 has a MOS structure composed of a gate electrode disposed between the charge accumulation unit 26 and the capacitor Ca, an insulator under the gate electrode, and a semiconductor substrate 12 under the insulator.
  • the second switching element SW2 includes a gate electrode disposed between the charge accumulation unit 26 and the charge discharge unit 108, an insulator under the gate electrode, and a MOS base body 12 under the insulator. It has a structure. Accordingly, the first switching element SW1 and the second switching element SW2 are turned on when a high level voltage is applied to the gate electrode, and are turned off when a low level voltage (0 V or negative voltage) is applied to the gate electrode. It is said.
  • the charge integration unit 26 the capacitor Ca, the first switching element SW1, and the second switching element SW2 are formed in the light-shielded region Z.
  • the charge accumulation unit 26 is transferred and accumulated at high speed. Thereafter, when the first switching element SW1 is turned on, the photoelectrons of the charge accumulating unit 26 are transferred to the capacitor Ca, and the luminance information of the incident light La is based on the amount (charge amount) of the photoelectrons transferred to the capacitor Ca. Will be obtained.
  • the first switching element SW1 is turned off after a predetermined period.
  • the photoelectrons obtained by photoelectric conversion in the photoelectric conversion element are transferred to the capacitor through the first switching element SW1 because the first switching element SW1 is turned off before reaching the first switching element SW1. I can't. As a result, the charge is transferred to the charge discharging unit through the second switching element SW2 and discharged.
  • the first photoelectric conversion element 10A and the second photoelectric conversion element 10B described above are used as the photoelectric conversion element 10.
  • the photoelectrons can be moved at high speed by the electric field, and the photoelectrons obtained in the effective period are transferred to the capacitor Ca through the first switching element SW1. can do.
  • the second photoelectric conversion element 10B as the photoelectric conversion element 10, it is possible to move the photoelectrons further at a higher speed.
  • the first light receiving device 100A can be applied to an application that needs to acquire a high S / N ratio, and is suitable, for example, when the light receiving area is large and the distance to a node that outputs photoelectrons is long.
  • the capacitors Ca and the charge discharging unit 108 are arranged in a line-symmetrical position with respect to the center of the charge collecting unit 26, two or more are collected. Even when the photoelectrons are distributed to the nodes, the transfer paths to the nodes do not differ because the electron movement paths are the same.
  • a light receiving device (hereinafter referred to as a second light receiving device 100B) according to a second embodiment will be described with reference to FIGS.
  • the second light receiving device 100B includes a lens 102 and a second light receiving unit 104B, as in the first light receiving device 100A described above.
  • the second light receiving unit 104B has substantially the same configuration as the first light receiving unit 104A of the first light receiving device 100A described above. However, as shown in FIG. 12, the first capacitor Ca1 and the second capacitor Ca1 each store photoelectrons for a certain period. It differs in that it has a capacitor Ca2.
  • the charge discharging unit 108 is disposed opposite to the photoelectric conversion element 10 with the charge accumulation unit 26 interposed therebetween, and the first capacitor Ca1 and the second capacitor Ca2 are opposed to each other with the charge accumulation unit 26 interposed therebetween.
  • the first capacitor Ca1 and the second capacitor Ca2 are arranged in a line-symmetric position with respect to the center of the charge accumulation unit 26.
  • the first switching element SW1 which is disposed between the charge accumulation unit 26 and the first capacitor Ca1 and moves the photoelectrons collected in the charge accumulation unit 26 to the first capacitor Ca1, the charge accumulation unit 26 and the second capacitor A second switching element SW2 disposed between the capacitor Ca2 and moving the photoelectrons collected in the charge accumulation unit 26 to the second capacitor Ca2, and the charge accumulation unit 26 and the charge discharge unit 108;
  • a third switching element SW3 that controls the discharge of photoelectrons from the charge accumulating unit 26 to the charge discharging unit 108;
  • the first capacitor Ca1 and the second capacitor Ca2 are configured by MIM capacitors, MOS capacitors, buried photodiode structures, or pn junction parasitic capacitances.
  • the first switching element SW1 includes a gate electrode disposed between the charge accumulating unit 26 and the first capacitor Ca1, an insulator under the gate electrode, and a MOS substrate including the semiconductor substrate 12 under the insulator.
  • the second switching element SW2 has a structure in which a gate electrode disposed between the charge integration unit 26 and the second capacitor Ca2, an insulator under the gate electrode, and the semiconductor substrate 12 under the insulator
  • the MOS structure is configured as described above.
  • the third switching element SW3 includes a gate electrode arranged between the charge accumulation unit 26 and the charge discharge unit 108, an insulator under the gate electrode, and a semiconductor substrate 12 under the insulator. It has a structure. Accordingly, the first switching element SW1 to the third switching element SW3 are turned on when a high level voltage is applied to the gate electrode, and are turned off when a low level voltage (0 V or negative voltage) is applied to the gate electrode. It is said.
  • the charge accumulation unit 26 the first capacitor Ca1, the second capacitor Ca2, and the first switching element SW1 to the third switching element SW3 are formed in the light-shielded region Z.
  • the second light receiving device 100B includes the first capacitor Ca1 and the second capacitor Ca2, it is suitable for removing noise due to ambient light from the obtained luminance information.
  • a second effective period in which luminance information of specific incident light La is to be acquired is converted into photoelectrons in the photoelectric conversion element 10, and the photoelectrons are transferred to the charge accumulating unit 26 according to the above-described operation. It is transferred and accumulated at high speed. Thereafter, when the second switching element SW2 is turned on, the photoelectrons of the charge accumulating unit 26 are transferred to the second capacitor Ca2, and a specific incident is made based on the amount of photoelectrons (charge amount) transferred to the second capacitor Ca2. Luminance information of the light La is obtained. The second switching element SW2 is turned off after a predetermined period. Since the luminance information of the specific incident light obtained includes noise information due to the environmental light, the noise due to the environmental light is removed by taking a difference from the luminance information of the environmental light acquired through the first capacitor Ca1. Brightness information can be obtained.
  • the photoelectrons obtained in the first effective period are the first.
  • the first capacitor Ca1 can be transferred to the first capacitor Ca1 through the first switching element SW1, and the photoelectrons obtained in the second effective period can be transferred to the second capacitor Ca2 through the second switching element SW2.
  • the first capacitor Ca1 and the second capacitor Ca2 are arranged in a line-symmetric position with respect to the center of the charge accumulation unit 26.
  • the second light receiving device 100B has the same effect as the first light receiving device 100A described above. Furthermore, since the noise component due to the ambient light can be removed, the luminance information of the specific incident light La can be acquired with high accuracy, and the S / N ratio can be improved.
  • first light receiving system 200A Next, a light receiving system according to the first embodiment (hereinafter referred to as a first light receiving system 200A) will be described with reference to FIGS.
  • the first light receiving system 200A includes the light emitting device 202, the first light receiving device 100A, the control device 204, the arithmetic device 206, the light emitting device 202, the first light receiving device 100A, and the control.
  • a first power supply 208A and a second power supply 208B that supply a predetermined power supply voltage to the device 204 and the arithmetic device 206 are provided.
  • the display of power supply lines from the first power supply 208A and the second power supply 208B to each device is omitted.
  • the pulsed light Lp emitted from the light emitting device 202 is reflected by the subject W and enters the first light receiving device 100A.
  • the pulsed light Lp from the light emitting device 202 to the subject W is called radiated light Le
  • the pulsed light Lp from the subject W to the first light receiving device 100A is called reflected light Lr.
  • the control device 204 performs control so as to acquire the component of the reflected light Lr from the subject W from the light received by the first light receiving device 100A.
  • the light emitting device 202 includes a light emitting unit 210 that outputs pulsed light Lp based on a command from the control device 204.
  • the light emitting unit 210 of the light emitting device 202 is configured to be capable of surface light emission by stacking (in series connection) semiconductor laser bars having light emitting points (emitters) provided in a straight line.
  • the light emitting unit 210 can emit infrared light having a wavelength of 870 nanometers [nm] with an output of 100 watts [W]. Further, a plurality of exposure processes (charge accumulation processes) are performed in each cycle Cm (period for obtaining a measurement value) (see FIG. 24). When the cycle of the exposure process (see the second accumulation period Tca2 in FIG. 24) is 100 [microseconds], the light emitting unit 210 outputs the pulsed light Lp with an output time (pulse width) of 100 [nanoseconds]. In other words, the driving duty of the light emitting unit 210 is 0.1 [%].
  • the light emitting unit 210 may have a linear array of light emitting points, or may have a plurality of light emitting points arranged in a matrix. Other light emitting elements such as a laser diode and a light emitting diode (LED) may be used as the light emitting element. Further, the pulsed light Lp emitted from the light emitting unit 210 may have other wavelengths, for example, longer than 700 nm and not longer than 1050 nm. Further, the output of the light emitting unit 210 may be other values, for example, greater than 20 [W] and not greater than 10 [kW].
  • the pulse width of the pulsed light Lp may be other lengths, for example, 10 [nanoseconds] or more and 1 [milliseconds] or less.
  • the driving duty of the light emitting unit 210 may be other values, for example, 0.01 [%] or more and 1 [%] or less.
  • First light receiving device 100A Since the above description is omitted here, the first light receiving device 100A as a circuit configuration, particularly the first light receiving unit 104A, will be described with reference to FIG.
  • the first light receiving unit 104A includes the photoelectric conversion element 10, the charge integration unit 26, the capacitor Ca, the charge discharging unit 108, the first switching element SW1, and the second switching element.
  • the device includes an element SW2, and further includes a reset switch SR and an amplifier AP.
  • the first switching element SW1 is composed of, for example, an n-channel MOS transistor, the source is connected to the charge integration unit 26, the drain is connected to the capacitor Ca, and the gate is connected to a gate drive circuit (not shown). Therefore, by selectively controlling on / off of the first switching element SW1 according to the gate drive signal (read signal Sg) from the gate drive circuit for the gate, the photoelectrons present in the charge integration unit 26 are transferred to the capacitor Ca. Transferred.
  • the second switching element SW2 is composed of, for example, an n-channel MOS transistor, the charge integrating unit 26 is connected to the source, the charge discharging unit 108 is connected to the drain, and the charge discharging unit 108 includes the first power supply 208A. Is supplied with a positive power supply voltage Vdd.
  • a gate drive circuit (not shown) is connected to the gate. Therefore, by supplying a gate drive signal (charge discharge signal Se) from the gate drive circuit to the gate (by setting the voltage supplied to the gate to a high level), the gate is turned on, and the photoelectrons present in the charge accumulation unit 26 are present. Can be discharged through the charge discharging unit 108 without being transferred to the capacitor Ca.
  • the reset switch SR is composed of, for example, an n-channel MOS transistor, the contact point a1 between the first switching element SW1 and the capacitor Ca is connected to the source, and the reset voltage Vr from the second power source 208B is supplied to the drain. ing.
  • a gate drive circuit (not shown) is connected to the gate. Therefore, by turning on the reset switch SR by the gate drive signal (reset signal Sr) from the gate drive circuit for the gate, the potential of the capacitor Ca can be set to a constant reset potential. That is, the capacitor Ca can be reset.
  • the amplifier AP includes, for example, an output element TR composed of an n-channel MOS transistor, and an output switch SEL composed of, for example, an n-channel MOS transistor connected between the source of the output element TR and the output line 212.
  • the contact point a1 of the first switching element SW1 and the capacitor Ca is connected to the gate of the output element TR, the positive power supply voltage Vdd from the first power supply 208A is supplied to the drain, and the drain of the output switch SEL is connected to the source. Is connected.
  • the output switch SEL has a gate drive circuit (not shown) connected to the gate and an output line 212 connected to the source.
  • V1 is the first voltage V1 applied to the first electrode 16a of the photoelectric conversion element 10 (the first photoelectric conversion element 10A or the second photoelectric conversion element 10B), and V2 is also applied to the second electrode 16b.
  • the second voltage is shown.
  • the light emission time of the pulsed light Lp from the light emitting device 202 is WL, and the periods when the first switching element SW1 and the second switching element are on are WD1 and WD2, respectively.
  • the control device 204 of the first light receiving system 200A drives the light emitting device 202 for every fixed period (cycle), and emits the pulsed light Lp of the light emission time WL for each cycle.
  • the pulsed light Lp (radiated light Le) emitted from the light emitting device 202 is reflected by the subject W and enters the first light receiving device 100A as reflected light Lr.
  • the light incident on the first light receiving device 100 ⁇ / b> A is converted into photoelectrons by the photoelectric conversion element 10 and transferred to the charge accumulation unit 26 at a high speed.
  • the first switching element SW1 transfers the photoelectrons transferred to the charge integration unit 26 to the capacitor Ca. That is, the photoelectrons transferred to the capacitor Ca are photoelectrons (charge amount Q) obtained by photoelectrically converting the incident reflected light Lr. Therefore, the information on the reflected light intensity can be acquired by the charge amount Q.
  • the photoelectrons photoelectrically converted when the first switching element SW1 is not turned on are unnecessary photoelectrons, and thus the unnecessary photoelectrons are turned on and discharged to the charge discharging unit 108 with the second switching element SW2 turned on. .
  • the second switching element SW2 and the reset switch SR are all turned on, and the first switching element SW1 and the output switch SEL are both turned off. Thereby, unnecessary photoelectrons accumulated in the photoelectric conversion element 10 are discharged, and the potential of the capacitor Ca is set to the reset potential Vr. Thereafter, the reset switch SR is turned off.
  • the cycle for obtaining the reflected light intensity is repeated only once or a plurality of times.
  • one light pulse Lp is emitted from the light emitting device 202 by driving the light emitting device 202 by the control device 204 at the first time point t1. Therefore, the second switching element SW2 is turned off at the time point t1, and the first switching element SW1 is turned on (the second switching element SW2 remains off) from the time point t1 over the reading period WD1. Further, the first voltage V1 and the second voltage V2 supplied to the first electrode 16a and the second electrode 16b of the photoelectric conversion element 10 from the time point t1 are set to the high levels VH1 and VH2, respectively.
  • the first switching element SW1 is turned off, and the second switching element SW2 is turned on over the period from the time t4 to the start of the next cycle (charge discharging period WD2) (the first switching element SW1 is turned off). Leave as it is). Accordingly, unnecessary photoelectrons generated in the photoelectric conversion element 10 in the charge discharging period WD2 are discharged through the second switching element SW2 and the charge discharging unit 108.
  • the first voltage V1 and the second voltage V2 supplied to the first electrode 16a and the second electrode 16b of the photoelectric conversion element 10 are controlled in the same manner as in the period WD1, so that the first Photoelectrons generated in the photoelectric conversion element 10 including the electrode 16 a and the second electrode 16 b are discharged through the charge discharging unit 108 so that no charge remains in the photoelectric conversion element 10.
  • a voltage corresponding to the photoelectrons (charge amount Q) accumulated in the capacitor Ca is amplified on the output line 212 by the output element TR.
  • the output voltage Vout is output.
  • the output voltage Vout is converted into digital data by an A / D converter (not shown) and supplied to the arithmetic unit 206.
  • FIG. 200B a light receiving system (hereinafter referred to as a second light receiving system 200B) according to a second embodiment will be described with reference to FIGS. 13 and 16 to 20.
  • FIG. 200B a light receiving system
  • the second light receiving system 200B has substantially the same configuration as the first light receiving system 200A described above. However, as shown in FIG. 13, the second light receiving device 100B is used, and the second light receiving device 100B is controlled by the control device 204. By controlling to remove the component of the ambient light Ls from the received light and obtain the component of the reflected light Lr from the subject W, information on the reflected light intensity independent of the ambient light Ls can be obtained. It is different in point.
  • the first one frame period F1 photoelectrons when the subject W is not irradiated with continuous light are captured, and a luminance value when not irradiated is obtained from the photoelectrons, and in the next two frame periods F2.
  • the influence of the ambient light Ls mainly sunlight component
  • the combination of the first frame period F1 and the second frame period F2 is one cycle, the duty ratio of continuous light with respect to one cycle is 50%.
  • one frame period for example, 1/60 [second] which is a shooting period by the imaging apparatus is used.
  • first one frame period F1 light is received without emitting continuous light
  • second frame period F2 light is received while emitting continuous light over the second frame period F2.
  • noise components due to ambient light are also captured.
  • the sunlight component is larger than the signal light component (the S / N ratio of the signal light component is low).
  • the input dynamic range of the light component is reduced.
  • a general imaging device has a limited signal output effective range (dynamic range) with respect to the amount of incident light, and it is known that when sunlight enters, the signal output is saturated. ing. Therefore, for example, as shown in FIG. 18A, the first frame period is calculated from one cycle (exposure in one frame period F1 and two frame periods F2, and the luminance value (signal light component + sunlight component) in the second frame period F2.
  • the second light receiving system 200B using the light emitting device 202 has the continuous light as described above. Can solve various problems.
  • the second light receiving device 100B includes the above-described photoelectric conversion element 10, charge accumulating unit 26, first capacitor Ca1, second capacitor Ca2, charge discharging unit 108, first switching elements SW1 to SW1. 3 switching elements SW3, and further includes a first reset switch SR1, a second reset switch SR2, a first amplifier AP1, and a second amplifier AP2.
  • the first switching element SW1 is composed of, for example, an n-channel MOS transistor, the source is connected to the charge integration unit 26, the drain is connected to the first capacitor C1, and the gate is connected to a gate drive circuit (not shown). . Therefore, by selectively controlling on / off of the first switching element SW1 according to the gate drive signal (first read signal Sg1) from the gate drive circuit for the gate, the photoelectrons present in the charge integration unit 26 are changed to the first. Transferred to one capacitor Ca1.
  • the second switching element SW2 is composed of, for example, an n-channel MOS transistor, the source is connected to the charge integration unit 26, the drain is connected to the second capacitor Ca2, and the gate is connected to a gate drive circuit (not shown). . Therefore, by selectively controlling on / off of the second switching element SW2 according to the gate drive signal (second read signal Sg2) from the gate drive circuit for the gate, the photoelectrons present in the charge integration unit 26 are changed to the first. Transferred to two capacitors Ca2.
  • the third switching element SW3 is composed of, for example, an n-channel MOS transistor, and the charge integrating unit 26 is connected to the source, the charge discharging unit 108 is connected to the drain, and the charge discharging unit 108 includes the first power supply 208A. Is supplied with a positive power supply voltage Vdd.
  • a gate drive circuit (not shown) is connected to the gate. Accordingly, by supplying a gate drive signal (charge discharge signal Se) from the gate drive circuit to the gate, the gate is turned on, and the photoelectrons present in the charge accumulation unit 26 are transferred to the first capacitor Ca1 and the second capacitor Ca2. Without being discharged through the charge discharging unit 108.
  • the first reset switch SR1 and the second reset switch SR2 are configured by, for example, n-channel MOS transistors.
  • the contact point a1 between the first switching element SW1 and the first capacitor C1 is connected to the source of the first reset switch SR1, and the contact point a2 between the second switching element SW2 and the second capacitor C2 is connected to the source of the second reset switch SR2.
  • a reset voltage Vr from the second power source 208B is supplied to each drain, and a gate drive circuit (not shown) is connected to each gate.
  • first reset switch SR1 and the second reset switch SR2 by selectively or simultaneously turning on the first reset switch SR1 and the second reset switch SR2 by gate drive signals (first reset signal Sr1 and second reset signal) from the gate drive circuit for each gate,
  • the potentials of the first capacitor Ca1 and the second capacitor Ca2 can be set to constant reset potentials. That is, the first capacitor Ca1 and the second reset Ca2 can be reset.
  • the first amplifier AP1 includes, for example, a first output element TR1 configured by an n-channel MOS transistor, and an n-channel MOS transistor connected between the source of the first output element TR1 and the first output line 212a, for example. And a first output switch SEL1.
  • a contact point a1 between the first switching element SW1 and the first capacitor C1 is connected to the gate of the first output element TR1, the positive power supply voltage Vdd from the first power supply 208A is supplied to the drain, and the first is supplied to the source.
  • the drain of the 1-output switch SEL1 is connected.
  • the first output switch SEL1 has a gate drive circuit (not shown) connected to the gate, and a first output line 212a connected to the source.
  • the first output switch SEL1 is turned on by the gate drive signal (first output selection signal Ss1) from the gate drive circuit for the gate of the first output switch SEL1, so that the photoelectrons (charges) accumulated in the first capacitor Ca1 are turned on.
  • a voltage corresponding to the quantity Q1) is amplified by the first output element TR1 and is taken out as the first output voltage Vout1.
  • the second amplifier AP2 includes, for example, an n-channel MOS transistor connected between the second output element TR2 configured by an n-channel MOS transistor and the source of the second output element TR2 and the second output line 212b. And a second output switch SEL2.
  • a contact point a2 between the second switching element SW2 and the second capacitor Ca2 is connected to the gate of the second output element TR2, the positive power supply voltage Vdd from the first power supply 208A is supplied to the drain, and the first is supplied to the source.
  • the drain of the 2-output switch SEL2 is connected.
  • a gate drive circuit (not shown) is connected to the gate, and the second output line 212b is connected to the source.
  • the second output switch SEL2 by turning on the second output switch SEL2 by the gate drive signal (second output selection signal Ss2) from the gate drive circuit for the gate of the second output switch SEL2, the photoelectrons (charges) accumulated in the second capacitor Ca2 are turned on.
  • the voltage corresponding to the quantity Q2) is amplified by the second output element TR2 and is taken out as the second output voltage Vout2.
  • the control device 204 of the second light receiving system 200B drives the light emitting device 202 for a certain period (cycle) with a certain period WS and emits the pulsed light Lp of the light emission time WL for each cycle.
  • the fixed period WS is a period in which the luminance information of the ambient light Ls is read.
  • Light incident on the second light receiving device 100B in the fixed period WS is converted into photoelectrons by the photoelectric conversion element 10 and is quickly transferred to the charge accumulation unit 26. Transferred.
  • the first switching element SW1 transfers the photoelectrons transferred to the charge accumulation unit 26 to the first capacitor Ca1. That is, the photoelectrons transferred to the first capacitor Ca1 are photoelectrons (charge amount Q1) obtained by photoelectrically converting the incident ambient light Ls. Therefore, information on the ambient light intensity can be acquired by the charge amount Q1.
  • the pulsed light Lp (radiated light Le) emitted from the light emitting device 202 is reflected by the subject W and enters the second light receiving device 100B as reflected light Lr.
  • the light incident on the second light receiving device 100B is converted into photoelectrons by the photoelectric conversion element 10 and transferred to the charge accumulation unit 26 at high speed.
  • the second switching element SW2 transfers the photoelectrons transferred to the charge accumulation unit 26 to the second capacitor Ca2. That is, the photoelectrons transferred to the second capacitor Ca2 are photoelectrons (charge amount Q2) obtained by photoelectrically converting the incident ambient light Ls and reflected light Lr (reflected light resulting from reflection of the pulsed light Lp on the subject W). ).
  • the third switching element SW3 is turned on and discharged to the charge discharging unit 108.
  • the third switching element SW3, the first reset switch SR1, and the second reset switch SR2 are all turned on, and the first switching element SW1, the second switching element SW2, the first output switch SEL1, and the second output switch SEL2 are all turned off.
  • unnecessary photoelectrons accumulated in the photoelectric conversion element 10 are discharged, and each potential of the first capacitor Ca1 and the second capacitor Ca2 is set to a reset potential.
  • the first reset switch SR1 and the second reset switch SR2 are turned off.
  • the first voltage V1 and the second voltage V2 supplied to the first electrode 16a and the second electrode 16b of the photoelectric conversion element 10 are controlled by the same operation as the timing illustrated in the period WD3, so that the first Photoelectrons generated in the photoelectric conversion element 10 including the first electrode 16 a and the second electrode 16 b are discharged through the charge discharging unit 108 so that the photoelectric conversion element 10 is initialized so that no charge remains in the photoelectric conversion element 10.
  • the cycle for obtaining the reflected light intensity is repeated only once or a plurality of times.
  • each cycle differs from the case of the first light receiving system 200 ⁇ / b> A by setting the light emitting device 202 to 1 by driving the light emitting device 202 by the control device 204 after a certain period WS from the first time point t ⁇ b> 1.
  • One pulsed light Lp is emitted. Therefore, the fixed period WS is a period for taking in the ambient light Ls as described above.
  • the third switching element SW3 is turned off at the time point t1, and the first switching element SW1 is turned on over the first reading period WD1 from the time point t1 (the second switching element SW2 and the third switching element SW3 remain off).
  • the first voltage V1 and the second voltage V2 supplied to the first electrode 16a and the second electrode 16b of the photoelectric conversion element 10 from the time point t1 are set to the high levels VH1 and VH2, respectively.
  • the second voltage V2 is set to the low level V2L
  • the first voltage V1 is set to the low level V1L.
  • the photoelectrons under the second electrode 16b move at a high speed under the first electrode 16a, and the photoelectrons under the first electrode 16a are transferred at a high speed to the charge accumulating unit 26, through the first switching element SW1. Transferred to the first capacitor Ca1.
  • the first switching element SW1 is turned off and one pulsed light Lp is emitted from the light emitting device 202.
  • the second switching element SW2 is turned on from the time point t4 over the second reading period WD2 (the first switching element SW1 and the third switching element SW3 remain off).
  • the first voltage V1 and the second voltage V2 supplied to the first electrode 16a and the second electrode 16b of the photoelectric conversion element 10 from the time t4 are set to the high levels VH1 and VH2, respectively, and then the second voltage V2 at the time t5. Is set to the low level V2L, and then the first voltage V1 is set to the low level V1L at time t6.
  • the photoelectrons under the second electrode 16b move at a high speed under the first electrode 16a, and the photoelectrons under the first electrode 16a are transferred at a high speed to the charge accumulating unit 26 through the second switching element SW2. It is transferred to the second capacitor Ca2.
  • the second switching element SW2 is turned off, and the third switching element SW3 is turned on (the first switching element SW1 and the first switching element SW1) over the period from the time t7 to the start of the next cycle (charge discharging period WD3). Both switching elements remain off). Thereby, unnecessary photoelectrons generated in the photoelectric conversion element 10 in the charge discharging period WD3 are discharged through the third switching element SW3 and the charge discharging unit 108.
  • a voltage corresponding to the photoelectrons (charge amount Q1) accumulated in the first capacitor Ca1 is first applied to the first output line 212a. Amplified by the output element TR1 and output as the first output voltage Vout1, and then the second output switch SEL2 is turned on, whereby the photoelectrons (charge amount) accumulated in the second capacitor Ca2 are displayed on the second output line 212b.
  • the voltage corresponding to Q2) is amplified by the second output element TR2 and output as the second output voltage Vout2.
  • the first output voltage Vout1 and the second output voltage Vout2 output from the first output line 212a and the second output line 212b are respectively converted into digital first numerical data D1 and second numerical data by an A / D converter (not shown). It is converted to D2 and supplied to the arithmetic unit 206.
  • the reflected light intensity data Dr is obtained by calculating the following formula (F2) based on the supplied first numerical data D1 and second numerical data D2.
  • Dr D2-D1 (F2)
  • the pulse width of the pulsed light Lp is longer than 1 [nanosecond] and less than 0.25 [seconds], so the pulse width of the pulsed light Lp is 1 [%] of one frame period.
  • the second reading period WD2 can also be set shorter according to the pulse width of the pulsed light Lp, and the first reading period WD1 for reading only the ambient light Ls has the same time length as the second reading period WD2 described above. Since the reading time can be shortened, for example, the amount of incident light of the ambient light Ls can be reduced, and the light shot noise component caused by the ambient light Ls can be reduced.
  • the time length between the first reading period WD1 and the second reading period WD2 can be substantially zero, the photoelectrons in the period when the subject W is not irradiated with the pulsed light Lp (first reading period WD1) It is possible to switch between capturing (acquisition of luminance value when not radiating) and capturing photoelectrons (acquisition of luminance value when radiating) in a period of irradiation with the pulsed light Lp (second reading period WD2).
  • the synchronism required to acquire the luminance value when not radiating and the luminance value when radiating can be remarkably improved.
  • the amount of photoelectrons accumulated in the first capacitor Ca1 and the second capacitor Ca2 can be increased. Also in this case, since the duty ratio of the pulsed light Lp with respect to the pulse period of the pulsed light train is set to 1 [%] or less (for example, 0.1 [%] or less), each pulsed light included in the pulsed light train The power of Lp can be made higher than that of continuous light, and the S / N ratio of reflected light Lr (signal light component) to ambient light Ls (noise component) at each pulse width can be greatly improved.
  • first distance measuring apparatus 300A a distance measuring apparatus according to the first embodiment (hereinafter referred to as the first distance measuring apparatus 300A) will be described with reference to FIGS.
  • the first distance measuring device 300A acquires a three-dimensional image using a distance measured based on the output of each pixel 304 of the image sensor 302 described later.
  • the third light receiving device 100C is provided.
  • the pulsed light Lp emitted from the light emitting unit 210 of the light emitting device 202 is reflected by the object W in response to a command from the control device 204, and enters the third light receiving device 100C.
  • Ambient light Ls such as sunlight also enters the third light receiving device 100C.
  • the third light receiving device 100 ⁇ / b> C outputs signals (accumulated charge signals Sc ⁇ b> 1 and Sc ⁇ b> 2) indicating charges according to the amount of received light to the arithmetic device 206 based on a command from the control device 204.
  • the computing device 206 calculates a period (round trip period ⁇ P) [s] in which the pulsed light Lp reaches the third light receiving device 100C from the light emitting device 202, and based on the round trip period ⁇ P, the first distance measuring device 300A and the object. A distance D [m] with W is calculated. The calculation result of the calculation device 206 is output to a display device (not shown), for example.
  • the third light receiving device 100C includes a lens 102 and a third light receiving unit 104C.
  • the reflected light Lr and the ambient light Ls that have passed through the lens 102 are collected on the third light receiving unit 104C.
  • the lens 102 may be a plurality of lenses arranged linearly or in a matrix.
  • the third light receiving unit 104C includes an image sensor 302 in which pixels 304 are arranged in a matrix, a gate drive circuit 306, a vertical selection circuit 308, a sample hold circuit 310, and a horizontal selection circuit 312. And an output buffer 314 and an A / D converter 316.
  • the image sensor 302 outputs the accumulated charge signals Sc1 and Sc2 corresponding to the amount of light received by each pixel 304 via the horizontal selection circuit 312.
  • the first power supply 208A applies a positive power supply voltage Vdd to the image sensor 302, and the second power supply 208B applies a reset voltage Vr to the image sensor 302.
  • the gate driving circuit 306 selectively outputs the first switching element SW1 to the fifth switching element SW5 (see FIG. 23) and the first reset switch SR1 to the fourth reset switch SR4 of the image sensor 302 by outputting various gate driving signals. ON / OFF control.
  • the vertical selection circuit 308 includes a multiplexer (not shown), and selectively outputs the first output selection signal Ss1 to the fourth output selection signal Ss4 to the row to which the pixel 304 to be read belongs, and the pixel 304 To output the accumulated charge signals Sc1 and Sc2.
  • the horizontal selection circuit 312 has another multiplexer (not shown) and selects a column to which the pixel 304 to be read belongs.
  • the accumulated charge signals Sc1 and Sc2 read from the pixel 304 are output by the first constant current circuit 58a and the second constant current circuit 58b to the first output voltage Vout1, the second output voltage Vout2, and the second output voltage Vout2. It is converted into a 3 output voltage Vout 3 and a fourth output voltage Vout 4, temporarily stored in the sample hold circuit 310, and then output from the horizontal selection circuit 312.
  • the accumulated charge signals Sc1 and Sc2 are transmitted to the arithmetic unit 206 via the output buffer 314 and the A / D converter 316.
  • the arithmetic unit 206 that has received the accumulated charge signals Sc1 and Sc2 determines the light amount (light amount Ar) of the reflected light Lr from the accumulated charge signals Sc1 and Sc2, and the distance D between the first distance measuring device 300A and the object W. (The details will be described later).
  • FIG. 23 shows a circuit diagram of one pixel 304.
  • the pixel 304 includes the photoelectric conversion element 10, the charge accumulation unit 26, the first capacitor Ca1 to the fourth capacitor Ca4, the charge discharge unit 108, the first switching element SW1 to the fifth switching element SW5, and the like. And a first reset switch SR1 to a fourth reset switch SR4, and a first amplifier AP1 to a fourth amplifier AP4.
  • the charge accumulating unit 26 is shown by two contacts, but actually, it is configured by one charge accumulating unit 26.
  • first capacitor Ca1 and the third capacitor Ca3 are arranged at positions symmetrical with respect to the center of the charge accumulation unit 26, and the second capacitor Ca2 and the fourth capacitor Ca4 are also arranged with respect to the center of the charge accumulation unit 26. It is arranged in a line-symmetric position.
  • first capacitor Ca1 and the second capacitor Ca2 are also arranged at positions symmetrical with respect to the center of the charge accumulation unit 26, and the third capacitor Ca3 and the fourth capacitor Ca4 are also arranged with respect to the center of the charge accumulation unit 26. Are arranged in line-symmetric positions.
