WO2011042959A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2011042959A1
WO2011042959A1 PCT/JP2009/067459 JP2009067459W WO2011042959A1 WO 2011042959 A1 WO2011042959 A1 WO 2011042959A1 JP 2009067459 W JP2009067459 W JP 2009067459W WO 2011042959 A1 WO2011042959 A1 WO 2011042959A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
expander
pressure
refrigeration cycle
heat exchanger
Prior art date
Application number
PCT/JP2009/067459
Other languages
English (en)
French (fr)
Inventor
裕輔 島津
啓輔 高山
昌之 角田
英彰 永田
傑 鳩村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US13/395,376 priority Critical patent/US20120167606A1/en
Priority to PCT/JP2009/067459 priority patent/WO2011042959A1/ja
Priority to JP2011535233A priority patent/JP5389184B2/ja
Priority to CN200980161820.6A priority patent/CN102575885B/zh
Priority to EP09850230.5A priority patent/EP2476973B9/en
Priority to ES09850230.5T priority patent/ES2693240T3/es
Publication of WO2011042959A1 publication Critical patent/WO2011042959A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0401Refrigeration circuit bypassing means for the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/14Power generation using energy from the expansion of the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves

Definitions

  • the present invention relates to a refrigeration cycle apparatus that recovers power with an expander.
  • a refrigeration cycle apparatus that reduces the “negative power” that tends to hinder the start-up (rotation) of the expander and the compressor driven by the power recovered by the expander,
  • a refrigeration cycle apparatus has been proposed in which the power of the "power” (power to rotate the expander) is increased.
  • the structure is such that the drive shaft of another compressor and the output shaft of the expansion mechanism are linked.
  • the gas suction port and the gas discharge port of the other compressor are connected and the other compressor shaft is connected.
  • a bypass pipe that bypasses the compressor is provided, and a check valve that restricts refrigerant flow from the gas discharge port to the gas suction port is provided in the bypass pipe ”(for example, see Patent Document 1).
  • a check valve that restricts refrigerant flow from the gas discharge port to the gas suction port is provided in the bypass pipe ”(for example, see Patent Document 1).
  • an apparatus has been proposed in which the pressure difference between the inflow side and the outflow side of the expander is increased to increase the power that can be recovered by the expander (for example, see Patent Document 2).
  • JP 11-94379 A (paragraphs [0009], [0013], FIG. 1) JP 2006-132818 A (paragraphs [0014] to [0021])
  • FIG. 11 is an explanatory view showing a pressure change in a compression chamber of a compressor connected to an expander by a shaft in Patent Document 1.
  • the pressure in the compression chamber of the compressor changes in the process indicated by the arrow in FIG. Since the compressor is a positive displacement compressor as described above, the pressure is increased inside the compressor.
  • the refrigeration cycle apparatus described in Patent Document 2 makes it easy to start the expander by increasing the pressure difference between the inflow side and the outflow side of the expander.
  • the expander is generally designed based on a steady state. That is, the expander is not designed on the assumption that the expander is started with a small pressure difference between the inflow side and the outflow side of the expander. For this reason, when a high-density refrigerant (with a sparse isodensity curve) flows into the expander at the start-up, as shown in FIG. 12, the pressure change in the expansion chamber becomes large, resulting in overexpansion.
  • the power collected by the expander becomes power (negative power) corresponding to “Area F ⁇ Area G”, and the expander cannot continue to drive.
  • the present invention has been made to solve at least one of the above-described problems, and in a refrigeration cycle apparatus that recovers power with an expander, the expander is started more reliably than a conventional refrigeration cycle apparatus.
  • An object of the present invention is to obtain a refrigeration cycle apparatus that can perform such a process.
  • the refrigeration cycle apparatus is a refrigerant in which a first heat exchanger serving as a first compressor, a radiator or a condenser, an expander, and a second heat exchanger serving as an evaporator are sequentially connected by piping. And a second compressor that is provided in a refrigerant circuit between the first compressor and the first heat exchanger and that is driven by the power recovered by the expander.
  • the compressor is a positive displacement compressor, and pressure at which the pressure on the discharge side of the second compressor is lower than the pressure on the suction side of the second compressor at least until the second compressor is started.
  • An adjustment device is provided.
  • a first heat exchanger serving as a first compressor, a radiator or a condenser, an expander, and a second heat exchanger serving as an evaporator are sequentially connected by piping.
  • the compressor 2 is a positive displacement compressor, and at least until the second compressor is started, the pressure on the discharge side of the second compressor is lower than the pressure on the suction side of the second compressor. It is provided with a pressure adjusting device.
  • a first heat exchanger serving as a first compressor, a radiator or a condenser, an expander, and a second heat exchanger serving as an evaporator are sequentially connected by piping.
  • the compressor No. 2 is a positive displacement compressor, and at least until the expander is started, the pressure on the discharge side of the expander is adjusted to be lower than the pressure on the inflow side of the expander, and the refrigerant flows into the expander It is provided with an expander activation promoting device for adjusting the density of the expander.
  • a first heat exchanger serving as a first compressor, a radiator or a condenser, an expander, and a second heat exchanger serving as an evaporator are sequentially connected by piping.
  • the compressor No. 2 is a positive displacement compressor, and at least until the expander is started, the pressure on the discharge side of the expander is adjusted to be lower than the pressure on the inflow side of the expander, and the refrigerant flows into the expander It is provided with an expander activation promoting device for adjusting the density of the expander.
  • the refrigeration cycle apparatus is a pressure adjusting device that makes the pressure on the discharge side of the second compressor lower than the pressure on the suction side of the second compressor at least until the second compressor is started. It has. For this reason, the compression power is reduced as compared with the conventional case, and the expander can be started more reliably than the conventional refrigeration cycle apparatus.
  • the refrigeration cycle apparatus adjusts the pressure on the discharge side of the expander lower than the pressure on the inflow side of the expander at least until the expander is started, and the density of the refrigerant flowing into the expander An expander activation promoting device for adjusting the pressure is provided. For this reason, even if the expander is started in a state where the pressure difference between the inflow side and the outflow side of the expander is small, it is possible to prevent high-density refrigerant from flowing into the expander. Therefore, the expander can be started more reliably than the conventional refrigeration cycle apparatus.
  • FIG. 3 is a refrigerant circuit diagram of the refrigeration cycle apparatus according to Embodiment 1.
  • FIG. 2 is a refrigerant circuit diagram illustrating a refrigerant flow in a steady state of the refrigeration cycle apparatus according to Embodiment 1.
  • FIG. 3 is a refrigerant circuit diagram illustrating a refrigerant flow when the refrigeration cycle apparatus according to Embodiment 1 is started. It is explanatory drawing which shows the pressure change in the expansion chamber at the time of starting in the expander which concerns on Embodiment 1.
  • FIG. It is explanatory drawing which shows the pressure change in the compression chamber at the time of starting in the 2nd compressor which concerns on Embodiment 1.
  • FIG. 6 is a refrigerant circuit diagram of a refrigeration cycle apparatus according to Embodiment 2.
  • FIG. 6 is a refrigerant circuit diagram illustrating a refrigerant flow in a steady state of the refrigeration cycle apparatus according to Embodiment 2.
  • FIG. 6 is a refrigerant circuit diagram illustrating a refrigerant flow at the time of activation of the refrigeration cycle apparatus according to Embodiment 2.
  • FIG. 1 is a refrigerant circuit diagram of the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the refrigeration cycle apparatus 1 uses carbon dioxide as a refrigerant.
  • the first compressor 2, the second compressor 3, the radiator 4, the expander 5, and the evaporator 6 are sequentially connected by refrigerant piping. It is configured.
  • the drive shaft of the second compressor 3 and the starting shaft of the expander 5 are connected by a shaft 7.
  • a plurality of radiators 4 and evaporators 6 may be provided.
  • the first compressor 2 has a built-in motor that is driven by power supply, for example, and can be driven independently of the expander 5.
  • the second compressor 3 is a positive displacement compressor and is driven by power recovered by the expander 5.
  • the expander 5 is a positive displacement expander, and supplies the power recovered when the refrigerant expands to the second compressor 3.
  • a fan 4 a that conveys air (heat medium) that exchanges heat with the refrigerant flowing through the radiator 4 to the radiator 4 is provided.
  • a fan 6 a that conveys air (heat medium) that exchanges heat with the refrigerant flowing through the evaporator 6 to the evaporator 6.
  • the radiator 4 corresponds to the first heat exchanger of the present invention.
  • the evaporator 6 corresponds to the second heat exchanger of the present invention.
  • the fan 4a corresponds to the heat medium transport device of the present invention.
  • the refrigeration cycle apparatus 1 is also provided with a check valve 10 and a bypass circuit 8.
  • the check valve 10 is provided between the radiator 4 and the expander 5 and restricts the flow of refrigerant from the expander 5 to the radiator 4.
  • the bypass circuit 8 has one end connected between the first compressor 2 and the second compressor 3 and the other end connected between the check valve 10 and the expander 5. Yes.
  • the bypass circuit 8 is provided with an opening / closing valve 9 for opening and closing the bypass circuit 8.
  • the refrigeration cycle apparatus 1 is provided with a temperature sensor 21 serving as a refrigerant temperature measuring device on the discharge side of the second compressor 3.
