WO2011040634A1 - 熱流束計測装置、及び熱流束計測方法 - Google Patents

熱流束計測装置、及び熱流束計測方法 Download PDF

Info

Publication number
WO2011040634A1
WO2011040634A1 PCT/JP2010/067399 JP2010067399W WO2011040634A1 WO 2011040634 A1 WO2011040634 A1 WO 2011040634A1 JP 2010067399 W JP2010067399 W JP 2010067399W WO 2011040634 A1 WO2011040634 A1 WO 2011040634A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermocouple
measurement position
measurement
heat flux
temperature difference
Prior art date
Application number
PCT/JP2010/067399
Other languages
English (en)
French (fr)
Inventor
裕二 池田
淳 西山
隆 古井
Original Assignee
イマジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イマジニアリング株式会社 filed Critical イマジニアリング株式会社
Priority to US13/499,762 priority Critical patent/US9127988B2/en
Priority to EP10820744.0A priority patent/EP2485025B1/en
Priority to JP2011534357A priority patent/JP5540241B2/ja
Publication of WO2011040634A1 publication Critical patent/WO2011040634A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/06Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device
    • G01K17/08Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature
    • G01K17/20Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature across a radiating surface, combined with ascertainment of the heat transmission coefficient

Definitions

  • the present invention relates to a heat flux measuring device and a heat flux measuring method for measuring a heat flux.
  • Patent Document 1 describes a heat flux meter attached to an engine cylinder wall as a heat flux measuring device.
  • a temperature measuring point of a pair of thermocouples is provided in a heat transfer body screwed into a screw hole in a cylinder wall of an engine.
  • the temperature measuring points of the pair of thermocouples are provided at different positions in the thickness direction of the cylinder wall.
  • the heat flux conducted through the cylinder wall in the thickness direction is measured by the temperature difference measured at the two temperature measuring points.
  • thermocouple since the strand has a heat capacity, a response delay corresponding to the thickness of the strand occurs. Therefore, in the conventional heat flux measuring device, there are cases where sufficient time resolution cannot be obtained in the measurement of the heat flux.
  • the present invention has been made in view of the above circumstances, and an object thereof is to improve time resolution in a heat flux measuring device and a heat flux measuring method for measuring a heat flux.
  • a first invention uses a thermocouple to measure a temperature difference between a first measurement position and a second measurement position lower in temperature than the first measurement position, and a thermocouple of the first measurement section.
  • a second is used to measure a temperature difference between a third measurement position that can be regarded as the same temperature as the first measurement position and a fourth measurement position that can be regarded as the same temperature as the second measurement position, using thermocouples having different time constants.
  • thermocouple of at least one measuring unit A heat flux calculating unit that detects a time constant, calculates a temperature difference that compensates for a response delay of the measured temperature difference based on the detected time constant, and calculates a heat flux from the compensated temperature difference. It is a bundle measuring device.
  • the measured temperature difference between the first measurement position and the second measurement position is obtained from the thermoelectromotive force of the thermocouple of the first measurement unit.
  • An actually measured temperature difference between the third measurement position and the fourth measurement position is obtained from the thermoelectromotive force of the thermocouple of the second measurement unit.
  • Each time differential value is obtained from the time change of each actually measured temperature value.
  • the relational expression of the temperature difference that compensates for the response delay of each measured temperature difference (hereinafter referred to as the compensated temperature difference) is expressed using the measured temperature difference, the time differential value of the measured temperature difference, and the time constant as variables. (See Equations 1 and 2 below).
  • the time constant of the thermocouple of the first measurement unit is different from the time constant of the thermocouple of the second measurement unit.
  • the first measurement position and the third measurement position can be regarded as the same temperature
  • the second measurement position and the fourth measurement position can be regarded as the same temperature. That is, the post-compensation temperature difference of the first thermocouple and the post-compensation temperature difference of the second thermocouple can be regarded as the same. Therefore, using these relationships, it is possible to calculate the time constant of each thermocouple. If the time constant of the thermocouple of at least one measurement unit is known, the compensated temperature difference is derived, and the heat flux is derived from the compensated temperature difference. In the first invention, the time constant can be detected by measuring at least two thermocouples having different time constants and measuring the temperature difference between the positions at which the temperature difference can be regarded as the same, so that the heat flow can be detected using the time constant. The bundle is calculated.
  • the first measurement unit includes a first thermocouple in which a hot junction is provided at a first measurement position and a cold junction is provided at a second measurement position.
  • the second measuring unit includes a second thermocouple in which a hot junction is provided at the third measurement position and a cold junction is provided in the fourth measurement position, and the time constants of the first thermocouple and the second thermocouple are mutually equal. Different.
  • the first measurement unit includes a first high temperature side thermocouple in which a hot junction is provided at the first measurement position, and a hot junction in the second measurement position.
  • the second measurement unit includes a second high temperature side thermocouple in which the hot junction is provided at the third measurement position and a second low temperature side in which the hot junction is provided at the fourth measurement position.
  • a thermocouple, and the time constants of the first high temperature side thermocouple and the second high temperature side thermocouple are different from each other, and the time constants of the first low temperature side thermocouple and the second low temperature side thermocouple are different from each other.
  • the first thermocouple is used to detect a temperature difference between the first measurement position and the second measurement position lower in temperature than the first measurement position, and at the same time, the first thermocouple has a time constant.
  • a measurement step of detecting a temperature difference between a third measurement position that can be regarded as the same temperature as the first measurement position and a fourth measurement position that can be regarded as the same temperature as the second measurement position using a different second thermocouple Using the measured temperature difference obtained from the thermoelectromotive force of each thermocouple and the time differential value of the measured temperature difference of each thermocouple, the time constant of at least one of the thermocouples is detected.
  • a heat flux measurement method comprising: a heat flux calculation step of calculating a temperature difference that compensates for a response delay of the measured temperature difference and calculating a heat flux from the compensated temperature difference.
  • the time constant can be detected. I am trying to calculate.
  • the value of the heat flux calculated from this time constant is an instantaneous value with no response delay. Since the response delay of the thermocouple of one measurement unit is compensated using the thermocouple of the other measurement unit, an instantaneous value of the heat flux can be obtained. Therefore, the time resolution of the heat flux measuring device or the heat flux measuring method can be improved.