  • the third switching element SW3 is configured by, for example, an n-channel MOS transistor, the source is connected to the charge integration unit 26, the drain is connected to the third capacitor Ca3, and the gate is connected to the gate drive circuit 306. Therefore, by selectively controlling on / off of the third switching element SW3 according to the gate drive signal (third read signal Sg3) from the gate drive circuit 306 for the gate, the photoelectrons present in the charge accumulating unit 26 are changed. Transferred to the third capacitor Ca3.
  • the fourth switching element SW4 is configured by, for example, an n-channel MOS transistor, the source is connected to the charge integration unit 26, the drain is connected to the fourth capacitor C1, and the gate is connected to the gate drive circuit 306. Therefore, by selectively controlling the on / off of the fourth switching element SW4 in accordance with the gate drive signal (fourth read signal Sg4) from the gate drive circuit 306 for the gate, the photoelectrons present in the charge integration unit 26 are changed. It is transferred to the fourth capacitor Ca4.
  • the fifth switching element SW5 is composed of, for example, an n-channel MOS transistor, and the charge integrating unit 26 is connected to the source, the charge discharging unit 108 is connected to the drain, and the charge discharging unit 108 includes the first power supply 208A. Is supplied with a positive power supply voltage Vdd. Further, the gate is supplied with a charge discharge signal Se from the gate drive circuit 306.
  • the gate is turned on, and unnecessary photoelectrons present in the charge accumulation unit 26 are removed from the first capacitors Ca1 ⁇
  • the charge can be discharged through the charge discharging unit 108 without being transferred to the fourth capacitor Ca4.
  • the gate drive is performed.
  • the charge switching signal Se is transmitted from the circuit 306 to the gate of the fifth switching element SW5 (the voltage supplied to the gate is set to a high level), so that the fifth switching element SW5 is turned on and generated in the photoelectric conversion element 10
  • the unnecessary photoelectrons can be discharged to the charge discharging unit 108 without being distributed to the first capacitor Ca1 to the fourth capacitor Ca4.
  • the photoelectrons generated in the photoelectric conversion element 10 during the period in which the first switching element SW1 to the fourth switching element SW4 are on can be distributed to the first capacitor Ca1 to the fourth capacitor Ca4.
  • the distance D between the first distance measuring device 300A and the object W can be measured by a method described later.
  • the first reset switch SR1 to the fourth reset switch SR4 are configured by, for example, n-channel MOS transistors.
  • the contact point a1 between the first switching element SW1 and the first capacitor Ca1 is connected to the source of the first reset switch SR1, and the contact point a2 between the second switching element SW2 and the second capacitor Ca2 is connected to the source of the second reset switch SR2.
  • the contact point a3 of the third switching element SW3 and the third capacitor Ca3 is connected to the source of the third reset switch SR3, and the contact point of the fourth switching element SW4 and the fourth capacitor Ca4 is connected to the source of the fourth reset switch SR4.
  • a4 is connected.
  • a reset voltage Vr from the second power supply 208B is supplied to each drain, and a gate drive circuit 306 is connected to each gate.
  • the first reset switch SR1 to the fourth reset switch SR4 are selectively or simultaneously turned on by the gate drive signals (first reset signal Sr1 to fourth reset signal Sr4) from the gate drive circuit 306 for each gate.
  • the potentials of the first capacitor Ca1 to the fourth capacitor Ca4 can be set to a constant reset potential. That is, the first capacitor Ca1 to the fourth reset Ca4 can be reset.
  • First amplifier AP1, second amplifier AP2 Since it has the same configuration as the first amplifier AP1 and the second amplifier AP2 of the second light receiving device 100B described above, detailed description thereof is omitted here, but the source of the first output switch SEL1 of the first amplifier AP1 is the first.
  • the first output selection signal Ss1 from the vertical selection circuit 308 is supplied to the gate connected to the output line 212a.
  • the source of the second output switch SEL2 of the second amplifier AP2 is connected to the first output line 212a, and the second output selection signal Ss2 from the vertical selection circuit 308 is supplied to the gate.
  • the first output switch SEL1 when the first output switch SEL1 is turned on by the first output selection signal Ss1 to the gate of the first output switch SEL1, the voltage corresponding to the photoelectrons (charge amount Q1) accumulated in the first capacitor Ca1 is first. It is amplified by the output element TR1 and taken out as the first output voltage Vout1 through the first output line 212a. Similarly, by turning on the second output switch SEL2 by the second output selection signal Ss2 for the gate of the second output switch SEL2, a voltage corresponding to the photoelectrons (charge amount Q2) accumulated in the second capacitor Ca2 is increased. Amplified by the two-output element TR2 and extracted as the second output voltage Vout2 via the first output line 212a.
  • the third amplifier AP3 includes, for example, a third output element TR3 configured by an n-channel MOS transistor, and an n-channel MOS transistor connected between the source of the third output element TR3 and the second output line 212b, for example. And a third output switch SEL3.
  • a contact point a3 between the third switching element SW3 and the third capacitor Ca3 is connected to the gate of the third output element TR3, the positive power supply voltage Vdd from the first power supply 208A is supplied to the drain, and the source is the second output element TR3.
  • the drain of the three-output switch SEL3 is connected.
  • the second output line 212b is connected to the source, and the first output selection signal Ss3 from the vertical selection circuit 308 is supplied to the gate.
  • the third output switch SEL3 when the third output switch SEL3 is turned on by the third output selection signal Ss3 for the gate of the third output switch SEL3, the voltage corresponding to the photoelectrons (charge amount Q3) accumulated in the third capacitor Ca3 is third. It is amplified by the output element TR3 and extracted as the third output voltage Vout3 via the second output line 212b.
  • the fourth amplifier AP4 includes, for example, a fourth output element TR4 configured by an n-channel MOS transistor, and an n-channel MOS transistor connected between the source of the fourth output element TR4 and the second output line 212b, for example. And a fourth output switch SEL4.
  • a contact point a4 between the fourth switching element SW4 and the fourth capacitor Ca4 is connected to the gate of the fourth output element TR4, the positive power supply voltage Vdd from the first power supply 208A is supplied to the drain, and the first is supplied to the source.
  • the drain of the 4-output switch SEL4 is connected.
  • the second output line 212b is connected to the source, and the fourth output selection signal Ss4 from the vertical selection circuit 308 is supplied to the gate.
  • the fourth output switch SEL4 when the fourth output switch SEL4 is turned on by the fourth output selection signal Ss4 for the gate of the fourth output switch SEL4, the voltage corresponding to the photoelectrons (charge amount Q4) accumulated in the fourth capacitor Ca4 is the fourth. It is amplified by the output element TR4 and extracted as the fourth output voltage Vout4 via the second output line 212b.
  • Cycle Cm As shown in FIG. 24, in the first distance measuring device 300A, in each cycle Cm (period for obtaining a measurement value) [times / s], charge is accumulated in the first capacitor Ca1 to the fourth capacitor Ca4. 1 accumulation period Tca1, and a readout period Tr for reading out the charges accumulated in the first to fourth capacitors Ca1 to Ca4. Further, in the first accumulation period Tca1, a second accumulation period Tca2 for exposing the pixel 304 with the pulsed light Lp and accumulating charges in the first capacitor Ca1 to the fourth capacitor Ca4 (charge accumulation process) once. Including multiple. In the first distance measuring device 300A, the first accumulation period Tca1 and the readout period Tr are 10 [milliseconds].
  • Each second accumulation period Tca2 is 100 [microseconds]. Furthermore, the output time (pulse width) of the pulsed light Lp in each second accumulation period Tca2 is 100 [nanoseconds]. Accordingly, the driving duty of the light emitting unit 210 in each second accumulation period Tca2 is 0.1 [%].
  • each cycle Cm can also be defined as the frame rate [frame / s] of the three-dimensional image. .
  • the charge accumulation process is performed 100 times in the first accumulation period Tca1, and accordingly, the round trip period is based on the charge amounts Q1 to Q4 accumulated in the first capacitor Ca1 to the fourth capacitor Ca4. Measure ⁇ P and distance D.
  • FIG. 25 shows an on / off timing chart of the radiated light Le, the reflected light Lr, and the first to fifth switching elements SW1 to SW5 in the second accumulation period Tca2.
  • the first distance measuring device 300A if the intensity Ir [W] of the reflected light Lr is constant, the period during which the reflected light Lr is incident on the photoelectric conversion element 10 (reflected light incident period Pri) [s] ] And the accumulated light quantity (reflected light measurement light quantity Amr) [J] of the reflected light Lr in the reflected light incident period Pri are proportional to each other, and the distance D is measured.
  • the accumulated light amount (environment light reference light amount Ars) [J] charge amount Q1 of the first capacitor Ca1) when only the environmental light Ls is incident on the photoelectric conversion element 10.
  • the accumulated light amount (synthetic light reference light amount Ari) [J] the first light amount when the ambient light Ls and the reflected light Lr are incident on the photoelectric conversion element 10
  • the charge amount Q3) of the three capacitor Ca3 is obtained.
  • the accumulated light amount (environment light measurement light amount Ams) [J] charge amount Q2 of the second capacitor Ca2) when only the environmental light Ls is incident on the photoelectric conversion element 10.
  • the accumulated light amount (synthetic light measurement light amount Ami) [J] (the first light amount when the ambient light Ls and the reflected light Lr are incident on the photoelectric conversion element 10
  • the charge amount Q4) of the 4-capacitor Ca4 is obtained.
  • the period P4 there are a period (period Psr) [s] in which both the environmental light Ls and the reflected light Lr are incident, and a period (period Ps) [s] in which only the environmental light Ls is incident.
  • the period Psr is proportional to the distance D to the object W.
  • a period (round-trip period ⁇ P) until the pulsed light Lp emitted from the first distance measuring device 300A hits the object W and returns to the first distance measuring device 300A is obtained.
  • the distance D between the first distance measuring device 300A and the object W is measured based on the round trip period ⁇ P.
  • time Teu is the emission start time of the emitted light Le
  • time Ted is the emission end time of the emitted light Le
  • period Pe is the period from time Teu to time Ted. Show.
  • the time point Tru indicates the time when the reflected light Lr starts to be incident on the photoelectric conversion element 10
  • the time point Trd indicates the time when the reflected light Lr is incident on the photoelectric conversion element 10
  • the period Pr indicates the time period from the time Tru to the time Trd. .
  • Time points Tg1u, Tg2u, Tg3u, and Tg4u are times when the first switching element SW1 to the fourth switching element SW4 are turned on. From here, time points Tg1d, Tg2d, Tg3d, and Tg4d are the first switching element SW1 to the fourth switching element SW4.
  • the period P1 is the period from the time Tg1u to the time Tg1d
  • the period P2 is the period from the time Tg2u to the time Tg2d
  • the period P3 is the period from the time Tg3u to the time Tg3d
  • the period P4 Indicates a period from time Tg4u to time Tg4d.
  • the period Psr indicates the period from the time Tg4u to the time Trd
  • the period Ps indicates the period from the time Trd to the time Tg4d.
  • Time points Td1u and Td2u are times when the fifth switching element SW5 is turned on
  • time points Td1d and Td2d are times when the fifth switching element SW5 is turned off
  • a period P5 is a period from the time point Td1u to the time point Td1d
  • a period P6 Indicates a period from time Td2u to time Td2d.
  • the periods P1 and P3 can be set to, for example, 10 [nanoseconds] or more and 90 [nanoseconds] or less, and are 30 [nanoseconds] in the first distance measuring device 300A.
  • the period P2 can be set, for example, from 10 [nanoseconds] to 90 [nanoseconds], and is 70 [nanoseconds] in the first distance measuring device 300A.
  • the period P5 can be set to, for example, 0 [second] or more and 90 [nanosecond] or less, and is 70 [nanosecond] in the first distance measuring device 300A.
  • the period P6 can be set to, for example, 10 [microseconds] or more and 1 [milliseconds] or less, and is approximately 100 [microseconds] in the first distance measuring device 300A. For this reason, the period P6 is very long among the periods P1 to P6.
  • the first switching element SW1 is turned on (period P1), and at the same time the first switching element SW1 is turned off, The switching element SW2 is turned on (period P2). Simultaneously with turning off the second switching element SW2, the emitted light Le is emitted to the object W, and the fifth switching element SW5 is turned on (period P5).
  • the incidence of the reflected light Lr on the photoelectric conversion element 10 starts (time point Tru).
  • the fifth switching element SW5 is turned off and the third switching element SW3 is turned on (period P3) after the period P5 has elapsed from the start of emission of the radiated light Le (time Teu). After the elapse of the period Pe, the emission of the radiated light Le is finished, the third switching element SW3 is turned off, and the fourth switching element SW4 is turned on (period P4). While the fourth switching element SW4 is turned on (period P4), the reflected light Lr is incident on the photoelectric conversion element 10 (time point Trd). In other words, the period P4 defines the measurement range (measurable distance range) [m] of the first distance measuring device 300A.
  • the fifth switching element SW5 is turned on (period P6).
  • the fifth switching element SW5 is turned off, and one second accumulation period Tca2 ends (time point Td2d).
  • the next second accumulation period Tca2 is started, and the first switching element SW1 is turned on (time point Tg1u).
  • control of each part of the third light receiving device 100 ⁇ / b> C and the light emitting device 202 is performed by the control device 204.
  • the control device 204 is manufactured by a semiconductor process, it is preferable that the control device 204 is manufactured by the CMOS process on the same silicon substrate together with the third light receiving unit 104C from the viewpoint of temperature compensation and the like.
  • the period P3 is set to a period in which both the ambient light Ls and the reflected light Lr are incident on the photoelectric conversion element 10, photoelectrons associated with both the ambient light Ls and the reflected light Lr are stored in the third capacitor Ca3. Accumulated. Furthermore, the period P1 and the period P3 have the same length.
  • Reference light quantity Arr is shown.
  • the period P4 is a period including both a period (period Psr) in which the environmental light Ls and the reflected light Lr are incident on the photoelectric conversion element 10 and a period (period Ps) in which only the environmental light Ls is incident on the photoelectric conversion element 10. Since it is set, photoelectrons associated with both the ambient light Ls and the reflected light Lr are accumulated in the fourth capacitor Ca4. Furthermore, the period P2 and the period P4 have the same length.
  • Measurement light quantity Amr is shown.
  • the period P4 starts at the same time as Ted when the emission of the radiated light Le ends.
  • the reflected light Lr corresponding to the pulse reciprocation period ⁇ P is incident on the photoelectric conversion element 10, and photoelectrons are accumulated in the fourth capacitor Ca4.
  • the charge amount Q4 accumulated in the fourth capacitor Ca4 is the cumulative amount of ambient light Ls (environmental light measurement amount Ams) in the entire period P4 and the cumulative amount of reflected light Lr (returned light measurement amount of light in the round trip period ⁇ P). This corresponds to the sum (Amr) and the combined light measurement light amount Ami). Therefore, the difference between the charge amount Q4 and the charge amount Q2 indicates the charge amount corresponding to the reflected light measurement light amount Amr.
  • the round trip period ⁇ P depends on the distance D between the first distance measuring device 300A and the object W.
  • the photoelectrons generated in the photoelectric conversion element 10 including the first electrode 16a and the second electrode 16b are discharged through the charge discharging unit 108 so that no charge remains in the photoelectric conversion element 10.
  • the photoelectric conversion element 10 is initialized (however, SW3 in FIG. 20 corresponds to SW5 in the pixel 304).
  • the gate drive signals Sg1 to Sg4 are not transmitted to the first switching element SW1 to the fourth switching element SW4 (the voltages supplied to the gates of the first switching element SW1 to the fourth switching element SW4 are set to a low level). ), The first switching element SW1 to the fourth switching element SW4 are turned off. By this process, the first capacitor Ca1 to the fourth capacitor Ca4 are set to the reset potential. Thereafter, transmission of the first reset signal Sr1 to the fourth reset signal Sr4 to the first reset switch SR1 to the fourth reset switch SR4 is stopped (supplied to each gate of the first reset switch SR1 to the fourth reset switch SR4). After the voltage is set to a low level), the processing at the timing shown in FIG. 25 is performed.
  • the charge amount sQ1 is the sum of the charge amount Q1 accumulated in the first capacitor Ca1 in each of the second to the 100th second accumulation periods Tca2.
  • the charge amounts sQ2 to sQ4 are the sum of the charge amounts Q2 to Q4 stored in the second capacitor Ca2 to the fourth capacitor Ca4 in the second to the 100th second storage periods Tca2.
  • the round trip period ⁇ P can be calculated by the following equation (F5) according to the above equation (F3).
  • ⁇ P ⁇ (sQ4-sQ2) / (sQ3-sQ1) ⁇ ⁇ P3 (F5)
  • the distance D between the first distance measuring device 300A and the object W can be obtained by the above-described equation (F4) based on the round-trip distance ⁇ P obtained by the above equation (F5). These calculations can be obtained by the calculation device 206.
  • the signal light component can be increased, Subsequent signal processing accuracy (distance calculation accuracy) can be improved.
  • the distance D is measured using the charge amounts Q1 to Q4 (charge information) in each of the plurality of pixels 304. Thereby, a three-dimensional image can be obtained by combining the distance information of each pixel 304.
  • a charge amount Q3 accumulated in the period P3 is obtained. Since the period P1 and the period P3 are set to the same length, the amount of charge corresponding to the reflected light Lr in the period P3 (the reflected light in the period P3) is calculated from the difference between the charge amount Q3 and the charge amount Q1 (Q3-Q1). (Corresponding to the reference light amount Arr of Lr).
  • the charge amount Q2 accumulated during the period P2 in which only the ambient light Ls is incident on the photoelectric conversion element 10 and the charge amount Q4 accumulated during the period P4 are obtained.
  • both the environment light Ls and the reflected light Lr are incident on the photoelectric conversion element 50 (period Psr), and the period in which only the environment light Ls is incident on the photoelectric conversion element 50 (period Ps). Is included. Since the period P2 and the period P4 are set to the same length, the amount of charge corresponding to the period Psr in the period P4 (the reflected light Lr in the period Psr) is calculated from the difference between the charge amount Q4 and the charge amount Q2 (Q4-Q2). Corresponding to the amount of light).
  • the period Psr can be obtained by the following formula (F6).
  • Psr ⁇ (Q4-Q2) / (Q3-Q1) ⁇ ⁇ P3 (F6)
  • the round trip period ⁇ P can be calculated from the above formula (F6), and as a result, the distance D can be obtained based on the round trip period ⁇ P and the speed of light.
  • the first distance measuring device 300A removes the charge amount Q2 generated by the ambient light Ls, the influence of the ambient light Ls can be eliminated or reduced.
  • the shorter the distance D the shorter the incident period (that is, the period Psr) of the reflected light Lr, and the longer the distance D, the longer the period Psr.
  • the shorter the distance D the greater the intensity Ir of the reflected light Lr, and the longer the distance D, the smaller the intensity Ir.
  • the amount of change in the light amount Ar of the reflected light Lr incident in the period Psr is smaller than the amount of change in the distance D. This leads to an improvement in the dynamic range of the first distance measuring device 300A.
  • the pulse light Lp is radiated 100 times in each cycle Cm, and the charge amount Q1 to Q4 after accumulating the photoelectrons in the first capacitor Ca1 to the fourth capacitor Ca4 100 times is used for the round trip period.
  • ⁇ P is calculated.
  • the intensity of the environmental light Ls for example, sunlight
  • the intensity of the ambient light Ls is averaged by calculating the round trip period ⁇ P using the charge amounts Q1 to Q4 after emitting the pulsed light Lp 100 times in each cycle Cm and accumulating the photoelectrons corresponding to the number of times. can do.
  • the periods P1 to P4 during which the first switching element SW1 to the fourth switching element SW4 are turned on are also set short. For this reason, even if another distance measuring device using pulse light of the same frequency exists in the vicinity, the timing at which the other distance measuring device outputs the pulse light and the first distance measuring device 300A uses the pulse light Lp. The possibility of suffering from the timing of output is reduced. As a result, it is possible to reduce the possibility of interference with other distance measuring devices (misidentifying pulsed light from other distance measuring devices as pulsed light Lp from the first distance measuring device 300A).
  • the periods P1 to P4 during which the first switching element SW1 to the fourth switching element SW4 are turned on are also set short, the period during which the ambient light Ls is incident on the photoelectric conversion element 10 in the periods P1 to P4 is shortened. can do. Thereby, the influence of the environmental light Ls as a noise component can be reduced, and the signal / noise ratio (S / N) can be improved. In particular, when the ambient light Ls is sunlight, the shot noise of sunlight can be reduced.
  • each second accumulation period Tca2 of the first distance measuring device 300A is 100 [microseconds]
  • the radiation interval of the pulsed light Lp is also about 100 [microseconds].
  • the first switching element SW1 to the fourth switching element SW4 are controlled by the timing chart of FIG. 25, but the present invention is not limited to this.
  • the periods P3 and P4 in FIG. 25 may be positioned before the periods P1 and P2.
  • the time point Tg1d and the time point Tg2u are set at the same time, the time point Tg2u can be set later than the time point Tg1d.
  • the time point Tg4u may not be simultaneously with the time point Ted as long as the correlation with the time point Ted is known.
  • FIG. 26 shows a timing chart in which the time Ted is later than the time Tg4u.
  • the round trip period ⁇ P can be calculated by the following equation (F7).
  • ⁇ P [(Q4-Q2) / (Q3-Q1)] ⁇ P3- (Ted-Tg4u) (F7)
  • the time Ted can be set before the time Tg4u.
  • the periods P1 and P2 are provided in order to eliminate or reduce the influence of the environmental light Ls.
  • the environmental light Ls is small with respect to a place where the environmental light Ls does not exist such as a dark room or the reflected light Lr. If the influence of the ambient light Ls is small, the round trip period ⁇ P can be obtained from only the periods P3 and P4. That is, the round trip period ⁇ P is calculated by the following formula (F9).
  • ⁇ P (Q4 / Q3) ⁇ P3 (F9)
  • a second distance measuring device 300B (hereinafter referred to as a second distance measuring device 300B) according to the present embodiment will be described with reference to FIGS.
  • the second distance measuring device 300B has substantially the same configuration as the first distance measuring device 300A described above, but instead of the third light receiving device 100C, a fourth light receiving unit 104D (FIG. 27). This is different in that a fourth light receiving device 100D having a reference) is used.
  • the fourth light receiving device 100D outputs a signal suitable for removing reset noise. That is, in the third light receiving device 100C described above, the first capacitor Ca1 to the fourth capacitor Ca4 are reset all at once, and then the first switching element SW1 to the fourth switching element SW4 are turned on, so that the charge accumulation unit 26 is turned on.
  • the existing photoelectrons are distributed to the first capacitor Ca1 to the fourth capacitor Ca4. Further, in order to increase the signal amount, after performing this operation a plurality of times, the signal amount is converted into a voltage and read out to an external circuit. However, at each cycle reset (between frames), the reset voltage is not constant due to the noise of the constituent circuits. Therefore, the first capacitor Ca1 to the fourth capacitor Ca4 have different levels of reset between frames. A noise component is added.
  • the potential immediately after the first capacitor Ca1 to the fourth capacitor Ca4 are reset is read (reset voltage read), and then the voltage output by the accumulated signal charge is read (signal read).
  • the reset noise component can also be removed by calculating the difference.
  • the fourth light receiving unit 104D of the fourth light receiving device 100D has substantially the same configuration as the third light receiving device 100C described above, but the first charge holding unit Cb1 to the fourth charge holding unit Cb4 The difference is that the first charge transfer unit ST1 to the fourth charge transfer unit ST4 are provided.
  • the first charge holding unit Cb1 is configured by, for example, a capacitor having a MOS structure connected to the drain of the first switching element SW1, and the gate has a gate drive signal (first accumulation signal Sa1 (high Level) / first discharge signal Sb1 (low level)).
  • the first charge transfer unit ST1 is composed of, for example, an n-channel MOS transistor, the source is connected to the first charge holding unit Cb1, the drain is connected to the first capacitor Ca1, and the gate is a gate drive circuit.
  • a gate drive signal (first transfer signal St1) from 306 is supplied.
  • the supply of the first accumulation signal Sa1 from the gate driving circuit 306 to the gate of the first charge holding unit Cb1 reduces the potential position below the gate of the first charge holding unit Cb1, and the transfer is performed through the first switching element SW1.
  • the photoelectrons thus stored are temporarily stored.
  • the first discharge signal Sb1 is supplied to the gate of the first charge holding unit Cb1
  • the first transfer signal St1 (high level) is supplied to the gate of the first charge transfer unit ST1, so that the first charge holding unit Cb1 accumulates.
  • the photoelectrons that have been transferred are transferred to the first capacitor Ca1. Since the gate of the first charge holding unit Cb1 and the gate of the first charge transfer unit ST1 can be controlled independently, the first charge holding unit Cb1 transfers to the first capacitor Ca1 without generating a charge residue. can do.
  • gate drive signals second accumulation signal Sa2 to fourth accumulation signal Sa4 (high level) / second discharge signal Sb2 to fourth discharge signal Sb4 (low level)
  • the gate driving signals (second transfer signal St2 to fourth transfer signal St4) from the gate drive circuit 306 are supplied to the gates of the second charge transfer unit ST2 to the fourth charge transfer unit ST4. It has become.
  • first charge holding unit Cb1 to the fourth charge holding unit Cb4 may be configured by a parasitic capacitance of a buried photodiode structure.
  • the operation of the second distance measuring device 300B is substantially the same as that of the first distance measuring device 300A described above.
  • the first charge holding is performed in the first accumulation period Tca1 of each cycle Cm.
  • the first accumulation signal Sa1 to the fourth accumulation signal Sa4 are supplied to the respective gates of the part Cb1 to the fourth charge holding part Cb4, thereby being transferred through the first switching element SW1 in the period P1 of each second accumulation period Tca2.
  • the photoelectrons are accumulated in the first charge holding unit Cb1, the photoelectrons transferred through the second switching element SW2 in the period P2 are accumulated in the second charge holding unit Cb2, and the photoelectrons transferred through the third switching element SW3 in the period P3.
  • the photoelectrons accumulated in the third charge holding unit Cb3 and transferred through the fourth switching element SW4 in the period P4 are stored in the fourth charge holding unit Cb4. It is.
  • the first capacitor Ca1 to the fourth capacitor Ca4 are used as initial setting means for the reading period Tr of each cycle Cm. Reset. Specifically, the first reset signal Sr1 to the fourth reset signal Sr4 are transmitted to the first reset switch SR1 to the fourth reset switch SR4 (to each gate of the first reset switch SR1 to the fourth reset switch SR4). The first reset switch SR1 to the fourth reset switch SR4 are turned on all at once according to the high level of the supplied voltage) and set to a predetermined reset voltage Vr.
  • the first output switch SEL1 to the fourth output switch SEL4 are sequentially turned on, so that the reset voltages of the first capacitor Ca1 to the fourth capacitor Ca4 are applied to the first output line 212a and the first output voltage Vout1 to Vout1 to Vout1. It outputs to an external circuit as 4th output voltage Vout4 (reset voltage reading).
  • the signal is read out immediately after the reset voltage reading of the first capacitor Ca1 to the fourth capacitor Ca4.
  • the first discharge signal Sb1 to the fourth discharge signal Sb4 are supplied to the gates of the first charge holding unit Cb1 to the fourth charge holding unit Cb4, and the first charge transfer unit ST1 to the fourth charge transfer.
  • the photoelectrons accumulated in the first charge holding unit Cb1 to the fourth charge holding unit Cb4 are respectively stored in the first capacitors Ca1 to Ca1. It will be transferred to the fourth capacitor Ca4.
  • the method for obtaining the difference can be realized by, for example, a correlated double sampling circuit (CDS circuit: Correlated Double Sampling circuit).
  • CDS circuit Correlated Double Sampling circuit
  • the photoelectric conversion element, the light receiving device, the light receiving system, and the distance measuring device according to the present invention are not limited to the above-described embodiments, and various configurations can be adopted without departing from the gist of the present invention. is there. Several modifications will be described below.
  • the photoelectric conversion element according to the third embodiment (hereinafter referred to as the third photoelectric conversion element 10C) has substantially the same configuration as the above-described first photoelectric conversion element as shown in FIGS. The difference is that an embedded photodiode BPD is formed between the first MOS diode and the second MOS diode.
  • the first photoelectric conversion element there may be a potential (potential position higher than the potential position below the second electrode) that becomes a barrier against photoelectrons between the first MOS diode and the second MOS diode. Therefore, in the third photoelectric conversion element, by forming a buried photodiode between the first MOS diode and the second MOS diode, as shown in FIG. 31, a second electrode is provided between the first MOS diode 18a and the second MOS diode 18b. A potential position 32c lower than the potential position 32b below 16b and higher than the potential position 32a below the first electrode 16a is formed (here, between the first MOS diode 18a and the second MOS diode 18b).
  • the photoelectrons 30 below the second electrode 16b move at high speed below the first electrode 16a without being blocked by the potential barrier.
  • the embedded photodiode BPD is a fully depleted device, and can completely transfer photoelectrons while suppressing the remaining electrification.
  • the photoelectric conversion element according to the fourth embodiment (hereinafter referred to as the fourth photoelectric conversion element 10D) is substantially the same as the first photoelectric conversion element 10A described above, as shown in FIGS.
  • the second electrode 16b does not exist, but instead, a buried photodiode BPD is formed between the first MOS diodes 18a. That is, the embedded photodiode BPD is disposed in a nested manner between the plurality of branch portions 22 in the first electrode 16a when viewed from above.
  • the branching portion 22 of the first electrode 16a and the embedded photodiode BPD in the first MOS diode 18a each have a rectangular shape when viewed from above.
  • the electrode width of the branch part 22 of the first electrode 16 a may be gradually increased toward the one electrode part 20.
  • the operation of the fourth photoelectric conversion element 10D will be described.
  • the first voltage V1 is set to the high level V1H, as shown in FIG. 34
  • the potential position 32a below the first electrode 16a is lowered, and from the buried photodiode BPD to below the first electrode 16a.
  • a potential gradient 34 that lowers the potential position is formed.
  • the photoelectrons 30 generated in the embedded photodiode BPD move at a high speed under the first electrode 16 a, that is, under the plurality of branch sites 22 due to the potential gradient 34.
  • the potential gradient 34 is formed also in the length direction below the branching portion 22 of the first electrode 16a. As the time elapses, the potential gradient 34 moves in parallel toward the charge accumulation unit 26, and the photoelectrons 30 move to the charge accumulation unit 26 at high speed.
  • the fourth photoelectric conversion element 10D by controlling the first voltage V1 applied to the first electrode 16a, the potential position formed under the adjacent first electrode 16a and the embedded photodiode BPD is changed. Since the potential gradient 34 due to the difference is formed, the photoelectrons 30 obtained by photoelectric conversion can be efficiently transferred and accumulated in the charge accumulating unit 26 at high speed without causing any charge residue under the electrodes. Is possible.
  • the first power supply terminal 28a of the first electrode 16a is formed at the position farthest from the charge accumulating portion 26, the photoelectrons 30 below the first electrode 16a, for example, below the plurality of branch portions 22, are integrated into the charge. The part 26 can be moved at high speed.
  • the photoelectric conversion element according to the fifth embodiment (hereinafter referred to as the fifth photoelectric conversion element 10E) is substantially the same as the first photoelectric conversion element 10A described above, as shown in FIGS. Although it has a configuration, the first electrode 16a is not present, and a buried photodiode BPD is formed instead. That is, the embedded photodiode BPD has a comb-tooth shape branched from one portion 20 to a plurality of branch portions 22 when viewed from the top surface, and each second electrode 16b of the second MOS diode 18b is viewed from the top surface. In this case, the embedded photodiodes BPD are arranged in a nested manner between the plurality of branch portions 22.
  • a charge integration unit 26 for collecting photoelectrons generated by the fifth photoelectric conversion element 10E is also formed by the embedded photodiode BPD.
  • the charge accumulating part 26 is formed to extend from the base 24 of one part 20 in the direction opposite to the branch part 22.
  • the second voltage V2 becomes the low level V2L at time t12 (exposure end stage), as shown in FIG. 38B, the potential position 32b under the second electrode 16b becomes high, and is embedded from under the second electrode 16b. A potential gradient 34 in which the potential position decreases toward the photodiode BPD is formed. From this, the photoelectrons 30 accumulated under the second electrode 16b move at a high speed under the embedded photodiode BPD, that is, the plurality of branching portions 22 due to the potential gradient 34, and further toward the charge accumulation unit 26. Move. Note that the second voltage V2 is set to the high level V2H at the time t11 (initial stage of exposure) in FIG.
  • this high level V2H is higher than the potential of the embedded photodiode BPD adjacent to the second electrode 16b.
  • the voltage may be limited. is not.
  • the photoelectric conversion element according to the sixth embodiment (hereinafter referred to as the sixth photoelectric conversion element 10F) has substantially the same configuration as the above-described fifth photoelectric conversion element 10E.
  • the shapes of the embedded photodiode BPD and the second electrode 16b are different, particularly when viewed from above.
  • each branch part 22 of the embedded photodiode BPD has a shape in which the width gradually increases toward one part 20 when viewed from the upper surface, and each second electrode 16b is viewed from the upper surface.
  • the electrode width has a shape that gradually decreases toward one portion 20 of the embedded photodiode BPD.
  • the narrow portion is affected by the surface potential of the semiconductor substrate 12 (silicon substrate) as shown in FIGS. 40A and 40B.
  • the potential position 32c1 of the part becomes high, and the potential position 32c2 of the wide part becomes low. Therefore, as shown in FIG. 41, the potential position 32c of the branching portion 22 of the embedded photodiode BPD decreases as the width increases, and gradually descends toward one portion 20. As a result, the photoelectrons 30 move at high speed toward the charge accumulation unit 26.
  • the photoelectric conversion element according to the seventh embodiment (hereinafter referred to as the seventh photoelectric conversion element 10G) has substantially the same configuration as the above-described sixth photoelectric conversion element 10F, as shown in FIG. However, the difference is that the width of one portion 20 in the embedded photodiode BPD is gradually increased from both ends toward the central base 24. That is, the base 24 connected to the charge accumulating portion 26 is formed to have the largest width.
  • the potential position 32c in one portion 20 in the embedded photodiode BPD When attention is paid to the potential position 32c in one portion 20 in the embedded photodiode BPD, as shown in FIG. 43, the potential position 32c1 in the narrow portion becomes high and the potential position 32c2 in the wide portion becomes low. Become. Therefore, the potential position 32c of one part 20 in the embedded photodiode BPD gradually decreases from both ends toward the base 24, that is, descends downward. In this manner, a downwardly inclined potential gradient is formed from both ends of one portion 20 in the embedded photodiode BPD toward the base portion 24 (that is, the charge accumulation portion 26), so that the photoelectrons 30 are directed toward the charge accumulation portion 26. It will move faster.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