  • the controller 100 controls the rotational speed of the motor built in the first compressor 2, the rotational speed of the fan 4 a, the rotational speed of the fan 6 a, and the opening / closing of the on-off valve 9.
  • the control device 100 also receives the detection value of the temperature sensor 21.
  • FIG. 2 is a refrigerant circuit diagram showing a refrigerant flow in a steady state of the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the on-off valve 9 is closed. That is, the refrigerant does not flow into the bypass circuit 8 in a steady state.
  • the pipe through which the refrigerant flows is indicated by a thick line.
  • the refrigerant compressed to high temperature and medium pressure by the first compressor 2 is discharged from the first compressor 2.
  • This high-temperature medium-pressure refrigerant is compressed to high temperature and high pressure (supercritical state) by the second compressor 3 and flows into the radiator 4.
  • the refrigerant flowing into the radiator 4 dissipates heat to the air conveyed to the fan 4a, and becomes a low-temperature and high-pressure refrigerant.
  • This low-temperature and high-pressure refrigerant passes through the first check valve 10 and flows into the expander 5.
  • the refrigerant flowing into the expander 5 is decompressed and becomes a low-pressure low-dryness refrigerant. In this decompression process, the expander 5 recovers power.
  • the recovered power is supplied to the second compressor 3 through the shaft 7.
  • the low-pressure, low-dryness refrigerant that has flowed out of the expander 5 flows into the evaporator 6.
  • the refrigerant flowing into the evaporator 6 absorbs heat from the air conveyed to the fan 6a, and becomes a low-pressure and high-dryness refrigerant or a low-pressure superheated gaseous refrigerant.
  • the refrigerant that has flowed out of the evaporator 6 is sucked into the first compressor 2.
  • FIG. 3 is a refrigerant circuit diagram showing a refrigerant flow at the time of starting the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the on-off valve 9 is in an open state.
  • the refrigerant flows through the bypass circuit 8 at the time of startup.
  • the pipe through which the refrigerant flows is indicated by a thick line.
  • the check valve 10 prevents the refrigerant flowing out of the bypass circuit 8 from flowing to the radiator 4 and the discharge side of the second compressor 3. That is, when the second compressor 3 is stopped, the pressure on the suction side of the second compressor 3 becomes the pressure of the refrigerant discharged from the first compressor 2, and the second compressor 3. It becomes larger than the pressure on the discharge side. Even when the check valve 10 is not provided, when the second compressor 3 is stopped, the pressure on the suction side of the second compressor 3 is on the discharge side of the second compressor 3. Greater than pressure.
  • the time from the start of the first compressor 2 to the start of the second compressor 3 is about several seconds (in the refrigeration cycle apparatus 1 according to the first embodiment, for example, about 2 to 3 seconds). .
  • the refrigerant flowing to the discharge side of the second compressor 3 is stored in the radiator 4 (the radiator 4 serves as a buffer), and the pressure increase on the discharge side of the second compressor 3 becomes insensitive.
  • the bypass circuit 8 and the on-off valve 9 are the pressure adjusting device of the present invention.
  • a check valve 10 is provided in order to more reliably obtain a differential pressure between the suction side pressure and the discharge side pressure of the second compressor 3.
  • the refrigerant on the outflow side of the expander 5 is sucked into the first compressor 2 via the evaporator 6. That is, when the expander 5 is stopped, the pressure on the outflow side of the expander 5 becomes smaller than the pressure on the inflow side of the expander 5.
  • coolant which flows into the inflow side of the expander 5 is a refrigerant
  • the check valve 10 Even when the check valve 10 is not provided, the refrigerant flowing to the inflow side of the expander 5 does not pass through the radiator 4 as long as the second compressor 3 is stopped. There is no low density refrigerant. For this reason, the check valve 10 may not be a configuration of the expander activation promoting device.
  • the differential pressure of the expander 5 When the difference between the pressure on the inflow side of the expander 5 and the pressure on the outflow side of the expander 5 (hereinafter also referred to as the differential pressure of the expander 5) becomes large, the expander 5 is started (driving starts). )
  • FIG. 4 is an explanatory view showing a pressure change in the expansion chamber at the time of start-up in the expander according to Embodiment 1 of the present invention.
  • the pressure in the expansion chamber of the expander 5 changes in the process indicated by the arrow in FIG.
  • a change in pressure in the expansion chamber at the start-up of the expander according to Patent Document 2 is indicated by a broken line. Since the differential pressure of the expander 5 at the time of startup is smaller than the differential pressure of the expander 5 in the steady state, it is slightly overexpanded, but the power (positive power) corresponding to “area D ⁇ area E” is can get. For this reason, the drive of the expander 5 can be continued.
  • FIG. 5 is an explanatory diagram showing a pressure change in the compression chamber at the time of start-up in the second compressor according to Embodiment 1 of the present invention.
  • the pressure in the compression chamber of the second compressor 3 changes in the process indicated by the arrow in FIG. Since the pressure on the suction side of the second compressor 3 is larger than the pressure on the discharge side (reverse pressure), it is overcompressed.
  • the compression power at this time is power corresponding to “Area A ⁇ Area B”, which is smaller than that of a conventional refrigeration cycle apparatus (see, for example, Patent Document 1) that equalizes the discharge side pressure and the suction side pressure of the compressor. ing. For this reason, it is easier to start the second compressor 3 than the conventional refrigeration cycle apparatus. Depending on the degree of back pressure, recovery power corresponding to area B-area A can be obtained. This amount of power contributes to stable startup of the second compressor 3.
  • the drive of the expander 5 and the second compressor 3 can be continued even if the on-off valve 9 is closed.
  • the open / close valve 9 is opened until the refrigeration cycle apparatus 1 can be operated in a steady state. I have to.
  • the control device 100 controls the on-off valve 9 as follows.
  • the temperature of the refrigerant discharged from the second compressor 3 increases. Further, the pressure on the discharge side of the second compressor 3 becomes equal to or higher than the pressure on the suction side. That is, it is possible to operate the refrigeration cycle apparatus 1 in a steady state.
  • the temperature sensor 21 detects the temperature of the refrigerant discharged from the second compressor 3. Then, the control device 100 determines that the refrigeration cycle apparatus 1 can be operated in a steady state when the temperature detected by the temperature sensor 21 exceeds a certain threshold value, and closes the on-off valve 9.
  • the check valve 10 is provided, so that the discharge pressure of the second compressor 3 does not rapidly increase, and the refrigerant is supplied to the expander 5. Flows. For this reason, the refrigeration cycle apparatus 1 can be reliably started up without the high-pressure or high-temperature protection device working.
  • the pressure on the suction side of the second compressor 3 is the pressure on the discharge side of the second compressor 3 until at least the second compressor 3 is started. To be bigger than. Also, at least until the expander 5 is started, the pressure on the outflow side of the expander 5 is made smaller than the pressure on the inflow side of the expander 5 so that the refrigerant flowing to the inflow side of the expander 5 has a low density. I have to. For this reason, the 2nd compressor 3 and the expander 5 can be started more reliably than the conventional refrigeration cycle apparatus.
  • the second compressor can be more reliably provided than the conventional refrigeration cycle apparatus by merely making the pressure on the suction side of the second compressor 3 larger than the pressure on the discharge side of the second compressor 3. 3 and the expander 5 can of course be activated.
  • the conventional refrigeration cycle can be achieved simply by making the pressure on the outflow side of the expander 5 smaller than the pressure on the inflow side of the expander 5 so that the refrigerant flowing to the inflow side of the expander 5 has a low density.
  • the second compressor 3 and the expander 5 can be started more reliably by the apparatus.
  • the present invention can be implemented even if the refrigerant flow is switched by providing a four-way valve in the refrigeration cycle apparatus 1.
  • FIG. 6 is a refrigerant circuit diagram illustrating another example of the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the four-way valve 14 is provided on the discharge side of the second compressor 3.
  • the four-way valve 14 switches the flow path of the refrigerant discharged from the second compressor 3 to a flow path that flows to the radiator 4 or a flow path that flows to the evaporator 6. Further, the flow path of the refrigerant flowing into the first compressor 2 is switched to the flow path flowing from the evaporator 6 or the flow path flowing from the radiator 4.
  • a four-way valve 15 is provided on the inflow side of the expander 5. With this four-way valve 15, the flow path of the refrigerant flowing into the expander 5 is switched to the flow path flowing from the radiator 4 or the flow path flowing from the evaporator 6.
  • a refrigeration cycle apparatus 51 When such a refrigeration cycle apparatus 51 is used for an air conditioner, an air conditioner capable of both a cooling operation and a heating operation can be obtained. Since the expander 5 is a positive displacement type, the refrigerant can flow only in one direction. For this reason, a check valve 10 may be provided in the vicinity of the inlet of the expander 5, and a bypass circuit 8 may be connected between the check valve 10 and the expander 5.
  • an intermediate cooler 22 is provided between the first compressor 2 and the second compressor 3 as shown in FIG. May be.
  • FIG. 7 shows an example in which the intercooler 22 is provided in the refrigeration cycle apparatus 1.
  • the connection portion of the bypass circuit 8 between the first compressor 2 and the second compressor 3 may be upstream of the intermediate cooler 22 or downstream of the intermediate cooler 22. In the former case, it is possible to suppress a sudden increase in the discharge pressure of the first compressor 2 until the expander 5 is started. This effect can also be realized by replacing the opening / closing valve 9 with a flow rate adjusting valve and adjusting the opening degree.