  • the thermal flow velocity measuring device 100 of the present embodiment includes a first measuring unit 110, a second measuring unit 120, a recording device 130, and a signal processing device 140.
  • the first measurement unit 110 uses the first thermocouple 112 to measure the temperature difference between the measurement position A (first measurement position) and the measurement position B (second measurement position) lower than the measurement position A.
  • the measurement positions A and B may be the surface of the measurement object or the inside of the measurement object.
  • the first measurement unit 110 includes a first thermocouple 112 and a first differential thermometer 114.
  • the first thermocouple 112 includes a first temperature measuring contact 116 and a second temperature measuring contact 118.
  • the first temperature measuring contact 116 is arranged at the measurement position A
  • the second temperature measuring contact 118 is arranged at the measurement position B.
  • the first differential thermometer 114 calculates the temperature difference (measured temperature difference) between the two temperature measuring junctions A and B based on the electromotive force of the first thermocouple 112, and sequentially outputs the calculation results.
  • the second measurement unit 120 uses the second thermocouple 122 having a time constant different from that of the first thermocouple 112, and uses this temperature difference between the measurement position C (third measurement position) and the measurement position D (fourth measurement position). Measure.
  • the measurement position C a place where the temperature can be regarded as the same as the measurement position A is selected.
  • the measurement position D a place where the temperature is the same as the measurement position B is selected.
  • the measurement position C is a position very close to the measurement position A
  • the measurement position D is a position very close to the measurement position B. Both the distance between the measurement position A and the measurement position C and the distance between the measurement position B and the measurement position D are extremely short relative to the distance ⁇ x of the measurement target section.
  • the second measuring unit 120 includes a second thermocouple 122 and a second differential thermometer 124.
  • the second measuring unit 120 is different in thermal inertia from the first measuring unit 110.
  • the second thermocouple 122 is a thermocouple having a time constant different from that of the first thermocouple 112.
  • the second thermocouple 122 is different in wire diameter from the first thermocouple 112.
  • the second thermocouple 122 includes a third temperature measuring contact 126 and a fourth temperature measuring contact 128.
  • the third temperature measuring contact 126 is arranged at the measurement position C
  • the fourth temperature measuring contact 128 is arranged at the measurement position D.
  • the second differential thermometer 124 calculates the temperature difference (measured temperature difference) between the two temperature measuring junctions C and D based on the electromotive force of the second thermocouple 122, and sequentially outputs the calculation result.
  • the recording device 130 and the signal processing device 140 include the measured temperature difference obtained from the thermoelectromotive force of the thermocouples 112 and 122 of the measuring units 110 and 120, and the time differential value of the measured temperature difference of the measuring units 110 and 120, respectively. Is used to detect the time constants of the thermocouples 112 and 122 of at least one of the measuring units 110 and 120, calculate a temperature difference that compensates for the response delay of the actually measured temperature difference based on the detected time constant, and calculates the compensated temperature.
  • the heat flux calculation units 130 and 140 that calculate the heat flux from the difference are configured.
  • the recording device 130 is connected to the first measurement unit 110 and the second measurement unit 120, respectively.
  • the recording device 130 records the response output of the first measurement unit 110 (measurement result of actual temperature difference) and the response output of the second measurement unit 120 (measurement result of actual temperature difference).
  • the recording device 130 accumulates the response output 132 (first response output) of the first differential thermometer 114 and the response output 134 (second response output) of the second differential thermometer 124.
  • the recording device 130 stores the output signal 132 of the first differential thermometer 114 and the output signal 134 of the second differential thermometer 124 in digital form.
  • the first differential thermometer 114 and the second differential thermometer 124 are provided with A / D converters.
  • the recording device 130 holds data 136 of the distance ⁇ x between the measurement position A and the measurement position B and data 138 of the thermal conductivity ⁇ between the measurement position A and the measurement position B in advance.
  • the distance ⁇ x may be measured in advance when setting the measurement position A and the measurement position B, and stored in the recording device 130.
  • the thermal conductivity ⁇ if the material of the measurement object is known, a literature value or the like related to the material may be stored in the recording device 130. Alternatively, the thermal conductivity ⁇ may be separately measured and stored in the recording device 130.
  • the signal processing device 140 performs a conversion process from the measurement result recorded in the recording device 130 to the heat flux.
  • the signal processing device 140 performs a heat flux calculation step described later.
  • the recording device 130 and the signal processing device 140 are substantially realized by a system having computer hardware and data and programs held in the computer hardware.
  • FIG. 2 shows an internal configuration of computer hardware 300 constituting this system.
  • the computer hardware 300 includes a computer 310, a keyboard 350, a pointing device 352 such as a mouse, and a monitor 354.
  • the computer 300 includes a removable memory port 312 for removable memory and a DVD (Digital Versatile Disc) drive 314.
  • the keyboard 350 is configured to allow character information and command input operations.
  • the computer 310 includes a memory port 312, a DVD drive 314, a central processing unit 316 (CPU), a bus 318, a read only memory 320 (ROM), a random access memory 322 (RAM), and a peripheral storage device 324. , An interface board 326, a graphic board 328, and a network interface card 330 (NIC).
  • the bus 318 is connected to the memory port 312, the DVD drive 314, the CPU 316, the read-only memory 320, the random access memory 322, the peripheral storage device 324, the interface board 326, the graphic board 328, and the network interface card 330.
  • the read only memory 320 stores a bootup program and the like.
  • the random access memory 322 stores program instructions, system programs, work data, and the like.
  • the peripheral storage device 324 includes a hard disk drive, a semiconductor storage device drive, or the like, and stores and stores programs, system programs, data, and the like.
  • the interface board 326 is connected to the computer 310 and the keyboard 350, the pointing device 352, and other peripheral devices.
  • the interface board 326 of the recording device 130 is connected to the first and second differential thermometers 114 and 124.
  • the graphic board 328 performs image processing and image output to the monitor 354.
  • Network interface card 330 provides a connection to a local area network 360 (LAN) for communicating with other computers.
  • LAN local area network 360
  • data (first response output and second response output) is stored in a removable medium inserted into the memory port 312 or the DVD drive 314.
  • Data stored in the removable medium is transferred to the peripheral storage device 324.
  • the data may be stored in the peripheral storage device 324 from the peripheral device connected to the interface board 326 via the interface board 326.