 光を検知して光電子に変換する第1光電変換素子(10A)は、半導体基体(12)上に絶縁体(14)を介して形成された第1電極(16a)を有する1つの第1MOSダイオード(18a)と、半導体基体(12)上に絶縁体(14)を介して形成された第2電極(16b)を有する複数の第2MOSダイオード(18b)とを有する。第1MOSダイオード(18a)の第1電極(16a)は、上面から見たとき、1つの電極部位(20)から複数の枝分かれ部位(22)に分岐配列されたくし歯形状を有し、第2MOSダイオード(18b)の各第2電極(16b)は、上面から見たとき、第1電極(16a)とは分離され、且つ、第1電極(16a)における複数の枝分かれ部位(22)間にそれぞれ入れ子状に配置されている。

Description

光電変換素子、受光装置、受光システム及び測距装置
 本発明は、光量に応じた量の電荷に変換する光電変換素子と、該光電変換素子に入射される光のうち、ある一定期間の輝度情報を得るようにした受光装置と、該光電変換素子を用いて環境光による影響を抑制した受光システムと、該受光システムを用いてタイム・オブ・フライト(TOF)法の原理を応用した測距装置に関する。
 従来、環境光による影響を取り除いて、高いSN比での信号検出が可能なイメージセンサが提案されている(山本幸司「振り分け転送方式および部分領域高速読み出し方式による変調光成分検出可能なCMOSイメージセンサに関する研究」奈良先端科学技術大学院大学 物質創成科学研究科 2006年3月:以下、文献1という)。この文献1に記載されたイメージセンサは、電荷振り分け転送方式によって変調光成分を検出するものであるが、画素回路は、通常のPG(フォトゲート)方式イメージセンサを2つ、受光部であるPGを共通にして組み合わせたような構造となっている。このイメージセンサは、1つの受光部を挟んで、2つの転送ゲートがあり、各転送ゲートの外側にそれぞれ信号電荷蓄積部が設けられた構成を有する。また、この文献1では、感度向上のために、ポリシリコンによって形成されたPGの割合を低減した構造が提案されている。すなわち、PGの形状をくし歯状にした例が開示されている。
 また、イメージセンサの応用例として、対象物への距離を非接触に測定する測距システムがある。この測距システムは、タイム・オブ・フライト(TOF)法を用いたものが知られている。TOF法は、対象物に対して光を放射し、光が放射されてから対象物に当たってはねかえって来るまでの期間を測定し、この期間と光速に基づいて対象物までの距離を測定する(宮川良平、金出武雄「CCD-Based Range-Finding Sensor」、IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 44, NO. 10、1997年10月、p.1648~1652:以下、文献2という)。
 この文献2では、測距システムにおけるパルス光の放射タイミングや2つの受光素子の動作タイミングが具体的に説明されている。すなわち、パルス光の放射と放射停止を同じ長さ(発光素子の駆動デューティが50%)で繰り返すと共に、パルス光の放射と放射停止に同期させて、交互に2つの方向に電荷を転送させる(文献2の図1参照)。そして、2つの出力電圧の相違に基づきパルス光が対象物で反射して戻って来るまでの期間を判定する。
 ところで、TOF法により測距装置を実現するためには、受光した光電子(光電変換によって得られた電荷)を高速に移動する必要がある。
 上述した文献1に記載のイメージセンサは、感度向上のために、PGの形状をくし歯状にした例が開示されている。この場合、受光部のうち、PGの部分は蓄積電荷(光電子)を出力側へ転送する機能を有するが、PG以外の部分はそのような機能を持っていない。従って、受光部に蓄積された光電子を全て出力側に転送するには時間がかかるという問題がある。
 また、あるタイミングで環境光と変調光とが混在した光を受光し、別のタイミングで変調光を受光するには、変調光の放射と放射停止に同期させて、交互に2つの方向に電荷を転送させる必要がある。そのためには、光電変換素子において光電変換された光電子を、速い速度で、所望のゲート電極を介して各ノードへ転送させる必要がある。特に、十分な信号/ノイズ比(S/N比)を獲得するためには、大きな受光面積を有する光電変換素子が必要となる。しかし、大きな光電変換素子を使用した場合、出力させるノードまでの距離が長くなり、光電変換された光電子を速い速度で所望のノードへ転送することが難しくなる。
 さらには、光電変換素子から2つのノードに光電子を振り分ける場合に、光電変換素子から各ゲート電極までの距離が異なっていると、光電変換素子の変換効率の面内の分布の存在や、光電子の移動経路の差異などの要因により、2つのノードへの転送効率に差異が生じることとなり、S/N比を低下させる原因となる。
 本発明は、このような課題を考慮してなされたものであり、光電変換によって得られた光電子を所望の領域に高速に移動させて、集積させることができ、TOF法の原理を応用した測距装置を実現させることができるほか、様々な受光装置に適用させることができる光電変換素子を提供することを目的とする。
 また、本発明の他の目的は、上述した効果を有する光電変換素子を使用して、ある一定期間の入射光の輝度情報を高精度に得ることができ、電子シャッタの機能をも兼ね備えた受光装置を提供することにある。
 また、本発明の他の目的は、S/N比の向上、環境光のノイズ成分による影響の低減を図ることができ、必要な光成分の検出を高精度に行うことができる受光システムを提供することにある。
 また、本発明の他の目的は、S/N比の向上、環境光のノイズ成分による影響の低減を図ることができ、対象物までの距離を高精度に測定することができる測距装置を提供することを目的とする。
[1] 第1の本発明に係る光電変換素子は、光を検知して光電子に変換する光電変換素子において、半導体基体上に絶縁体を介して形成された第1電極を有する1つの第1MOSダイオードと、前記半導体基体上に絶縁体を介して形成された第2電極を有する複数の第2MOSダイオードとを有し、前記第1MOSダイオードの前記第1電極は、上面から見たとき、1つの電極部位から複数の枝分かれ部位に分岐配列されたくし歯形状を有し、前記第2MOSダイオードの各前記第2電極は、上面から見たとき、前記第1電極とは分離され、且つ、前記第1電極における前記複数の枝分かれ部位間にそれぞれ入れ子状に配置されていることを特徴とする。
[2] 第1の本発明において、前記第1MOSダイオードの前記第1電極下の電位と、前記第2MOSダイオードの前記第2電極下の電位をそれぞれ独立に制御して、少なくとも前記第2MOSダイオードでの光電変換により発生した光電子を、前記第1MOSダイオードへ移動させることを特徴とする。
[3] 第1の本発明において、前記第1MOSダイオードのうち、前記第1電極における前記1つの電極部位の基部に対応した部分が、電荷集積部として構成されていることを特徴とする。
[4] 第1の本発明において、前記第1MOSダイオードにおける前記第1電極の前記枝分かれ部位と、前記第2MOSダイオードの前記第2電極は、それぞれ矩形形状を有することを特徴とする。
[5] 第1の本発明において、前記第1MOSダイオードにおける前記第1電極の各前記枝分かれ部位は、上面から見たとき、幅が前記1つの電極部位に向かって徐々に大きくなる形状を有し、前記第2MOSダイオードにおける各前記第2電極は、上面から見たとき、幅が前記第1電極の前記1つの電極部位に向かって徐々に小さくなる形状を有することを特徴とする。
[6] 第1の本発明において、前記第1MOSダイオードにおける前記第1電極の各前記枝分かれ部位の給電端子、並びに前記第2MOSダイオードにおける各前記第2電極の給電端子は、上面から見たとき、前記電荷集積部から最も離れた位置に形成されていることを特徴とする。
[7] 第2の本発明に係る受光装置は、入射光の輝度情報を得ることを特徴とする受光装置であって、前記入射光を検知して光電子に変換する光電変換素子と、前記光電変換素子により発生した前記光電子を集めるための電荷集積部と、前記光電子を一定期間蓄積するキャパシタと、前記光電子を排出する電荷排出部と、前記電荷集積部と前記キャパシタとの間に配置され、前記電荷集積部に集められた前記光電子を、前記キャパシタへ移動させるMOS型の第1スイッチング素子と、前記電荷集積部と前記電荷排出部との間に配置され、前記電荷集積部から前記電荷排出部への前記光電子の排出を制御するMOS型の第2スイッチング素子とを備え、前記光電変換素子は、第1電極を有する1つの第1MOSダイオードと、第2電極を有する複数の第2MOSダイオードとを有し、前記第1MOSダイオードの前記第1電極は、上面から見たとき、1つの電極部位から複数の枝分かれ部位に分岐配列されたくし歯形状を有し、前記第2MOSダイオードの各前記第2電極は、上面から見たとき、前記第1電極とは分離され、且つ、前記第1電極における前記複数の枝分かれ部位間にそれぞれ入れ子状に配置され、前記光電変換素子からの前記光電子を、選択的に前記第1スイッチング素子及び前記第2スイッチング素子を開閉制御して前記キャパシタへ転送させて、前記キャパシタに転送された前記光電子の量(電荷量)に基づいて入射光の輝度情報を得ることを特徴とする。
[8] 第2の本発明において、前記電荷集積部は、前記光電変換素子に接続され、前記電荷排出部は、前記電荷集積部を間に挟んで、前記キャパシタと対向配置されていることを特徴とする。
[9] 第2の本発明において、前記キャパシタは、MIMキャパシタ、MOSキャパシタ、埋込型フォトダイオード構造又はpn接合の寄生容量にて構成されていることを特徴とする。
[10] 第2の本発明において、少なくとも前記電荷集積部、前記第1スイッチング素子、前記第2スイッチング素子及び前記キャパシタは、遮光された領域に形成されていることを特徴とする。
[11] 第3の本発明に係る受光装置は、入射光の輝度情報を得ることを特徴とする受光装置であって、前記入射光を検知して光電子に変換する光電変換素子と、前記光電変換素子により発生した前記光電子を集めるための電荷集積部と、前記光電子を一定期間蓄積する第1キャパシタ及び第2キャパシタと、前記光電子を排出する電荷排出部と、前記電荷集積部と前記第1キャパシタとの間に配置され、前記電荷集積部に集められた光電子を、前記第1キャパシタへ選択的に振り分けるMOS型の第1スイッチング素子と、前記電荷集積部と前記第2キャパシタとの間に配置され、前記電荷集積部に集められた光電子を、前記第2キャパシタへ選択的に振り分けるMOS型の第2スイッチング素子と、前記電荷集積部から前記電荷排出部へ前記光電子の排出を制御するMOS型の第3スイッチング素子とを備え、前記光電変換素子は、第1電極を有する1つの第1MOSダイオードと、第2電極を有する複数の第2MOSダイオードとを有し、前記第1MOSダイオードの前記第1電極は、上面から見たとき、1つの電極部位から複数の枝分かれ部位に分岐配列されたくし歯形状を有し、前記第2MOSダイオードの各前記第2電極は、上面から見たとき、前記第1電極とは分離され、且つ、前記第1電極における前記複数の枝分かれ部位間にそれぞれ入れ子状に配置され、前記光電変換素子からの前記光電子を、選択的に前記第1スイッチング素子~前記第3スイッチング素子をオン/オフ制御して前記第1キャパシタ及び前記第2キャパシタへ転送させて、前記第1キャパシタ及び前記第2キャパシタに転送された前記光電子の量(電荷量)に基づいて入射光の輝度情報を得ることを特徴とする。
[12] 第3の本発明において、前記電荷集積部は、前記光電変換素子に接続され、前記電荷排出部は、前記電荷集積部を間に挟んで、前記光電変換素子と対向配置され、前記第1キャパシタ及び前記第2キャパシタは、前記電荷集積部を間に挟んで、互いに対向配置されていることを特徴とする。
[13] 第3の本発明において、前記第1キャパシタ及び前記第2キャパシタは、MIMキャパシタ、MOSキャパシタ、埋込型フォトダイオード構造又はpn接合の寄生容量にて構成されていることを特徴とする。
[14] 第3の本発明において、少なくとも前記電荷集積部、前記第1スイッチング素子~前記第3スイッチング素子、前記第1キャパシタ及び前記第2キャパシタは、遮光された領域に形成されていることを特徴とする。
[15] 第4の本発明に係る受光システムは、対象物に対してパルス光を放射する発光装置と、前記パルス光の反射光を受光し、受光量に応じた出力を行う受光装置と、前記発光装置及び前記受光装置を制御する制御装置とを有する受光システムであって、前記受光装置は、前記反射光を検知して光電子に変換する光電変換素子と、前記光電変換素子により発生した光電子を集めるための電荷集積部と、前記光電子を一定期間蓄積する一対のキャパシタと、前記光電子を排出する電荷排出部と、前記電荷集積部と前記一対のキャパシタとの間に配置され、前記電荷集積部に集められた光電子を、前記発光装置の駆動に同期して、前記一対のキャパシタへ選択的に振り分けるMOS型の一対のスイッチング素子と、前記発光装置の駆動に同期して、前記電荷集積部から前記電荷排出部へ前記光電子の排出を制御するMOS型の第3スイッチング素子を備え、前記光電変換素子は、第1電極を有する1つの第1MOSダイオードと、第2電極を有する複数の第2MOSダイオードとを有し、前記第1MOSダイオードの前記第1電極は、上面から見たとき、1つの電極部位から複数の枝分かれ部位に分岐配列されたくし歯形状を有し、前記第2MOSダイオードの各前記第2電極は、上面から見たとき、前記第1電極とは分離され、且つ、前記第1電極における前記複数の枝分かれ部位間にそれぞれ入れ子状に配置され、前記制御装置は、前記発光装置から前記パルス光が放射されていない期間のうちの第1期間に、前記一対のスイッチング素子のうち、第1スイッチング素子をオンにして、前記光電変換素子からの前記光電子を、前記一対のキャパシタのうち、第1キャパシタに転送し、前記発光装置から前記パルス光が出射されている期間のうちの第2期間に、前記一対のスイッチング素子のうち、第2スイッチング素子をオンにして、前記光電変換素子からの前記光電子を、前記一対のキャパシタのうち、第2キャパシタに転送し、前記第1期間及び前記第2期間以外の期間に、前記第3スイッチング素子をオンにして、前記光電変換素子からの前記光電子を、前記電荷排出部に排出するように制御し、前記第1キャパシタに転送された光電子の量(電荷量)と前記第2キャパシタに転送された光電子の量(電荷量)に基づいて、前記反射光の輝度情報を得ることを特徴とする。
[16] 第4の本発明において、前記第1キャパシタ及び前記第2キャパシタの電位を初期電位にするための電源とMOS構造の第1リセットスイッチ及び第2リセットスイッチとを有することを特徴とする。
[17] 第4の本発明において、前記第1キャパシタ及び前記第2キャパシタに蓄積された光電子の量に基づく電位に応じたレベルの電気信号にそれぞれ変換する第1アンプ及び第2アンプを有することを特徴とする。
[18] 第4の本発明において、前記第1スイッチング素子及び前記第2スイッチング素子によって転送された前記光電子を一時的に保持するMOSキャパシタ又は埋込型フォトダイオード構造の寄生容量にて構成された第1電荷保持部及び第2電荷保持部と、前記第1電荷保持部及び前記第2電荷保持部にそれぞれ一時的に保持された前記光電子を前記第1キャパシタ及び前記第2キャパシタに転送するMOS型のスイッチング素子にて構成された第1電荷転送部及び第2電荷転送部とを有することを特徴とする。
[19] 第5の本発明に係る受光システムは、対象物に対してパルス光を放射する発光装置と、前記パルス光の反射光を受光し、受光量に応じた出力を行う受光装置と、前記発光装置及び前記受光装置を制御する制御装置とを有する受光システムであって、前記受光装置は、前記反射光を検知して光電子に変換する光電変換素子と、前記光電変換素子により発生した光電子を集めるための電荷集積部と、前記光電子を一定期間蓄積する第1キャパシタ~第4キャパシタと、前記光電子を排出する電荷排出部と、前記電荷集積部と前記第1キャパシタ~前記第4キャパシタとの間に配置され、前記パルス光の放射に同期して、前記光電子を前記第1キャパシタ~前記第4キャパシタに対して振り分けるMOS型の第1スイッチング素子~第4スイッチング素子と、前記電荷集積部と前記電荷排出部との間に配置され、前記電荷集積部から前記電荷排出部への前記光電子の供給を制御するMOS型の第5スイッチング素子とを備え、前記光電変換素子は、第1電極を有する1つの第1MOSダイオードと、第2電極を有する複数の第2MOSダイオードとを有し、前記第1MOSダイオードの前記第1電極は、上面から見たとき、1つの電極部位から複数の枝分かれ部位に分岐配列されたくし歯形状を有し、前記第2MOSダイオードの各前記第2電極は、上面から見たとき、前記第1電極とは分離され、且つ、前記第1電極における前記複数の枝分かれ部位間にそれぞれ入れ子状に配置され、前記制御装置は、前記発光装置による前記パルス光の放射及び前記第1スイッチング素子~前記第4スイッチング素子のオン/オフを制御し、前記第1スイッチング素子~前記第4スイッチング素子が全てオフのとき、前記第5スイッチング素子をオンにして、前記光電子を前記電荷排出部に排出させ、前記第1スイッチング素子~前記第4スイッチング素子に転送された前記光電子の量(電荷量)に基づいて、前記反射光の輝度情報を得ることを特徴とする。
[20] 第5の本発明において、前記第1キャパシタ~前記第4キャパシタの電位を初期電位にするための電源とMOS構造の第1リセットスイッチ~第4リセットスイッチとを有することを特徴とする。
[21] 第5の本発明において、前記第1キャパシタ~前記第4キャパシタに蓄積された光電子の量に基づく電位に応じたレベルの電気信号にそれぞれ変換する第1アンプ~第4アンプを有することを特徴とする。
[22] 第5の本発明において、前記第1スイッチング素子~前記第4スイッチング素子によって転送された前記光電子を一時的に保持するMOSキャパシタ又は埋込型フォトダイオード構造の寄生容量にて構成された第1電荷保持部~第4電荷保持部と、前記第1電荷保持部~前記第4電荷保持部にそれぞれ一時的に保持された前記光電子を前記第1キャパシタ~前記第4キャパシタに転送するMOS型のスイッチング素子にて構成された第1電荷転送部~第4電荷転送部とを有することを特徴とする。
[23] 第4及び第5の本発明において、前記受光装置の構成要素が、複数の画素が設けられたラインセンサアレイ又は二次元イメージセンサアレイの1画素分の構成要素を構成していることを特徴とする。
[24] 第6の本発明に係る測距装置は、対象物に対してパルス光を放射する発光装置と、前記パルス光の反射光を受光し、受光量に応じた出力を行う受光装置と、前記発光装置及び前記受光装置を制御する制御装置と、前記受光装置の出力を用いてタイム・オブ・フライト法により前記対象物までの距離を演算する演算装置と、を有する測距装置であって、前記受光装置は、前記反射光を検知して光電子に変換する光電変換素子と、前記光電変換素子により発生した前記光電子を集めるための電荷集積部と、前記光電子を一定期間蓄積する第1キャパシタ~第4キャパシタと、前記光電子を排出する電荷排出部と、前記電荷集積部と前記第1キャパシタ~前記第4キャパシタとの間に配置され、前記パルス光の放射に同期して、前記光電子を前記第1キャパシタ~前記第4キャパシタに対して振り分けるMOS型の第1スイッチング素子~第4スイッチング素子と、前記電荷集積部と前記電荷排出部との間に配置され、前記電荷集積部から前記電荷排出部への前記光電子の供給を制御するMOS型の第5スイッチング素子と、を備え、前記光電変換素子は、第1電極を有する1つの第1MOSダイオードと、第2電極を有する複数の第2MOSダイオードとを有し、前記第1MOSダイオードの前記第1電極は、上面から見たとき、1つの電極部位から複数の枝分かれ部位に分岐配列されたくし歯形状を有し、前記第2MOSダイオードの各前記第2電極は、上面から見たとき、前記第1電極とは分離され、且つ、前記第1電極における前記複数の枝分かれ部位間にそれぞれ入れ子状に配置され、前記パルス光の放射開始時点を時点Teu、前記パルス光の放射終了時点を時点Ted、前記光電変換素子に対する前記反射光の入射終了時点を時点Trd、前記第1スイッチング素子~前記第4スイッチング素子をオンする時点を時点Tg1u、Tg2u、Tg3u、Tg4u、前記第1スイッチング素子~前記第4スイッチング素子をオフする時点を時点Tg1d、Tg2d、Tg3d、Tg4d、前記時点Tg1uから前記時点Tg1dまでの期間を期間P1、前記時点Tg2uから前記時点Tg2dまでの期間を期間P2、前記時点Tg3uから前記時点Tg3dまでの期間を期間P3、前記時点Tg4uから前記時点Tg4dまでの期間を期間P4、前記時点Tg4uから前記時点Trdまでの期間を期間Psr、前記期間P1の間に前記第1キャパシタに蓄積される前記光電子の量を電荷量Q1、前記期間P2の間に前記第2キャパシタに蓄積される前記光電子の量を電荷量Q2、前記期間P3の間に前記第3キャパシタに蓄積される前記光電子の量を電荷量Q3、前記期間P4の間に前記第4キャパシタに蓄積される前記光電子の量を電荷量Q4、前記パルス光が放射されてから前記対象物で反射して前記反射光として戻ってくるまでの期間を往復期間ΔP、前記発光装置及び前記受光装置と前記対象物との距離を距離Dとしたとき、前記制御装置は、
 (1)P1=P3、
 (2)P2=P4、及び
 (3)Tg1u<Tg1d≦Tg2u<Tg2d≦Teu<Tg3u<Tg3d≦Tg4u≦Ted<Tg4d、又は、Teu<Tg3u<Tg3d≦Tg4u≦Ted<Tg4d<Tg1u<Tg1d≦Tg2u<Tg2d
となるように、前記発光装置による前記パルス光の放射及び前記第1スイッチング素子~前記第4スイッチング素子のオン/オフを制御し、前記第1スイッチング素子~前記第4スイッチング素子が全てオフとなっているとき、前記第5スイッチング素子をオンにして前記光電子を前記電荷排出部に排出させ、前記演算装置は、前記第3キャパシタに蓄積され、環境光と前記反射光に対応する前記電荷量Q3と、前記第1キャパシタに蓄積され、前記環境光に対応する前記電荷量Q1との差に基づいて、前記期間P3における前記反射光の光量情報を取得し、前記第4キャパシタに蓄積され、前記環境光と前記反射光に対応する前記電荷量Q4と、前記第2キャパシタに蓄積され、前記環境光に対応する前記電荷量Q2との差に基づいて、前記期間Psrにおける前記反射光の光量情報を取得し、前記期間P3における前記反射光の光量情報及び前記期間Psrにおける前記反射光の光量情報の比と、前記期間P3及び前記期間Psrの比とに基づいて前記往復期間ΔPを演算し、前記往復期間ΔPに基づいて前記距離Dを測定することを特徴とする。
[25] 第6の本発明において、前記時点Tedと前記時点Tg4uが等しいとき、下記の式(1)に基づいて、前記往復期間ΔPを演算し、
 ΔP={(Q4-Q2)/(Q3-Q1)}×P3   ・・・(1)
 前記時点Tedが前記時点Tg4uよりも後であるとき、下記の式(2)に基づいて、前記往復期間ΔPを演算することを特徴とする。
 ΔP=[(Q4-Q2)/(Q3-Q1)]×P3-(Ted-Tg4u)   ・・・(2)
[26] 第6の本発明において、前記制御装置は、測定周期毎に前記発光装置に前記パルス光を複数回放射させ、前記演算装置は、前記第1キャパシタ~前記第4キャパシタのそれぞれに前記光電子を複数回蓄積した後の前記電荷量Q1~前記電荷量Q4を用いて前記往復期間ΔPを演算することを特徴とする。
 以上説明したように、本発明に係る光電変換素子によれば、光電変換によって得られた光電子を所望の領域に高速に移動させて、集積させることができ、TOF法の原理を応用した測距装置を実現させることができるほか、様々な受光装置に適用させることができる。
 また、本発明に係る受光装置によれば、上述した効果を有する光電変換素子を使用したので、ある一定期間の入射光の輝度情報を高精度に得ることができ、電子シャッタの機能をも兼ね備えさせることができる。
 また、本発明に係る発光システムによれば、S/N比の向上、環境光のノイズ成分による影響の低減を図ることができ、必要な光成分の検出を高精度に行うことができる。
 また、本発明に係る測距装置によれば、S/N比の向上、環境光のノイズ成分による影響の低減を図ることができ、対象物までの距離を高精度に測定することができる。
第1光電変換素子を上面から見て示す図である。 図1におけるII-II線上の断面図である。 第1光電変換素子の動作を示すタイミングチャートである。 図4A~図4Cは第1光電変換素子の動作(図3における時点t1、t2及びt3での動作)を示すポテンシャル図である。 第1光電変換素子の動作(図3における時点t4での動作)を示すポテンシャル図である。 第2光電変換素子を上面から見て示す図である。 図7Aは図6におけるVIIA-VIIA線上のポテンシャル図であり、図7Bは図6におけるVIIB-VIIB線上のポテンシャル図である。 図6におけるVIII-VIII線上のポテンシャル図である。 第2光電変換素子の動作(図3における時点t4での動作)を示すポテンシャル図である。 第1受光装置及び第2受光装置を示す構成図である。 第1受光装置の第1受光部を上面から見て示す図である。 第2受光装置の第2受光部を上面から見て示す図である。 第1受光システム及び第2受光システムを示す構成図である。 第1受光システムの第1受光部を示す回路図である。 第1受光システムの動作を示すタイミングチャートである。 環境光の影響を低減する手法の基本原理を示すタイミングチャートである。 図17Aは環境光の影響を低減する手法の基本原理を示す説明図であり、図17Bは太陽光の光ショットノイズによる影響を示す説明図である。 図18Aは図17Aに示す1つのサイクルを複数回繰り返して信号光成分のS/Nを向上させる方法を示す説明図であり、図18Bはランダムな光ショットノイズによる影響を示す説明図である。 第2受光システムの第2受光部を示す回路図である。 第2受光システムの動作を示すタイミングチャートである。 第1測距装置及び第2測距装置を示す構成図である。 第1測距装置における第3受光装置のセンサアレイを有する第3受光部を示す構成図である。 第3受光部の各画素の構成を示す回路図である。 測距のためのサイクルのタイミングチャートである。 各第2蓄積期間Tca2での放射光、反射光、第1スイッチング素子~第5スイッチング素子のオン/オフタイミングの一例を示すタイミングチャートである。 各第2蓄積期間Tca2での放射光、反射光、第1スイッチング素子~第5スイッチング素子のオン/オフタイミングの他の例を示すタイミングチャートである。 第2測距装置に設置される第4受光装置の第4受光部における各画素の構成を示す回路図である。 光電変換素子の変形例を示す断面図である。 第3光電変換素子を上面から見て示す図である。 図29におけるXXX-XXX線上の断面図である。 第3光電変換素子の動作(図3における時点t2等での動作)を示すポテンシャル図である。 第4光電変換素子を上面から見て示す図である。 図32におけるXXXIII-XXXIII線上の断面図である。 第4光電変換素子の動作を示すポテンシャル図である。 第5光電変換素子を上面から見て示す図である。 図35におけるXXXVI-XXXVI線上の断面図である。 第5光電変換素子の動作を示すタイミングチャートである。 図38Aは第5光電変換素子の動作(図37における時点t11での動作)を示すポテンシャル図であり、図38Bは同じく時点t12での動作を示すポテンシャル図であり、図38Cは時点t11での動作を示す他のポテンシャル図である。 第6光電変換素子を上面から見て示す図である。 図40Aは図39におけるXLA-XLA線上のポテンシャル図であり、図40Bは図39におけるXLB-XLB線上のポテンシャル図である。 図39におけるXLI-XLI線上のポテンシャル図である。 第7光電変換素子を上面から見て示す図である。 図42におけるXLIII-XLIII線上のポテンシャル図である。
 以下、本発明に係る光電変換素子、発光装置、受光システム及び測距装置の実施の形態例を図1~図43を参照しながら説明する。
[第1光電変換素子10A]
 先ず、第1の実施の形態に係る光電変換素子(以下、第1光電変換素子10Aと記す)は、図1及び図2に示すように、半導体基体12(図2参照)上に絶縁体14を介して形成された第1電極16aを有する1つの第1MOSダイオード18aと、半導体基体12上に絶縁体14を介して形成された第2電極16bを有する複数の第2MOSダイオード18bとを有する。具体的には、例えば半導体基体12は、図2に示すように、p型不純物拡散領域が形成されている。そして、半導体基体12上に例えばSiO等からなる絶縁層(絶縁体14)を介してポリシリコンや金属等の導電層による第1電極16a及び第2電極16bが形成されることで、上述した第1MOSダイオード18a及び第2MOSダイオード18bが構成されている。
 第1MOSダイオード18aの第1電極16aは、上面から見たとき、1つの電極部位20から複数の枝分かれ部位22に分岐配列されたくし歯形状を有し、第2MOSダイオード18bの各第2電極16bは、上面から見たとき、第1電極16aとは分離され、且つ、第1電極16aにおける複数の枝分かれ部位22間にそれぞれ入れ子状に配置されている。第1MOSダイオード18aにおける第1電極16aの枝分かれ部位22と、第2MOSダイオード18bの第2電極16bは、それぞれ矩形形状を有する。
 また、第1電極16aにおける1つの電極部位20の基部24(長さ方向中央部)には、第1光電変換素子10Aにより発生した光電子を集めるための電荷集積部26が形成されている。電荷集積部26は、1つの電極部位20の基部24から枝分かれ部位22とは反対方向に延在して形成されている。この電荷集積部26は、構成上、第1光電変換素子10Aに含めてもよいし、含めなくてもよい。
 さらに、第1MOSダイオード18aにおける第1電極16aの各枝分かれ部位22の第1給電端子28a、並びに第2MOSダイオード18bにおける各第2電極16bの第2給電端子28bは、上面から見たとき、電荷集積部26から最も離れた位置に形成されている。すなわち、電荷集積部26から離れた各枝分かれ部位22の末端に形成されている。
 そして、第1給電端子28aに第1電圧V1が印加され、第2給電端子28bに第2電圧V2がそれぞれ独立して印加されるように図示しない金属配線がなされている。
 第1電圧V1は低レベルV1L~高レベルV1Hにわたって変化し、第2電圧V2は低レベルV2L~高レベルV2Hにわたって変化する。レベルの大小関係は、少なくともV1H>V2Hとなっている。V1LとV2Lの関係は、共に同じか、あるいはV1L>V2Lでもよい。また、V1LとV2Lは、0Vや負の電圧であってもよい。
 ここで、第1光電変換素子10Aの動作について、図3のタイミングチャート、図4A~図4C及び図5のポテンシャル図も参照して説明する。なお、図4A~図4C及び図5のポテンシャル図は、電荷として光電子30を対象としていることから、直感的にわかるように、電位が高いほどポテンシャル位置32が低くなるように図示されている。
 先ず、図3の時点t1においては、第1電圧V1及び第2電圧V2が共に低レベルV1L及びV2Lであることから、図4Aに示すように、第1電極16a下のポテンシャル位置32aと第2電極16b下のポテンシャル位置32bはほぼ同じである。
 その後、時点t2において、第1電圧V1が高レベルV1H、第2電圧V2が高レベルV2Hになると、図4Bに示すように、第1電極16a下のポテンシャル位置32aと第2電極16b下のポテンシャル位置32bが共に低くなり、V1H>V2Hであることから、第1電極16a下のポテンシャル位置32aは第2電極16b下のポテンシャル位置32bよりも低くなる。つまり、第2電極16b下から第1電極16a下にかけてポテンシャル位置が低くなるポテンシャル勾配34が形成されることとなる。このことから、第2電極16b下に発生した光電子30は、ポテンシャル勾配34によって、第1電極16a下、すなわち、複数の枝分かれ部位22下に移動する。
 その後、時点t3において、第2電圧V2のみが低レベルV2Lになると、図4Cに示すように、第2電極16b下のポテンシャル位置32bのみが高くなり、ポテンシャル勾配34が急峻になることから、第2電極16b下の光電子30は、第1電極16aの複数の枝分かれ部位22下に高速に移動する。