  • the heat medium that exchanges heat with the radiator 4 and the evaporator 6 is air, but other heat medium may be used.
  • the heat medium that exchanges heat with the radiator 4 may be water, and the refrigeration cycle apparatus according to the first embodiment may be used for hot water supply.
  • the heat medium that exchanges heat with the radiator 4 or the evaporator 6 may be water or brine, and the heat medium may be conveyed to the air-conditioned space to perform air-conditioning in the air-conditioned space.
  • Embodiment 1 carbon dioxide having an ozone depletion coefficient of zero and a global warming coefficient that is much smaller than that of chlorofluorocarbons is used as the refrigerant.
  • the type of refrigerant is arbitrary.
  • the refrigeration cycle apparatus using carbon dioxide has a lower operating efficiency (COP) than the conventional refrigeration cycle apparatus using refrigerant. For this reason, it is very effective to implement the present invention in a refrigeration cycle apparatus using carbon dioxide.
  • the heat radiator 4 functions as a condenser.
  • the expander 5 and the second compressor 3 are mechanically connected (by the shaft 7). However, the expander 5 and the second compressor 3 are electrically connected. May be.
  • the expander 5 and a generator may be connected, the power collected by the expander 5 may be converted into electric power, and this electric power may be supplied to the second compressor 3.
  • a pressure sensor may be used to determine whether or not. More specifically, a pressure sensor is provided on each of the discharge side and the suction side of the second compressor 3. And when the difference of the detection value of these pressure sensors becomes a certain threshold value or more, you may judge that the refrigerating-cycle apparatus 1 (refrigeration cycle apparatus 51) can be operated steady.
  • Embodiment 2 is not limited to the refrigeration cycle apparatus shown in the first embodiment, and can be implemented, for example, in a refrigeration cycle apparatus having the following configuration.
  • items not particularly described are the same as those in the first embodiment.
  • FIG. 8 is a refrigerant circuit diagram of the refrigeration cycle apparatus according to Embodiment 2 of the present invention.
  • the refrigeration cycle apparatus 52 according to the second embodiment is different from the refrigeration cycle apparatus 1 according to the first embodiment in the following points.
  • Other configurations of the refrigeration cycle apparatus 52 are the same as those of the refrigeration cycle apparatus 1.
  • a check valve 13 is provided instead of the check valve 10.
  • a bypass circuit 11 and an on-off valve 12 are provided.
  • the check valve 13 is provided between the expander 5 and the evaporator 6, and restricts the flow of refrigerant from the evaporator 6 to the expander 5.
  • the bypass circuit 11 has one end connected between the second compressor 3 and the first compressor 2, and the other end connected between the expander 5 and the check valve 13. Yes.
  • the bypass circuit 11 is provided with an on-off valve 12 that opens and closes the bypass circuit 11.
  • FIG. 9 is a refrigerant circuit diagram showing a refrigerant flow in a steady state of the refrigeration cycle apparatus according to Embodiment 2 of the present invention.
  • the on-off valve 12 is closed. That is, the refrigerant does not flow to the bypass circuit 11 in a steady state.
  • the pipe through which the refrigerant flows is indicated by a thick line.
  • the refrigerant compressed to high temperature and medium pressure by the second compressor 3 is discharged from the second compressor 3.
  • This high-temperature medium-pressure refrigerant is compressed to a high temperature and high pressure (supercritical state) by the first compressor 2 and flows into the radiator 4.
  • the refrigerant flowing into the radiator 4 dissipates heat to the air conveyed to the fan 4a, and becomes a low-temperature and high-pressure refrigerant.
  • This low-temperature and high-pressure refrigerant flows into the expander 5.
  • the refrigerant flowing into the expander 5 is decompressed and becomes a low-pressure low-dryness refrigerant. In this decompression process, the expander 5 recovers power.
  • the recovered power is supplied to the second compressor 3 through the shaft 7.
  • the low-pressure, low-dryness refrigerant that has flowed out of the expander 5 flows into the evaporator 6 through the check valve 13.
  • the refrigerant flowing into the evaporator 6 absorbs heat from the air conveyed to the fan 6a, and becomes a low-pressure high-dryness refrigerant or a low-pressure superheated gaseous refrigerant.
  • the refrigerant that has flowed out of the evaporator 6 is sucked into the second compressor 3.
  • FIG. 10 is a refrigerant circuit diagram showing a refrigerant flow at the time of activation of the refrigeration cycle apparatus according to Embodiment 2 of the present invention.
  • the on-off valve 12 is in an open state. That is, the refrigerant flows through the bypass circuit 11 at the time of startup.
  • the fan 4a which conveys air to a heat radiator becomes the rotation speed (rotation speed) smaller than a stop or a steady state.
  • the pipe through which the refrigerant flows is indicated by a thick line.
  • the refrigerant compressed by the first compressor 2 passes through the radiator 4 and reaches the expander 5. Further, when the first compressor 2 is activated, the refrigerant on the outflow side of the expander 5 is sucked into the first compressor 2 through the bypass circuit 11. At this time, the check valve 13 prevents the refrigerant on the suction side of the second compressor 3 from being sucked by the first compressor 2. That is, when the second compressor 3 is stopped, the pressure on the suction side of the second compressor 3 becomes larger than the pressure on the discharge side of the second compressor 3. Even when the check valve 13 is not provided, when the second compressor 3 is stopped, the pressure on the suction side of the second compressor 3 is on the discharge side of the second compressor 3. Greater than pressure.
  • the time from the start of the first compressor 2 to the start of the second compressor 3 is about several seconds (in the refrigeration cycle apparatus 52 according to the second embodiment, for example, about 2 to 3 seconds). .
  • most of the refrigerant sucked from the suction side of the second compressor 3 is refrigerant stored in the evaporator 6 (the evaporator 6 serves as a buffer), and the refrigerant on the suction side of the second compressor 3 This is because the pressure drop is insensitive. That is, the bypass circuit 11 and the on-off valve 12 are the pressure adjusting device of the present invention.
  • a check valve 13 is provided in order to more reliably obtain a differential pressure between the suction side pressure and the discharge side pressure of the second compressor 3.
  • the control device 100 that controls the rotation speed of the bypass circuit 11, the on-off valve 12, and the fan 4a is the expander activation promoting device of the present invention.
  • the check valve 13 may not be a configuration of the expander activation promoting device.
  • the expander 5 When the differential pressure of the expander 5 becomes large, the expander 5 is activated (drive is started). At this time, the pressure in the expansion chamber of the expander 5 is as shown in FIG. 4 (the same as in the first embodiment). Since the differential pressure of the expander 5 at the time of startup is smaller than the differential pressure of the expander 5 in the steady state, it is slightly overexpanded, but the power (positive power) corresponding to “area D ⁇ area E” is can get. For this reason, the drive of the expander 5 can be continued.
  • the pressure in the compression chamber changes as shown in FIG. 5 (the same as in the first embodiment). Since the pressure on the suction side of the second compressor 3 is larger than the pressure on the discharge side (reverse pressure), it is overcompressed.
  • the compression power at this time is power corresponding to “Area A ⁇ Area B”, and is smaller than that of a conventional refrigeration cycle apparatus (for example, see Patent Document 1) that equalizes the discharge side pressure and the suction side pressure of the compressor. ing. For this reason, it is easier to start the second compressor 3 than the conventional refrigeration cycle apparatus. Depending on the degree of back pressure, recovery power corresponding to area B-area A can be obtained. This amount of power contributes to stable startup of the second compressor 3.
  • the drive of the expander 5 and the second compressor 3 can be continued even if the on-off valve 12 is closed.
  • the open / close valve 12 is opened until the refrigeration cycle apparatus 52 can be operated in a steady state. I have to.
  • the control device 100 controls the on-off valve 12 as follows.
  • the temperature sensor 21 detects the temperature of the refrigerant discharged from the second compressor 3.
  • the control device 100 determines that the refrigeration cycle apparatus 1 can be operated in a steady state when the temperature detected by the temperature sensor 21 exceeds a certain threshold value, and closes the on-off valve 12. Further, the rotational speed of the fan 4a is changed to a steady-state rotational speed.
  • a pressure sensor may be used to determine whether or not the refrigeration cycle apparatus 52 is capable of steady operation.
  • the check valve 13 is provided, so that the pressure on the suction side of the second compressor 3 does not rapidly decrease, and the expander The refrigerant flows to 5. For this reason, the refrigeration cycle apparatus 52 can be reliably started without the low-pressure or low-temperature protection device working.
  • the pressure on the suction side of the second compressor 3 is the pressure on the discharge side of the second compressor 3 until at least the second compressor 3 is started. To be bigger than. Also, at least until the expander 5 is started, the pressure on the outflow side of the expander 5 is made smaller than the pressure on the inflow side of the expander 5 so that the refrigerant flowing to the inflow side of the expander 5 has a low density. I have to. For this reason, the 2nd compressor 3 and the expander 5 can be started more reliably than the conventional refrigeration cycle apparatus.
  • the second compressor can be more reliably provided than the conventional refrigeration cycle apparatus by merely making the pressure on the suction side of the second compressor 3 larger than the pressure on the discharge side of the second compressor 3. 3 and the expander 5 can of course be activated.
  • the conventional refrigeration cycle can be achieved simply by making the pressure on the outflow side of the expander 5 smaller than the pressure on the inflow side of the expander 5 so that the refrigerant flowing to the inflow side of the expander 5 has a low density.
  • the second compressor 3 and the expander 5 can be started more reliably by the apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