  • a program for operating the recording device 130 and the signal processing device 140 (a program for executing a heat flux calculation step described later) is stored in the memory port 312 or a removable medium inserted into the DVD drive 314.
  • the program stored in the removable medium is transferred to the peripheral storage device 324.
  • the program may be transmitted to the computer 310 through the LAN 360 and stored in the peripheral storage device 324.
  • the program is loaded into the RAM 322 when executed.
  • the program may be loaded into the RAM 322 from a removable medium or directly via the LAN 360.
  • the program includes a plurality of instructions for operating the recording device 130 and the signal processing device 140.
  • Some of the basic functions necessary to operate the recording device 130 and the signal processing device 140 are provided by an operating system (OS) that runs on the computer 310 or a third-party program. Therefore, the program need not include all functions necessary for operating the recording device 130 and the signal processing device 140 of the present embodiment. Since the operation of the computer system 300 itself is well known, a description thereof is omitted here.
  • OS operating system
  • the first thermocouple 112 is used to detect the temperature difference between the measurement position A and the measurement position B lower than the measurement position A, and at the same time, the second thermocouple 112 has a second time constant different from that of the first thermocouple 112.
  • the thermocouple 122 Using the thermocouple 122, a temperature difference between a measurement position C that can be regarded as the same temperature as the measurement position A and a measurement position D that can be regarded as the same temperature as the measurement position B is detected.
  • the first measurement unit 110 and the second measurement unit 120 sequentially output the actually measured temperature difference (the first response output and the second response output), and the recording device 130 records the output actually measured temperature difference.
  • FIG. 3 shows a flowchart 400 of the heat flux calculation step.
  • the signal processing device 140 performs a heat flux calculation step.
  • the signal processing device 140 performs a heat flux calculation step according to the installed program.
  • thermocouples 112 is obtained by using the measured temperature difference obtained from the thermoelectromotive force of each thermocouple 112, 122 and the time differential value of the measured temperature difference of each thermocouple 112, 122. , 122 is detected, a temperature difference that compensates for a response delay of the actually measured temperature difference is calculated based on the detected time constant, and a heat flux is calculated from the compensated temperature difference.
  • step 402 is first performed in the heat flux calculation step.
  • step 402 parameters used for processing in the program are read.
  • step 404 the width N of the data section used to calculate the time constants of the first response output T 1 and the second response output T 2 (see FIG. 1) of the temperature difference is set.
  • step 406 the time interval ⁇ t at which the actually measured temperature difference is measured is calculated from the reciprocal of the sampling frequency during A / D conversion.
  • step 408 the time differential value G 2 of the first response of the output T 1 time differential value G 1 and the second response output T 2 is calculated.
  • Time derivative G 1 of the first response output T 1 is calculated by Equation 1
  • the time derivative G 2 of the second response output T 2 are calculated by Equation 2.
  • step 412 using the least square method, the response delay time constant ⁇ 1 of the first measurement unit 110 and the response delay time constant ⁇ 1 of the second measurement unit 120 are calculated from the relative relationship of the response delay time constants. 2 is estimated. Specifically, at each measurement time, T g1 temperature difference between the first measuring unit 110 after compensating for the response delay when the use of constant tau 1, can be expressed as Equation 3, the response delay the temperature difference T g2 of the second measuring unit 120 after the compensation, when the use of constant tau 2, can be expressed as equation 4.
  • T g1 and T g2 should match after compensation. Therefore, in step 412, time constants ⁇ 1 and ⁇ 2 when the root mean square value e of the difference between T g1 and T g2 shown in Equation 5 is minimized are obtained.
  • T g1 T 1 + ⁇ 1 G 1
  • T g2 T 2 + ⁇ 2 G 2
  • Equation 6 a variable with a horizontal line above represents an average value of the variable.
  • tau 1 the tau 2 is assumed to be constant, tau 1, tau 2 of each measurement time will the average value and the same value.
  • Equation 7 the average value of ⁇ 1 is expressed by Equation 7, and the average value of ⁇ 2 is expressed by Equation 8.
  • step 414 the temperature difference T 1 after compensation is calculated from the measured temperature difference T 1 , the time differential value G 1 calculated in step 408, and the time constant ⁇ 1 calculated in step 412 using Equation 3. g1 is calculated.
  • thermocouples 112 and 122 having different time constants are used and the temperature difference between positions where the temperature difference can be regarded as the same is measured, the time constant can be detected.
  • the heat flux is calculated.
  • the value of the heat flux calculated from this time constant is an instantaneous value with no response delay. Therefore, the time resolution of the heat flux measuring device 100 or the heat flux measuring method can be improved. ⁇ Other Embodiments >>
  • the above embodiment may be configured as follows.
  • the first measurement unit 110 includes a first high temperature side thermocouple in which a hot junction is provided at the measurement position A, and a first low temperature side thermocouple in which a hot junction is provided at the measurement position B.
  • the second measuring unit 120 may include a second high temperature side thermocouple in which the hot junction is provided at the measurement position C and a second low temperature side thermocouple in which the hot junction is provided at the measurement position D.
  • the time constants of the first high temperature side thermocouple and the second high temperature side thermocouple are different from each other, and the time constants of the first low temperature side thermocouple and the second low temperature side thermocouple are different from each other.
  • the first high temperature side thermocouple, the first low temperature side thermocouple, the second high temperature side thermocouple, and the second low temperature side thermocouple are provided at positions where the cold junction can be regarded as the same temperature.
  • an instantaneous value of the temperature difference between the measurement position A and the cold junction position can be obtained.
  • the instantaneous value of the temperature difference between the measurement position B and the cold junction position is obtained.
  • the temperature difference between the measurement position A and the measurement position B is obtained from the difference between these two instantaneous values, and the heat flux is further calculated.
  • thermocouples 112 and 122 a temperature compensation contact point is provided, Alternatively, the temperature may be measured.
  • the time constants ⁇ 1 and ⁇ 2 are calculated by calculating the value when the root mean square of the response outputs T 1 and T 2 is minimized, but the temperature difference T after the response compensation is calculated. g1, based on the assumption that similarity to fluctuation waveform of the T g2 occurs, may be obtained value when the correlation coefficient between the two is maximized.
  • the relative relationship of factors related to response delay such as the wire diameter ratio and heat transfer ratio of the thermocouples 112 and 122
  • the response delay may be compensated using a ratio of time constants calculated from the relative relationship.
  • the present invention is useful for a heat flux measuring device and a heat flux measuring method for measuring a heat flux.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