 その後、時点t4において、第1電圧V1が低レベルV1Lになると、図5に示すように、第1電極16a下のポテンシャル位置32aが上昇することになるが、第1電極16aの第1給電端子28aが電荷集積部26から最も離れた位置に形成されていることから、第1電極16a下のポテンシャル位置32aのうち、第1給電端子28a直下の部分のポテンシャル位置32aが早く上昇し、徐々に電荷集積部26に近い方のポテンシャル位置32aが上昇することとなる。これは、第1電極16aの正電荷がシンクされた結果、第1給電端子28a直下の部分の電位が低下して、過渡的に第1電極16a全体にわたり電位が低下することで、第1電極16a下のポテンシャル位置32aが上昇するためである。このことから、第1電極16aの枝分かれ部位22下の長さ方向においても、ポテンシャル勾配34が形成され、時間の経過に伴って、ポテンシャル勾配34が電荷集積部26に向けて平行移動し、光電子30は高速に電荷集積部26に移動することとなる。
 このように、第1光電変換素子10Aにおいては、第1電極16aに印加される第1電圧V1及び第2電極16bに印加される第2電圧V2を独立に制御することで、隣接する第1電極16a下と第2電極16b下に形成されるポテンシャル位置の差によるポテンシャル勾配34を形成するようにしたので、光電変換にて得られた光電子30を、高速、且つ、電極下に電荷残りが生じることなく、効率的に電荷集積部26に転送集積することが可能となる。
 しかも、第1電極16aの第1給電端子28aを電荷集積部26から最も離れた位置に形成するようにしたので、第1電極16a下のポテンシャル位置32aを、第1給電端子28a直下の部分を起点として連続的に上昇させることが可能になる。第1電極16a下のポテンシャル位置32aの上昇によって、電界が発生し、第1電極16a下の光電子30を高速に移動させることができる。その結果、第1電極16a下の例えば複数の枝分かれ部位22下の光電子30を、電荷集積部26に高速に移動させることができる。
[第2光電変換素子10B]
 次に、第2の実施の形態に係る光電変換素子(以下、第2光電変換素子10Bと記す)について図6~図9を参照しながら説明する。
 この第2光電変換素子10Bは、図6に示すように、上述した第1光電変換素子10Aとほぼ同様の構成を有するが、第1電極16a及び第2電極16bの形状、特に、上面から見た形状が異なっている。
 すなわち、第1電極16aの各枝分かれ部位22は、上面から見たとき、電極幅が1つの電極部位20に向かって徐々に広くなる形状を有し、各第2電極16bは、上面から見たとき、電極幅が第1電極16aの1つの電極部位20に向かって徐々に狭くなる形状を有する。
 第1電極16a下のポテンシャル位置32aに注目して見た場合、電極幅が狭い部分は、図7A及び図7Bに示すように、半導体基体12(シリコン基板)の表面電位の影響を受けることから、該部分のポテンシャル位置32a1は高くなり、幅が広い部分のポテンシャル位置32c2は低くなる。従って、第1電極16aの枝分かれ部位22のポテンシャル位置32aは、図8に示すように、幅が広くなるに従って低下し、1つの部位20に向かって徐々に下り傾斜することとなる。
 このため、図3の時点t4において、第1電圧V1のみが低レベルV1Lになると、上述したように、第1給電端子28a直下の部分のポテンシャル位置32aが早く上昇し、徐々に電荷集積部26に近い方のポテンシャル位置32aが上昇していくことになるが、このとき、図9に示すように、ポテンシャル位置32aが1つの電極部位20に向かって下り傾斜していることから、光電子30はより高速に電荷集積部26に移動することとなる。
[第1受光装置100A]
 次に、第1の実施の形態に係る受光装置(以下、第1受光装置100Aと記す)について図10及び図11を参照しながら説明する。
 第1受光装置100Aは、図10に示すように、レンズ102と、第1受光部104Aとを有する。レンズ102を通過した入射光Laは、第1受光部104Aに集光される。レンズ102は、直線状又はマトリックス状に配列された複数のレンズであってもよい。
 第1受光部104Aは、図11に示すように、光電変換素子10と、光電変換素子10により発生した光電子を集めるための電荷集積部26と、光電子を一定期間蓄積するキャパシタCaと、光電子を排出する電荷排出部108と、電荷集積部26とキャパシタCaとの間に配置され、電荷集積部26に集められた光電子を、キャパシタCaへ移動させる第1スイッチング素子SW1と、電荷集積部26と電荷排出部108との間に配置され、電荷集積部26から電荷排出部108への光電子の排出を制御する第2スイッチング素子SW2とを備えている。電荷排出部108は、電荷集積部26を間に挟んでキャパシタCaと対向配置されている。この実施の形態では、特に、電荷集積部26の中心に対して線対称の位置にキャパシタCaと電荷排出部108とを配置するようにしている。キャパシタCaは、MIMキャパシタ、MOSキャパシタ、埋込型フォトダイオード構造又はpn接合の寄生容量にて構成されている。
 光電変換素子10は、上述した第1光電変換素子10Aや第2光電変換素子10Bが用いられる。図11では、光電変換素子10として第1光電変換素子10Aを用いた例を示している。
 第1スイッチング素子SW1は、電荷集積部26とキャパシタCaとの間に配置されたゲート電極と、該ゲート電極下の絶縁体と、該絶縁体下の半導体基体12にて構成されたMOS構造を有する。第2スイッチング素子SW2は、電荷集積部26と電荷排出部108との間に配置されたゲート電極と、該ゲート電極下の絶縁体と、該絶縁体下の半導体基体12にて構成されたMOS構造を有する。従って、第1スイッチング素子SW1及び第2スイッチング素子SW2は、ゲート電極に高レベル電圧が印加されることでオンとされ、ゲート電極に低レベル電圧(0Vあるいは負電圧)が印加されることでオフとされる。
 なお、少なくとも電荷集積部26、キャパシタCa、第1スイッチング素子SW1及び第2スイッチング素子SW2は、遮光された領域Zに形成されている。
 この第1受光装置100Aを使用するときは、先ず、特定の入射光Laの輝度情報を取得したい期間(有効期間と記す)に入射した光が光電変換素子10において光電子に変換され、光電子は、上述した動作に従って電荷集積部26に高速に転送されて集積される。その後、第1スイッチング素子SW1がオンされることで、電荷集積部26の光電子はキャパシタCaに転送され、キャパシタCaに転送された光電子の量(電荷量)に基づいて入射光Laの輝度情報が得られることとなる。なお、第1スイッチング素子SW1は所定期間経過後にオフとされる。
 一方、有効期間以外に入射した不要な光も光電変換素子10において光電子に変換され、光電子は、上述した動作に従って電荷集積部26に高速に転送されて集積される。その後、第2スイッチング素子SW2がオンされることで、電荷集積部26の不要な光電子は電荷排出部108に転送され、排出されることとなる。第2スイッチング素子SW2も所定期間経過後にオフとされる。
 ところで、輝度情報のS/N比を向上させる手法として、一定期間内に、有効期間を複数設定し、有効期間内に得られた光電子を集積する方法がある。特に、有効期間を短く設定することで、環境光の影響をできるだけ除去することが考えられる。例えば一定期間内に複数の周期を設定し、各周期を100μsec未満とし、さらに、各周期内にそれぞれ有効期間を設定し、各有効期間のデューティを短くすることが考えられる。
 このような手法を採用したとき、光電変換素子10にて光電変換された光電子を高速にノード(光電子を電気信号に変換する部位)に転送する必要がある。特に、高いS/N比を得るためには、受光面積の大きな光電変換素子が必要となる。しかし、受光面積の大きな光電変換素子を用いた場合、ノードまでの距離が長くなり、光電子を高速にノードまで転送することが難しくなる。例えば第1受光装置100Aに通常の光電変換素子(従来の光電変換素子)を設置して使用した場合を想定して説明すると、第1スイッチング素子SW1がオンとなっている時間が数百nsec程度の場合、光電変換素子において光電変換して得られた光電子は、第1スイッチング素子SW1に到達する前に、第1スイッチング素子SW1がオフとなってしまい、第1スイッチング素子SW1を通じてキャパシタに転送することができない。結果的に、第2スイッチング素子SW2を通じて電荷排出部に転送され、排出されることとなる。
 また、従来においては、光電変換素子からの光電子をそれぞれ別の経路を通じて2つのノードに振り分ける構造(上述した文献1参照)がある。このような場合、各ノードに至るまでの電極(ゲート電極)の位置や長さが異なってくることから、光電変換素子の変換効率の面内の分布の存在や、光電子の移動経路の差異等の要因により、各ノードへの転送効率に差異が生じ、S/N比を低下させる原因となる。
 そこで、この第1受光装置100Aにおいては、光電変換素子10として、上述した第1光電変換素子10Aや第2光電変換素子10Bを使用するようにしている。この場合、光電変換素子10内にポテンシャル勾配34が形成されることから、光電子が電界によって高速に移動させることが可能となり、有効期間に得られた光電子を第1スイッチング素子SW1を通じてキャパシタCaに転送することができる。もちろん、光電変換素子10として、第2光電変換素子10Bを使用することで、さらに光電子を高速に移動させることができる。
 従って、第1受光装置100Aは、高いS/N比を獲得する必要があるアプリケーションに適用可能となり、例えば受光面積が大きく、光電子を出力させるノードまでの距離が長い場合に好適となる。しかも、1つの電荷集積部26に集積するようにしており、電荷集積部26の中心に対して線対称の位置にキャパシタCaと電荷排出部108とを配置するようにしているため、2つ以上のノードに光電子を振り分ける場合においても、電子の移動経路が同一となることから、各ノードへの転送効率に差異を生じさせることはない。
[第2受光装置100B]
 次に、第2の実施の形態に係る受光装置(以下、第2受光装置100Bと記す)について図10及び図12を参照しながら説明する。
 この第2受光装置100Bは、上述した第1受光装置100Aと同様に、図10に示すように、レンズ102と、第2受光部104Bとを有する。
 第2受光部104Bは、上述した第1受光装置100Aの第1受光部104Aとほぼ同様の構成を有するが、図12に示すように、光電子をそれぞれ一定期間蓄積する第1キャパシタCa1及び第2キャパシタCa2を有する点で異なる。
 すなわち、電荷排出部108は、電荷集積部26を間に挟んで、光電変換素子10と対向配置され、第1キャパシタCa1及び第2キャパシタCa2は、電荷集積部26を間に挟んで、互いに対向配置されている。この実施の形態では、特に、電荷集積部26の中心に対して線対称の位置に第1キャパシタCa1と第2キャパシタCa2とを配置するようにしている。
 また、電荷集積部26と第1キャパシタCa1との間に配置され、電荷集積部26に集められた光電子を、第1キャパシタCa1へ移動させる第1スイッチング素子SW1と、電荷集積部26と第2キャパシタCa2との間に配置され、電荷集積部26に集められた光電子を、第2キャパシタCa2へ移動させる第2スイッチング素子SW2と、電荷集積部26と電荷排出部108との間に配置され、電荷集積部26から電荷排出部108への光電子の排出を制御する第3スイッチング素子SW3とを備えている。
 第1キャパシタCa1及び第2キャパシタCa2は、MIMキャパシタ、MOSキャパシタ、埋込型フォトダイオード構造又はpn接合の寄生容量にて構成されている。
 第1スイッチング素子SW1は、電荷集積部26と第1キャパシタCa1との間に配置されたゲート電極と、該ゲート電極下の絶縁体と、該絶縁体下の半導体基体12にて構成されたMOS構造を有し、第2スイッチング素子SW2は、電荷集積部26と第2キャパシタCa2との間に配置されたゲート電極と、該ゲート電極下の絶縁体と、該絶縁体下の半導体基体12にて構成されたMOS構造を有する。第3スイッチング素子SW3は、電荷集積部26と電荷排出部108との間に配置されたゲート電極と、該ゲート電極下の絶縁体と、該絶縁体下の半導体基体12にて構成されたMOS構造を有する。従って、第1スイッチング素子SW1~第3スイッチング素子SW3は、ゲート電極に高レベル電圧が印加されることでオンとされ、ゲート電極に低レベル電圧(0Vあるいは負電圧)が印加されることでオフとされる。
 なお、少なくとも電荷集積部26、第1キャパシタCa1、第2キャパシタCa2、第1スイッチング素子SW1~第3スイッチング素子SW3は、遮光された領域Zに形成されている。
 この第2受光装置100Bでは、第1キャパシタCa1及び第2キャパシタCa2を有することから、得られた輝度情報から環境光によるノイズを除去する際に好適である。
 すなわち、先ず、環境光の輝度情報をノイズ情報として取得したい期間(第1有効期間と記す)に入射した光が光電変換素子10において光電子に変換され、光電子は、上述した動作に従って電荷集積部26に高速に転送されて集積される。その後、第1スイッチング素子SW1がオンされることで、電荷集積部26の光電子は第1キャパシタCa1に転送され、第1キャパシタCa1に転送された光電子の量(電荷量)に基づいて環境光の輝度情報が得られることとなる。なお、第1スイッチング素子SW1は所定期間経過後にオフとされる。
 次に、特定の入射光Laの輝度情報を取得したい期間(第2有効期間と記す)に入射した光が光電変換素子10において光電子に変換され、光電子は、上述した動作に従って電荷集積部26に高速に転送されて集積される。その後、第2スイッチング素子SW2がオンされることで、電荷集積部26の光電子は第2キャパシタCa2に転送され、第2キャパシタCa2に転送された光電子の量(電荷量)に基づいて特定の入射光Laの輝度情報が得られることとなる。なお、第2スイッチング素子SW2は所定期間経過後にオフとされる。得られた特定の入射光の輝度情報には、環境光によるノイズ情報が含まれているため、第1キャパシタCa1を通じて取得した環境光の輝度情報と差分をとることによって、環境光によるノイズが除去された輝度情報を得ることができる。
 一方、第1有効期間及び第2有効期間以外に入射した光も光電変換素子10において光電子に変換され、光電子は、上述した動作に従って電荷集積部26に高速に転送されて集積される。その後、第3スイッチング素子SW3がオンされることで、電荷集積部26の光電子は電荷排出部108に転送され、排出されることとなる。
 この第2受光装置100Bにおいても、光電変換素子10として、上述した第1光電変換素子10Aや第2光電変換素子10Bを使用するようにしているため、第1有効期間に得られた光電子を第1スイッチング素子SW1を通じて高速に第1キャパシタCa1に転送することができ、第2有効期間に得られた光電子を第2スイッチング素子SW2を通じて高速に第2キャパシタCa2に転送することができる。しかも、電荷集積部26の中心に対して線対称の位置に第1キャパシタCa1と第2キャパシタCa2とを配置するようにしている。
 従って、第2受光装置100Bにおいても、上述した第1受光装置100Aと同様の効果を奏する。さらに、環境光によるノイズ成分を除去することができることから、特定の入射光Laの輝度情報を精度よく取得することができ、S/N比の向上を図ることができる。
[第1受光システム200A]
 次に、第1の実施の形態に係る受光システム(以下、第1受光システム200Aと記す)について図13~図15を参照しながら説明する。
 第1受光システム200Aは、図13に示すように、発光装置202と、上述の第1受光装置100Aと、制御装置204と、演算装置206と、これら発光装置202、第1受光装置100A、制御装置204及び演算装置206に所定の電源電圧を供給する第1電源208A及び第2電源208Bとを有する。なお、簡単のため、図13において、第1電源208A及び第2電源208Bから各装置への電源線の表示を省略する。
 この第1受光システム200Aでは、発光装置202から出射されたパルス光Lpが被写体Wで反射し、第1受光装置100Aに入射する。なお、説明の便宜のため、発光装置202から被写体Wまでのパルス光Lpを放射光Le、被写体Wから第1受光装置100Aまでのパルス光Lpを反射光Lrと呼ぶ。
 制御装置204は、第1受光装置100Aで受光された光から被写体Wからの反射光Lrの成分を取得するように制御する。
<発光装置202>
 発光装置202は、制御装置204からの指令に基づきパルス光Lpを出力する発光部210を有する。この第1受光システム200Aにおいて、発光装置202の発光部210は、発光点(エミッタ)を直線状に設けた半導体レーザバーを積層(直列接続)して、面発光が可能とされたものである。
 発光部210は、波長が870ナノメートル[nm]の赤外光を100ワット[W]の出力で放射可能である。また、各サイクルCm(測定値を求める周期)において、複数回の露光処理(電荷蓄積処理)が行われる(図24参照)。露光処理の周期(図24の第2蓄積期間Tca2参照)が100[マイクロ秒]であるところ、発光部210は、パルス光Lpを100[ナノ秒]の出力時間(パルス幅)で出力する。換言すると、発光部210の駆動デューティは、0.1[%]である。
 なお、発光部210は、リニアアレイ状の発光点を有していてもよく、あるいは、マトリックス状に並べられた複数の発光点を有するものであってもよい。発光素子としてレーザダイオードや発光ダイオード(LED)等のその他の発光素子を用いてもよい。また、発光部210が放射するパルス光Lpは、その他の波長でもよく、例えば、700nmより長く1050nm以下としてもよい。さらに、発光部210の出力は、その他の値でもよく、例えば、20[W]より大きく10[kW]以下としてもよい。さらにまた、パルス光Lpのパルス幅は、その他の長さでもよく、例えば、10[ナノ秒]以上1[ミリ秒]以下としてもよい。加えて、発光部210の駆動デューティは、その他の値でもよく、例えば、0.01[%]以上1[%]以下としてもよい。
<第1受光装置100A>
 上述したので、ここではその重複説明を省略するが、図14を用いて、回路構成としての第1受光装置100A、特に、第1受光部104Aを説明する。
 すなわち、第1受光部104Aは、図14に示すように、上述した光電変換素子10と、電荷集積部26と、キャパシタCaと、電荷排出部108と、第1スイッチング素子SW1と、第2スイッチング素子SW2とを備え、さらに、リセットスイッチSRと、アンプAPとを有する。
(第1スイッチング素子SW1、キャパシタCa)
 第1スイッチング素子SW1は、例えばnチャネル型MOSトランジスタにて構成され、ソースが電荷集積部26に接続され、ドレインがキャパシタCaに接続され、ゲートが図示しないゲート駆動回路に接続されている。従って、ゲートに対するゲート駆動回路からのゲート駆動信号(読取信号Sg)に応じて第1スイッチング素子SW1のオン・オフを選択的に制御することにより、電荷集積部26に存在する光電子がキャパシタCaに転送される。
(第2スイッチング素子SW2、電荷排出部108)
 第2スイッチング素子SW2は、例えばnチャネル型MOSトランジスタにて構成され、ソースに電荷集積部26が接続され、ドレインに電荷排出部108が接続され、該電荷排出部108には、第1電源208Aからの正の電源電圧Vddが供給されている。また、ゲートには図示しないゲート駆動回路が接続されている。従って、ゲート駆動回路からゲートにゲート駆動信号(電荷排出信号Se)を供給すること(ゲートに供給される電圧を高レベルにすること)により、ゲートをオンにし、電荷集積部26に存在する光電子を、キャパシタCaに転送することなく、電荷排出部108を通じて排出することができる。
(リセットスイッチSR)
 リセットスイッチSRは、例えばnチャネル型MOSトランジスタにて構成され、ソースには第1スイッチング素子SW1とキャパシタCaとの接点a1が接続され、ドレインには第2電源208Bからのリセット電圧Vrが供給されている。また、ゲートには図示しないゲート駆動回路が接続されている。従って、ゲートに対するゲート駆動回路からのゲート駆動信号(リセット信号Sr)によってリセットスイッチSRをオンにすることにより、キャパシタCaの電位を一定のリセット電位にすることができる。すなわち、キャパシタCaをリセットすることができる。
(アンプAP)
 アンプAPは、例えばnチャネル型MOSトランジスタにて構成された出力素子TRと、出力素子TRのソースと出力ライン212との間に接続された例えばnチャネル型MOSトランジスタによる出力スイッチSELとを有する。出力素子TRのゲートには、第1スイッチング素子SW1とキャパシタCaとの接点a1が接続され、ドレインには第1電源208Aからの正の電源電圧Vddが供給され、ソースには出力スイッチSELのドレインが接続されている。出力スイッチSELは、ゲートに図示しないゲート駆動回路が接続され、ソースに出力ライン212が接続されている。
 従って、出力スイッチSELのゲートに対するゲート駆動回路からのゲート駆動信号(出力選択信号Ss)によって出力スイッチSELをオンにすることにより、キャパシタCaに蓄積された光電子(電荷量Q)に応じた電圧が出力素子TRにて増幅されて出力電圧Voutとして取り出されることになる。
<第1受光システム200Aの動作>
 次に、第1受光システム200Aの動作について図15を参照しながら説明する。なお、図15において、V1は光電変換素子10(第1光電変換素子10A又は第2光電変換素子10B)の第1電極16aに印加される第1電圧V1、V2は同じく第2電極16bに印加される第2電圧を示す。また、発光装置202からのパルス光Lpの発光時間はWLであり、第1スイッチング素子SW1及び第2スイッチング素子がオンしている期間はそれぞれWD1、WD2である。
 先ず、第1受光システム200Aの制御装置204は、一定の周期(サイクル)毎に発光装置202を駆動して、各サイクル毎に発光時間WLのパルス光Lpを放射する。発光装置202から出射されたパルス光Lp(放射光Le)が被写体Wで反射し、反射光Lrとして第1受光装置100Aに入射する。第1受光装置100Aに入射した光は光電変換素子10にて光電子に変換されて電荷集積部26に高速に転送される。
 第1スイッチング素子SW1は、電荷集積部26に転送された光電子をキャパシタCaに転送する。すなわち、キャパシタCaに転送された光電子は、入射した反射光Lrを光電変換して得られた光電子(電荷量Q)である。従って、電荷量Qによって、反射光強度の情報を取得することができる。
 なお、第1スイッチング素子SW1がオンとなっていない場合に光電変換された光電子は、不要な光電子であるため、この不要な光電子を第2スイッチング素子SW2をオンにして電荷排出部108に排出する。
 ここで、第1受光システム200Aの具体的な動作タイミングについて図15を参照しながら説明する。
 最初に、第1受光システム200Aの初期設定として、第2スイッチング素子SW2及びリセットスイッチSRを全てオンにし、第1スイッチング素子SW1及び出力スイッチSELを共にオフにする。これにより、光電変換素子10に蓄積されている不要な光電子が排出されると共に、キャパシタCaの電位がリセット電位Vrに設定される。その後、リセットスイッチSRがオフとされる。
 初期設定が終了した後、反射光強度を取得するためのサイクルが1回のみ、あるいは複数回繰り返されることになる。
 各サイクルは、図15に示すように、最初の時点t1において、制御装置204による発光装置202の駆動によって、発光装置202から1つのパルス光Lpが出射されることになる。従って、時点t1で第2スイッチング素子SW2をオフにし、該時点t1から読取期間WD1にわたり第1スイッチング素子SW1をオン(第2スイッチング素子SW2はオフのまま)にする。また、時点t1から光電変換素子10の第1電極16a及び第2電極16bに供給される第1電圧V1及び第2電圧V2をそれぞれ高レベルVH1及びVH2にする。これにより、光電変換素子10での光電変換によって得られた光電子が第1電極16a下及び第2電極16b下に蓄積されることとなるが、その一部は、電荷集積部26に向かって移動し、第1スイッチング素子SW1を通じてキャパシタCaに転送される。パルス光Lpの放射期間WLが経過した後の時点t2において第2電圧V2が低レベルV2Lとなり、これによって形成されたポテンシャル勾配34によって第2電極16b下の光電子が第1電極16a下に高速に転送され、その後の時点t3において第1電圧V1が低レベルV1Lになると、第1電極16a下の光電子が電荷集積部26に高速に転送され、第1スイッチング素子SW1を通じてキャパシタCaに転送される。
 その後の時点t4において、第1スイッチング素子SW1をオフにし、該時点t4から次のサイクルの開始時点までの期間(電荷排出期間WD2)にわたり第2スイッチング素子SW2をオン(第1スイッチング素子SW1はオフのまま)にする。これによって、電荷排出期間WD2において光電変換素子10に発生した不要な光電子は第2スイッチング素子SW2及び電荷排出部108を介して排出される。なお、電荷排出期間WD2においても、光電変換素子10の第1電極16a及び第2電極16bに供給される第1電圧V1及び第2電圧V2を、期間WD1と同様に制御することで、第1電極16a及び第2電極16bを含む光電変換素子10で発生した光電子を、光電変換素子10に電荷が残らないように、電荷排出部108を介して排出させる。
 所定回数のサイクルが終了した段階で、出力スイッチSELをオンすることによって、出力ライン212には、キャパシタCaに蓄積された光電子(電荷量Q)に応じた電圧が出力素子TRにて増幅されて出力電圧Voutとして出力されることになる。出力電圧Voutは図示しないA/D変換器にてデジタルデータに変換されて演算装置206に供給される。
[第2受光システム200B]
 次に、第2の実施の形態に係る受光システム(以下、第2受光システム200Bと記す)について図13、図16~図20を参照しながら説明する。
 第2受光システム200Bは、上述した第1受光システム200Aとほぼ同様の構成を有するが、図13に示すように、第2受光装置100Bを使用し、制御装置204によって、第2受光装置100Bで受光された光から環境光Lsの成分を除去して被写体Wからの反射光Lrの成分を取得するように制御することで、環境光Lsに依存しない反射光強度の情報を取得することができる点で異なる。
<環境光Lsの影響を低減する基本原理>
 ここで、環境光Lsの影響を低減する基本原理、特に、連続光を用いた場合の基本原理について、図16~図18Bを参照しながら説明する。
 先ず、図16に示すように、最初の1フレーム期間F1において、被写体Wに連続光を照射しないときの光電子を取り込み、該光電子から未照射時の輝度値を得、次の2フレーム期間F2において、被写体Wに連続光を照射したときの光電子を取り込み、該光電子から照射時の輝度値を得、これらの輝度値の差を取得することで、環境光Ls(主に太陽光成分)の影響を低減することができる。この場合、第1フレーム期間F1と第2フレーム期間F2の組み合わせを1つのサイクルとした場合、1つのサイクルに対する連続光のデューティ比は50%となる。また、1つのフレーム期間としては、撮像装置による撮影期間である例えば1/60[秒]が用いられる。
 そして、最初の1フレーム期間F1においては、連続光を出射せずに受光し、続く第2フレーム期間F2において、該第2フレーム期間F2にわたって連続光を出射させながら受光することから、この第1フレーム期間F1から第2フレーム期間F2にわたって、環境光によるノイズ成分も取り込まれることになる。
 従って、図17Aに示すように、第2フレーム期間F2の輝度値(信号光成分+太陽光成分)から第1フレーム期間F1の輝度値(太陽光成分)を差し引くことによって、理想的には太陽光成分による影響が除去され、信号光成分のみが得られることになる。
 しかし、太陽光のような強い環境光が存在する環境では、光ショットノイズの影響があり、しかも、光ショットノイズは、ランダム性を有することから、上述した輝度値の差を演算するだけでは、環境光の影響の除去は十分ではないことがわかる。すなわち、図17Bに示すように、第1フレーム期間F1で発生した光ショットノイズ成分と、第2フレーム期間F2で発生した光ショットノイズ成分が異なる場合、その差分が信号光成分に重畳されることになる。
 また、太陽光のような強い環境光が存在する環境では、例えば図17Aに示すように、信号光成分よりも太陽光成分が大きいことから(信号光成分のS/N比が低い)、信号光成分の入力ダイナミックレンジが小さくなるという問題がある。一般的な撮像素子は、入射光量に対する信号出力の有効範囲(ダイナミックレンジ)が限られており、太陽光が入射してしまうと、信号出力が飽和してしまう等の悪影響を及ぼすことが知られている。そこで、例えば図18Aに示すように、1つのサイクル(1フレーム期間F1と2フレーム期間F2での露光と、第2フレーム期間F2の輝度値(信号光成分+太陽光成分)から第1フレーム期間F1の輝度値(太陽光成分)を差し引く動作)を複数回繰り返して信号光成分を蓄積することによって、信号光成分のS/N比を向上させることが考えられる。図18Aの例では3つのサイクル(サイクル1~3)を示している。しかし、上述したように(図17B参照)、各フレーム期間において、ランダムな光ショットノイズが入り込み、しかも、差演算においても、一部残存することから、図18Bに示すように、信号光成分の蓄積と共に、残存するノイズ成分も蓄積することになり、差演算後のS/N比が低くなるという問題がある。
 信号光成分のS/N比を向上させるためには、連続光のパワーを高めることが考えられる。しかし、1つのフレーム期間にわたって連続光を出射させることから、発熱や消費電力が増加するという新たな問題が生じる。発熱に対しては例えば冷却機構を別途用意することで対応できるが、受光システムの製造コスト、ランニングコストが高くなり、サイズも大きくなるという問題がある。従って、連続光のパワーを上げることには限界がある。
 一方、上述した発光装置202では、発光部210から高い出力を有するパルス幅の短いパルス光Lpを出射することから、該発光装置202を用いた第2受光システム200Bでは、上述したような連続光による各種問題を解決することができる。
[第2受光システム200Bの詳細]
<発光装置202>
 発光装置202は、第1受光システム200Aの発光装置202とほぼ同様の構成を有するため、その説明を省略する。
<第2受光装置100B>
 上述したので(図12参照)、ここではその重複説明を省略するが、図19を用いて、回路構成として第2受光装置100Bを説明する。
 すなわち、第2受光装置100Bは、図19に示すように、上述した光電変換素子10、電荷集積部26、第1キャパシタCa1、第2キャパシタCa2、電荷排出部108、第1スイッチング素子SW1~第3スイッチング素子SW3とを備え、さらに、第1リセットスイッチSR1、第2リセットスイッチSR2、第1アンプAP1及び第2アンプAP2を有する。
(第1スイッチング素子SW1、第1キャパシタCa1)
 第1スイッチング素子SW1は、例えばnチャネル型MOSトランジスタにて構成され、ソースが電荷集積部26に接続され、ドレインが第1キャパシタC1に接続され、ゲートが図示しないゲート駆動回路に接続されている。従って、ゲートに対するゲート駆動回路からのゲート駆動信号(第1読取信号Sg1)に応じて第1スイッチング素子SW1のオン・オフを選択的に制御することにより、電荷集積部26に存在する光電子が第1キャパシタCa1に転送される。
(第2スイッチング素子SW2、第2キャパシタCa2)
 第2スイッチング素子SW2は、例えばnチャネル型MOSトランジスタにて構成され、ソースが電荷集積部26に接続され、ドレインが第2キャパシタCa2に接続され、ゲートが図示しないゲート駆動回路に接続されている。従って、ゲートに対するゲート駆動回路からのゲート駆動信号(第2読取信号Sg2)に応じて第2スイッチング素子SW2のオン・オフを選択的に制御することにより、電荷集積部26に存在する光電子が第2キャパシタCa2に転送される。
(第3スイッチング素子SW3、電荷排出部108)
 第3スイッチング素子SW3は、例えばnチャネル型MOSトランジスタにて構成され、ソースに電荷集積部26が接続され、ドレインに電荷排出部108が接続され、該電荷排出部108には、第1電源208Aからの正の電源電圧Vddが供給されている。また、ゲートには図示しないゲート駆動回路が接続されている。従って、ゲート駆動回路からゲートにゲート駆動信号(電荷排出信号Se)を供給することにより、ゲートをオンにし、電荷集積部26に存在する光電子を、第1キャパシタCa1や第2キャパシタCa2に転送することなく、電荷排出部108を通じて排出することができる。