 膨張機で動力回収をおこなう冷凍サイクル装置において、従来の冷凍サイクル装置よりも確実に膨張機を起動させることができる冷凍サイクル装置を得る。 冷凍サイクル装置1は、第1の圧縮機2、放熱器4、膨張機5及び蒸発器6が順次配管接続された冷媒回路と、第1の圧縮機2と放熱器4との間の冷媒回路に設けられ、膨張機5で回収された動力によって駆動される第2の圧縮機3とを有する。第2の圧縮機3は容積式の圧縮機である。少なくとも第2の圧縮機3が起動されるまでは、第2の圧縮機3の吸入側の圧力よりも第2の圧縮機3の吐出側の圧力を低くする、圧力調整装置(バイパス回路8及び開閉弁9)を備える。

Description

冷凍サイクル装置
 本発明は膨張機で動力回収をおこなう冷凍サイクル装置に関するものである。
 例えば冷凍用や空気調和等に用いられる従来の冷凍サイクル装置において、膨張過程を容積式の膨張機で行ない、このときに回収した膨張動力を容積式の圧縮機で行なわれる圧縮過程に用いるものがある。
 しかしながら、膨張機や膨張機で回収した動力により駆動される圧縮機は、回転機械であるため、その内部には摩擦抵抗や機構ロス等によって「負の動力」が発生する。このため、膨張機や膨張機で回収した動力により駆動される圧縮機を起動させるには、この「負の動力」に打ち勝つだけの動力が必要となる。このため、膨張機や膨張機で回収した動力により駆動される圧縮機の起動(回転)を妨げようとする「負の動力」の低減を図った冷凍サイクル装置や、膨張機起動時の「正の動力」(膨張機を回転させようとする動力)の増大を図った冷凍サイクル装置が提案されている。
 このような冷凍サイクル装置としては、例えば「他の圧縮機の駆動軸と膨張機構の出力軸を連係した構造となっている。他方の圧縮機のガス吸入口とガス吐出口を接続し他方の圧縮機を迂回するバイパス管を設けるとともに、バイパス管にガス吐出口からガス吸入口への冷媒流通を規制する逆止弁を設けた構造となっている。」(例えば特許文献1参照)というものが提案されている。
 また、このような冷凍サイクル装置としては、膨張機の流入側と流出側の圧力差を大きくし膨張機で回収できる動力を大きくするものも提案されている(例えば特許文献2参照)。
特開平11-94379号公報(段落[0009],[0013]、図1) 特開2006-132818号公報(段落[0014]~[0021])
 例えば特許文献1に記載の冷凍サイクル装置は、圧縮機の吐出側圧力と吸入側圧力とをバイパス管で均圧している。これにより、膨張機(膨張機構)及びこの膨張機と軸で接続された圧縮機を起動しやすいようにしている。
 しかしながら、膨張機と軸で接続された圧縮機は容積式の圧縮機であるため、その内部では昇圧する。
 図11は、特許文献1における、膨張機と軸で接続された圧縮機の圧縮室内の圧力変化を示す説明図である。この圧縮機の圧縮室内の圧力は、図11の矢印で示す過程で変化する。上述のようにこの圧縮機は容積式の圧縮機であるため、その内部では昇圧する。このため、この圧縮機を起動させるためには、図11に示す面積Cに相当する圧縮動力が必要となる。つまり、特許文献1に示すように圧縮機の吸入側と吐出側をバイパスしても、「負の動力」が存在する。このため、場合によっては、膨張機で得られる「正の動力」よりも「負の動力」が大きくなり、膨張機を起動できない可能性があるという問題点があった。
 また、膨張機や圧縮機を起動させる際には、膨張機や圧縮機のスラスト軸受やラジアル軸受等に作用する静摩擦も影響する。この静摩擦は、膨張機や圧縮機が駆動している際に作用する動摩擦よりも大きなものである。このため、膨張機や圧縮機を起動させるためには、膨張機や圧縮機のスラスト軸受やラジアル軸受等に作用する静摩擦に打ち勝つ「正の動力」も必要となり、膨張機や圧縮機の起動がさらに不安定となる。
 例えば、スクロール方式の圧縮機では、スラスト軸受にかかる荷重(スラスト軸受に作用する摩擦)を低減させるため、揺動スクロールの背面側に圧縮過程の冷媒を導入することが一般的に行われている。同様に、スクロール方式の膨張機では、スラスト軸受にかかる荷重(スラスト軸受に作用する摩擦)を低減させるため、揺動スクロールの背面側に膨張過程の冷媒を導入することが一般的に行われている。しかしながら、スラスト軸受にかかる荷重(スラスト軸受に作用する摩擦)を低減させるためのこれらの方法は、揺動スクロールが回転している場合を想定したものである。つまり、スラスト軸受に作用する動摩擦を低減させるためのものである。このため、揺動スクロールが停止している状態(揺動スクロールの背面側にスラスト加重を低減する圧力が作用していない状態)では、スラスト軸受に作用する静摩擦を低減させることは期待できない。仮に、揺動スクロールが停止している状態で背面側にスラスト加重を低減する圧力が作用しているとすれば、この圧力は膨張室や圧縮室から漏洩した冷媒によるものである。このような膨張機や圧縮機は、揺動スクロールが揺動している定常状態での性能改善効果が著しく損なわれ、本来の目的(冷媒の膨張や圧縮)を達成できない。
 さらに、膨張機や圧縮機が一度起動に失敗し、機構的な噛み込み(ジャミング)が生じてしまうと、それを凌駕するトルクでモーター等の駆動源を回転させる必要がある。または、駆動源を軽く逆転させて、噛み込みを解消させる必要がある。いずれにしても確実な起動方法ではない。
 また上記特許文献2に記載の冷凍サイクル装置は、膨張機の流入側と流出側の圧力差を大きくすることにより、膨張機を起動させやすくしている。しかしながら、膨張機は一般的に定常状態を基準に設計されるものである。つまり、膨張機は、膨張機の流入側と流出側の圧力差が小さい状態で起動されることを想定して設計されていない。
 このため、起動時に(等密度曲線が疎である)高密度な冷媒が膨張機へ流入すると、図12に示すように、膨張室内の圧力変化が大きくなり、過膨張となる。つまり、膨張機の回収する動力は、「面積F-面積G」に相当する動力(負の動力)となってしまい、膨張機が駆動を継続出来なくなってしまうという問題点があった。
 起動性に重点を置いて膨張機を設計することも考えられるが、定常運転時に不足膨張となり十分な性能改善効果が得られず、本来の膨張機の目的を果たせない。
 本発明は上述のような課題のうち少なくとも1つを解決するためになされたものであり、膨張機で動力回収をおこなう冷凍サイクル装置において、従来の冷凍サイクル装置よりも確実に膨張機を起動させることができる冷凍サイクル装置を得ることを目的とする。
 本発明に係る冷凍サイクル装置は、第1の圧縮機、放熱器又は凝縮器となる第1の熱交換器、膨張機、及び蒸発器となる第2の熱交換器が順次配管接続された冷媒回路と、第1の圧縮機と第1の熱交換器との間の冷媒回路に設けられ、膨張機で回収された動力によって駆動される第2の圧縮機と、を有し、第2の圧縮機は容積式の圧縮機であり、少なくとも第2の圧縮機が起動されるまでは、第2の圧縮機の吸入側の圧力よりも第2の圧縮機の吐出側の圧力を低くする圧力調整装置を備えたものである。
 また、本発明に係る冷凍サイクル装置は、第1の圧縮機、放熱器又は凝縮器となる第1の熱交換器、膨張機、及び蒸発器となる第2の熱交換器が順次配管接続された冷媒回路と、第2の熱交換器と第1の圧縮機との間の冷媒回路に設けられ、膨張機で回収された動力によって駆動される第2の圧縮機と、を有し、第2の圧縮機は容積式の圧縮機であり、少なくとも第2の圧縮機が起動されるまでは、第2の圧縮機の吸入側の圧力よりも第2の圧縮機の吐出側の圧力を低くする圧力調整装置を備えたものである。
 また、本発明に係る冷凍サイクル装置は、第1の圧縮機、放熱器又は凝縮器となる第1の熱交換器、膨張機、及び蒸発器となる第2の熱交換器が順次配管接続された冷媒回路と、第1の圧縮機と第1の熱交換器との間の冷媒回路に設けられ、膨張機で回収された動力によって駆動される第2の圧縮機と、を有し、第2の圧縮機は容積式の圧縮機であり、少なくとも膨張機が起動されるまでは、膨張機の流入側の圧力よりも膨張機の吐出側の圧力を低く調整し、膨張機に流入する冷媒の密度を調整する膨張機起動促進装置を備えたものである。
 また、本発明に係る冷凍サイクル装置は、第1の圧縮機、放熱器又は凝縮器となる第1の熱交換器、膨張機、及び蒸発器となる第2の熱交換器が順次配管接続された冷媒回路と、第2の熱交換器と第1の圧縮機との間の冷媒回路に設けられ、膨張機で回収された動力によって駆動される第2の圧縮機と、を有し、第2の圧縮機は容積式の圧縮機であり、少なくとも膨張機が起動されるまでは、膨張機の流入側の圧力よりも膨張機の吐出側の圧力を低く調整し、膨張機に流入する冷媒の密度を調整する膨張機起動促進装置を備えたものである。
 本発明に係る冷凍サイクル装置は、少なくとも第2の圧縮機が起動されるまでは、第2の圧縮機の吸入側の圧力よりも第2の圧縮機の吐出側の圧力を低くする圧力調整装置を備えている。このため、従来よりも圧縮動力が低減し、従来の冷凍サイクル装置よりも確実に膨張機を起動させることができる。
 また、本発明に係る冷凍サイクル装置は、少なくとも膨張機が起動されるまでは、膨張機の流入側の圧力よりも膨張機の吐出側の圧力を低く調整し、膨張機に流入する冷媒の密度を調整する膨張機起動促進装置を備えている。このため、膨張機の流入側と流出側の圧力差が小さい状態で膨張機が起動されても、高密度な冷媒が膨張機へ流入することを防止できる。したがって、従来の冷凍サイクル装置よりも確実に膨張機を起動させることができる。
実施の形態1に係る冷凍サイクル装置の冷媒回路図である。 実施の形態1に係る冷凍サイクル装置の定常状態における冷媒流れを示す冷媒回路図である。 実施の形態1に係る冷凍サイクル装置の起動時における冷媒流れを示す冷媒回路図である。 実施の形態1に係る膨張機における起動時の膨張室内の圧力変化を示す説明図である。 実施の形態1に係る第2の圧縮機における起動時の圧縮室内の圧力変化を示す説明図である。 本発明の実施の形態1に係る冷凍サイクル装置の別の一例を示す冷媒回路図である。 本発明の実施の形態1に係る冷凍サイクル装置のさらに別の一例を示す冷媒回路図である。 実施の形態2に係る冷凍サイクル装置の冷媒回路図である。 実施の形態2に係る冷凍サイクル装置の定常状態における冷媒流れを示す冷媒回路図である。 実施の形態2に係る冷凍サイクル装置の起動時における冷媒流れを示す冷媒回路図である。 特許文献1に示す膨張機と軸で接続された圧縮機における、圧縮室内の圧力変化を示す説明図である。 特許文献2に示す膨張機における起動時に高密度な冷媒が流入した際の膨張室内の圧力変化を示す説明図である。
 実施の形態1.
 以下、本発明の実施の形態1について説明する。
 図1は、本発明の実施の形態1に係る冷凍サイクル装置の冷媒回路図である。
 冷凍サイクル装置1は、冷媒として二酸化炭素を用いたものであり、第1の圧縮機2、第2の圧縮機3、放熱器4、膨張機5、蒸発器6を順次冷媒配管で接続して構成されている。また、第2の圧縮機3の駆動軸と膨張機5の起動軸とは、軸7によって接続されている。なお、放熱器4や蒸発器6は、複数台設けられていてもよい。