熱流束計測装置100は、第1計測部110と第2計測部120と熱流束算出部130,140とを備えている。第1計測部110は、熱電対112を用いて、第1計測位置と第1計測位置より低温の第2計測位置との温度差を計測する。第2計測部120は、第1計測部110の熱電対112とは時定数が異なる熱電対122を用いて、第1計測位置と同じ温度とみなせる第3計測位置と第2計測位置と同じ温度とみなせる第4計測位置との温度差を計測する。熱流束算出部130,140は、各計測部110,120の熱電対112,122の熱起電力からそれぞれ得られる実測温度差と、各計測部110,120の実測温度差の時間微分値とを用いて、少なくとも一方の計測部110,120の熱電対112,122の時定数を検出し、検出した時定数により実測温度差の応答遅れを補償した温度差を算出して、補償後の温度差から熱流束を算出する。

Description

熱流束計測装置、及び熱流束計測方法
 本発明は、熱流束を計測する熱流束計測装置及び熱流束計測方法に関する。
 例えば特許文献1には、熱流束計測装置として、エンジンのシリンダ壁に取り付けられる熱流束計が記載されている。この熱流束計では、エンジンのシリンダ壁のねじ孔に螺合される伝熱体に、一対の熱電対の測温点がそれぞれ設けられている。一対の熱電対の測温点は、シリンダ壁の厚さ方向において異なる位置に設けられている。この熱流束計では、2つの測温点で測定される温度差により、シリンダ壁を厚さ方向に伝導する熱流束が測定される。
特開2003-130737号公報
 ところで、熱電対は、素線に熱容量があるために、素線の太さに応じた応答遅れが発生する。そのため、従来の熱流束計測装置では、熱流束の計測において十分な時間分解能を得ることができない場合があった。
 本発明は上述の実情に鑑みなされたものであって、その目的は、熱流束を計測する熱流束計測装置及び熱流束計測方法において、時間分解能を向上させることである。
 第1の発明は、熱電対を用いて、第1計測位置と該第1計測位置より低温の第2計測位置との温度差を計測する第1計測部と、上記第1計測部の熱電対とは時定数が異なる熱電対を用いて、上記第1計測位置と同じ温度とみなせる第3計測位置と上記第2計測位置と同じ温度とみなせる第4計測位置との温度差を計測する第2計測部と、上記各計測部の熱電対の熱起電力からそれぞれ得られる実測温度差と、上記各計測部の実測温度差の時間微分値とを用いて、少なくとも一方の計測部の熱電対の時定数を検出し、検出した時定数により上記実測温度差の応答遅れを補償した温度差を算出して、該補償後の温度差から熱流束を算出する熱流束算出部とを備えている熱流束計測装置である。
 第1の発明では、第1計測部の熱電対の熱起電力から、第1計測位置と第2計測位置の実測温度差が得られる。第2計測部の熱電対の熱起電力から、第3計測位置と第4計測位置の実測温度差が得られる。各実測温度値の時間変化から、それぞれの時間微分値が得られる。ここで、各実測温度差の応答遅れを補償した温度差(以下、補償後温度差という。)の関係式は、実測温度差、実測温度差の時間微分値、及び時定数を変数として表される(後述の数式1及び数式2参照)。このとき、第1計測部の熱電対の時定数と第2計測部の熱電対の時定数は異なる。また、第1計測位置と第3計測位置は同じ温度とみなせ、第2計測位置と第4計測位置とは同じ温度とみなせる。つまり、第1熱電対の補償後温度差と第2熱電対の補償後温度差は同じとみなせる。従って、これらの関係を用いると、各熱電対の時定数を算出することが可能である。少なくとも一方の計測部の熱電対の時定数が分かれば、補償後温度差が導出され、その補償後温度差から熱流束が導出される。第1の発明では、互いに時定数が異なる熱電対を少なくとも2つ用いて、温度差が互いに同じとみなせる位置間の温度差をそれぞれ実測すると、時定数を検出できるので、その時定数を用いて熱流束を算出するようにしている。
 第2の発明は、第1の発明において、上記第1計測部は、温接点が第1計測位置に設けられ、冷接点が第2計測位置に設けられた第1熱電対を備え、上記第2計測部は、温接点が第3計測位置に設けられ、冷接点が第4計測位置に設けられた第2熱電対を備え、上記第1熱電対と上記第2熱電対の時定数が互いに異なる。
 第3の発明は、第1の発明において、上記第1計測部は、温接点が第1計測位置に設けられた第1高温側熱電対と、温接点が第2計測位置に設けられた第1低温側熱電対とを備え、上記第2計測部は、温接点が第3計測位置に設けられた第2高温側熱電対と、温接点が第4計測位置に設けられた第2低温側熱電対とを備え、上記第1高温側熱電対と上記第2高温側熱電対の時定数が互いに異なり、上記第1低温側熱電対と上記第2低温側熱電対の時定数が互いに異なる。
 第4の発明は、第1熱電対を用いて、第1計測位置と該第1計測位置より低温の第2計測位置との温度差を検出すると同時に、上記第1熱電対とは時定数が異なる第2熱電対を用いて、上記第1計測位置と同じ温度とみなせる第3計測位置と上記第2計測位置と同じ温度とみなせる第4計測位置との温度差を検出する計測ステップと、上記各熱電対の熱起電力からそれぞれ得られる実測温度差と、上記各熱電対の実測温度差の時間微分値とを用いて、少なくとも一方の熱電対の時定数を検出し、検出した時定数により上記実測温度差の応答遅れを補償した温度差を算出して、該補償後の温度差から熱流束を算出する熱流束算出ステップとを備えている熱流束計測方法である。
 本発明では、互いに時定数が異なる熱電対を少なくとも2つ用いて、温度差が互いに同じとみなせる位置間の温度差をそれぞれ実測すると、時定数を検出できるので、その時定数を用いて熱流束を算出するようにしている。この時定数から算出される熱流束の値は、応答遅れがない瞬時値となる。片方の計測部の熱電対の応答遅れをもう片方の計測部の熱電対を用いて補償するので、熱流束の瞬時値を得ることができる。従って、熱流束計測装置又は熱流束計測方法の時間分解能を向上させることができる。
熱流束計測装置の概略構成図である。 信号処理装置を実現するコンピュータハードウェアの内部構造図である。 熱流束算出ステップのフローチャートである。
  以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 本実施形態は、本発明に係る熱流速計測装置100である。本実施形態の熱流速計測装置100は、図1に示すように、第1計測部110と第2計測部120と記録装置130と信号処理装置140とを備えている。
 第1計測部110は、第1熱電対112を用いて、計測位置A(第1計測位置)と計測位置Aより低温の計測位置B(第2計測位置)との温度差を計測する。計測位置A,Bは、計測対象物の表面であってもよいし、計測対象物の内部であってもよい。