(第1リセットスイッチSR1、第2リセットスイッチSR2)
 第1リセットスイッチSR1及び第2リセットスイッチSR2は、例えばnチャネル型MOSトランジスタにて構成されている。第1リセットスイッチSR1のソースに第1スイッチング素子SW1と第1キャパシタC1との接点a1が接続され、第2リセットスイッチSR2のソースに第2スイッチング素子SW2と第2キャパシタC2との接点a2が接続されている。各ドレインには第2電源208Bからのリセット電圧Vrが供給され、各ゲートには図示しないゲート駆動回路が接続されている。従って、各ゲートに対するゲート駆動回路からのゲート駆動信号(第1リセット信号Sr1及び第2リセット信号)によって第1リセットスイッチSR1及び第2リセットスイッチSR2を選択的に又は一斉にオンにすることにより、第1キャパシタCa1及び第2キャパシタCa2の電位をそれぞれ一定のリセット電位にすることができる。すなわち、第1キャパシタCa1及び第2リセットCa2をリセットすることができる。
(第1アンプAP1)
 第1アンプAP1は、例えばnチャネル型MOSトランジスタにて構成された第1出力素子TR1と、第1出力素子TR1のソースと第1出力ライン212aとの間に接続された例えばnチャネル型MOSトランジスタによる第1出力スイッチSEL1とを有する。第1出力素子TR1のゲートには、第1スイッチング素子SW1と第1キャパシタC1との接点a1が接続され、ドレインには第1電源208Aからの正の電源電圧Vddが供給され、ソースには第1出力スイッチSEL1のドレインが接続されている。第1出力スイッチSEL1は、ゲートに図示しないゲート駆動回路が接続され、ソースに第1出力ライン212aが接続されている。従って、第1出力スイッチSEL1のゲートに対するゲート駆動回路からのゲート駆動信号(第1出力選択信号Ss1)によって第1出力スイッチSEL1をオンにすることにより、第1キャパシタCa1に蓄積された光電子(電荷量Q1)に応じた電圧が第1出力素子TR1にて増幅されて第1出力電圧Vout1として取り出されることになる。
(第2アンプAP2)
 第2アンプAP2は、例えばnチャネル型MOSトランジスタにて構成された第2出力素子TR2と、第2出力素子TR2のソースと第2出力ライン212bとの間に接続された例えばnチャネル型MOSトランジスタによる第2出力スイッチSEL2とを有する。第2出力素子TR2のゲートには、第2スイッチング素子SW2と第2キャパシタCa2との接点a2が接続され、ドレインには第1電源208Aからの正の電源電圧Vddが供給され、ソースには第2出力スイッチSEL2のドレインが接続されている。第2出力スイッチSEL2は、ゲートに図示しないゲート駆動回路が接続され、ソースに第2出力ライン212bが接続されている。従って、第2出力スイッチSEL2のゲートに対するゲート駆動回路からのゲート駆動信号(第2出力選択信号Ss2)によって第2出力スイッチSEL2をオンにすることにより、第2キャパシタCa2に蓄積された光電子(電荷量Q2)に応じた電圧が第2出力素子TR2にて増幅されて第2出力電圧Vout2として取り出されることになる。
<第2受光システム200Bの動作>
 次に、第2受光システム200Bの動作について図20を参照しながら説明する。なお、図20において、第1スイッチング素子SW1~第3スイッチング素子SW3がオンしている期間はそれぞれWD1~WD3である。
 先ず、第2受光システム200Bの制御装置204は、一定の周期(サイクル)毎に、ある一定期間WSを置いて発光装置202を駆動して、各サイクル毎に発光時間WLのパルス光Lpを放射する。一定期間WSは、環境光Lsの輝度情報を読み取る期間であり、この一定期間WSに第2受光装置100Bに入射した光は光電変換素子10にて光電子に変換されて電荷集積部26に高速に転送される。
 第1スイッチング素子SW1は、電荷集積部26に転送された光電子を第1キャパシタCa1に転送する。すなわち、第1キャパシタCa1に転送された光電子は、入射した環境光Lsを光電変換して得られた光電子(電荷量Q1)である。従って、電荷量Q1によって、環境光強度の情報を取得することができる。
 一定期間WS経過後に、発光装置202から出射されたパルス光Lp(放射光Le)が被写体Wで反射し、反射光Lrとして第2受光装置100Bに入射する。第2受光装置100Bに入射した光は光電変換素子10にて光電子に変換されて電荷集積部26に高速に転送される。
 第2スイッチング素子SW2は、電荷集積部26に転送された光電子を第2キャパシタCa2に転送する。すなわち、第2キャパシタCa2に転送された光電子は、入射した環境光Lsと反射光Lr(パルス光Lpが被写体Wに反射したことによる反射光)を光電変換して得られた光電子(電荷量Q2)である。
 従って、下記式(F1)に示すように、これら電荷量Q1及びQ2の差をとることによって、環境光に依存しない反射光強度の情報を取得することができる。
  反射光強度=Q2-Q1        ……(F1)
 なお、第1スイッチング素子SW1及び第2スイッチング素子SW2が共にオンとなっていない(共にオフとなっている)場合に光電変換された光電子は、不要な光電子であるため、この不要な光電子を、第3スイッチング素子SW3をオンにして電荷排出部108に排出する。
 ここで、第2受光システム200Bの具体的な動作タイミングについて図20を参照しながら説明する。
 最初に、上述した第1受光システム200Aと同様に、第2受光システム200Bの初期設定として、第3スイッチング素子SW3、第1リセットスイッチSR1及び第2リセットスイッチSR2を全てオンにし、第1スイッチング素子SW1、第2スイッチング素子SW2、第1出力スイッチSEL1及び第2出力スイッチSEL2を共にオフにする。これにより、光電変換素子10に蓄積されている不要な光電子が排出されると共に、第1キャパシタCa1及び第2キャパシタCa2の各電位がリセット電位に設定される。その後、第1リセットスイッチSR1及び第2リセットスイッチSR2がオフとされる。また、同時に、光電変換素子10の第1電極16a及び第2電極16bに供給される第1電圧V1及び第2電圧V2を、期間WD3に図示するタイミングと同様な動作で制御することで、第1電極16a及び第2電極16bを含む光電変換素子10で発生した光電子を、光電変換素子10に電荷が残らないように、電荷排出部108を介して排出させ光電変換素子10を初期化する。
 初期設定が終了した後、反射光強度を取得するためのサイクルが1回のみ、あるいは複数回繰り返されることになる。
 各サイクルは、図20に示すように、第1受光システム200Aの場合とは異なり、最初の時点t1から一定期間WSを置いて、制御装置204による発光装置202の駆動によって、発光装置202から1つのパルス光Lpが出射されることになる。従って、一定期間WSは、上述したように環境光Lsを取り込む期間となる。
 そして、時点t1で第3スイッチング素子SW3をオフにし、該時点t1から第1読取期間WD1にわたり第1スイッチング素子SW1をオン(第2スイッチング素子SW2及び第3スイッチング素子SW3はオフのまま)にする。また、上述した第1受光システム200Aと同様に、時点t1から光電変換素子10の第1電極16a及び第2電極16bに供給される第1電圧V1及び第2電圧V2をそれぞれ高レベルVH1及びVH2にし、その後の時点t2において第2電圧V2を低レベルV2Lにし、その後の時点t3において第1電圧V1を低レベルV1Lにする。この一連の電圧変化によって、第2電極16b下の光電子が第1電極16a下に高速に移動し、第1電極16a下の光電子が電荷集積部26に高速に転送され、第1スイッチング素子SW1を通じて第1キャパシタCa1に転送される。
 その後の時点t4において、第1スイッチング素子SW1をオフにすると共に、発光装置202から1つのパルス光Lpを出射させる。また、時点t4から第2読取期間WD2にわたり第2スイッチング素子SW2をオン(第1スイッチング素子SW1及び第3スイッチング素子SW3はオフのまま)にする。また、時点t4から光電変換素子10の第1電極16a及び第2電極16bに供給される第1電圧V1及び第2電圧V2をそれぞれ高レベルVH1及びVH2にし、その後の時点t5において第2電圧V2を低レベルV2Lにし、その後の時点t6において第1電圧V1を低レベルV1Lにする。この一連の電圧変化によって、第2電極16b下の光電子が第1電極16a下に高速に移動し、第1電極16a下の光電子が電荷集積部26に高速に転送され、第2スイッチング素子SW2を通じて第2キャパシタCa2に転送される。
 その後の時点t7において、第2スイッチング素子SW2をオフにし、該時点t7から次のサイクルの開始時点までの期間(電荷排出期間WD3)にわたり第3スイッチング素子SW3をオン(第1スイッチング素子SW1及び第2スイッチング素子は共にオフのまま)にする。これによって、電荷排出期間WD3において光電変換素子10に発生した不要な光電子は第3スイッチング素子SW3及び電荷排出部108を介して排出される。
 所定回数のサイクルが終了した段階で、第1出力スイッチSEL1をオンすることによって、第1出力ライン212aには、第1キャパシタCa1に蓄積された光電子(電荷量Q1)に応じた電圧が第1出力素子TR1にて増幅されて第1出力電圧Vout1として出力され、その後、第2出力スイッチSEL2をオンすることによって、第2出力ライン212bには、第2キャパシタCa2に蓄積された光電子(電荷量Q2)に応じた電圧が第2出力素子TR2にて増幅されて第2出力電圧Vout2として出力されることになる。
 第1出力ライン212a及び第2出力ライン212bから出力された第1出力電圧Vout1及び第2出力電圧Vout2は、図示しないA/D変換器にてそれぞれデジタルの第1数値データD1及び第2数値データD2に変換されて演算装置206に供給される。
 演算装置206では、供給された第1数値データD1及び第2数値データD2に基づいて下記式(F2)を演算することによって、反射光強度データDrを得る。
   Dr=D2-D1             ………(F2)
 上述した発光装置202は、パルス光Lpのパルス幅を1[ナノ秒]より長く、且つ、0.25[秒]未満としているため、パルス光Lpのパルス幅を1フレーム期間の1[%]以下、例えば0.1[%]以下の時間的長さに設定することが可能である。つまり、パルス幅を大幅に短く設定することができることから、1つのパルス光Lpのパワーを高くすることができ、環境光成分に対する反射光成分(信号光)のS/N比を大幅に向上させることができる。第2読取期間WD2もパルス光Lpのパルス幅に合わせて短く設定することができ、しかも、環境光Lsのみを読み取る第1読取期間WD1を上述した第2読取期間WD2と同じ時間的長さにできる等、読取時間を短くすることができるため、環境光Lsの入射光量を低減でき、環境光Lsに起因する光ショットノイズ成分を低減することができる。
 また、第1読取期間WD1と第2読取期間WD2に挟まれる時間的長さをほぼ0にすることができることから、被写体Wにパルス光Lpを照射しない期間(第1読取期間WD1)における光電子の取り込み(未放射時の輝度値の取得)と、パルス光Lpを照射した期間(第2読取期間WD2)における光電子の取り込み(放射時の輝度値の取得)を、短時間に切り換えることが可能となり、未放射時の輝度値と放射時の輝度値の取得にかかる同時性を格段に向上させることができる。
 また、上述したサイクルを複数回繰り返す場合は、第1キャパシタCa1及び第2キャパシタCa2に蓄積される光電子の量を増やすことができる。この場合においても、パルス光列のパルス周期に対するパルス光Lpのデューティ比が1[%]以下(例えば0.1[%]以下)に設定されることから、パルス光列に含まれる各パルス光Lpのパワーを連続光よりも高くすることが可能となり、各パルス幅での環境光Ls(ノイズ成分)に対する反射光Lr(信号光成分)のS/N比を大幅に向上させることができる。このように、パルス光Lpのデューティ比を小さくすることで、大きな出力を有したパルス光を用いても、発光休止時に放熱させることができるため、放熱特性を良好にできる。しかも、複数サイクルにわたって第1キャパシタCa1及び第2キャパシタCa2にそれぞれ光電子を蓄積することから、信号光成分を増やすことができ、その後の信号処理の精度を高めることが可能となる。また、各サイクルにおいて、第1読取期間WD1における光電子の取り込みと、第2読取期間WD2における光電子の取り込みを、短時間に切り換えることができるため、未放射時の輝度値と放射時の輝度値の取得にかかる同時性を格段に向上させることができる。
[第1測距装置300A]
 次に、第1の実施の形態に係る測距装置(以下、第1測距装置300Aと記す)について図21~図26を参照しながら説明する。
 第1測距装置300Aは、後述するイメージセンサ302の各画素304の出力に基づき測定した距離を用いた三次元画像を取得するものであり、上述した発光装置202、制御装置204、演算装置206、第1電源208A及び第2電源208Bに加えて、第3受光装置100Cとを有する。
 第1測距装置300Aでは、制御装置204からの指令に応じて発光装置202の発光部210から出射されたパルス光Lpが対象物Wで反射し、第3受光装置100Cに入射する。第3受光装置100Cには、太陽光等の環境光Lsも入射する。第3受光装置100Cは、制御装置204からの指令に基づき受光量に応じた電荷を示す信号(蓄積電荷信号Sc1、Sc2)を演算装置206に出力する。演算装置206は、パルス光Lpが発光装置202から第3受光装置100Cまで到達する期間(往復期間ΔP)[s]を算出し、この往復期間ΔPに基づいて第1測距装置300Aと対象物Wとの距離D[m]を演算する。演算装置206の演算結果は、例えば、図示しない表示装置に出力される。
<第3受光装置100C>
 第3受光装置100Cは、レンズ102と、第3受光部104Cとを有する。レンズ102を通過した反射光Lr及び環境光Lsは、第3受光部104Cに集光される。レンズ102は、直線状又はマトリックス状に配列された複数のレンズであってもよい。
 第3受光部104Cは、図22に示すように、マトリックス状に画素304が配置されたイメージセンサ302と、ゲート駆動回路306と、垂直選択回路308と、サンプルホールド回路310と、水平選択回路312と、出力バッファ314と、A/D変換器316とを有する。
 イメージセンサ302は、各画素304の受光量に応じた蓄積電荷信号Sc1、Sc2を水平選択回路312を介して出力する。第1電源208Aは、イメージセンサ302に対して正の電源電圧Vddを印加し、第2電源208Bは、イメージセンサ302に対してリセット電圧Vrを印加する。
 ゲート駆動回路306は、各種ゲート駆動信号を出力することによりイメージセンサ302の第1スイッチング素子SW1~第5スイッチング素子SW5(図23参照)、第1リセットスイッチSR1~第4リセットスイッチSR4を選択的にオン/オフ制御する。
 垂直選択回路308は、マルチプレクサ(図示せず)を有し、読出しを行う画素304が属する行に対して選択的に第1出力選択信号Ss1~第4出力選択信号Ss4を出力し、当該画素304から蓄積電荷信号Sc1、Sc2を出力させる。水平選択回路312は、別のマルチプレクサ(図示せず)を有し、読出しを行う画素304が属する列を選択する。
 図23に示すように、画素304から読み出された蓄積電荷信号Sc1、Sc2は、第1定電流回路58a、第2定電流回路58bにより、第1出力電圧Vout1及び第2出力電圧Vout2、第3出力電圧Vout3及び第4出力電圧Vout4に変換され、サンプルホールド回路310に一旦蓄積された後、水平選択回路312から出力される。そして、蓄積電荷信号Sc1、Sc2は、出力バッファ314及びA/D変換器316を介して演算装置206に送信される。この蓄積電荷信号Sc1、Sc2を受信した演算装置206は、蓄積電荷信号Sc1、Sc2から反射光Lrの光量(光量Ar)を判定して、第1測距装置300Aと対象物Wとの距離Dを演算する(詳細は後述する。)。
<画素304>
 図23には、1つの画素304の回路図が示されている。図23に示すように、画素304は、上述した光電変換素子10、電荷集積部26、第1キャパシタCa1~第4キャパシタCa4、電荷排出部108、第1スイッチング素子SW1~第5スイッチング素子SW5とを備え、さらに、第1リセットスイッチSR1~第4リセットスイッチSR4、第1アンプAP1~第4アンプAP4を有する。図23において、回路図を見易くするために、電荷集積部26を2つの接点で示したが、実際には1つの電荷集積部26にて構成されるものである。また、第1キャパシタCa1と第3キャパシタCa3は、電荷集積部26の中心に対して線対称の位置に配置され、第2キャパシタCa2と第4キャパシタCa4も、電荷集積部26の中心に対して線対称の位置に配置されている。同様に、第1キャパシタCa1と第2キャパシタCa2も、電荷集積部26の中心に対して線対称の位置に配置され、第3キャパシタCa3と第4キャパシタCa4も、電荷集積部26の中心に対して線対称の位置に配置されている。
(第1スイッチング素子SW1、第1キャパシタCa1)
 上述した第2受光装置100Bの第1スイッチング素子SW1及び第1キャパシタCa1と同様の構成を有するため、ここではその説明を省略する。
(第2スイッチング素子、第2キャパシタ)
 上述した第2受光装置100Bの第2スイッチング素子SW2及び第2キャパシタCa2と同様の構成を有するため、ここではその説明を省略する。
(第3スイッチング素子SW3、第3キャパシタCa3)
 第3スイッチング素子SW3は、例えばnチャネル型MOSトランジスタにて構成され、ソースが電荷集積部26に接続され、ドレインが第3キャパシタCa3に接続され、ゲートがゲート駆動回路306に接続されている。従って、ゲートに対するゲート駆動回路306からのゲート駆動信号(第3読取信号Sg3)に応じて第3スイッチング素子SW3のオン・オフを選択的に制御することにより、電荷集積部26に存在する光電子が第3キャパシタCa3に転送される。
(第4スイッチング素子SW4、第4キャパシタCa4)
 第4スイッチング素子SW4は、例えばnチャネル型MOSトランジスタにて構成され、ソースが電荷集積部26に接続され、ドレインが第4キャパシタC1に接続され、ゲートがゲート駆動回路306に接続されている。従って、ゲートに対するゲート駆動回路306からのゲート駆動信号(第4読取信号Sg4)に応じて第4スイッチング素子SW4のオン・オフを選択的に制御することにより、電荷集積部26に存在する光電子が第4キャパシタCa4に転送される。
(第5スイッチング素子SW5、電荷排出部108)
 第5スイッチング素子SW5は、例えばnチャネル型MOSトランジスタにて構成され、ソースに電荷集積部26が接続され、ドレインに電荷排出部108が接続され、該電荷排出部108には、第1電源208Aからの正の電源電圧Vddが供給されている。また、ゲートにはゲート駆動回路306からの電荷排出信号Seが供給されるようになっている。
 従って、ゲートに電荷排出信号Seを供給すること(ゲートに供給される電圧を高レベルにすること)により、ゲートをオンにし、電荷集積部26に存在する不要な光電子を、第1キャパシタCa1~第4キャパシタCa4に転送することなく、電荷排出部108を通じて排出することができる。
 すなわち、第1スイッチング素子SW1~第4スイッチング素子SW4の全てがオフにされているとき(光電変換素子10で発生した光電子を第1キャパシタCa1~第4キャパシタCa4に振り分けないとき)に、ゲート駆動回路306から第5スイッチング素子SW5のゲートに電荷排出信号Seを送信すること(ゲートに供給される電圧を高レベルにすること)により、第5スイッチング素子SW5をオンにし、光電変換素子10で発生した不要な光電子を、第1キャパシタCa1~第4キャパシタCa4に振り分けることなく、電荷排出部108に排出することができる。これにより、第1キャパシタCa1~第4キャパシタCa4には、第1スイッチング素子SW1~第4スイッチング素子SW4がオンしている期間に光電変換素子10で発生した光電子のみを振り分けることが可能となる。その結果、後述する方法により、第1測距装置300Aと対象物Wとの距離Dを測定することが可能となる。
(第1リセットスイッチSR1~第4リセットスイッチSR4)
 第1リセットスイッチSR1~第4リセットスイッチSR4は、例えばnチャネル型MOSトランジスタにて構成されている。第1リセットスイッチSR1のソースに第1スイッチング素子SW1と第1キャパシタCa1との接点a1が接続され、第2リセットスイッチSR2のソースに第2スイッチング素子SW2と第2キャパシタCa2との接点a2が接続されている。同様に、第3リセットスイッチSR3のソースに第3スイッチング素子SW3と第3キャパシタCa3との接点a3が接続され、第4リセットスイッチSR4のソースに第4スイッチング素子SW4と第4キャパシタCa4との接点a4が接続されている。各ドレインには第2電源208Bからのリセット電圧Vrが供給され、各ゲートにはゲート駆動回路306が接続されている。
 従って、各ゲートに対するゲート駆動回路306からのゲート駆動信号(第1リセット信号Sr1~第4リセット信号Sr4)によって第1リセットスイッチSR1~第4リセットスイッチSR4を選択的に又は一斉にオンにすることにより、第1キャパシタCa1~第4キャパシタCa4の電位をそれぞれ一定のリセット電位にすることができる。すなわち、第1キャパシタCa1~第4リセットCa4をリセットすることができる。
(第1アンプAP1、第2アンプAP2)
 上述した第2受光装置100Bの第1アンプAP1及び第2アンプAP2と同様の構成を有するため、ここではその詳細説明を省略するが、第1アンプAP1の第1出力スイッチSEL1のソースが第1出力ライン212aに接続され、ゲートには垂直選択回路308からの第1出力選択信号Ss1が供給されるようになっている。同様に、第2アンプAP2の第2出力スイッチSEL2のソースが第1出力ライン212aに接続され、ゲートには垂直選択回路308からの第2出力選択信号Ss2が供給されるようになっている。
 従って、第1出力スイッチSEL1のゲートに対する第1出力選択信号Ss1によって第1出力スイッチSEL1をオンにすることにより、第1キャパシタCa1に蓄積された光電子(電荷量Q1)に応じた電圧が第1出力素子TR1にて増幅され、第1出力ライン212aを介して第1出力電圧Vout1として取り出されることになる。同様に、第2出力スイッチSEL2のゲートに対する第2出力選択信号Ss2によって第2出力スイッチSEL2をオンにすることにより、第2キャパシタCa2に蓄積された光電子(電荷量Q2)に応じた電圧が第2出力素子TR2にて増幅され、第1出力ライン212aを介して第2出力電圧Vout2として取り出されることになる。
(第3アンプAP3)
 第3アンプAP3は、例えばnチャネル型MOSトランジスタにて構成された第3出力素子TR3と、第3出力素子TR3のソースと第2出力ライン212bとの間に接続された例えばnチャネル型MOSトランジスタによる第3出力スイッチSEL3とを有する。第3出力素子TR3のゲートには、第3スイッチング素子SW3と第3キャパシタCa3との接点a3が接続され、ドレインには第1電源208Aからの正の電源電圧Vddが供給され、ソースには第3出力スイッチSEL3のドレインが接続されている。第3出力スイッチSEL3は、ソースに第2出力ライン212bが接続され、ゲートには、垂直選択回路308からの第1出力選択信号Ss3が供給されるようになっている。
 従って、第3出力スイッチSEL3のゲートに対する第3出力選択信号Ss3によって第3出力スイッチSEL3をオンにすることにより、第3キャパシタCa3に蓄積された光電子(電荷量Q3)に応じた電圧が第3出力素子TR3にて増幅され、第2出力ライン212bを介して第3出力電圧Vout3として取り出されることになる。
(第4アンプAP4)
 第4アンプAP4は、例えばnチャネル型MOSトランジスタにて構成された第4出力素子TR4と、第4出力素子TR4のソースと第2出力ライン212bとの間に接続された例えばnチャネル型MOSトランジスタによる第4出力スイッチSEL4とを有する。第4出力素子TR4のゲートには、第4スイッチング素子SW4と第4キャパシタCa4との接点a4が接続され、ドレインには第1電源208Aからの正の電源電圧Vddが供給され、ソースには第4出力スイッチSEL4のドレインが接続されている。第4出力スイッチSEL4は、ソースに第2出力ライン212bが接続され、ゲートには、垂直選択回路308からの第4出力選択信号Ss4が供給されるようになっている。
 従って、第4出力スイッチSEL4のゲートに対する第4出力選択信号Ss4によって第4出力スイッチSEL4をオンにすることにより、第4キャパシタCa4に蓄積された光電子(電荷量Q4)に応じた電圧が第4出力素子TR4にて増幅され、第2出力ライン212bを介して第4出力電圧Vout4として取り出されることになる。
[第1測距装置300Aと対象物Wとの距離Dの測定方法]
 次に、第1測距装置300Aと対象物Wとの距離Dを測定する方法について説明する。
(1)サイクルCm
 図24に示すように、第1測距装置300Aでは、各サイクルCm(測定値を求める周期)[回/s]は、第1キャパシタCa1~第4キャパシタCa4に電荷を累積的に蓄積する第1蓄積期間Tca1と、第1キャパシタCa1~第4キャパシタCa4に累積的に蓄積された電荷を読み出す読出期間Trとからなる。さらに、第1蓄積期間Tca1は、画素304にパルス光Lpを露光し、第1キャパシタCa1~第4キャパシタCa4に電荷を蓄積する処理(電荷蓄積処理)を1回行うための第2蓄積期間Tca2を複数含む。第1測距装置300Aにおいて、第1蓄積期間Tca1及び読出期間Trは、10[ミリ秒]である。また、各第2蓄積期間Tca2は、100[マイクロ秒]である。さらに、各第2蓄積期間Tca2におけるパルス光Lpの出力時間(パルス幅)は、100[ナノ秒]である。従って、各第2蓄積期間Tca2における発光部210の駆動デューティは、0.1[%]である。
 なお、上述したように、第1測距装置300Aは、測定結果を三次元画像として出力可能であるため、各サイクルCmは、三次元画像のフレームレート[フレーム/s]としても定義可能である。
 第1測距装置300Aでは、第1蓄積期間Tca1において電荷蓄積処理を100回行い、これに伴って、第1キャパシタCa1~第4キャパシタCa4に蓄積された電荷量Q1~Q4に基づいて往復期間ΔP及び距離Dを測定する。
(2)測定方法の概要(1つの電荷蓄積期間Tca2を対象とした場合)
 上記のように、第1測距装置300Aでは、第1蓄積期間Tca1全体で第1キャパシタCa1~第4キャパシタCa4に蓄積された電荷量Q1~Q4に基づいて往復期間ΔP及び距離Dを測定するが、発明の理解を容易化するため、以下では、先ずは、1つの第2蓄積期間Tca2のみで第1キャパシタCa1~第4キャパシタCa4に蓄積された電荷量Q1~Q4に基づいて往復期間ΔP及び距離Dを求める場合を説明する。
 図25には、第2蓄積期間Tca2における放射光Le、反射光Lr、並びに第1スイッチング素子SW1~第5スイッチング素子SW5のオン/オフのタイミングチャートが示されている。
 詳細は後述するが、第1測距装置300Aでは、反射光Lrの強度Ir[W]が一定であれば、反射光Lrが光電変換素子10に入射した期間(反射光入射期間Pri)[s]と、反射光入射期間Priにおける反射光Lrの累積光量(反射光測定光量Amr)[J]とが比例関係にあることを利用して、距離Dを測定する。
 すなわち、第1基準期間としての期間P1において、環境光Lsのみが光電変換素子10に入射しているときの累積光量(環境光基準光量Ars)[J](第1キャパシタCa1の電荷量Q1)を求め、第2基準期間としての期間P3(=P1)において、環境光Ls及び反射光Lrが光電変換素子10に入射しているときの累積光量(合成光基準光量Ari)[J](第3キャパシタCa3の電荷量Q3)を求める。また、第1測定期間としての期間P2において、環境光Lsのみが光電変換素子10に入射しているときの累積光量(環境光測定光量Ams)[J](第2キャパシタCa2の電荷量Q2)を求め、第2測定期間としての期間P4(=P2)において、環境光Ls及び反射光Lrが光電変換素子10に入射しているときの累積光量(合成光測定光量Ami)[J](第4キャパシタCa4の電荷量Q4)を求める。期間P4では、環境光Ls及び反射光Lrの両方が入射する期間(期間Psr)[s]と、環境光Lsのみが入射する期間(期間Ps)[s]が存在する。期間Psrは、対象物Wまでの距離Dに比例する。
 ここで、合成光基準光量Ariと環境光基準光量Arsとの差(反射光基準光量Arr)[J]と合成光測定光量Amiと環境光測定光量Amsとの差(反射光測定光量Amr)[J]との比(Ari―Ars:Ami―Ams)と、期間P3(=P1)と反射光入射期間Priとの比(P3:Pri)とが等しい。これを利用して、第1測距装置300Aから出射されたパルス光Lpが対象物Wに当たって第1測距装置300Aに戻って来るまでの期間(往復期間ΔP)を求める。そして、往復期間ΔPに基づいて第1測距装置300Aと対象物Wとの距離Dを測定する。
(3)測定方法の詳細(1つの第2蓄積期間Tca2を対象とした場合)
(a)タイミングチャートの説明
 図25において、時点Teuは、放射光Leの放射開始時点を、時点Tedは、放射光Leの放射終了時点を、期間Peは、時点Teuから時点Tedまでの期間を示す。時点Truは、光電変換素子10に対する反射光Lrの入射開始時点を、時点Trdは、光電変換素子10に対する反射光Lrの入射終了時点を、期間Prは、時点Truから時点Trdまでの期間を示す。
 時点Tg1u、Tg2u、Tg3u、Tg4uは、第1スイッチング素子SW1~第4スイッチング素子SW4をオンする時点を、ここから時点Tg1d、Tg2d、Tg3d、Tg4dは、第1スイッチング素子SW1~第4スイッチング素子SW4をオフする時点を、期間P1は、時点Tg1uから時点Tg1dまでの期間を、期間P2は、時点Tg2uから時点Tg2dまでの期間を、期間P3は、時点Tg3uから時点Tg3dまでの期間を、期間P4は、時点Tg4uから時点Tg4dまでの期間を示す。期間Psrは、時点Tg4uから時点Trdまでの期間を、期間Psは、時点Trdから時点Tg4dまでの期間を示す。
 時点Td1u、Td2uは、第5スイッチング素子SW5をオンする時点を、時点Td1d、Td2dは、第5スイッチング素子SW5をオフする時点を、期間P5は、時点Td1uから時点Td1dまでの期間を、期間P6は、時点Td2uから時点Td2dまでの期間を示す。
 反射光Lrが光電変換素子10に入射している期間Prは、時点Teuから時点Truまで又は時点Tedから時点Trdまでの遅れ(往復期間ΔP)が発生するものの、期間Peと等しく(Pe=Pr)、例えば、10[ナノ秒]以上1[マイクロ秒]以下に設定可能であり、第1測距装置300Aでは、100[ナノ秒]である。また、制御装置204において、期間P1と期間P3及び期間P2と期間P4はそれぞれ等しく設定される(P1=P3及びP2=P4)。期間P1、P3は、例えば、10[ナノ秒]以上90[ナノ秒]以下に設定可能であり、第1測距装置300Aでは、30[ナノ秒]である。期間P2は、例えば、10[ナノ秒]以上90[ナノ秒]以下に設定可能であり、第1測距装置300Aでは、70[ナノ秒]である。また、期間P5は、例えば、0[秒]以上90[ナノ秒]以下に設定可能であり、第1測距装置300Aでは、70[ナノ秒]である。期間P6は、例えば、10[マイクロ秒]以上1[ミリ秒]以下に設定可能であり、第1測距装置300Aでは、約100[マイクロ秒]である。このため、期間P1~P6のうち期間P6が非常に長い。