 第1の圧縮機2は、例えば電力供給されて駆動するモーターを内蔵しており、膨張機5とは独立して駆動可能なものである。第2の圧縮機3は、容積式の圧縮機であり、膨張機5で回収された動力によって駆動されるものである。膨張機5は、容積式の膨張機であり、冷媒が膨張する際に回収した動力を第2の圧縮機3へ供給する。また、放熱器4の近傍には、放熱器4を流れる冷媒と熱交換を行う空気(熱媒体)を放熱器4へ搬送するファン4aが設けられている。蒸発器6の近傍には、蒸発器6を流れる冷媒と熱交換を行う空気(熱媒体)を蒸発器6へ搬送するファン6aが設けられている。
 ここで、放熱器4が、本発明の第1の熱交換器に相当する。蒸発器6が、本発明の第2の熱交換器に相当する。ファン4aが、本発明の熱媒体搬送装置に相当する。
 冷凍サイクル装置1には、逆止弁10及びバイパス回路8も設けられている。逆止弁10は、放熱器4と膨張機5との間に設けられており、膨張機5から放熱器4へ冷媒が流れることを規制している。バイパス回路8は、一方の端部が第1の圧縮機2と第2の圧縮機3との間に接続され、他方の端部が逆止弁10と膨張機5との間に接続されている。このバイパス回路8には、バイパス回路8を開閉する開閉弁9が設けられている。
 また、冷凍サイクル装置1には、第2の圧縮機3の吐出側に、冷媒温度測定装置となる温度センサー21が設けられている。
 第1の圧縮機2に内蔵されたモーターの回転数、ファン4aの回転数、ファン6aの回転数、及び開閉弁9の開閉は、制御装置100によって制御される。この制御装置100は、温度センサー21の検出値も受信している。
<動作説明>
 このように構成された冷凍サイクル装置1の動作について説明する。まず、定常運転時における冷凍サイクル装置1の動作について説明する。その後、起動時における冷凍サイクル装置1の動作について説明する。
(定常運転時の動作)
 定常運転時における冷凍サイクル装置1の動作について説明する。
 図2は、本発明の実施の形態1に係る冷凍サイクル装置の定常状態における冷媒流れを示す冷媒回路図である。定常状態では、開閉弁9は閉じた状態となっている。つまり、定常状態では、バイパス回路8に冷媒が流れないようになっている。なお、図2では、冷媒が流れる配管を太線で示している。
 第1の圧縮機2で高温中圧に圧縮された冷媒は、第1の圧縮機2から吐出される。この高温中圧の冷媒は、第2の圧縮機3で高温高圧(超臨界状態)に圧縮され、放熱器4に流入する。放熱器4に流入した冷媒は、ファン4aに搬送された空気へ放熱し、低温高圧の冷媒となる。この低温高圧の冷媒は、第1の逆止弁10を通過し、膨張機5に流入する。膨張機5に流入した冷媒は、減圧されて低圧低乾き度の冷媒となる。この減圧過程において、膨張機5は動力を回収する。そして、回収された動力は、軸7を介して、第2の圧縮機3へ供給される。膨張機5から流出した低圧低乾き度の冷媒は、蒸発器6に流入する。蒸発器6に流入した冷媒は、ファン6aに搬送された空気から吸熱し、低圧高乾き度の冷媒又は低圧過熱ガス状の冷媒となる。蒸発器6から流出した冷媒は、第1の圧縮機2に吸入される。
 膨張機5で回収された動力が第2の圧縮機3での圧縮動力として使用されるため、その分、第1の圧縮機の必要動力が低下する。このため、冷凍サイクル装置1の省エネルギー化を図ることができる。
(起動時の動作)
 次に、起動時における冷凍サイクル装置1の動作について説明する。
 図3は、本発明の実施の形態1に係る冷凍サイクル装置の起動時における冷媒流れを示す冷媒回路図である。起動時においては、開閉弁9は開いた状態となっている。つまり、起動時においては、バイパス回路8に冷媒が流れるようになっている。なお、図3では、冷媒が流れる配管を太線で示している。
 起動時は第2の圧縮機3がまだ停止しているため、第1の圧縮機2で高温中圧に圧縮された冷媒は、バイパス回路8を通って、膨張機5へ至る。このとき、逆止弁10により、バイパス回路8から流出した冷媒が放熱器4及び第2の圧縮機3の吐出側へ流れることを防止している。つまり、第2の圧縮機3が停止している状態では、第2の圧縮機3の吸入側の圧力は、第1の圧縮機2から吐出された冷媒の圧力となり、第2の圧縮機3の吐出側の圧力よりも大きくなっていく。
 なお、逆止弁10が設けられていなくとも、第2の圧縮機3が停止している状態では、第2の圧縮機3の吸入側の圧力は、第2の圧縮機3の吐出側の圧力よりも大きくなる。第1の圧縮機2が起動してから第2の圧縮機3が起動するまでの時間は数秒程度(本実施の形態1に係る冷凍サイクル装置1では、例えば2秒~3秒程度)である。このため、第2の圧縮機3の吐出側へ流れる冷媒は放熱器4に貯留され(放熱器4がバッファーとなり)、第2の圧縮機3の吐出側の圧力上昇が鈍感となるからである。
 つまり、バイパス回路8及び開閉弁9が、本発明の圧力調整装置となる。本実施の形態1では、第2の圧縮機3の吸入側圧力と吐出側圧力の差圧をより確実に得るため、逆止弁10を設けている。
 また、第1の圧縮機2が起動することにより、膨張機5の流出側の冷媒は、蒸発器6を経由して、第1の圧縮機2へ吸入される。つまり、膨張機5が停止している状態では、膨張機5の流出側の圧力は、膨張機5の流入側の圧力よりも小さくなっていく。また、膨張機5の流入側に流れてくる冷媒は、放熱器4を通過していない冷媒なので、低密度な冷媒となっている。つまり、バイパス回路8及び開閉弁9が、本発明の膨張機起動促進装置となる。なお、逆止弁10が設けられていない場合でも、第2の圧縮機3が停止している状態であれば、膨張機5の流入側に流れてくる冷媒は、放熱器4を通過していない低密度の冷媒である。このため、逆止弁10は、膨張機起動促進装置の構成でなくともよい。
 膨張機5の流入側の圧力と膨張機5の流出側の圧力との差(以下、膨張機5の差圧ともいう)が大きくなってくると、膨張機5は起動される(駆動が開始される)。
 このとき、膨張機5の膨張室内の圧力は図4のようになる。
 図4は、本発明の実施の形態1に係る膨張機における起動時の膨張室内の圧力変化を示す説明図である。なお、膨張機5の膨張室内の圧力は、図4の矢印で示す過程で変化する。また、参考として、特許文献2に係る膨張機における起動時の膨張室内の圧力変化を破線で示す。
 起動時における膨張機5の差圧は定常状態における膨張機5の差圧よりも小さいため、若干過膨張となっているが、「面積D-面積E」に相当する動力(正の動力)が得られる。このため、膨張機5の駆動を継続することができる。
 一方、軸7を介して膨張機5と接続されている第2の圧縮機3は、その圧縮室内の圧力が図5のように変化する。
 図5は、本発明の実施の形態1に係る第2の圧縮機における起動時の圧縮室内の圧力変化を示す説明図である。なお、第2の圧縮機3の圧縮室内の圧力は、図5の矢印で示す過程で変化する。
 第2の圧縮機3の吸入側の圧力が吐出側の圧力よりも大きくなっている(逆圧となっている)ため、過圧縮となっている。このときの圧縮動力は、「面積A-面積B」に相当する動力となり、圧縮機の吐出側圧力と吸入側圧力とを均圧する従来の冷凍サイクル装置(例えば特許文献1参照)よりも小さくなっている。このため、従来の冷凍サイクル装置よりも第2の圧縮機3を起動させやすくなっている。また、逆圧の程度によっては、面積B-面積Aに相当する回収動力が得られる。この分の動力は、第2の圧縮機3の安定した起動に寄与する。
 膨張機5及び第2の圧縮機3が起動したら、開閉弁9を閉止しても、膨張機5及び第2の圧縮機3の駆動を継続することは可能である。しかしながら、本実施の形態1では、膨張機5及び第2の圧縮機3の駆動をより確実に継続させるため、冷凍サイクル装置1が定常状態で運転可能となるまで、開閉弁9を開いた状態にしている。
 より具体的には、制御装置100は以下のように開閉弁9を制御している。
 第2の圧縮機3の駆動が継続されると、第2の圧縮機3から吐出される冷媒の温度が上昇する。また、第2の圧縮機3の吐出側の圧力が吸入側の圧力以上になってくる。つまり、冷凍サイクル装置1を定常状態で運転しても可能ということになる。
 冷凍サイクル装置1では、第2の圧縮機3が吐出した冷媒の温度を、温度センサー21によって検出する。そして、制御装置100は、温度センサー21の検出温度がある閾値以上となったとき、冷凍サイクル装置1を定常状態で運転可能と判断し、開閉弁9を閉止する。
 なお、冷凍サイクル装置1を定常状態で運転可能と判断するのが遅れた場合でも、逆止弁10があるため、第2の圧縮機3の吐出圧力が急上昇することなく、膨張機5へ冷媒が流れる。このため、高圧や高温の保護装置が働くことなく、冷凍サイクル装置1の確実な起動を実現できる。
 以上、このように構成された冷凍サイクル装置1においては、少なくとも第2の圧縮機3が起動するまで、第2の圧縮機3の吸入側の圧力が第2の圧縮機3の吐出側の圧力よりも大きくなるようにしている。また、少なくとも膨張機5が起動するまで、膨張機5の流出側の圧力を膨張機5の流入側の圧力よりも小さくし、膨張機5の流入側に流れてくる冷媒が低密度となるようにしている。このため、従来の冷凍サイクル装置より、より確実に第2の圧縮機3及び膨張機5を起動させることができる。
 なお、第2の圧縮機3の吸入側の圧力が第2の圧縮機3の吐出側の圧力よりも大きくなるようにするだけでも、従来の冷凍サイクル装置より、より確実に第2の圧縮機3及び膨張機5を起動させることができるのはもちろんである。また、膨張機5の流出側の圧力を膨張機5の流入側の圧力よりも小さくし、膨張機5の流入側に流れてくる冷媒が低密度となるようにするだけでも、従来の冷凍サイクル装置より、より確実に第2の圧縮機3及び膨張機5を起動させることができるのはもちろんである。
 また、冷凍サイクル装置1に四方弁を設けて冷媒流れを切り替えられるようにしても、本発明を実施することができる。
 図6は、本発明の実施の形態1に係る冷凍サイクル装置の別の一例を示す冷媒回路図である。この冷凍サイクル装置51は、第2の圧縮機3の吐出側に四方弁14が設けられている。この四方弁14により、第2の圧縮機3から吐出された冷媒の流路を、放熱器4へ流れる流路又は蒸発器6へ流れる流路に切り替える。また、第1の圧縮機2へ流入する冷媒の流路を蒸発器6から流入する流路又は放熱器4から流入する流路に切り替える。なお、第2の圧縮機3から吐出された冷媒が蒸発器6へ流入する場合(放熱器4から第1の圧縮機2へ冷媒が流入する場合)、放熱器4が蒸発器となり、蒸発器6が放熱器となる。
 また、膨張機5の流入側には、四方弁15が設けられている。この四方弁15により、膨張機5へ流入する冷媒の流路を、放熱器4から流入する流路又は蒸発器6から流入する流路に切り替える。
 このような冷凍サイクル装置51を空気調和機に用いた場合、冷房運転と暖房運転の双方が可能な空気調和機を得ることができる。
 なお、膨張機5は、容積式のため、一方向しか冷媒を流せない。このため、膨張機5の流入口近傍に逆止弁10を設け、この逆止弁10と膨張機5との間にバイパス回路8を接続するとよい。
 また、本実施の形態1に係る冷凍サイクル装置をさらに省エネルギー化するため、例えば図7に示すように、第1の圧縮機2と第2の圧縮機3との間に中間冷却器22を設けてもよい。なお、図7は、冷凍サイクル装置1に中間冷却器22を設けた例を示している。