 第1計測部110は、第1熱電対112と第1差温計114とを備えている。第1熱電対112は、第1測温接点116と第2測温接点118とを備えている。第1測温接点116は計測位置Aに配置され、第2測温接点118は計測位置Bに配置されている。第1差温計114は、第1熱電対112の起電力に基づいて2つの測温接点A,B間の温度差(実測温度差)を算出し、その算出結果を逐次出力する。
 第2計測部120は、第1熱電対112とは時定数が異なる第2熱電対122を用いて、計測位置C(第3計測位置)と計測位置D(第4計測位置)との温度差を計測する。計測位置Cには、計測位置Aと温度が同じとみなせる場所が選ばれる。計測位置Dには、計測位置Bと温度が同じとみなせる場所が選ばれる。例えば、計測位置Cは計測位置Aにごく近接する位置であり、計測位置Dは計測位置Bにごく近接する位置である。計測位置Aと計測位置Cとの間の距離と、計測位置Bと計測位置Dとの間の距離とは、共に計測対象区間の距離Δxに対して極めて短い。
 第2計測部120は、第2熱電対122と第2差温計124とを備えている。第2計測部120は、第1計測部110とは熱的な慣性が異なる。第2熱電対122は、第1熱電対112とは時定数が異なる熱電対である。第2熱電対122は、素線径が第1熱電対112とは異なる。第2熱電対122は、第3測温接点126と第4測温接点128とを備えている。第3測温接点126は計測位置Cに配置され、第4測温接点128は計測位置Dに配置されている。第2差温計124は、第2熱電対122の起電力に基づいて2つの測温接点C,D間の温度差(実測温度差)を算出し、その算出結果を逐次出力する。
 記録装置130と信号処理装置140は、各計測部110,120の熱電対112,122の熱起電力からそれぞれ得られる実測温度差と、各計測部110,120の実測温度差の時間微分値とを用いて、少なくとも一方の計測部110,120の熱電対112,122の時定数を検出し、検出した時定数により実測温度差の応答遅れを補償した温度差を算出して、補償後の温度差から熱流束を算出する熱流束算出部130,140を構成している。
 記録装置130は、第1計測部110と第2計測部120とにそれぞれ接続されている。記録装置130は、第1計測部110の応答出力(実測温度差の計測結果)と、第2計測部120の応答出力(実測温度差の計測結果)を記録する。記録装置130は、第1差温計114の応答出力132(第1応答出力)を蓄積すると共に、第2差温計124の応答出力134(第2応答出力)を蓄積する
 なお、記録装置130は、第1差温計114の出力信号132及び第2差温計124の出力信号134をデジタル形式で蓄積する。第1差温計114及び第2差温計124には、A/D変換器が設けられている。
 記録装置130は、計測位置Aと計測位置Bとの距離Δxのデータ136と、計測位置Aと計測位置Bとの間の熱伝導率λのデータ138とを予め保持している。距離Δxは、計測位置Aと計測位置Bとの設定時などに予め計測しておき、記録装置130に格納しておけばよい。また、熱伝導率λは、計測対象物の材料が既知であれば、その材料に関する文献値などを記録装置130に格納しておけばよい。または、別途に熱伝導率λを計測し、記録装置130に格納するようにしてもよい。
 信号処理装置140は、記録装置130に記録された計測結果から熱流束への換算処理を行う。信号処理装置140は、後述する熱流束算出ステップを行う。
 記録装置130と信号処理装置140とは、実質的にはコンピュータハードウェアと、そのコンピュータハードウェアに保持されるデータ及びプログラムとを有するシステムにより実現される。図2に、このシステムを構成するコンピュータハードウェア300の内部構成を示す。
 コンピュータハードウェア300は、コンピュータ310と、キーボード350と、マウス等のポインティングデバイス352と、モニタ354とを備えている。コンピュータ300は、リムーバブルメモリ用のリムーバブルメモリポート312及びDVD(Digital Versatile Disc)ドライブ314を有する。キーボード350は、文字情報及びコマンドの入力操作を行うことができるように構成されている。
 コンピュータ310は、メモリポート312と、DVDドライブ314と、中央処理装置316(CPU)と、バス318と、読出専用メモリ320(ROM)と、ランダムアクセスメモリ322(RAM)と、周辺記憶装置324と、インタフェースボード326と、グラフィックボード328と、ネットワークインタフェースカード330(NIC)とを備えている。バス318は、メモリポート312、DVDドライブ314、CPU316、読出専用メモリ320、ランダムアクセスメモリ322、周辺記憶装置324、インタフェースボード326、グラフィックボード328、及びネットワークインタフェースカード330に接続されている。読出専用メモリ320は、ブートアッププログラム等を記憶する。ランダムアクセスメモリ322は、プログラム命令、システムプログラム、及び作業データ等を記憶する。周辺記憶装置324は、ハードディスクドライブ、または、半導体記憶装置ドライブ等からなり、プログラム、システムプログラム、及びデータ等を蓄積記憶する。インタフェースボード326は、キーボード350、ポインティングデバイス352、並びにその他の周辺機器とコンピュータ310との接続を担う。記録装置130のインタフェースボード326は、第1及び第2差温計114,124に接続されている。グラフィックボード328は、画像処理及びモニタ354への画像出力を行なう。ネットワークインタフェースカード330は、他のコンピュータと通信を行なうためのローカルエリアネットワーク360(LAN)への接続を提供する。
 記録装置130では、メモリポート312、又はDVDドライブ314に挿入されるリムーバブルメディアにデータ(第1応答出力及び第2応答出力)が記憶される。リムーバブルメディアに記憶されたデータは、周辺記憶装置324に転送される。データは、インタフェースボード326に接続された周辺機器からインタフェースボード326を介して、周辺記憶装置324に記憶されてもよい。
 記録装置130及び信号処理装置140を動作させるためのプログラム(後述する熱流束算出ステップ実行用のプログラム)は、メモリポート312、または、DVDドライブ314に挿入されるリムーバブルメディアに記憶されている。リムーバブルメディアに記憶されたプログラムは、周辺記憶装置324に転送される。なお、プログラムは、LAN360を通じてコンピュータ310に送信されて、周辺記憶装置324に記憶されてもよい。プログラムは実行の際にRAM322にロードされる。リムーバブルメディアから、またはLAN360を介して直接にRAM322にプログラムをロードしてもよい。