 図25からわかるように、第1測距装置300Aの第2蓄積期間Tca2では、先ず、第1スイッチング素子SW1をオンにし(期間P1)、第1スイッチング素子SW1をオフにするのと同時に第2スイッチング素子SW2をオンにする(期間P2)。第2スイッチング素子SW2をオフにするのと同時に対象物Wに対して放射光Leを出射し、第5スイッチング素子SW5をオンする(期間P5)。放射光Leの出力中(期間Pe)、光電変換素子10に対する反射光Lrの入射が開始する(時点Tru)。放射光Leの出射開始(時点Teu)から期間P5経過後に第5スイッチング素子SW5をオフにすると共に第3スイッチング素子SW3をオンにする(期間P3)。期間Peの経過後に、放射光Leの出射を終了すると共に第3スイッチング素子SW3をオフにし、第4スイッチング素子SW4をオンにする(期間P4)。第4スイッチング素子SW4をオンにしている間(期間P4)、光電変換素子10に対する反射光Lrの入射が終了する(時点Trd)。換言すると、期間P4が、第1測距装置300Aの測定レンジ(測定可能な距離の範囲)[m]を規定する。第4スイッチング素子SW4をオフにするのと同時に第5スイッチング素子SW5をオンにする(期間P6)。期間P6が経過すると第5スイッチング素子SW5をオフにし、1回の第2蓄積期間Tca2を終了する(時点Td2d)。それと同時に、次の第2蓄積期間Tca2が開始され、第1スイッチング素子SW1はオンとなる(時点Tg1u)。なお、第3受光装置100C及び発光装置202の各部位の制御は、制御装置204において行われる。また、制御装置204を半導体プロセスにて作製する場合は、温度補償等の観点から、第3受光部104Cと共に同一のシリコン基板上にCMOSプロセスで作製することが望ましい。
(b)測定原理の説明
(i)反射光基準光量Arrの演算
 第1測距装置300Aと対象物Wとがそれぞれ固定されていれば、対象物Wで反射して第1測距装置300Aに戻って来る反射光Lrは、一定の強度(単位時間当たりの光量)であると言える。また、期間P1は、環境光Lsのみが光電変換素子10に入射する期間に設定されるため、第1キャパシタCa1には、環境光Lsのみに伴う光電子が蓄積される。一方、期間P3は、環境光Lsと反射光Lrの両方が光電変換素子10に入射する期間に設定されるため、第3キャパシタCa3には、環境光Lsと反射光Lrの両方に伴う光電子が蓄積される。さらに、期間P1と期間P3は同じ長さである。
 このため、第3キャパシタCa3に蓄積されている電荷量Q3と第1キャパシタCa1に蓄積されている電荷量Q1との差は、期間P3(=期間P1)における反射光Lrの累積光量(反射光基準光量Arr)を示す。
(ii)反射光測定光量Amr及び往復期間ΔPの演算
 第1測距装置300Aと対象物Wとがそれぞれ固定されていれば、対象物Wで反射して第1測距装置300Aに戻って来る反射光Lrは、一定の強度であると言える。また、期間P2は、環境光Lsのみが光電変換素子10に入射する期間に設定されるため、第2キャパシタCa2には、環境光Lsのみに伴う光電子が蓄積される。一方、期間P4は、環境光Lsと反射光Lrが光電変換素子10に入射する期間(期間Psr)と環境光Lsのみが光電変換素子10に入射する期間(期間Ps)の両方を含む期間に設定されるため、第4キャパシタCa4には、環境光Lsと反射光Lrの両方に伴う光電子が蓄積される。さらに、期間P2と期間P4は同じ長さである。
 このため、第4キャパシタCa4に蓄積されている電荷量Q4と第2キャパシタCa2に蓄積されている電荷量Q2との差は、期間P4(=期間P2)における反射光Lrの累積光量(反射光測定光量Amr)を示す。ここで、第1測距装置300Aでは、期間P4は、放射光Leの出射を終了する時点Tedと同時に開始される。このため、期間P4では、パルス往復期間ΔPに対応する反射光Lrが光電変換素子10に入射し、第4キャパシタCa4に光電子が蓄積される。従って、第4キャパシタCa4に蓄積されている電荷量Q4は、期間P4全体における環境光Lsの累積光量(環境光測定光量Ams)と、往復期間ΔPにおける反射光Lrの累積光量(反射光測定光量Amr)との和(合成光測定光量Ami)に対応するものである。このため、電荷量Q4と電荷量Q2との差は、反射光測定光量Amrに対応する電荷量を示す。ここで、往復期間ΔPは、第1測距装置300Aと対象物Wとの距離Dに依存する。このため、反射光測定光量Amr(電荷量Q4と電荷量Q2の差に対応)と反射光基準光量Arr(電荷量Q3と電荷量Q1の差に対応)との比は、往復期間ΔPと期間P3(=期間P1)との比に等しい(Amr:Arr=Q4-Q2:Q3-Q1=ΔP:P3)。従って、下記の式(F3)により往復期間ΔPを演算することができる。
  ΔP={(Q4-Q2)/(Q3-Q1)}×P3   ……(F3)
(iii)距離Dの演算
 往復期間ΔPがわかれば、第1測距装置300Aと対象物Wとの距離Dは、下記の式(F4)により演算することができる。なお、式(F4)において、cは、光速(約30万[キロメートル毎秒])を示す定数であり、また、c×ΔPを2で割っているのは、往復期間ΔPにおいて、パルス光Lpは、第1測距装置300Aと対象物Wとの間を往復し、距離Dの2倍の距離を進んでいるためである。
   D=c×ΔP/2   ……(F4)
(iv)その他
 画素304の初期設定(リセット動作)としては、下記のような処理がなされる。すなわち、先ず、第1リセットスイッチSR1~第4リセットスイッチSR4に対して第1リセット信号Sr1~第4リセット信号Sr4を送信すること(第1リセットスイッチSR1~第4リセットスイッチSR4の各ゲートに供給される電圧を高レベルにすること)に応じて第1リセットスイッチSR1~第4リセットスイッチSR4を一斉にオンにする。同時に、第5スイッチング素子SW5に電荷排出信号Sdeを送信すること(第5スイッチング素子SW5のゲートに供給される電圧を高レベルにすること)により、第5スイッチング素子SW5をオンにする。このとき、第5スイッチング素子SW5と、光電変換素子10の第1電極16a及び第2電極16bに供給される第1電圧V1及び第2電圧V2を、上述した図20の期間WD3に図示するタイミングと同様な動作で制御することで、第1電極16a及び第2電極16bを含む光電変換素子10で発生した光電子を、光電変換素子10に電荷が残らないように電荷排出部108を介して排出させ、光電変換素子10を初期化する(ただし、図20におけるSW3は、画素304においては、SW5に相当する)。
 さらに、第1スイッチング素子SW1~第4スイッチング素子SW4に対してゲート駆動信号Sg1~Sg4は送信されず(第1スイッチング素子SW1~第4スイッチング素子SW4の各ゲートに供給される電圧を低レベルにし)、第1スイッチング素子SW1~第4スイッチング素子SW4をオフにしておく。この処理により、第1キャパシタCa1~第4キャパシタCa4は、リセット電位に設定される。この後、第1リセットスイッチSR1~第4リセットスイッチSR4に対する第1リセット信号Sr1~第4リセット信号Sr4の送信を停止し(第1リセットスイッチSR1~第4リセットスイッチSR4の各ゲートに供給される電圧を低レベルにし)た後、上述した図25に示すタイミングでの処理が行われる。
(4)測定方法の詳細(第1蓄積期間Tca1を対象とした場合)
 上記項目(2)、(3)では、1個の第2蓄積期間Tca2を対象とした場合を説明したが、第1測距装置300Aでは、100個の第2蓄積期間Tca2(すなわち、第1蓄積期間Tca1)において第1キャパシタCa1~第4キャパシタCa4に蓄積した電荷量Q1~Q4(ここでは、「電荷量sQ1~sQ4」と称する。)を用いて、上記と同様に往復期間ΔPを演算する。
 電荷量sQ1は、第1番目から第100番目までの各第2蓄積期間Tca2で第1キャパシタCa1に蓄積された電荷量Q1の合計である。同様に、電荷量sQ2~sQ4は、第1番目から第100番目までの各第2蓄積期間Tca2で第2キャパシタCa2~第4キャパシタCa4に蓄積された電荷量Q2~Q4の合計である。
 この場合、上述した式(F3)に準じた下記の式(F5)により往復期間ΔPを演算することができる。
  ΔP={(sQ4-sQ2)/(sQ3-sQ1)}×P3 ……(F5)
 上記式(F5)にて求めた往復距離ΔPに基づいて、上述した式(F4)によって、第1測距装置300Aと対象物Wとの距離Dを求めることができる。これらの演算は、演算装置206にて求めることができる。
 このように、100個の第2蓄積期間Tca2に、第1キャパシタCa1~第4キャパシタCa4に蓄積された電荷量sQ1~sQ4によって距離を求めるようにすれば、信号光成分を増やすことができ、その後の信号処理の精度(距離演算の精度)を高めることが可能となる。
(5)その他
 なお、第1測距装置300Aでは、複数の画素304それぞれにおいて電荷量Q1~Q4(電荷情報)を用いて、距離Dを測定する。これにより、各画素304の距離情報を組み合わせることにより3次元画像を得ることができる。
[第1測距装置300Aによる効果]
 以上のような第1測距装置300Aでは、距離測定にあたってのダイナミックレンジを向上させることができると共に、環境光Lsの影響を軽減又は排除することが可能となる。その結果、距離測定の精度を向上することが可能となる。
 すなわち、第1測距装置300Aでは、光電変換素子10に環境光Lsのみが入射する期間P1に蓄積される電荷量Q1と、光電変換素子10に環境光Lsと反射光Lrの両方が入射する期間P3に蓄積される電荷量Q3を求める。期間P1と期間P3とは同じ長さに設定されることから、電荷量Q3と電荷量Q1の差(Q3-Q1)から、期間P3における反射光Lrに対応する電荷量(期間P3における反射光Lrの基準光量Arrに対応する)を求めることができる。
 また、光電変換素子10に環境光Lsのみが入射する期間P2に蓄積される電荷量Q2と、期間P4に蓄積される電荷量Q4を求める。期間P4には、環境光Lsと反射光Lrの両方が光電変換素子50に入射していた期間(期間Psr)と、環境光Lsのみが光電変換素子50に入射していた期間(期間Ps)が含まれる。期間P2と期間P4は同じ長さに設定されることから、電荷量Q4と電荷量Q2の差(Q4-Q2)から、期間P4のうち期間Psrに対応する電荷量(期間Psrにおける反射光Lrの光量に対応する)を求めることができる。
 ここで、反射光Lrが光電変換素子10に入射している間、反射光Lrの強度Irが一定であるとすると、電荷量Q4及び電荷量Q2の差と電荷量Q3及び電荷量Q1の差との比(Q4-Q2:Q3-Q1)は、期間Psrと期間P3との比(Psr:P3)と等しい。このため、期間Psrは、下記の式(F6)で求めることができる。
  Psr={(Q4-Q2)/(Q3-Q1)}×P3  ……(F6)
 ここで、時点Tedと時点Tg4uが等しいため、期間Psrは往復期間ΔPと等しい。従って、上記式(F6)より往復期間ΔPを演算することが可能であり、その結果、往復期間ΔPと光速に基づき距離Dを求めることができる。
 このように、第1測距装置300Aでは、環境光Lsによって生じる電荷量Q2を取り除くため、環境光Lsの影響を排除又は軽減することができる。
 また、距離Dが短くなる程、反射光Lrの入射期間(すなわち、期間Psr)が短くなり、距離Dが長くなる程、期間Psrが長くなる。一般に、同じ対象物Wであれば、距離Dが短い程、反射光Lrの強度Irは大きくなり、距離Dが長い程、強度Irは小さくなる。このため、距離Dが短い場合、強度Irの大きい反射光Lrを短期間入射させ、距離Dが長い場合、強度Irの小さい反射光Lrを長期間入射させることとなる。その結果、距離Dの変化量と比較して、期間Psrに入射する反射光Lrの光量Arの変化量は小さくなる。このことは、第1測距装置300Aのダイナミックレンジの向上につながる。
 第1測距装置300Aでは、各サイクルCmにパルス光Lpを100回放射し、第1キャパシタCa1~第4キャパシタCa4それぞれに100回光電子を蓄積した後の電荷量Q1~Q4を用いて往復期間ΔPを演算する。一般に、環境光Ls(例えば、太陽光)の強度は常に変化している。各サイクルCmにパルス光Lpを100回放射し、これに応じた回数だけ光電子を蓄積した後の電荷量Q1~Q4を用いて往復期間ΔPを演算することで、環境光Lsの強度を平均化することができる。その結果、環境光Lsによって生じる電荷量を取り除く精度を高め、測定精度を向上させることができる。
 第1測距装置300Aでは、パルス光Lpのパルス幅(出力期間)は、10[マイクロ秒](=100[ナノメートル]×100回)であり、各サイクルCm(20[ミリ秒])の0.05[%]としている。これに合わせて、第1スイッチング素子SW1~第4スイッチング素子SW4をオンにする期間P1~P4も短く設定している。このため、仮に同じ周波数のパルス光を用いている他の測距装置が周囲に存在した場合でも、他の測距装置がパルス光を出力するタイミングと第1測距装置300Aがパルス光Lpを出力するタイミングとが被る可能性が低くなる。その結果、他の測距装置との干渉(他の測距装置からのパルス光を第1測距装置300Aからのパルス光Lpと誤認識すること)の可能性を低くすることができる。
 加えて、第1スイッチング素子SW1~第4スイッチング素子SW4をオンしている期間P1~P4も短く設定しているため、期間P1~P4において光電変換素子10に環境光Lsが入射する期間を短くすることができる。これにより、ノイズ成分としての環境光Lsの影響を小さくし、信号/ノイズ比(S/N)を向上することができる。特に、環境光Lsが太陽光の場合、太陽光のショットノイズを低減することができる。
 第1測距装置300Aでは、各サイクルCmに対して、第1スイッチング素子SW1~第4スイッチング素子SW4をオンしている期間P1~P4を非常に短く設定している。このため、前回以前のサイクルCmで放射したパルス光Lpが今回のサイクルCmで検出される現象(エイリアシング現象)が生じる可能性を減少させることができる。すなわち、第1測距装置300Aの各第2蓄積期間Tca2は100[マイクロ秒]であり、パルス光Lpの放射期間Peが短いため、パルス光Lpの放射間隔も約100[マイクロ秒]となる。光速cは、約30万[キロメートル毎秒]であるため、対象物Wの実際の位置が、第1測距装置300Aが出力した距離Dよりも15[キロメートル](=100[μs]×30[Mm/s]/2)遠い位置に存在すれば、エイリアシング現象が発生している可能性が存在する。しかし、発光部210により対象物Wに照射されるパルス光Lpの強度は、距離Dの二乗に応じて減少するため、距離Dよりも15[キロメートル]遠い位置からの反射光Lrの強度Irは、距離Dに対象物Wがある場合の強度Irと比べて非常に小さくなり、光電変換素子10ではほとんど検出できない。よって、第1測距装置300Aでは、エイリアシング現象の発生を防止することができる。
[他のタイミングチャート]
 上記の例では、図25のタイミングチャートにより、第1スイッチング素子SW1~第4スイッチング素子SW4を制御したが、これに限られない。例えば、図25の期間P3、P4を期間P1、P2より前に位置させてもよい。また、時点Tg1dと時点Tg2uを同時にしたが、時点Tg2uを時点Tg1dよりも後にすることもできる。時点Tg2dと時点Teuの関係、時点Tg3dと時点Tg4uの関係も同様である。さらに、時点Tg4uは、時点Tedとの相関関係がわかっていれば、時点Tedと同時でなくてもよい。
 図26には、時点Tedを時点Tg4uより後にしたタイミングチャートが示されている。この場合、往復期間ΔPは下記の式(F7)により演算することができる。
 ΔP=[(Q4-Q2)/(Q3-Q1)]×P3―(Ted-Tg4u)   ………(F7)
 あるいは、時点Tedを時点Tg4uより前にすることもできる。この場合、往復期間ΔPは下記の式(F8)により演算することができる。
 ΔP=[(Q4-Q2)/(Q3-Q1)]×P3+(Tg4u―Ted)   ………(F8)
 上記の例では、環境光Lsの影響を排除又は軽減するために期間P1、P2を設けたが、例えば、暗室等の環境光Lsが存在しない場所又は反射光Lrに対して環境光Lsが小さく、環境光Lsの影響が小さい場合であれば、期間P3、P4のみから往復期間ΔPを求めることもできる。すなわち、下記の式(F9)により往復期間ΔPを演算する。
   ΔP=(Q4/Q3)×P3   ………(F9)
[第2測距装置300B]
 次に、本実施の形態に係る第2の測距装置(以下、第2測距装置300Bと記す)について図21及び図27を参照しながら説明する。
 この第2測距装置300Bは、図21に示すように、上述した第1測距装置300Aとほぼ同様の構成を有するが、第3受光装置100Cに代えて、第4受光部104D(図27参照)を有する第4受光装置100Dを使用している点で異なる。
<第4受光装置100Dの概要>
 この第4受光装置100Dは、リセットノイズを除去する際に好適な信号出力を行う。すなわち、上述した第3受光装置100Cでは、第1キャパシタCa1~第4キャパシタCa4を一斉にリセットした後、第1スイッチング素子SW1~第4スイッチング素子SW4をそれぞれオンすることによって、電荷集積部26に存在する光電子を第1キャパシタCa1~第4キャパシタCa4に振り分けるようにしている。さらに、信号量を大きくするために、この動作を複数回おこなった後に、信号量を電圧変換して外部回路に読み出す。しかし、各周期のリセットにおいて(フレーム間で)、構成回路のノイズに起因して、リセット電圧は一定ではないために、第1キャパシタCa1~第4キャパシタCa4には、フレーム間で異なるレベルのリセットノイズ成分が付加されることになる。
 そこで、第4受光装置100Dでは、第1キャパシタCa1~第4キャパシタCa4がリセットされた直後の電位を読み出し(リセット電圧読出し)、その後に蓄積された信号電荷による電圧出力を読み出して(信号読出し)、それぞれ差分演算することにより、リセットノイズ成分をも除去できるようにしたものである。
<第4受光装置100Dの詳細>
 第4受光装置100Dの第4受光部104Dは、図27に示すように、上述した第3受光装置100Cとほぼ同様の構成を有するが、第1電荷保持部Cb1~第4電荷保持部Cb4と、第1電荷転送部ST1~第4電荷転送部ST4とを有する点で異なる。
(第1電荷保持部Cb1~第4電荷保持部Cb4/第1電荷転送部ST1~第4電荷保持部ST4)
 第1電荷保持部Cb1は、第1スイッチング素子SW1のドレインに接続された例えばMOS型構造のキャパシタにて構成され、ゲートにはゲート駆動回路306からのゲート駆動信号(第1蓄積信号Sa1(高レベル)/第1排出信号Sb1(低レベル))が供給されるようになっている。
 第1電荷転送部ST1は、例えばnチャネル型MOSトランジスタにて構成され、ソースが第1電荷保持部Cb1に接続され、ドレインが第1キャパシタCa1に接続されており、ゲートには、ゲート駆動回路306からのゲート駆動信号(第1転送信号St1)が供給されるようになっている。
 従って、第1電荷保持部Cb1のゲートに対するゲート駆動回路306からの第1蓄積信号Sa1の供給によって、該第1電荷保持部Cb1のゲート下のポテンシャル位置が低下し、第1スイッチング素子SW1を通じて転送された光電子が一時的に蓄積されることとなる。その後、第1電荷保持部Cb1のゲートに対する第1排出信号Sb1の供給と共に、第1電荷転送部ST1のゲートに対する第1転送信号St1(高レベル)の供給によって、第1電荷保持部Cb1に蓄積されていた光電子が第1キャパシタCa1に転送されることになる。第1電荷保持部Cb1のゲートと第1電荷転送部ST1のゲートとをそれぞれ独立に制御することができるため、第1電荷保持部Cb1にて電荷残りを生じさせずに第1キャパシタCa1に転送することができる。
 第2電荷保持部Cb2~第4電荷保持部Cb4、並びに第2電荷転送部ST1~第4電荷保持部ST4についても同様であり、第2電荷保持部Cb2~第4電荷保持部Cb4の各ゲートにはゲート駆動回路306からのゲート駆動信号(第2蓄積信号Sa2~第4蓄積信号Sa4(高レベル)/第2排出信号Sb2~第4排出信号Sb4(低レベル))が供給されるようになっており、第2電荷転送部ST2~第4電荷転送部ST4の各ゲートには、ゲート駆動回路306からのゲート駆動信号(第2転送信号St2~第4転送信号St4)が供給されるようになっている。
 なお、第1電荷保持部Cb1~第4電荷保持部Cb4は、埋込型フォトダイオード構造の寄生容量にて構成してもよい。
[第2測距装置300Bの動作]
 第2測距装置300Bの動作は、上述した第1測距装置300Aとほぼ同じであり、例えば図24及び図25に示すように、各サイクルCmの第1蓄積期間Tca1において、第1電荷保持部Cb1~第4電荷保持部Cb4の各ゲートに第1蓄積信号Sa1~第4蓄積信号Sa4が供給され、これにより、各第2蓄積期間Tca2の期間P1に第1スイッチング素子SW1を通じて転送された光電子が第1電荷保持部Cb1に蓄積され、期間P2に第2スイッチング素子SW2を通じて転送された光電子が第2電荷保持部Cb2に蓄積され、期間P3に第3スイッチング素子SW3を通じて転送された光電子が第3電荷保持部Cb3に蓄積され、期間P4に第4スイッチング素子SW4を通じて転送された光電子が第4電荷保持部Cb4に蓄積される。
 このように、信号電荷が、第1電荷保持部Cb1~第4電荷保持部Cb4に蓄積された後、各サイクルCmの読出期間Trの初期設定手段として、第1キャパシタCa1~第4キャパシタCa4をリセットする。具体的には、第1リセットスイッチSR1~第4リセットスイッチSR4に対して第1リセット信号Sr1~第4リセット信号Sr4を送信すること(第1リセットスイッチSR1~第4リセットスイッチSR4の各ゲートに供給される電圧を高レベルにすること)に応じて第1リセットスイッチSR1~第4リセットスイッチSR4を一斉にオンして、所定のリセット電圧Vrに設定する。その後、第1出力スイッチSEL1~第4出力スイッチSEL4を順番にオンしていくことで、第1出力ライン212aに、第1キャパシタCa1~第4キャパシタCa4のリセット電圧を、第1出力電圧Vout1~第4出力電圧Vout4として外部回路に出力する(リセット電圧読出し)。
 そして、第1キャパシタCa1~第4キャパシタCa4のリセット電圧読出しの直後に信号を読み出す。具体的には、第1電荷保持部Cb1~第4電荷保持部Cb4の各ゲートに第1排出信号Sb1~第4排出信号Sb4が供給されると共に、第1電荷転送部ST1~第4電荷転送部ST4の各ゲートに第1転送信号St1~第4転送信号St4が供給されることにより、第1電荷保持部Cb1~第4電荷保持部Cb4に蓄積されていた光電子がそれぞれ第1キャパシタCa1~第4キャパシタCa4に転送されることとなる。そして、第1出力スイッチSEL1~第4出力スイッチSEL4を順番にオンしていくことで、第1出力ライン212aに、第1キャパシタCa1に蓄積された光電子(電荷量Q1)に応じた電圧と、第2キャパシタCa2に蓄積された光電子(電荷量Q2)に応じた電圧とが、それぞれ第1出力素子TR1及び第2出力素子TR2にて増幅されて、第1出力電圧Vout1及び第2出力電圧Vout2として出力され、第2出力ライン212bに、第3キャパシタCa3に蓄積された光電子(電荷量Q3)に応じた電圧と、第4キャパシタCa4に蓄積された光電子(電荷量Q4)に応じた電圧とが、それぞれ第3出力素子TR3及び第4出力素子TR4にて増幅されて、第3出力電圧Vout3及び第4出力電圧Vout4として出力されることになる(信号読出し)。
 リセット電圧読出しにて読み出されたリセット電圧と、信号読出しにて読み出された信号電圧との差分を求めることによって、リセット電圧値の影響を受けない、信号を読出すことができる。なお、差分を求める手法としては、例えば相関2重サンプリング回路(CDS回路:Correllated Double Sampling回路)によって実現することができる。
 なお、本発明に係る光電変換素子、受光装置、受光システム及び測距装置は、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。以下にいくつかの変形例を記載する。
[光電変換素子10の変形例]
 例えば、図28に示すように、p型不純物拡散領域の表面にn型不純物拡散領域が形成されている埋め込み型MOSダイオードを使用してもよい。
[第3光電変換素子10C]
 第3の実施の形態に係る光電変換素子(以下、第3光電変換素子10Cと記す)は、図29及び図30に示すように、上述した第1光電変換素子とほぼ同様の構成を有するが、第1MOSダイオードと第2MOSダイオード間に埋め込みフォトダイオードBPDが形成されている点で異なる。
 第1光電変換素子では、第1MOSダイオードと第2MOSダイオード間に光電子に対して障壁となるポテンシャル(第2電極下のポテンシャル位置よりも高いポテンシャル位置)が存在する場合がある。そこで、この第3光電変換素子では、第1MOSダイオードと第2MOSダイオード間に埋め込みフォトダイオードを形成することにより、図31に示すように、第1MOSダイオード18aと第2MOSダイオード18b間に、第2電極16b下のポテンシャル位置32bよりも低く、且つ、第1電極16a下のポテンシャル位置32aよりも高いポテンシャル位置32cが形成されるようにしている(なお、ここで第1MOSダイオード18aと第2MOSダイオード18b間には、各MOSダイオードの電極に異なる電位を印加している。)。これにより、例えば図3の時点t2等において、第2電極16b下の光電子30は、ポテンシャル障壁に妨げられることなく、第1電極16a下に高速に移動することになる。また、埋め込みフォトダイオードBPDは、完全空乏化デバイスであり、電化残りを抑制して光電子の完全転送が可能である。また、表面にp型の高濃度領域が存在することから、暗電流の発生を抑えるのに有利である。
[第4光電変換素子10D]
 次に、第4の実施の形態に係る光電変換素子(以下、第4光電変換素子10Dと記す)は、図32及び図33に示すように、上述した第1光電変換素子10Aとほぼ同様の構成を有するが、第2電極16bが存在せず、代わりに、第1MOSダイオード18a間に埋め込みフォトダイオードBPDが形成されている点で異なる。つまり、埋め込みフォトダイオードBPDは、上面から見たとき、第1電極16aにおける複数の枝分かれ部位22間にそれぞれ入れ子状に配置されている。なお、第1MOSダイオード18aにおける第1電極16aの枝分かれ部位22と、埋め込みフォトダイオードBPDは、上面から見たとき、それぞれ矩形形状を有する。もちろん、第1電極16aの枝分かれ部位22の電極幅を1つの電極部位20に向かって徐々に広くなる形状にしてもよい。
 ここで、第4光電変換素子10Dの動作について説明する。先ず、露光の初期段階において、第1電圧V1を高レベルV1Hにすると、図34に示すように、第1電極16a下のポテンシャル位置32aが低くなり、埋め込みフォトダイオードBPDから第1電極16a下にかけてポテンシャル位置が低くなるポテンシャル勾配34が形成されることとなる。このことから、埋め込みフォトダイオードBPDで発生した光電子30は、ポテンシャル勾配34によって、第1電極16a下、すなわち、複数の枝分かれ部位22下に高速に移動する。
 その後、露光の終了段階で、第1電圧V1が低レベルV1Lになると、上述したように(図5参照)、第1電極16aの枝分かれ部位22下の長さ方向においても、ポテンシャル勾配34が形成され、時間の経過に伴って、ポテンシャル勾配34が電荷集積部26に向けて平行移動し、光電子30は高速に電荷集積部26に移動することとなる。
 このように、第4光電変換素子10Dにおいては、第1電極16aに印加される第1電圧V1を制御することで、隣接する第1電極16a下と埋め込みフォトダイオードBPDに形成されるポテンシャル位置の差によるポテンシャル勾配34を形成するようにしたので、光電変換にて得られた光電子30を、高速、且つ、電極下に電荷残りが生じることなく、効率的に電荷集積部26に転送集積することが可能となる。しかも、第1電極16aの第1給電端子28aを電荷集積部26から最も離れた位置に形成するようにしたので、第1電極16a下の例えば複数の枝分かれ部位22下の光電子30を、電荷集積部26に高速に移動させることができる。
[第5光電変換素子10E]
 次に、第5の実施の形態に係る光電変換素子(以下、第5光電変換素子10Eと記す)は、図35及び図36に示すように、上述した第1光電変換素子10Aとほぼ同様の構成を有するが、第1電極16aが存在せず、代わりに、埋め込みフォトダイオードBPDが形成されている点で異なる。つまり、埋め込みフォトダイオードBPDは、上面から見たとき、1つの部位20から複数の枝分かれ部位22に分岐配列されたくし歯形状を有し、第2MOSダイオード18bの各第2電極16bは、上面から見たとき、埋め込みフォトダイオードBPDにおける複数の枝分かれ部位22間にそれぞれ入れ子状に配置されている。
 また、埋め込みフォトダイオードBPDにおける1つの部位20の基部24(長さ方向中央部)には、第5光電変換素子10Eにより発生した光電子を集めるための電荷集積部26が同じく埋め込みフォトダイオードBPDによって形成されている。電荷集積部26は、1つの部位20の基部24から枝分かれ部位22とは反対方向に延在して形成されている。
 ここで、第5光電変換素子10Eの動作について、図37のタイミングチャート、図38A~図38Cのポテンシャル図も参照して説明する。
 先ず、図37の時点t11(露光の初期段階)において、第2電圧V2を高レベルV2Hにすると、図38Aに示すように、第2電極16b下のポテンシャル位置32bが低くなり、露光により発生した光電子30は、第2電極16b下に蓄積されると共に、第2電極16bに隣接する埋め込みフォトダイオードBPDに移動する。
 その後、時点t12(露光の終了段階)において、第2電圧V2が低レベルV2Lになると、図38Bに示すように、第2電極16b下のポテンシャル位置32bが高くなり、第2電極16b下から埋め込みフォトダイオードBPDにかけてポテンシャル位置が低くなるポテンシャル勾配34が形成されることとなる。このことから、第2電極16b下に蓄積していた光電子30は、ポテンシャル勾配34によって、埋め込みフォトダイオードBPD、すなわち、複数の枝分かれ部位22下に高速に移動し、さらに、電荷集積部26に向けて移動する。なお、図37の時点t11(露光の初期段階)において、第2電圧V2を高レベルV2Hに設定するが、この高レベルV2Hは、第2電極16bに隣接する埋め込みフォトダイオードBPDのポテンシャルより高いポテンシャルが形成するような電圧に設定することが望ましいが、図38Cに示すように、第2電極16bに隣接する埋め込みフォトダイオードBPDのポテンシャルより低いポテンシャルが形成されるようにしてもよく限定されるものではない。
[第6光電変換素子10F]
 次に、第6の実施の形態に係る光電変換素子(以下、第6光電変換素子10Fと記す)は、図39に示すように、上述した第5光電変換素子10Eとほぼ同様の構成を有するが、埋め込みフォトダイオードBPDと第2電極16bの形状、特に、上面から見た形状が異なっている。
 すなわち、埋め込みフォトダイオードBPDの各枝分かれ部位22は、上面から見たとき、幅が1つの部位20に向かって徐々に大きくなる形状を有し、各第2電極16bは、上面から見たとき、電極幅が埋め込みフォトダイオードBPDの1つの部位20に向かって徐々に小さくなる形状を有する。
 埋め込みフォトダイオードBPDのポテンシャル位置32c1に注目して見た場合、幅が狭い部分は、図40A及び図40Bに示すように、半導体基体12(シリコン基板)の表面電位の影響を受けることから、該部分のポテンシャル位置32c1は高くなり、幅が広い部分のポテンシャル位置32c2は低くなる。従って、埋め込みフォトダイオードBPDの枝分かれ部位22のポテンシャル位置32cは、図41に示すように、幅が広くなるに従って低下し、1つの部位20に向かって徐々に下り傾斜することとなる。これにより、光電子30は電荷集積部26に向かって高速に移動することとなる。
[第7光電変換素子10G]
 次に、第7の実施の形態に係る光電変換素子(以下、第7光電変換素子10Gと記す)は、図42に示すように、上述した第6光電変換素子10Fとほぼ同様の構成を有するが、埋め込みフォトダイオードBPDにおける1つの部位20の幅が、両端から中央の基部24に向かって徐々に広く形成されている点で異なる。すなわち、電荷集積部26につながる基部24の幅が最も大きくなるように形成されている。
 埋め込みフォトダイオードBPDにおける1つの部位20におけるポテンシャル位置32cに注目して見た場合、図43に示すように、幅の狭い部分のポテンシャル位置32c1は高くなり、幅が広い部分のポテンシャル位置32c2は低くなる。従って、従って、埋め込みフォトダイオードBPDにおける1つの部位20のポテンシャル位置32cは、両端から基部24に向かって徐々に低下、すなわち、下り傾斜することとなる。このように、埋め込みフォトダイオードBPDにおける1つの部位20の両端から基部24(すなわち電荷集積部26)に向かって下り傾斜のポテンシャル勾配が形成されることから、光電子30は電荷集積部26に向かってより高速に移動することとなる。