 第1の圧縮機2から吐出された高温中圧の冷媒を冷却することにより、この冷媒は、モリエル線図上において等エントロピー線の傾きが大きくなる。つまり、第2の圧縮機3が冷媒を圧縮する際に必要な動力を減少させることができる。なお、第1の圧縮機2と第2の圧縮機3との間にあるバイパス回路8の接続部は、中間冷却器22の上流側でもよいし、中間冷却器22の下流側でもよい。前者の場合、膨張機5が起動するまでの間の第1の圧縮機2の吐出圧力の急上昇を抑制することができる。この効果は、開閉弁9を流量調整弁に置き換えて開度を調節することでも実現できる。
 また、本実施の形態1では、放熱器4及び蒸発器6と熱交換する熱媒体を空気としたが、その他の熱媒体としてもよい。例えば、放熱器4と熱交換する熱媒体を水とし、本実施の形態1に係る冷凍サイクル装置を給湯用途に用いてもよい。また、放熱器4や蒸発器6と熱交換する熱媒体を水やブラインとし、この熱媒体を空気調和空間へ搬送し、空気調和空間の空気調和をおこなってもよい。
 また、本実施の形態1では、オゾン破壊係数がゼロであり、かつ地球温暖化係数もフロン類に比べれば格段に小さい二酸化炭素を冷媒として用いたが、冷媒種類は任意である。しかしながら、二酸化炭素を用いた冷凍サイクル装置は従来の冷媒を用いた冷凍サイクル装置よりも運転効率(COP)が低下する。このため、二酸化炭素を用いた冷凍サイクル装置に本発明を実施することは、非常に有効となる。なお、超臨界状態にまで圧縮されない冷媒を用いる場合、放熱器4は凝縮器として機能する。
 また、本実施の形態1では、膨張機5と第2の圧縮機3とを機械的に(軸7で)接続したが、膨張機5と第2の圧縮機3とを電気的に接続してもよい。例えば、膨張機5と発電機を接続し、膨張機5が回収した動力を電力に変換し、この電力を第2の圧縮機3へ供給してもよい。
 また、本実施の形態1では、冷凍サイクル装置1(冷凍サイクル装置51)が定常運転可能かを温度センサー21を用いて検出したが、冷凍サイクル装置1(冷凍サイクル装置51)が定常運転可能か否かの判断に圧力センサーを用いてもよい。より具体的には、第2の圧縮機3の吐出側と吸入側のそれぞれに圧力センサーを設ける。そして、これら圧力センサーの検出値の差がある閾値以上となった場合、冷凍サイクル装置1(冷凍サイクル装置51)が定常運転可能と判断してもよい。
実施の形態2.
 本発明は、実施の形態1に示す冷凍サイクル装置に限らず、例えば以下のような構成の冷凍サイクル装置に実施することもできる。なお、本実施の形態2において、特に記述しない項目については実施の形態1と同様とする。
 図8は、本発明の実施の形態2に係る冷凍サイクル装置の冷媒回路図である。本実施の形態2に係る冷凍サイクル装置52は、実施の形態1に係る冷凍サイクル装置1と比べ、以下の点が異なっている。冷凍サイクル装置52のその他の構成は、冷凍サイクル装置1と同様である。
 まず、第1の圧縮機2と第2の圧縮機3の設置位置が逆となっている。また、逆止弁10に換えて、逆止弁13が設けられている。また、バイパス回路8及び開閉弁9に換えて、バイパス回路11及び開閉弁12が設けられている。
 逆止弁13は、膨張機5と蒸発器6との間に設けられており、蒸発器6から膨張機5へ冷媒が流れることを規制している。
 バイパス回路11は、一方の端部が第2の圧縮機3と第1の圧縮機2との間に接続され、他方の端部が膨張機5と逆止弁13との間に接続されている。このバイパス回路11には、バイパス回路11を開閉する開閉弁12が設けられている。
<動作説明>
 このように構成された冷凍サイクル装置52の動作について説明する。まず、定常運転時における冷凍サイクル装置52の動作について説明する。その後、起動時における冷凍サイクル装置52の動作について説明する。
(定常運転時の動作)
 定常運転時における冷凍サイクル装置52の動作について説明する。
 図9は、本発明の実施の形態2に係る冷凍サイクル装置の定常状態における冷媒流れを示す冷媒回路図である。定常状態では、開閉弁12は閉じた状態となっている。つまり、定常状態では、バイパス回路11に冷媒が流れないようになっている。なお、図9では、冷媒が流れる配管を太線で示している。
 第2の圧縮機3で高温中圧に圧縮された冷媒は、第2の圧縮機3から吐出される。この高温中圧の冷媒は、第1の圧縮機2で高温高圧(超臨界状態)に圧縮され、放熱器4に流入する。放熱器4に流入した冷媒は、ファン4aに搬送された空気へ放熱し、低温高圧の冷媒となる。この低温高圧の冷媒は、膨張機5に流入する。膨張機5に流入した冷媒は、減圧されて低圧低乾き度の冷媒となる。この減圧過程において、膨張機5は動力を回収する。そして、回収された動力は、軸7を介して、第2の圧縮機3へ供給される。膨張機5から流出した低圧低乾き度の冷媒は、逆止弁13を通って、蒸発器6に流入する。蒸発器6に流入した冷媒は、ファン6aに搬送された空気から吸熱し、低圧高乾き度の冷媒又は低圧過熱ガス状の冷媒となる。蒸発器6から流出した冷媒は、第2の圧縮機3に吸入される。
 膨張機5で回収された動力が第2の圧縮機3での圧縮動力として使用されるため、その分、第1の圧縮機の必要動力が低下する。このため、冷凍サイクル装置52の省エネルギー化を図ることができる。
(起動時の動作)
 次に、起動時における冷凍サイクル装置1の動作について説明する。
 図10は、本発明の実施の形態2に係る冷凍サイクル装置の起動時における冷媒流れを示す冷媒回路図である。起動時においては、開閉弁12は開いた状態となっている。つまり、起動時においては、バイパス回路11に冷媒が流れるようになっている。また、放熱器に空気を搬送するファン4aは、停止又は定常状態よりも小さい回転数(回転速度)となっている。なお、図10では、冷媒が流れる配管を太線で示している。
 第1の圧縮機2で圧縮された冷媒は、放熱器4を通って、膨張機5へ至る。また、第1の圧縮機2が起動することにより、膨張機5の流出側の冷媒は、バイパス回路11を通って、第1の圧縮機2へ吸入される。このとき、逆止弁13により、第2の圧縮機3の吸入側の冷媒が第1の圧縮機2によって吸入されることを防止している。つまり、第2の圧縮機3が停止している起動時においては、第2の圧縮機3の吸入側の圧力は、第2の圧縮機3の吐出側の圧力よりも大きくなっていく。
 なお、逆止弁13が設けられていなくとも、第2の圧縮機3が停止している状態では、第2の圧縮機3の吸入側の圧力は、第2の圧縮機3の吐出側の圧力よりも大きくなる。第1の圧縮機2が起動してから第2の圧縮機3が起動するまでの時間は数秒程度(本実施の形態2に係る冷凍サイクル装置52では、例えば2秒~3秒程度)である。このため、第2の圧縮機3の吸入側から吸入される冷媒の大部分は蒸発器6に貯留された冷媒であり(蒸発器6がバッファーとなり)、第2の圧縮機3の吸入側の圧力低下が鈍感となるからである。
 つまり、バイパス回路11及び開閉弁12が、本発明の圧力調整装置となる。本実施の形態2では、第2の圧縮機3の吸入側圧力と吐出側圧力の差圧をより確実に得るため、逆止弁13を設けている。
 また、膨張機5が停止している状態では、膨張機5の流出側の圧力は、膨張機5の流入側の圧力よりも小さくなっていく。また、膨張機5の流入側に流れてくる冷媒は、放熱器4での熱交換量が少ないので、低密度な冷媒となっている。つまり、バイパス回路11及び開閉弁12、及びファン4aの回転数を制御する制御装置100が、本発明の膨張機起動促進装置となる。なお、逆止弁13は、膨張機起動促進装置の構成でなくともよい。
 膨張機5の差圧が大きくなってくると、膨張機5は起動される(駆動が開始される)。このとき、膨張機5の膨張室内の圧力は図4のようになる(実施の形態1と同様となる)。起動時における膨張機5の差圧は定常状態における膨張機5の差圧よりも小さいため、若干過膨張となっているが、「面積D-面積E」に相当する動力(正の動力)が得られる。このため、膨張機5の駆動を継続することができる。
 一方、軸7を介して膨張機5と接続されている第2の圧縮機3は、その圧縮室内の圧力が図5のように変化する(実施の形態1と同様となる)。第2の圧縮機3の吸入側の圧力が吐出側の圧力よりも大きくなっている(逆圧となっている)ため、過圧縮となっている。このときの圧縮動力は、「面積A-面積B」に相当する動力となり、圧縮機の吐出側圧力と吸入側圧力とを均圧する従来の冷凍サイクル装置(例えば特許文献1参照)よりも小さくなっている。このため、従来の冷凍サイクル装置よりも第2の圧縮機3を起動させやすくなっている。また、逆圧の程度によっては、面積B-面積Aに相当する回収動力が得られる。この分の動力は、第2の圧縮機3の安定した起動に寄与する。
 膨張機5及び第2の圧縮機3が起動したら、開閉弁12を閉止しても、膨張機5及び第2の圧縮機3の駆動を継続することは可能である。しかしながら、本実施の形態2では、膨張機5及び第2の圧縮機3の駆動をより確実に継続させるため、冷凍サイクル装置52が定常状態で運転可能となるまで、開閉弁12を開いた状態にしている。
 より具体的には、制御装置100は以下のように開閉弁12を制御している。
 第2の圧縮機3の駆動が継続されると、第2の圧縮機3から吐出される冷媒の温度が上昇する。また、第2の圧縮機3の吐出側の圧力が吸入側の圧力以上になってくる。つまり、冷凍サイクル装置52を定常状態で運転しても可能ということになる。
 冷凍サイクル装置52では、第2の圧縮機3が吐出した冷媒の温度を、温度センサー21によって検出する。そして、制御装置100は、温度センサー21の検出温度がある閾値以上となったとき、冷凍サイクル装置1を定常状態で運転可能と判断し、開閉弁12を閉止する。また、ファン4aの回転数を定常状態の回転数に変更する。冷凍サイクル装置52が定常運転可能か否かの判断に圧力センサーを用いてもよい。
 なお、冷凍サイクル装置52を定常状態で運転可能と判断するのが遅れた場合でも、逆止弁13があるため、第2の圧縮機3の吸入側の圧力が急低下することなく、膨張機5へ冷媒が流れる。このため、低圧や低温の保護装置が働くことなく、冷凍サイクル装置52の確実な起動を実現できる。
 以上、このように構成された冷凍サイクル装置52においては、少なくとも第2の圧縮機3が起動するまで、第2の圧縮機3の吸入側の圧力が第2の圧縮機3の吐出側の圧力よりも大きくなるようにしている。また、少なくとも膨張機5が起動するまで、膨張機5の流出側の圧力を膨張機5の流入側の圧力よりも小さくし、膨張機5の流入側に流れてくる冷媒が低密度となるようにしている。このため、従来の冷凍サイクル装置より、より確実に第2の圧縮機3及び膨張機5を起動させることができる。
 なお、第2の圧縮機3の吸入側の圧力が第2の圧縮機3の吐出側の圧力よりも大きくなるようにするだけでも、従来の冷凍サイクル装置より、より確実に第2の圧縮機3及び膨張機5を起動させることができるのはもちろんである。また、膨張機5の流出側の圧力を膨張機5の流入側の圧力よりも小さくし、膨張機5の流入側に流れてくる冷媒が低密度となるようにするだけでも、従来の冷凍サイクル装置より、より確実に第2の圧縮機3及び膨張機5を起動させることができるのはもちろんである。
 1 冷凍サイクル装置、2 第1の圧縮機、3 第2の圧縮機、4 放熱器、4a ファン、5 膨張機、6 蒸発器、6a ファン、7 軸、8 バイパス回路、9 開閉弁、10 逆止弁、11 バイパス回路、12 開閉弁、13 逆止弁、14 四方弁、15 四方弁、21 温度センサー、22 中間冷却器、51 冷凍サイクル装置、52 冷凍サイクル装置、100 制御装置。