 プログラムは、記録装置130及び信号処理装置140を動作させる複数の命令を含む。記録装置130及び信号処理装置140を動作させるのに必要な基本的機能のいくつかは、コンピュータ310上で動作するオペレーティングシステム(OS)、又はサードパーティのプログラムにより提供される。したがって、プログラムは、本実施形態の記録装置130及び信号処理装置140を動作させるのに必要な全ての機能を含む必要がない。コンピュータシステム300自体の動作は周知であるので、ここでは説明を省略する。
 以下に、熱流束を計測する熱流束計測方法について説明する。この熱流束計測方法では、計測ステップと、熱流束算出ステップとが行われる。
 計測ステップでは、第1熱電対112を用いて、計測位置Aと計測位置Aより低温の計測位置Bとの温度差が検出されると同時に、第1熱電対112とは時定数が異なる第2熱電対122を用いて、計測位置Aと同じ温度とみなせる計測位置Cと計測位置Bと同じ温度とみなせる計測位置Dとの温度差が検出される。計測ステップは、第1計測部110及び第2計測部120が逐次実測温度差(第1応答出力及び第2応答出力)を出力し、出力された実測温度差を記録装置130が記録する。
 図3に、熱流束算出ステップのフローチャート400を示す。本実施形態では、信号処理装置140が熱流束算出ステップを行う。信号処理装置140は、インストールされたプログラムに従って熱流束算出ステップを行う。
 熱流束算出ステップでは、各熱電対112,122の熱起電力からそれぞれ得られる実測温度差と、各熱電対112,122の実測温度差の時間微分値とを用いて、少なくとも一方の熱電対112,122の時定数が検出され、検出された時定数により実測温度差の応答遅れを補償した温度差が算出されて、補償後の温度差から熱流束が算出される。
 具体的に、熱流束算出ステップでは、まずステップ402が行われる。ステップ402では、プログラムでの処理の用いるパラメータの読出が行われる。次に、ステップ404では、温度差の第1応答出力T1及び第2応答出力T2(図1参照)の時定数を算出するのに用いるデータ区間の幅Nが設定される。次に、ステップ406では、A/D変換時のサンプリング周波数の逆数から、実測温度差が計測された時間間隔Δtが算出される。次に、ステップ408では、第1応答出力T1の時間微分値G1及び第2応答出力T2の時間微分値G2が算出される。第1応答出力T1の時間微分G1は数式1により算出され、第2応答出力Tの時間微分G2は数式2により算出される。
 数式1:G1=dT1/dt
 数式2:G2=dT2/dt
 次に、ステップ410では、実測温度差が計測された各計測時刻における第1応答出力T1と第2応答出力T2との差ΔT21(ΔT21=T2-T1)が算出される。次に、ステップ412では、最小二乗法を用い、応答遅れの時定数の相対関係から、第1計測部110の応答遅れの時定数τ1と、第2計測部120の応答遅れの時定数τ2が推定される。具体的に、各計測時刻において、応答遅れを補償した後の第1計測部110の温度差をTg1は、時定数τ1を用いると、数式3のように表すことができ、応答遅れを補償した後の第2計測部120の温度差をTg2は、時定数τを用いると、数式4のように表すことができる。理想的には補償後においてTg1、Tg2は一致するべきである。そのため、ステップ412では、数式5に示すTg1、Tg2の差の二乗平均値eが最小になるときの時定数τ1、τ2が求められる。
 数式3:Tg1=T1+τ11
 数式4:Tg2=T2+τ22
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 数式6を仮定する。なお、数式7において、上に横線が付されている変数は、その変数の平均値を表す。τ1、τ2が一定であると仮定すると、各計測時刻のτ1、τ2は、その平均値と同値になる。数式3及び数式4を用いて展開すると、τ1の平均値は数式7で、τの平均値は数式8で表わされる。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 次に、ステップ414では、数式3を用いて、実測温度差T1と、ステップ408で算出した時間微分値G1と、ステップ412で算出した時定数τ1とから、補償後の温度差Tg1が算出される。最後に、ステップ416では、熱伝導率λ、距離Δxをもとに、熱流束q=λTg1/Δxが算出され、算出値が熱流束の瞬時値として出力される。以上により、算出動作が終了する。
  -実施形態の効果-
 上記実施形態では、互いに時定数が異なる熱電対112,122を2つ用いて、温度差が互いに同じとみなせる位置間の温度差をそれぞれ実測すると、時定数を検出できるので、その時定数を用いて熱流束を算出するようにしている。この時定数から算出される熱流束の値は、応答遅れがない瞬時値となる。従って、熱流束計測装置100又は熱流束計測方法の時間分解能を向上させることができる。
 《その他の実施形態》
 上記実施形態は、以下のように構成してもよい。
 上記実施形態において、上記第1計測部110が、温接点が計測位置Aに設けられた第1高温側熱電対と、温接点が計測位置Bに設けられた第1低温側熱電対とを備え、第2計測部120が、温接点が計測位置Cに設けられた第2高温側熱電対と、温接点が計測位置Dに設けられた第2低温側熱電対とを備えていてもよい。この場合、第1高温側熱電対と第2高温側熱電対の時定数が互いに異なり、第1低温側熱電対と第2低温側熱電対の時定数が互いに異なる。第1高温側熱電対と第1低温側熱電対と第2高温側熱電対と第2低温側熱電対は、冷接点が同じ温度とみなせる位置に設けられる。実施形態の数式を用いて、第1高温側熱電対と第2高温側熱電対の片方の時定数を算出することで、計測位置Aと冷接点の位置との温度差の瞬時値が求められ、計測位置Bと冷接点の位置との温度差の瞬時値が求められる。そして、これら2つの瞬時値の差から、計測位置Aと計測位置Bの温度差が求められ、さらに熱流束が算出される。
 また、上記実施形態では、計測位置A及び計測位置Cと、計測位置B及び計測位置Dとの温度差により熱電対112,122に起電力を生じさせたが、温度補償接点を設たり、別途に温度を計測するようにしてもよい。
 また、上記実施形態では、時定数τ1、τ2を算出するのに、応答出力T1とT2との二乗平均が最小になるときの値を求めたが、応答補償後の温度差Tg1、Tg2の変動波形に相似性が生じるという想定の基に、両者の相関係数が最大となるときの値を求めてもよい。
 また、上記実施形態において、第1計測部110と第2計測部120の間で、熱電対112,122の素線径比、熱伝達比など応答遅れに関わる因子の相対関係が既知である場合は、その相対関係から算出した時定数の比を用いて、応答遅れの補償を行うようにしてもよい。
 以上説明したように、本発明は、熱流束を計測する熱流束計測装置及び熱流束計測方法について有用である。
 100 熱流束計測装置
 110 第1計測部
 112 第1熱電対
 114 第1差温計
 120 第2計測部
 122 第2熱電対
 124 第2差温計
 130 記録装置(熱流束計測部)
 140 信号処理装置(熱流束計測部)
 