Claims (26)

  1.  光を検知して光電子に変換する光電変換素子において、
     半導体基体(12)上に絶縁体(14)を介して形成された第1電極(16a)を有する1つの第1MOSダイオード(18a)と、
     前記半導体基体(12)上に絶縁体(14)を介して形成された第2電極(16b)を有する複数の第2MOSダイオード(18b)とを有し、
     前記第1MOSダイオード(18a)の前記第1電極(16a)は、上面から見たとき、1つの電極部位(20)から複数の枝分かれ部位(22)に分岐配列されたくし歯形状を有し、
     前記第2MOSダイオード(18b)の各前記第2電極(16b)は、上面から見たとき、前記第1電極(16a)とは分離され、且つ、前記第1電極(16a)における前記複数の枝分かれ部位(22)間にそれぞれ入れ子状に配置されていることを特徴とする光電変換素子。
  2.  請求項1記載の光電変換素子において、
     前記第1MOSダイオード(18a)の前記第1電極(16a)下の電位と、前記第2MOSダイオード(18b)の前記第2電極(16b)下の電位をそれぞれ独立に制御して、少なくとも前記第2MOSダイオード(18b)での光電変換により発生した光電子を、前記第1MOSダイオード(18a)へ移動させることを特徴とする光電変換素子。
  3.  請求項1又は2記載の光電変換素子において、
     前記第1MOSダイオード(18a)のうち、前記第1電極(16a)における前記1つの電極部位(20)の基部(24)に対応した部分が、電荷集積部(26)として構成されていることを特徴とする光電変換素子。
  4.  請求項1~3のいずれか1項に記載の光電変換素子において、
     前記第1MOSダイオード(18a)における前記第1電極(16a)の前記枝分かれ部位(22)と、前記第2MOSダイオード(18b)の前記第2電極(16b)は、それぞれ矩形形状を有することを特徴とする光電変換素子。
  5.  請求項1~3のいずれか1項に記載の光電変換素子において、
     前記第1MOSダイオード(18a)における前記第1電極(16a)の各前記枝分かれ部位(22)は、上面から見たとき、幅が前記1つの電極部位(20)に向かって徐々に大きくなる形状を有し、
     前記第2MOSダイオード(18b)における各前記第2電極(16b)は、上面から見たとき、幅が前記第1電極(16a)の前記1つの電極部位(20)に向かって徐々に小さくなる形状を有することを特徴とする光電変換素子。
  6.  請求項1~5のいずれか1項に記載の光電変換素子において、
     前記第1MOSダイオード(18a)における前記第1電極(16a)の各前記枝分かれ部位(22)の第1給電端子(28a)、並びに前記第2MOSダイオード(18b)における各前記第2電極(16b)の第2給電端子(28b)は、上面から見たとき、前記電荷集積部(26)から最も離れた位置に形成されていることを特徴とする光電変換素子。
  7.  入射光(La)の輝度情報を得ることを特徴とする受光装置であって、
     前記入射光(La)を検知して光電子に変換する光電変換素子(10)と、
     前記光電変換素子(10)により発生した前記光電子を集めるための電荷集積部(26)と、
     前記光電子を一定期間蓄積するキャパシタ(Ca)と、
     前記光電子を排出する電荷排出部(108)と、
     前記電荷集積部(26)と前記キャパシタ(Ca)との間に配置され、前記電荷集積部(26)に集められた前記光電子を、前記キャパシタ(Ca)へ移動させるMOS型の第1スイッチング素子(SW1)と、
     前記電荷集積部(26)と前記電荷排出部(108)との間に配置され、前記電荷集積部(26)から前記電荷排出部(108)への前記光電子の排出を制御するMOS型の第2スイッチング素子(SW2)とを備え、
     前記光電変換素子(10)は、
     第1電極(16a)を有する1つの第1MOSダイオード(18a)と、
     第2電極(16b)を有する複数の第2MOSダイオード(18b)とを有し、
     前記第1MOSダイオード(18a)の前記第1電極(16a)は、上面から見たとき、1つの電極部位(20)から複数の枝分かれ部位(22)に分岐配列されたくし歯形状を有し、
     前記第2MOSダイオード(18b)の各前記第2電極(16b)は、上面から見たとき、前記第1電極(16a)とは分離され、且つ、前記第1電極(16a)における前記複数の枝分かれ部位(22)間にそれぞれ入れ子状に配置され、
     前記光電変換素子(10)からの前記光電子を、選択的に前記第1スイッチング素子(SW1)及び前記第2スイッチング素子(SW2)を開閉制御して前記キャパシタ(Ca)へ転送させて、前記キャパシタ(Ca)に転送された前記光電子の量(電荷量)に基づいて入射光(La)の輝度情報を得ることを特徴とする受光装置。
  8.  請求項7記載の受光装置において、
     前記電荷集積部(26)は、前記光電変換素子(10)に接続され、
     前記電荷排出部(108)は、前記電荷集積部(26)を間に挟んで、前記キャパシタ(Ca)と対向配置されていることを特徴とする受光装置。
  9.  請求項7又は8記載の受光装置において、
     前記キャパシタ(Ca)は、MIMキャパシタ、MOSキャパシタ、埋込型フォトダイオード構造又はpn接合の寄生容量にて構成されていることを特徴とする受光装置。
  10.  請求項7~9のいずれか1項に記載の受光装置において、
     少なくとも前記電荷集積部(26)、前記第1スイッチング素子(SW1)、前記第2スイッチング素子(SW2)及び前記キャパシタ(Ca)は、遮光された領域(Z)に形成されていることを特徴とする受光装置。
  11.  入射光(La)の輝度情報を得ることを特徴とする受光装置であって、
     前記入射光(La)を検知して光電子に変換する光電変換素子(10)と、
     前記光電変換素子(10)により発生した前記光電子を集めるための電荷集積部(26)と、
     前記光電子を一定期間蓄積する第1キャパシタ(Ca1)及び第2キャパシタ(Ca2)と、
     前記光電子を排出する電荷排出部(108)と、
     前記電荷集積部(26)と前記第1キャパシタ(Ca1)との間に配置され、前記電荷集積部(26)に集められた光電子を、前記第1キャパシタ(Ca1)へ選択的に振り分けるMOS型の第1スイッチング素子(SW1)と、
     前記電荷集積部(26)と前記第2キャパシタ(Ca2)との間に配置され、前記電荷集積部(26)に集められた光電子を、前記第2キャパシタ(Ca2)へ選択的に振り分けるMOS型の第2スイッチング素子(SW2)と、
     前記電荷集積部(26)から前記電荷排出部(108)へ前記光電子の排出を制御するMOS型の第3スイッチング素子(SW3)とを備え、
     前記光電変換素子(10)は、
     第1電極(16a)を有する1つの第1MOSダイオード(18a)と、
     第2電極(16b)を有する複数の第2MOSダイオード(18b)とを有し、
     前記第1MOSダイオード(18a)の前記第1電極(16a)は、上面から見たとき、1つの電極部位(20)から複数の枝分かれ部位(22)に分岐配列されたくし歯形状を有し、
     前記第2MOSダイオード(18b)の各前記第2電極(16b)は、上面から見たとき、前記第1電極(16a)とは分離され、且つ、前記第1電極(16a)における前記複数の枝分かれ部位(22)間にそれぞれ入れ子状に配置され、
     前記光電変換素子(10)からの前記光電子を、選択的に前記第1スイッチング素子(SW1)~前記第3スイッチング素子(SW3)をオン/オフ制御して前記第1キャパシタ(Ca1)及び前記第2キャパシタ(Ca2)へ転送させて、前記第1キャパシタ(Ca1)及び前記第2キャパシタ(Ca2)に転送された前記光電子の量(電荷量)に基づいて入射光(La)の輝度情報を得ることを特徴とする受光装置。
  12.  請求項11記載の受光装置において、
     前記電荷集積部(26)は、前記光電変換素子(10)に接続され、
     前記電荷排出部(108)は、前記電荷集積部(26)を間に挟んで、前記光電変換素子(10)と対向配置され、
     前記第1キャパシタ(Ca1)及び前記第2キャパシタ(Ca2)は、前記電荷集積部(26)を間に挟んで、互いに対向配置されていることを特徴とする受光装置。
  13.  請求項11又は12記載の受光装置において、
     前記第1キャパシタ(Ca1)及び前記第2キャパシタ(Ca2)は、MIMキャパシタ、MOSキャパシタ、埋込型フォトダイオード構造又はpn接合の寄生容量にて構成されていることを特徴とする受光装置。
  14.  請求項11~13のいずれか1項に記載の受光装置において、
     少なくとも前記電荷集積部(26)、前記第1スイッチング素子(SW1)~前記第3スイッチング素子(SW3)、前記第1キャパシタ(Ca1)及び前記第2キャパシタ(Ca2)は、遮光された領域(Z)に形成されていることを特徴とする受光装置。
  15.  対象物(W)に対してパルス光(Lp)を放射する発光装置(202)と、
     前記パルス光(Lp)の反射光(Lr)を受光し、受光量に応じた出力を行う受光装置(100B)と、
     前記発光装置(202)及び前記受光装置(100B)を制御する制御装置(204)とを有する受光システムであって、
     前記受光装置(100B)は、
     前記反射光(Lr)を検知して光電子に変換する光電変換素子(10)と、
     前記光電変換素子(10)により発生した光電子を集めるための電荷集積部(26)と、
     前記光電子を一定期間蓄積する一対のキャパシタ(Ca1、Ca2)と、
     前記光電子を排出する電荷排出部(108)と、
     前記電荷集積部(26)と前記一対のキャパシタ(Ca1、Ca2)との間に配置され、前記電荷集積部(26)に集められた光電子を、前記発光装置(202)の駆動に同期して、前記一対のキャパシタ(Ca1、Ca2)へ選択的に振り分けるMOS型の一対のスイッチング素子(SW1、SW2)と、
     前記発光装置(202)の駆動に同期して、前記電荷集積部(26)から前記電荷排出部(108)へ前記光電子の排出を制御するMOS型の第3スイッチング素子(SW3)を備え、
     前記光電変換素子(10)は、
     第1電極(16a)を有する1つの第1MOSダイオード(18a)と、
     第2電極(16b)を有する複数の第2MOSダイオード(18b)とを有し、
     前記第1MOSダイオード(18a)の前記第1電極(16a)は、上面から見たとき、1つの電極部位(20)から複数の枝分かれ部位(22)に分岐配列されたくし歯形状を有し、
     前記第2MOSダイオード(18b)の各前記第2電極(16b)は、上面から見たとき、前記第1電極(16a)とは分離され、且つ、前記第1電極(16a)における前記複数の枝分かれ部位(22)間にそれぞれ入れ子状に配置され、
     前記制御装置(204)は、
     前記発光装置(202)から前記パルス光(Lp)が放射されていない期間のうちの第1期間(WD1)に、前記一対のスイッチング素子(SW1、SW2)のうち、第1スイッチング素子(SW1)をオンにして、前記光電変換素子(10)からの前記光電子を、前記一対のキャパシタ(Ca1、Ca2)のうち、第1キャパシタ(Ca1)に転送し、
     前記発光装置(202)から前記パルス光(Lp)が出射された時点から第2期間(WD2)に、前記一対のスイッチング素子(SW1、SW2)のうち、第2スイッチング素子(SW2)をオンにして、前記光電変換素子(10)からの前記光電子を、前記一対のキャパシタ(Ca1、Ca2)のうち、第2キャパシタ(Ca2)に転送し、
     前記第1期間(WD1)及び前記第2期間(WD2)以外の期間(WD3)に、前記第3スイッチング素子(SW3)をオンにして、前記光電変換素子(10)からの前記光電子を、前記電荷排出部(108)に排出するように制御し、
     前記第1キャパシタ(Ca1)に転送された光電子の量(電荷量)と前記第2キャパシタ(Ca2)に転送された光電子の量(電荷量)に基づいて、前記反射光(Lr)の輝度情報を得ることを特徴とする受光システム。
  16.  請求項15記載の受光システムにおいて、
     前記第1キャパシタ(Ca1)及び前記第2キャパシタ(Ca2)の電位を初期電位にするための電源(208B)とMOS構造の第1リセットスイッチ(SR1)及び第2リセットスイッチ(SR2)とを有することを特徴とする受光システム。
  17.  請求項15又は16記載の受光システムにおいて、
     前記第1キャパシタ(Ca1)及び前記第2キャパシタ(Ca2)に蓄積された光電子の量に基づく電位に応じたレベルの電気信号にそれぞれ変換する第1アンプ(Ap1)及び第2アンプ(Ap2)を有することを特徴とする受光システム。
  18.  請求項15~17のいずれか1項に記載の受光システムにおいて、
     前記第1スイッチング素子(SW1)及び前記第2スイッチング素子(SW2)によって転送された前記光電子を一時的に保持するMOSキャパシタ又は埋込型フォトダイオード構造の寄生容量にて構成された第1電荷保持部(Cb1)及び第2電荷保持部(Cb2)と、
     前記第1電荷保持部(Cb1)及び前記第2電荷保持部(Cb2)にそれぞれ一時的に保持された前記光電子を前記第1キャパシタ(Ca1)及び前記第2キャパシタ(Ca2)に転送するMOS型のスイッチング素子にて構成された第1電荷転送部(ST1)及び第2電荷転送部(ST2)とを有することを特徴とする受光システム。
  19.  対象物(W)に対してパルス光(Lp)を放射する発光装置(202)と、
     前記パルス光(Lp)の反射光(Lr)を受光し、受光量に応じた出力を行う受光装置(100C)と、
     前記発光装置(202)及び前記受光装置(100C)を制御する制御装置(204)とを有する受光システムであって、
     前記受光装置(100C)は、
     前記反射光(Lr)を検知して光電子に変換する光電変換素子(10)と、
     前記光電変換素子(10)により発生した光電子を集めるための電荷集積部(26)と、
     前記光電子を一定期間蓄積する第1キャパシタ(Ca1)~第4キャパシタ(Ca4)と、
     前記光電子を排出する電荷排出部(108)と、
     前記電荷集積部(26)と前記第1キャパシタ(Ca1)~前記第4キャパシタ(Ca4)との間に配置され、前記パルス光(Lp)の放射に同期して、前記光電子を前記第1キャパシタ(Ca1)~前記第4キャパシタ(Ca4)に対して振り分けるMOS型の第1スイッチング素子(SW1)~第4スイッチング素子(SW4)と、
     前記電荷集積部(26)と前記電荷排出部(108)との間に配置され、前記電荷集積部(26)から前記電荷排出部(108)への前記光電子の供給を制御するMOS型の第5スイッチング素子(SW5)とを備え、
     前記光電変換素子(10)は、
     第1電極(16a)を有する1つの第1MOSダイオード(18a)と、
     第2電極(16b)を有する複数の第2MOSダイオード(18b)とを有し、
     前記第1MOSダイオード(18a)の前記第1電極(16a)は、上面から見たとき、1つの電極部位(20)から複数の枝分かれ部位(22)に分岐配列されたくし歯形状を有し、
     前記第2MOSダイオード(18b)の各前記第2電極(16b)は、上面から見たとき、前記第1電極(16a)とは分離され、且つ、前記第1電極(16a)における前記複数の枝分かれ部位(22)間にそれぞれ入れ子状に配置され、
     前記制御装置(204)は、
     前記発光装置(202)による前記パルス光(Lp)の放射及び前記第1スイッチング素子(SW1)~前記第4スイッチング素子(SW4)のオン/オフを制御し、
     前記第1スイッチング素子(SW1)~前記第4スイッチング素子(SW4)が全てオフのとき、前記第5スイッチング素子(SW5)をオンにして、前記光電子を前記電荷排出部(108)に排出させ、
     前記第1スイッチング素子(SW1)~前記第4スイッチング素子(SW4)に転送された前記光電子の量(電荷量)に基づいて、前記反射光(Lr)の輝度情報を得ることを特徴とする受光システム。
  20.  請求項19記載の受光システムにおいて、
     前記第1キャパシタ(Ca1)~前記第4キャパシタ(Ca4)の電位を初期電位にするための電源(208B)とMOS構造の第1リセットスイッチ(SR1)~第4リセットスイッチ(SR4)とを有することを特徴とする受光システム。
  21.  請求項19又は20記載の受光システムにおいて、
     前記第1キャパシタ(Ca1)~前記第4キャパシタ(Ca4)に蓄積された光電子の量に基づく電位に応じたレベルの電気信号にそれぞれ変換する第1アンプ(Ap1)~第4アンプ(Ap4)を有することを特徴とする受光システム。
  22.  請求項19~21のいずれか1項に記載の受光システムにおいて、
     前記第1スイッチング素子(SW1)~前記第4スイッチング素子(SW4)によって転送された前記光電子を一時的に保持するMOSキャパシタ又は埋込型フォトダイオード構造の寄生容量にて構成された第1電荷保持部(Cb1)~第4電荷保持部(Cb4)と、
     前記第1電荷保持部(Cb1)~前記第4電荷保持部(Cb4)にそれぞれ一時的に保持された前記光電子を前記第1キャパシタ(Ca1)~前記第4キャパシタ(Ca4)に転送するMOS型のスイッチング素子にて構成された第1電荷転送部(ST1)~第4電荷転送部(ST4)とを有することを特徴とする受光システム。
  23.  請求項15~22のいずれか1項に記載の受光システムにおいて、
     前記受光装置(100C)の構成要素が、複数の画素が設けられたラインセンサアレイ又は二次元イメージセンサアレイの1画素分の構成要素を構成していることを特徴とする受光システム。
  24.  対象物(W)に対してパルス光(Lp)を放射する発光装置(202)と、
     前記パルス光(Lp)の反射光(Lr)を受光し、受光量に応じた出力を行う受光装置(100C)と、
     前記発光装置(202)及び前記受光装置(100C)を制御する制御装置(204)と、
     前記受光装置(100C)の出力を用いてタイム・オブ・フライト法により前記対象物(W)までの距離を演算する演算装置(206)と、を有する測距装置であって、
     前記受光装置(100C)は、
     前記反射光(Lr)を検知して光電子に変換する光電変換素子(10)と、
     前記光電変換素子(10)により発生した前記光電子を集めるための電荷集積部(26)と、
     前記光電子を一定期間蓄積する第1キャパシタ(Ca1)~第4キャパシタ(Ca4)と、
     前記光電子を排出する電荷排出部(108)と、
     前記電荷集積部(26)と前記第1キャパシタ(Ca1)~前記第4キャパシタ(Ca4)との間に配置され、前記パルス光(Lp)の放射に同期して、前記光電子を前記第1キャパシタ(Ca1)~前記第4キャパシタ(Ca4)に対して振り分けるMOS型の第1スイッチング素子(SW1)~第4スイッチング素子(SW4)と、
     前記電荷集積部(26)と前記電荷排出部(108)との間に配置され、前記電荷集積部(26)から前記電荷排出部(108)への前記光電子の供給を制御するMOS型の第5スイッチング素子(SW5)と、を備え、
     前記光電変換素子(10)は、
     第1電極(16a)を有する1つの第1MOSダイオード(18a)と、
     第2電極(16b)を有する複数の第2MOSダイオード(18b)とを有し、
     前記第1MOSダイオード(18a)の前記第1電極(16a)は、上面から見たとき、1つの電極部位(20)から複数の枝分かれ部位(22)に分岐配列されたくし歯形状を有し、
     前記第2MOSダイオード(18b)の各前記第2電極(16b)は、上面から見たとき、前記第1電極(16a)とは分離され、且つ、前記第1電極(16a)における前記複数の枝分かれ部位(22)間にそれぞれ入れ子状に配置され、
     前記パルス光(Lp)の放射開始時点を時点Teu、
     前記パルス光(Lp)の放射終了時点を時点Ted、
     前記光電変換素子(10)に対する前記反射光(Lr)の入射終了時点を時点Trd、
     前記第1スイッチング素子(SW1)~前記第4スイッチング素子(SW4)をオンする時点を時点Tg1u、Tg2u、Tg3u、Tg4u、
     前記第1スイッチング素子(SW1)~前記第4スイッチング素子(SW4)をオフする時点を時点Tg1d、Tg2d、Tg3d、Tg4d、
     前記時点Tg1uから前記時点Tg1dまでの期間を期間P1、
     前記時点Tg2uから前記時点Tg2dまでの期間を期間P2、
     前記時点Tg3uから前記時点Tg3dまでの期間を期間P3、
     前記時点Tg4uから前記時点Tg4dまでの期間を期間P4、
     前記時点Tg4uから前記時点Trdまでの期間を期間Psr、
     前記期間P1の間に前記第1キャパシタ(Ca1)に蓄積される前記光電子の量を電荷量Q1、
     前記期間P2の間に前記第2キャパシタ(Ca2)に蓄積される前記光電子の量を電荷量Q2、
     前記期間P3の間に前記第3キャパシタ(Ca3)に蓄積される前記光電子の量を電荷量Q3、
     前記期間P4の間に前記第4キャパシタ(Ca4)に蓄積される前記光電子の量を電荷量Q4、
     前記パルス光(Lp)が放射されてから前記対象物(W)で反射して前記反射光(Lr)として戻ってくるまでの期間を往復期間ΔP、前記発光装置(202)及び前記受光装置(100C)と前記対象物(W)との距離を距離Dとしたとき、
     前記制御装置(204)は、
     (1)P1=P3、
     (2)P2=P4、及び
     (3)Tg1u<Tg1d≦Tg2u<Tg2d≦Teu<Tg3u<Tg3d≦Tg4u≦Ted<Tg4d、又は、Teu<Tg3u<Tg3d≦Tg4u≦Ted<Tg4d<Tg1u<Tg1d≦Tg2u<Tg2d
    となるように、前記発光装置(202)による前記パルス光(Lp)の放射及び前記第1スイッチング素子(SW1)~前記第4スイッチング素子(SW4)のオン/オフを制御し、
     前記第1スイッチング素子(SW1)~前記第4スイッチング素子(SW4)が全てオフとなっているとき、前記第5スイッチング素子(SW5)をオンにして前記光電子を前記電荷排出部(108)に排出させ、
     前記演算装置(206)は、
     前記第3キャパシタ(Ca3)に蓄積され、環境光(Ls)と前記反射光(Lr)に対応する前記電荷量Q3と、前記第1キャパシタ(Ca1)に蓄積され、前記環境光(Ls)に対応する前記電荷量Q1との差に基づいて、前記期間P3における前記反射光(Lr)の光量情報を取得し、
     前記第4キャパシタ(Ca4)に蓄積され、前記環境光(Ls)と前記反射光(Lr)に対応する前記電荷量Q4と、前記第2キャパシタ(Ca2)に蓄積され、前記環境光(Ls)に対応する前記電荷量Q2との差に基づいて、前記期間Psrにおける前記反射光(Lr)の光量情報を取得し、
     前記期間P3における前記反射光(Lr)の光量情報及び前記期間Psrにおける前記反射光(Lr)の光量情報の比と、前記期間P3及び前記期間Psrの比とに基づいて前記往復期間ΔPを演算し、
     前記往復期間ΔPに基づいて前記距離Dを測定することを特徴とする測距装置。
  25.  請求項24記載の測距装置において、
     前記時点Tedと前記時点Tg4uが等しいとき、下記の式(1)に基づいて、前記往復期間ΔPを演算し、
     ΔP={(Q4-Q2)/(Q3-Q1)}×P3 ・・・(1)
     前記時点Tedが前記時点Tg4uよりも後であるとき、下記の式(2)に基づいて、前記往復期間ΔPを演算することを特徴とする測距装置。
     ΔP=[(Q4-Q2)/(Q3-Q1)]×P3-(Ted-Tg4u) ・・・(2)
  26.  請求項24又は25記載の測距装置において、
     前記制御装置(204)は、測定周期毎に前記発光装置(202)に前記パルス光(Lp)を複数回放射させ、
     前記演算装置(206)は、前記第1キャパシタ(Ca1)~前記第4キャパシタ(Ca4)のそれぞれに前記光電子を複数回蓄積した後の前記電荷量Q1~前記電荷量Q4を用いて前記往復期間ΔPを演算することを特徴とする測距装置。
PCT/JP2010/067200 2009-10-07 2010-10-01 光電変換素子、受光装置、受光システム及び測距装置 WO2011043250A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112010003961.5T DE112010003961B4 (de) 2009-10-07 2010-10-01 Photoelektrisches Umwandlungselement, Lichtempfangseinrichtung, Lichtempfangssystem und Abstandsmesseinrichtung
US13/500,746 US9025139B2 (en) 2009-10-07 2010-10-01 Photoelectric conversion element, light receiving device, light receiving system, and distance measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-233670 2009-10-07
JP2009233670A JP5211007B2 (ja) 2009-10-07 2009-10-07 光電変換素子、受光装置、受光システム及び測距装置

Publications (1)

Publication Number Publication Date
WO2011043250A1 true WO2011043250A1 (ja) 2011-04-14

Family

ID=43856708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067200 WO2011043250A1 (ja) 2009-10-07 2010-10-01 光電変換素子、受光装置、受光システム及び測距装置

Country Status (4)

Country Link
US (1) US9025139B2 (ja)
JP (1) JP5211007B2 (ja)
DE (1) DE112010003961B4 (ja)
WO (1) WO2011043250A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8509923B2 (en) * 2010-06-30 2013-08-13 Motorola Solutions, Inc. Methods for managing power consumption in a sensor network
JP6713252B2 (ja) 2015-03-30 2020-06-24 日本光電工業株式会社 生体情報測定システム
EP3159711A1 (en) 2015-10-23 2017-04-26 Xenomatix NV System and method for determining a distance to an object
US10764505B2 (en) * 2016-08-10 2020-09-01 Panasonic Intellectual Property Management Co., Ltd. Projection image pickup device and projection image pickup method
EP3301478A1 (en) 2016-10-03 2018-04-04 Xenomatix NV System for determining a distance to an object
EP3301477A1 (en) 2016-10-03 2018-04-04 Xenomatix NV System for determining a distance to an object
EP3301479A1 (en) * 2016-10-03 2018-04-04 Xenomatix NV Method for subtracting background light from an exposure value of a pixel in an imaging array, and pixel for use in same
EP3301480A1 (en) 2016-10-03 2018-04-04 Xenomatix NV System and method for determining a distance to an object
EP3343246A1 (en) 2016-12-30 2018-07-04 Xenomatix NV System for characterizing surroundings of a vehicle
EP3392674A1 (en) 2017-04-23 2018-10-24 Xenomatix NV A pixel structure
US10585176B2 (en) 2017-09-19 2020-03-10 Rockwell Automation Technologies, Inc. Pulsed-based time of flight methods and system
US10663565B2 (en) * 2017-09-19 2020-05-26 Rockwell Automation Technologies, Inc. Pulsed-based time of flight methods and system
CN111465871B (zh) * 2017-12-15 2024-10-11 齐诺马蒂赛股份有限公司 用于确定到对象的距离的系统和方法
EP3550329A1 (en) * 2018-04-04 2019-10-09 Xenomatix NV System and method for determining a distance to an object
US11002836B2 (en) 2018-05-14 2021-05-11 Rockwell Automation Technologies, Inc. Permutation of measuring capacitors in a time-of-flight sensor
US10996324B2 (en) 2018-05-14 2021-05-04 Rockwell Automation Technologies, Inc. Time of flight system and method using multiple measuring sequences
US10969476B2 (en) 2018-07-10 2021-04-06 Rockwell Automation Technologies, Inc. High dynamic range for sensing systems and methods
US10789506B2 (en) 2018-09-24 2020-09-29 Rockwell Automation Technologies, Inc. Object intrusion detection system and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0856011A (ja) * 1994-06-07 1996-02-27 Mitsubishi Electric Corp 受光素子、受光素子回路および受光素子アレイ
JP2005302888A (ja) * 2004-04-08 2005-10-27 Sharp Corp 光センサー、光センサーアレイ及びその駆動方法
JP2007095849A (ja) * 2005-09-27 2007-04-12 Matsushita Electric Works Ltd 光検出素子、光検出素子の制御方法、空間情報検出装置
JP2008004692A (ja) * 2006-06-21 2008-01-10 Nikon Corp 固体撮像装置
JP2009174830A (ja) * 2008-01-28 2009-08-06 Sharp Corp 人物位置検出装置および空気調和機

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62154780A (ja) 1985-12-27 1987-07-09 Toshiba Corp イメ−ジセンサ
JP2878137B2 (ja) 1994-06-29 1999-04-05 シャープ株式会社 増幅型光電変換素子、それを用いた増幅型固体撮像装置、及び増幅型光電変換素子の製造方法
US5576763A (en) * 1994-11-22 1996-11-19 Lucent Technologies Inc. Single-polysilicon CMOS active pixel
US6140630A (en) * 1998-10-14 2000-10-31 Micron Technology, Inc. Vcc pump for CMOS imagers
TW562367U (en) * 2002-10-21 2003-11-11 Etoms Electronics Corp A layout for a line image sensor
JP4280822B2 (ja) 2004-02-18 2009-06-17 国立大学法人静岡大学 光飛行時間型距離センサ
KR100674908B1 (ko) 2004-06-01 2007-01-26 삼성전자주식회사 필 팩터가 개선된 cmos 이미지 소자
US7920185B2 (en) 2004-06-30 2011-04-05 Micron Technology, Inc. Shielding black reference pixels in image sensors
EP1624490B1 (en) 2004-08-04 2018-10-03 Heptagon Micro Optics Pte. Ltd. Large-area pixel for use in an image sensor
US20060255381A1 (en) * 2005-05-10 2006-11-16 Micron Technology, Inc. Pixel with gate contacts over active region and method of forming same
JP4308170B2 (ja) 2005-06-10 2009-08-05 本田技研工業株式会社 イメージセンサ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0856011A (ja) * 1994-06-07 1996-02-27 Mitsubishi Electric Corp 受光素子、受光素子回路および受光素子アレイ
JP2005302888A (ja) * 2004-04-08 2005-10-27 Sharp Corp 光センサー、光センサーアレイ及びその駆動方法
JP2007095849A (ja) * 2005-09-27 2007-04-12 Matsushita Electric Works Ltd 光検出素子、光検出素子の制御方法、空間情報検出装置
JP2008004692A (ja) * 2006-06-21 2008-01-10 Nikon Corp 固体撮像装置
JP2009174830A (ja) * 2008-01-28 2009-08-06 Sharp Corp 人物位置検出装置および空気調和機

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 44, no. 10, October 1997 (1997-10-01), pages 1648 - 1652 *
KOJI YAMAMOTO: "Furiwake Tenso Hoshiki Oyobi Bubun Ryoiki Kosoku Yomidashi Hoshiki ni yoru Hencho Hikari Seibun Kenshutsu Kano na CMOS Image Sensor ni Kansuru Kenkyu", NARA INSTITUTE OF SCIENCE AND TECHNOLOGY BUSSHITSU SOSEI KAGAKU KENKYUKA, 2006 *

Also Published As

Publication number Publication date
JP5211007B2 (ja) 2013-06-12
DE112010003961B4 (de) 2019-02-07
JP2011082357A (ja) 2011-04-21
DE112010003961T5 (de) 2012-12-06
US20120200841A1 (en) 2012-08-09
US9025139B2 (en) 2015-05-05

Similar Documents

Publication Publication Date Title
JP5211007B2 (ja) 光電変換素子、受光装置、受光システム及び測距装置
JP5211008B2 (ja) 光電変換素子、受光装置、受光システム及び測距装置
JP5274424B2 (ja) 光電変換素子、受光装置、受光システム及び測距装置
JP4981780B2 (ja) 測距システム及び測距方法
TWI524762B (zh) 共用飛行時間像素
JP5579893B2 (ja) 飛行時間センサのための回路構成及び方法
JP5635937B2 (ja) 固体撮像装置
KR101751090B1 (ko) 거리 화상 센서
JP2021507584A (ja) コンピュータビジョンアプリケーションのためのグロバールシャッタピクセル回路および方法
JP5576851B2 (ja) 測距システム及び測距方法
WO2010047247A1 (ja) 発光装置、受光システム及び撮像システム
US9018573B2 (en) Solid-state image sensing device with a change-over switch
JP5675469B2 (ja) 測距システム
JP2003051988A (ja) 固体撮像素子
KR20220005697A (ko) 이미지 센싱 장치
WO2022137685A1 (ja) 測距装置、測距方法および位相検出装置
Spickermann et al. New CMOS pixel structures for time-of-flight imaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10821921

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13500746

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120100039615

Country of ref document: DE

Ref document number: 112010003961

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10821921

Country of ref document: EP

Kind code of ref document: A1