Claims (11)

  1.  第1の圧縮機、放熱器又は凝縮器となる第1の熱交換器、膨張機、及び蒸発器となる第2の熱交換器が順次配管接続された冷媒回路と、
     前記第1の圧縮機と前記第1の熱交換器との間の前記冷媒回路に設けられ、前記膨張機で回収された動力によって駆動される第2の圧縮機と、
     を有し、
     前記第2の圧縮機は容積式の圧縮機であり、
     少なくとも前記第2の圧縮機が起動されるまでは、前記第2の圧縮機の吸入側の圧力よりも前記第2の圧縮機の吐出側の圧力を低くする圧力調整装置を備えたことを特徴とする冷凍サイクル装置。
  2.  前記圧力調整装置は、
     一方の端部が前記第1の圧縮機と前記第2の圧縮機との間に接続され、他方の端部が前記第1の熱交換器と前記膨張機との間に接続されたバイパス回路と、
     該バイパス回路に設けられた開閉弁と、
     を備え、
     少なくとも前記第2の圧縮機が起動されるまでは、前記開閉弁を開状態とすることを特徴とする請求項1に記載の冷凍サイクル装置。
  3.  前記第1の熱交換器と前記バイパス回路の他方の端部との間に、前記第1の熱交換器への冷媒流れを規制する逆止弁を備えたことを特徴とする請求項2に記載の冷凍サイクル装置。
  4.  第1の圧縮機、放熱器又は凝縮器となる第1の熱交換器、膨張機、及び蒸発器となる第2の熱交換器が順次配管接続された冷媒回路と、
     前記第2の熱交換器と前記第1の圧縮機との間の前記冷媒回路に設けられ、前記膨張機で回収された動力によって駆動される第2の圧縮機と、
     を有し、
     前記第2の圧縮機は容積式の圧縮機であり、
     少なくとも前記第2の圧縮機が起動されるまでは、前記第2の圧縮機の吸入側の圧力よりも前記第2の圧縮機の吐出側の圧力を低くする圧力調整装置を備えたことを特徴とする冷凍サイクル装置。
  5.  前記圧力調整装置は、
     一方の端部が前記第2の圧縮機と前記第1の圧縮機との間に接続され、他方の端部が前記膨張機と前記第2の熱交換器との間に接続されたバイパス回路と、
     該バイパス回路に設けられた開閉弁と、
     を備え、
     少なくとも前記第2の圧縮機が起動されるまでは、前記開閉弁を開状態とすることを特徴とする請求項4に記載の冷凍サイクル装置。
  6.  前記バイパス回路の他方の端部と前記第2の熱交換器との間に、前記第2の熱交換器からの冷媒流れを規制する逆止弁を備えたことを特徴とする請求項5に記載の冷凍サイクル装置。
  7.  第1の圧縮機、放熱器又は凝縮器となる第1の熱交換器、膨張機、及び蒸発器となる第2の熱交換器が順次配管接続された冷媒回路と、
     前記第1の圧縮機と前記第1の熱交換器との間の前記冷媒回路に設けられ、前記膨張機で回収された動力によって駆動される第2の圧縮機と、
     を有し、
     前記第2の圧縮機は容積式の圧縮機であり、
     少なくとも前記膨張機が起動されるまでは、前記膨張機の流入側の圧力よりも前記膨張機の吐出側の圧力を低く調整し、前記膨張機に流入する冷媒の密度を調整する膨張機起動促進装置を備えたことを特徴とする冷凍サイクル装置。
  8.  前記膨張機起動促進装置は、
     一方の端部が前記第1の圧縮機と前記第2の圧縮機との間に接続され、他方の端部が前記第1の熱交換器と前記膨張機との間に接続されたバイパス回路と、
     該バイパス回路に設けられた開閉弁と、
     を備え、
     少なくとも前記膨張機が起動されるまでは、前記開閉弁を開状態とすることを特徴とする請求項7に記載の冷凍サイクル装置。
  9.  第1の圧縮機、放熱器又は凝縮器となる第1の熱交換器、膨張機、及び蒸発器となる第2の熱交換器が順次配管接続された冷媒回路と、
     前記第2の熱交換器と前記第1の圧縮機との間の前記冷媒回路に設けられ、前記膨張機で回収された動力によって駆動される第2の圧縮機と、
     を有し、
     前記第2の圧縮機は容積式の圧縮機であり、
     少なくとも前記膨張機が起動されるまでは、前記膨張機の流入側の圧力よりも前記膨張機の吐出側の圧力を低く調整し、前記膨張機に流入する冷媒の密度を調整する膨張機起動促進装置を備えたことを特徴とする冷凍サイクル装置。
  10.  前記第1の熱交換器を流れる冷媒と熱交換を行う熱媒体を、前記第1の熱交換器に搬送する熱媒体搬送装置を有し、
     前記圧力調整装置は、
     一方の端部が前記第2の圧縮機と前記第1の圧縮機との間に接続され、他方の端部が前記膨張機と前記第2の熱交換器との間に接続されたバイパス回路と、
     該バイパス回路に設けられた開閉弁と、
     前記熱媒体搬送装置の回転数を制御する制御装置と、
     を備え、
     少なくとも前記第2の圧縮機が起動されるまでは、
     前記開閉弁を開状態とし、
     前記熱媒体搬送装置の回転数を目標回転数より減少、又は前記熱媒体搬送装置を停止させることを特徴とする請求項9に記載の冷凍サイクル装置。
  11.  前記冷媒回路を流れる冷媒は二酸化炭素であることを特徴とする請求項1~請求項10のいずれか一項に記載の冷凍サイクル装置。
PCT/JP2009/067459 2009-10-07 2009-10-07 冷凍サイクル装置 WO2011042959A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/395,376 US20120167606A1 (en) 2009-10-07 2009-10-07 Refrigeration cycle apparatus
PCT/JP2009/067459 WO2011042959A1 (ja) 2009-10-07 2009-10-07 冷凍サイクル装置
JP2011535233A JP5389184B2 (ja) 2009-10-07 2009-10-07 冷凍サイクル装置
CN200980161820.6A CN102575885B (zh) 2009-10-07 2009-10-07 冷冻循环装置
EP09850230.5A EP2476973B9 (en) 2009-10-07 2009-10-07 Refrigeration cycle device
ES09850230.5T ES2693240T3 (es) 2009-10-07 2009-10-07 Dispositivo de ciclo de refrigeración