Claims (4)

  1.  熱電対を用いて、第1計測位置と該第1計測位置より低温の第2計測位置との温度差を計測する第1計測部と、
     上記第1計測部の熱電対とは時定数が異なる熱電対を用いて、上記第1計測位置と同じ温度とみなせる第3計測位置と上記第2計測位置と同じ温度とみなせる第4計測位置との温度差を計測する第2計測部と、
     上記各計測部の熱電対の熱起電力からそれぞれ得られる実測温度差と、上記各計測部の実測温度差の時間微分値とを用いて、少なくとも一方の計測部の熱電対の時定数を検出し、検出した時定数により上記実測温度差の応答遅れを補償した温度差を算出して、該補償後の温度差から熱流束を算出する熱流束算出部とを備えている
    ことを特徴とする熱流束計測装置。
  2.  請求項1において、
     上記第1計測部は、温接点が第1計測位置に設けられ、冷接点が第2計測位置に設けられた第1熱電対を備え、
     上記第2計測部は、温接点が第3計測位置に設けられ、冷接点が第4計測位置に設けられた第2熱電対を備え、
     上記第1熱電対と上記第2熱電対の時定数が互いに異なる
    ことを特徴とする熱流束計測装置。
  3.  請求項1において、
     上記第1計測部は、温接点が第1計測位置に設けられた第1高温側熱電対と、温接点が第2計測位置に設けられた第1低温側熱電対とを備え、
     上記第2計測部は、温接点が第3計測位置に設けられた第2高温側熱電対と、温接点が第4計測位置に設けられた第2低温側熱電対とを備え、
     上記第1高温側熱電対と上記第2高温側熱電対の時定数が互いに異なり、上記第1低温側熱電対と上記第2低温側熱電対の時定数が互いに異なる
    ことを特徴とする熱流束計測装置。
  4.  第1熱電対を用いて、第1計測位置と該第1計測位置より低温の第2計測位置との温度差を検出すると同時に、上記第1熱電対とは時定数が異なる第2熱電対を用いて、上記第1計測位置と同じ温度とみなせる第3計測位置と上記第2計測位置と同じ温度とみなせる第4計測位置との温度差を検出する計測ステップと、
     上記各熱電対の熱起電力からそれぞれ得られる実測温度差と、上記各熱電対の実測温度差の時間微分値とを用いて、少なくとも一方の熱電対の時定数を検出し、検出した時定数により上記実測温度差の応答遅れを補償した温度差を算出して、該補償後の温度差から熱流束を算出する熱流束算出ステップとを備えている
    ことを特徴とする熱流束計測方法。
     
PCT/JP2010/067399 2009-10-02 2010-10-04 熱流束計測装置、及び熱流束計測方法 WO2011040634A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/499,762 US9127988B2 (en) 2009-10-02 2010-10-04 Heat flux measurement apparatus and heat flux measurement method
EP10820744.0A EP2485025B1 (en) 2009-10-02 2010-10-04 Heat flux measurement device, and heat flux measurement method
JP2011534357A JP5540241B2 (ja) 2009-10-02 2010-10-04 熱流束計測装置、及び熱流束計測方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-231045 2009-10-02
JP2009231045 2009-10-02

Publications (1)

Publication Number Publication Date
WO2011040634A1 true WO2011040634A1 (ja) 2011-04-07

Family

ID=43826433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067399 WO2011040634A1 (ja) 2009-10-02 2010-10-04 熱流束計測装置、及び熱流束計測方法

Country Status (4)

Country Link
US (1) US9127988B2 (ja)
EP (1) EP2485025B1 (ja)
JP (1) JP5540241B2 (ja)
WO (1) WO2011040634A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014058062A1 (ja) * 2012-10-11 2014-04-17 京セラ株式会社 温度測定システムおよび温度測定装置
CN114166362A (zh) * 2021-10-20 2022-03-11 中国航发四川燃气涡轮研究院 一种基于组合丝径热电偶的动态测温时频补偿方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10393598B1 (en) 2015-12-03 2019-08-27 FluxTeq LLC Heat flux gage
JP6799522B2 (ja) * 2017-11-30 2020-12-16 三菱重工業株式会社 熱流束計測システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5020688U (ja) * 1973-06-19 1975-03-08
JPH0894454A (ja) * 1994-09-29 1996-04-12 Hochiki Corp 熱感知器
JP2003130737A (ja) 2001-10-29 2003-05-08 Sukegawa Electric Co Ltd 熱流束計
JP2005337750A (ja) * 2004-05-24 2005-12-08 Komatsu Ltd 熱流束測定基板

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3339398A (en) * 1964-03-30 1967-09-05 Chevron Res High sensitivity differential thermal analysis apparatus and method
US3767470A (en) * 1968-02-19 1973-10-23 F Hines Thermally compensated heat flow sensors
US4050302A (en) * 1975-02-10 1977-09-27 Aluminum Company Of America Thermoelectric heat flow transducer
FR2544859B1 (fr) * 1983-04-21 1985-08-09 Auxitrol Dispositif autoalimente de commutation sensible a un gradient de temperature
US4722609A (en) * 1985-05-28 1988-02-02 The United States Of America As Represented By The Secretary Of The Navy High frequency response multilayer heat flux gauge configuration
US4779994A (en) * 1987-10-15 1988-10-25 Virginia Polytechnic Institute And State University Heat flux gage
US5288147A (en) * 1992-11-09 1994-02-22 Ta Instruments, Inc. Thermopile differential thermal analysis sensor
JP3377162B2 (ja) * 1997-01-17 2003-02-17 株式会社リコー 熱分析装置およびその計測方法
US6402369B1 (en) * 1998-11-03 2002-06-11 Sarnoff Corporation Arrayable thermal assays
KR100313909B1 (ko) * 1999-11-22 2001-11-17 구자홍 적외선 센서 및 그 제조방법
US6909271B2 (en) * 2001-12-05 2005-06-21 Kenneth C. Sloneker Devices, systems, and methods for measuring differential temperature
US20090198096A1 (en) * 2003-10-27 2009-08-06 Paracor Medical, Inc. Long fatigue life cardiac harness
EP1715331B1 (de) * 2003-10-28 2013-08-21 Mettler-Toledo AG Thermoanalytischer Sensor und Verfahren zu dessen Herstellung
JP4611154B2 (ja) * 2005-09-01 2011-01-12 エスアイアイ・ナノテクノロジー株式会社 熱流束型示差走査熱量計
US7470057B2 (en) * 2006-08-24 2008-12-30 Waters Investments Limited Differential scanning calorimeter sensor and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5020688U (ja) * 1973-06-19 1975-03-08
JPH0894454A (ja) * 1994-09-29 1996-04-12 Hochiki Corp 熱感知器
JP2003130737A (ja) 2001-10-29 2003-05-08 Sukegawa Electric Co Ltd 熱流束計
JP2005337750A (ja) * 2004-05-24 2005-12-08 Komatsu Ltd 熱流束測定基板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2485025A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014058062A1 (ja) * 2012-10-11 2014-04-17 京セラ株式会社 温度測定システムおよび温度測定装置
JP5869690B2 (ja) * 2012-10-11 2016-02-24 京セラ株式会社 温度測定システムおよび温度測定装置
CN114166362A (zh) * 2021-10-20 2022-03-11 中国航发四川燃气涡轮研究院 一种基于组合丝径热电偶的动态测温时频补偿方法
CN114166362B (zh) * 2021-10-20 2023-09-01 中国航发四川燃气涡轮研究院 一种基于组合丝径热电偶的动态测温时频补偿方法

Also Published As

Publication number Publication date
EP2485025B1 (en) 2016-08-03
JP5540241B2 (ja) 2014-07-02
EP2485025A1 (en) 2012-08-08
EP2485025A4 (en) 2015-05-06
US9127988B2 (en) 2015-09-08
US20120243571A1 (en) 2012-09-27
JPWO2011040634A1 (ja) 2013-02-28

Similar Documents

Publication Publication Date Title
US9835506B2 (en) Self-calibrated flow meter
JP5540241B2 (ja) 熱流束計測装置、及び熱流束計測方法
Najafi et al. Real-time heat flux measurement using directional flame thermometer
CN106610316B (zh) 基于热波动耦合红外成像的薄壁局部换热系数测量方法
CN106706165B (zh) 一种温度测量的方法及装置
Al-Khalidy On the solution of parabolic and hyperbolic inverse heat conduction problems
Ling et al. Stability analysis for inverse heat conduction problems
Woolley et al. Thermocouple data in the inverse heat conduction problem
CN111879443A (zh) 火箭发动机内气-液两相热流密度测量工装
Lee et al. The function estimation in predicting heat flux of pin fins with variable heat transfer coefficients
CN105466495B (zh) 一种同时获取壁内部非均匀温度场及壁厚的测量方法
US8583397B2 (en) Device for determination of thermal exchange coefficient and associated method
Chen Inverse geometry problem of identifying growth of boundary shapes in a multiple region domain
JP3728198B2 (ja) 評価対象の状態検出装置、状態検出方法およびコンピュータ読み取り可能な記録媒体
JP2594874B2 (ja) 熱伝導率と動粘性率の同時測定方法
Shi et al. Effect on the spectral emissivity of SPHC steel by surface oxidization
Battaglia Linear and non-linear thermal system identification based on the integral of non-integer order—Application to solve inverse heat conduction linear and non-linear problems
KR102458670B1 (ko) 가상열센서 시스템을 이용한 열정보 획득방법
Chen et al. Inverse estimation for the unknown frost geometry on the external wall of a forced-convection pipe
Tagawa et al. Response compensation of fine‐wire thermocouples and its application to multidimensional measurement of a fluctuating temperature field
JP2018179807A (ja) ヒートサーモ式流量計、ヒートサーモ式流量計の補正システム、ヒートサーモ式流量計の補正プログラム、及びヒートサーモ式流量計測方法
TWI467407B (zh) 計算系統中熱電晶片性能係數、實際致冷能力及實驗誤差之方法
Al-Hadithi et al. Experimental investigations of heat-flux and temperature predictions by new inverse technique
Shin et al. Improvement of accuracy in evaluating hue change time in the hue detection based transient liquid crystals technique
JPS6350648B2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820744

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011534357

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010820744

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010820744

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13499762

Country of ref document: US