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/067459 WO2011042959A1 (ja) 2009-10-07 2009-10-07 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2011042959A1 true WO2011042959A1 (ja) 2011-04-14

Family

ID=43856457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067459 WO2011042959A1 (ja) 2009-10-07 2009-10-07 冷凍サイクル装置

Country Status (6)

Country Link
US (1) US20120167606A1 (ja)
EP (1) EP2476973B9 (ja)
JP (1) JP5389184B2 (ja)
CN (1) CN102575885B (ja)
ES (1) ES2693240T3 (ja)
WO (1) WO2011042959A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073586A1 (ja) * 2008-12-22 2010-07-01 パナソニック株式会社 冷凍サイクル装置
CN103196187B (zh) * 2013-04-19 2015-07-01 东南大学 基于膨胀功回收的加压溶液除湿空调装置及调控方法
CN103512256A (zh) * 2013-09-22 2014-01-15 孙西峰 一种制冷系统及空调
FR3034464B1 (fr) * 2015-04-03 2017-03-24 Snecma Refroidissement du circuit d'huile d'une turbomachine
CN106352601B (zh) * 2016-03-14 2020-04-07 李华玉 第三类热驱动压缩式热泵
CN107621093A (zh) * 2017-10-19 2018-01-23 天津商业大学 基于余压回收的蒸发冷却器过冷的co2冷冻冷藏系统
CN107631511A (zh) * 2017-10-19 2018-01-26 天津商业大学 基于余压回收的辅助过冷的co2中低温冷冻冷藏系统
CN107631510A (zh) * 2017-10-19 2018-01-26 天津商业大学 基于余压回收的co2中低温冷冻冷藏系统
US11300339B2 (en) 2018-04-05 2022-04-12 Carrier Corporation Method for optimizing pressure equalization in refrigeration equipment
CN110715474A (zh) * 2019-11-28 2020-01-21 广东美的制冷设备有限公司 运行控制方法、压缩空气换热系统以及存储介质
CN115823759A (zh) * 2022-11-25 2023-03-21 珠海格力电器股份有限公司 压缩制冷系统及控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1194379A (ja) 1997-09-22 1999-04-09 Sanden Corp 冷凍空調装置
JP2003307358A (ja) * 2002-04-15 2003-10-31 Sanden Corp 冷凍空調装置
JP2006132818A (ja) 2004-11-04 2006-05-25 Matsushita Electric Ind Co Ltd 冷凍サイクル装置の制御方法およびそれを用いた冷凍サイクル装置
JP2008128576A (ja) * 2006-11-22 2008-06-05 Hitachi Appliances Inc 冷凍サイクル装置
WO2008146709A1 (ja) * 2007-05-25 2008-12-04 Mitsubishi Electric Corporation 冷凍サイクル装置
JP2009109158A (ja) * 2007-11-01 2009-05-21 Mitsubishi Electric Corp 冷凍空調装置
JP2009162438A (ja) * 2008-01-08 2009-07-23 Mitsubishi Electric Corp 空気調和装置およびその運転方法
JP2009204201A (ja) * 2008-02-27 2009-09-10 Panasonic Corp 冷凍サイクル装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3462156B2 (ja) * 1999-11-30 2003-11-05 株式会社東芝 冷蔵庫
JP2004137979A (ja) * 2002-10-18 2004-05-13 Matsushita Electric Ind Co Ltd 膨張機
JP4321095B2 (ja) * 2003-04-09 2009-08-26 日立アプライアンス株式会社 冷凍サイクル装置
JP2009052752A (ja) * 2005-12-19 2009-03-12 Panasonic Corp 冷凍サイクル装置
CN101135504A (zh) * 2006-08-29 2008-03-05 松下电器产业株式会社 一种制冷循环装置
WO2008105868A2 (en) * 2007-02-26 2008-09-04 Carrier Corporation Economized refrigerant system utilizing expander with intermediate pressure port

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1194379A (ja) 1997-09-22 1999-04-09 Sanden Corp 冷凍空調装置
JP2003307358A (ja) * 2002-04-15 2003-10-31 Sanden Corp 冷凍空調装置
JP2006132818A (ja) 2004-11-04 2006-05-25 Matsushita Electric Ind Co Ltd 冷凍サイクル装置の制御方法およびそれを用いた冷凍サイクル装置
JP2008128576A (ja) * 2006-11-22 2008-06-05 Hitachi Appliances Inc 冷凍サイクル装置
WO2008146709A1 (ja) * 2007-05-25 2008-12-04 Mitsubishi Electric Corporation 冷凍サイクル装置
JP2009109158A (ja) * 2007-11-01 2009-05-21 Mitsubishi Electric Corp 冷凍空調装置
JP2009162438A (ja) * 2008-01-08 2009-07-23 Mitsubishi Electric Corp 空気調和装置およびその運転方法
JP2009204201A (ja) * 2008-02-27 2009-09-10 Panasonic Corp 冷凍サイクル装置

Also Published As

Publication number Publication date
JPWO2011042959A1 (ja) 2013-02-28
EP2476973B9 (en) 2019-02-13
ES2693240T3 (es) 2018-12-10
JP5389184B2 (ja) 2014-01-15
EP2476973B1 (en) 2018-09-26
CN102575885A (zh) 2012-07-11
US20120167606A1 (en) 2012-07-05
EP2476973A4 (en) 2017-08-16
EP2476973A1 (en) 2012-07-18
CN102575885B (zh) 2014-09-10

Similar Documents

Publication Publication Date Title
JP5389184B2 (ja) 冷凍サイクル装置
US9395105B2 (en) Refrigeration cycle device
JP4053082B2 (ja) 冷凍サイクル装置
JP5349686B2 (ja) 冷凍サイクル装置
JP3863480B2 (ja) 冷凍サイクル装置
JP4242131B2 (ja) 冷凍サイクル装置
US7886550B2 (en) Refrigerating machine
JP2001116371A (ja) 空気調和装置
JP5478715B2 (ja) 冷凍サイクル装置及びその運転方法
JP4906963B2 (ja) 冷凍サイクル装置
JP5414811B2 (ja) 容積型膨張機及びこの容積型膨張機を用いた冷凍サイクル装置
JP3870951B2 (ja) 冷凍サイクル装置およびその制御方法
JP4307878B2 (ja) 冷媒サイクル装置
JP3863555B2 (ja) 冷凍サイクル装置
JP4196890B2 (ja) 蒸気圧縮式冷凍機
JP5751119B2 (ja) 冷凍装置
WO2011099057A1 (ja) 冷凍空調装置
JP2011237086A (ja) 冷凍空調装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980161820.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09850230

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011535233

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13395376

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009850230

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE