WO2011040512A1 - 蛍光灯駆動装置及び蛍光灯駆動装置の保護回路 - Google Patents

蛍光灯駆動装置及び蛍光灯駆動装置の保護回路 Download PDF

Info

Publication number
WO2011040512A1
WO2011040512A1 PCT/JP2010/067054 JP2010067054W WO2011040512A1 WO 2011040512 A1 WO2011040512 A1 WO 2011040512A1 JP 2010067054 W JP2010067054 W JP 2010067054W WO 2011040512 A1 WO2011040512 A1 WO 2011040512A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
fluorescent lamp
voltage
lighting
unit
Prior art date
Application number
PCT/JP2010/067054
Other languages
English (en)
French (fr)
Inventor
義和 鷲見
拓宏 棚瀬
Original Assignee
レシップホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by レシップホールディングス株式会社 filed Critical レシップホールディングス株式会社
Priority to JP2011534297A priority Critical patent/JPWO2011040512A1/ja
Publication of WO2011040512A1 publication Critical patent/WO2011040512A1/ja
Priority to US13/433,131 priority patent/US20120235574A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps
    • H05B41/298Arrangements for protecting lamps or circuits against abnormal operating conditions
    • H05B41/2981Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions
    • H05B41/2985Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions against abnormal lamp operating conditions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/20Responsive to malfunctions or to light source life; for protection
    • H05B47/25Circuit arrangements for protecting against overcurrent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/20Responsive to malfunctions or to light source life; for protection
    • H05B47/28Circuit arrangements for protecting against abnormal temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present invention relates to control of a lighting device, and more particularly to a fluorescent lamp driving device that controls turning on / off of a fluorescent lamp and a protection circuit for the fluorescent lamp driving device.
  • fluorescent lamps (fluorescent lamps) 81 as shown in FIG. 23 have been widely used as indoor lamps for railways and the like.
  • the fluorescent lamp 81 is a lamp that passes ultraviolet light generated by discharge through a phosphor in the tube, converts it into visible light, and outputs the light.
  • the fluorescent lamp 81 is connected to a fluorescent lamp driving device 82 that controls turning on / off of the fluorescent lamp 81.
  • the fluorescent lamp driving device 82 is provided with an inverter 83 and a transformer 84.
  • the fluorescent lamp driving device 82 converts the input DC voltage into an AC voltage by the inverter 83, boosts this AC voltage by the transformer 84, and lights the fluorescent lamp 81 with this high-frequency AC voltage.
  • the fluorescent lamp driving device 82 is equipped with a protection function (see Patent Document 1) for monitoring the presence or absence of disconnection.
  • the technique of Patent Document 1 is to flow a direct current Ix flowing through the fluorescent lamp 81 to the secondary side of the transformer 84 and monitor the presence or absence of disconnection of the fluorescent lamp 81 by the direct current Ix.
  • capacitor preheating method as a preheating control conventionally used. This is because the preheating capacitor is connected between the non-power supply side terminals of the filament and the non-power supply side terminals of the same filament while connecting to the series resonance circuit between the power supply side terminals of the pair of filaments constituting the fluorescent lamp. Preheating is enabled by flowing a resonance current from such a series resonance circuit through the preheating capacitor to the filament.
  • discharge lamp lighting device disclosed in Patent Document 2 below includes a preheating mode and a starting mode, and in the preheating mode, the filament is heated to a target temperature at which thermoelectrons start to be emitted, and then the starting mode is entered.
  • a preheating power supply circuit is provided to enable preheating before starting lighting.
  • a light-emitting diode illuminating device configured by connecting a large number of light-emitting diodes as a light source as an indoor lamp such as a railway.
  • a short-circuit mode failure occurs in the light-emitting diode, not only the failed light-emitting diode but also the current flowing to other light-emitting diodes increases.
  • There is a risk of causing a failure of the light emitting diode or the drive current supply unit For example, there is a possibility that an overcurrent flows to other light-emitting diodes connected in series to the light-emitting diode that was initially short-circuited and damaged.
  • Patent Document 3 since the power consumption due to the internal impedance is eliminated due to the damage of the diode, the diode does not generate heat, and the temperature sensor is used to determine whether or not the temperature of the diode provided in the circuit is increased. A technique for monitoring and detecting a diode failure is disclosed.
  • the resonance current supplied from the series resonance circuit used during normal lighting flows through the filament even during preheating. For this reason, there is a tendency that the tube voltage during preheating tends to be high, and the fluorescent lamp is turned on before reaching a sufficient temperature, so that there is a problem that the emitter of the filament can be scattered.
  • the present invention has a first problem of enabling proper preheating with a relatively simple configuration, and can detect the presence or absence of disconnection and can light a fluorescent lamp with high efficiency.
  • a second problem is to provide a protection circuit for a fluorescent lamp driving device.
  • a light emitting diode When a light emitting diode is used, a light emitting diode illumination circuit including a failure detection circuit that detects a short-circuit failure with high accuracy and the circuit are provided. It is a third object to provide a lighting device that has been achieved, and an object is to achieve at least one of these problems.
  • a protection circuit for a fluorescent lamp driving device an input voltage is converted into a high-frequency AC voltage by a transformer and a fluorescent lamp is turned on by the AC voltage.
  • DC component blocking means for cutting the DC component of the current loop circuit of the fluorescent lamp on the secondary side, and monitoring the current of the current loop circuit to which the DC component blocking means is connected.
  • the gist is provided with a disconnection detecting means for detecting whether or not the circuit is disconnected, and a lighting stop means for disabling the lighting operation of the fluorescent lamp when the disconnection is detected.
  • input voltage broadly includes, for example, both a DC voltage obtained from a DC battery or the like and an AC power source obtained from a commercial power source (system). When this input voltage is a DC voltage, it is naturally converted to an AC voltage and used.
  • current loop circuit refers to a closed loop circuit of a current flowing through the fluorescent lamp when the fluorescent lamp is turned on.
  • the DC loop blocking means is provided in the current loop circuit connected to the fluorescent lamp, and the disconnection detecting means detects the disconnection presence / absence in the current loop circuit.
  • the disconnection detecting means detects the disconnection presence / absence in the current loop circuit.
  • voltage monitoring means for monitoring the voltage generated in the fluorescent lamp, and forced lighting termination for forcibly terminating the lighting operation of the fluorescent lamp when the voltage exceeds a threshold value and an abnormality occurs in the fluorescent lamp
  • forced lighting termination for forcibly terminating the lighting operation of the fluorescent lamp when the voltage exceeds a threshold value and an abnormality occurs in the fluorescent lamp
  • the gist of the present invention is that the voltage monitoring means comprises a resistor.
  • the voltage monitoring means is a resistor
  • a simple operation such as changing the resistor to another resistance value or adding a resistance component according to the type of fluorescent lamp to be used.
  • the detection level can be easily changed.
  • overheat detection means for detecting the generated heat of the fluorescent lamp driving device
  • overheat suppression means for forcibly terminating the lighting operation of the fluorescent lamp when the generated heat exceeds a threshold value.
  • an on / off control means for managing the on / off control of the fluorescent lamp is provided, and the on / off control means is an analog circuit in which the state of the output signal continuously changes with respect to the continuous change of the input signal. It is made up of the following.
  • control circuit unit of the fluorescent lamp driving device is configured by an analog circuit, the control circuit unit can be simply configured.
  • the gist of the present invention is that it includes a lighting on / off control means for managing the lighting on / off control of the fluorescent lamp, and the lighting on / off control means is composed of a software circuit operated by a program stored in a memory. .
  • the control circuit unit of the fluorescent lamp driving device is configured by a software circuit
  • the software circuit program may be changed to another program in order to switch the operation of turning on / off the fluorescent lamp. Therefore, it is possible to easily switch the operation of turning on / off to another operation without changing the fluorescent lamp driving device itself.
  • the present invention provides a fluorescent lamp driving device that converts a DC voltage into a high-frequency voltage by an inverter circuit and lights the fluorescent lamp with the high-frequency voltage. And includes a capacitor connected in series between the power supply side terminals of the filament and a capacitor connected between the non-power supply side terminals of the pair of filaments, and is set to a resonance frequency when the fluorescent lamp is turned on.
  • a series resonance circuit, an analog switch connected in parallel to the capacitor, and the analog switch can be turned on / off, and the analog switch is turned on during the preheating period before the fluorescent lamp is turned on and turned off after the preheating period.
  • a switch control circuit for controlling.
  • an analog switch is connected in parallel with the capacitor, The analog switch is controlled to be turned on during the preheating period before the fluorescent lamp is turned on by the switch control circuit and turned off after the preheating period.
  • the pair of filaments that are capable of directing the power supply side terminals between the non-power supply side terminals in a short-circuited state can be brought into a direct current state. Therefore, with a relatively simple configuration that adds an analog switch and a switch control circuit that controls it on / off, the fluorescent lamp does not light up even if a high frequency voltage is applied to the filament during the preheating period. It is possible to perform preheating control in which the filament is preheated without being turned on.
  • the fluorescent lamp driving device of the present invention further includes a frequency control circuit configured to be able to control the frequency of the high-frequency voltage, and the frequency control circuit determines the frequency of the high-frequency voltage during the preheating period. It is set to 50 KHz or more and 100 KHz or less, which is higher than the later frequency. Thereby, since the high frequency voltage of 50 KHz or more and 100 KHz or less is applied to the filament which became DC conduction state during the preheating period, the fluorescent lamp can be preheated in a short time.
  • the control terminal of the analog switch is electrically insulated by a photocoupler from the power line of the fluorescent lamp to which the high frequency voltage is supplied and its peripheral circuit. .
  • the input impedance of the control terminal of the analog switch is relatively high, it is difficult to be affected by high-frequency noise or the like that can be generated from the power line of the fluorescent lamp and its peripheral circuits. be able to.
  • the switch control circuit includes a time constant circuit for determining the preheating period based on values of a resistor and a capacitor.
  • the preheating period can be easily set by appropriately changing the values of such resistors and capacitors.
  • the fourth to seventh embodiments will be described below.
  • the gist of the invention is that it includes a failure alarm unit that performs a predetermined alarm operation when detected by the failure detection unit.
  • the failure detection unit detects whether or not each drive current flowing through the plurality of LED circuits is equal to or greater than a predetermined failure current value for each of the plurality of LED circuits. When at least one of the drive currents is greater than or equal to the failure current value, the failure detection unit performs a predetermined alarm operation when detected by the failure detection unit.
  • the failure detection unit includes a first resistor connected in series to the LED circuit so that the drive current flows, and the drive current.
  • a second resistor connected to a high potential side of the first resistor so that a voltage generated in the first resistor can be taken out; and a detection voltage proportional to the drive current and determined by the first resistor and the second resistor.
  • Detecting means for detecting whether or not the voltage is equal to or higher than a predetermined voltage value for each of the plurality of LED circuits, and the detecting means detects the drive current when the detected voltage is equal to or higher than the predetermined voltage value. It is possible to adopt a configuration for detecting that is greater than or equal to the fault current value.
  • the detection means detects whether the detection voltage proportional to the drive current and determined by the first resistor and the second resistor is equal to or higher than a predetermined voltage value, and the detection voltage is equal to or higher than the predetermined voltage value. If it is, it is detected that the drive current is greater than or equal to the fault current value.
  • the detection voltage is proportional to the drive current and determined by the first resistance and the second resistance Therefore, when the detected voltage is equal to or higher than a predetermined voltage value, it is detected that the drive current is equal to or higher than the fault current value.
  • the detection voltage can be determined by the combination of the resistance values of the first resistor and the second resistor, so how many light emitting diodes will activate the failure alarm unit when a short circuit failure occurs, etc. It can be set easily.
  • the detection means includes a control terminal, an input terminal and an output terminal, and the detection voltage input to the control terminal is a predetermined value.
  • the threshold voltage is equal to or higher than the threshold voltage
  • the input terminal and the output terminal are in a conductive state
  • the detection voltage is less than a predetermined threshold voltage
  • the input terminal and the output terminal are disconnected.
  • the structure which is a semiconductor switching element can be taken.
  • control terminal means the base
  • the “input terminal” means the collector
  • the “output terminal” means the emitter.
  • control terminal means a gate
  • input terminal means a drain
  • output terminal means a source.
  • the kind of semiconductor switching element is not limited and may be arbitrarily selected.
  • the detection means is a semiconductor switching element having a control terminal, an input terminal, and an output terminal.
  • the detection voltage input to the control terminal is equal to or higher than a predetermined threshold voltage
  • the input means and the output terminal Between the input terminal and the output terminal when the detected voltage is less than a predetermined threshold voltage.
  • a detection voltage that is proportional to the drive current and determined by the first resistor and the second resistor when the internal impedance of the LED circuit decreases and the drive current increases.
  • the input terminal and the output terminal are brought into conduction to detect “the drive current is equal to or higher than the fault current value”.
  • the drive current is greater than or equal to the fault current value by the on / off operation of the semiconductor switching element, so that the alarm operation of the fault alarm unit can be controlled by the semiconductor switch.
  • the failure alarm unit includes an alarm display LED for displaying an alarm state, and the alarm display LED is turned on as the predetermined alarm operation.
  • the configuration can be adopted.
  • the alarm display LED when the failure alarm unit is activated, the alarm display LED is lit, so that a simple configuration can be used to visually recognize the alarm.
  • a photocoupler that is connected to the drive current supply unit that supplies the drive current and that can output a control signal for reducing the drive current is provided.
  • the control signal may be output from the photocoupler as the predetermined alarm operation.
  • the lighting device including the light emitting diode lighting circuits of the fourth to seventh embodiments
  • the internal impedance of the LED circuit is lowered and the driving current is reduced. Will increase.
  • the increased drive current becomes equal to or greater than the failure current value, a predetermined alarm operation is performed by the failure alarm unit, so that such a short-circuit failure can be detected.
  • the failure detection unit incorporated in the lighting device detects the failure, and the failure alarm unit performs a failure alarm operation based on the detection result. Since it is possible to suggest the necessity of repair or replacement of the lighting device relatively early, it is possible to prevent the possibility of further damage from failure due to an overcurrent caused by a short circuit failure.
  • the failure detection unit can detect for each of the plurality of LED circuits whether or not each drive current flowing through the plurality of LED circuits is greater than or equal to a predetermined failure current value. It is possible to provide a light-emitting diode illumination circuit and an illumination device that can detect a short-circuit failure with high accuracy.
  • the present invention it is possible to light a fluorescent lamp with high efficiency while detecting the presence or absence of disconnection.
  • a fluorescent lamp driving device that can enable proper preheating with a relatively simple configuration in which an analog switch and a switch control circuit that controls on / off of the analog switch are added.
  • FIG. 2A is a block diagram in which components related to preheating control are extracted from the configuration shown in FIG. 1, and FIG. 2B is a block diagram showing a configuration example in which a photocoupler is added.
  • Time chart during normal lighting without disconnection or abnormality Time chart when disconnection occurs.
  • the block diagram which shows schematic structure of the fluorescent lamp drive device in 2nd Embodiment. It is a time chart at the time of normal lighting in which disconnection etc. have not occurred in the third embodiment. It is a time chart at the time of disconnection generation in a 3rd embodiment.
  • FIG. 14 is a reference cross-sectional view taken along line BB in FIG. 13. It is a block diagram which shows the structure of the light emitting diode illuminating device in 4th Embodiment.
  • the wave form diagram which shows an example of the high frequency alternating voltage applied to a fluorescent lamp.
  • the fluorescent lamp 1 controlled to be turned on / off by the fluorescent lamp driving apparatus 2 according to the first embodiment will be briefly described.
  • the fluorescent lamp 1 is, for example, a rod-shaped straight tube fluorescent tube, and is provided with a pair of filaments opposed to a base fixed to both ends thereof.
  • first filament 5 has one end side (power supply side terminal) via a power supply side connection terminal 7 c provided in the fluorescent lamp mounting part 100, and a lighting control circuit unit.
  • the first connection terminal 7b of the lighting control circuit unit 4 is configured to be electrically connectable to the four first connection terminals 7a, and the other end side (non-power supply side terminal) is connected via the non-power supply side connection terminal 7d. It is comprised so that electrical connection is possible.
  • the other filament (hereinafter referred to as “second filament”) 6 has one end side (power supply side terminal) via the power supply side connection terminal 8 c provided in the fluorescent lamp mounting portion 100, and the lighting control circuit unit 4.
  • the second connection terminal 8a and the other end side (non-power supply side terminal) can be electrically connected to the second connection terminal 8b of the lighting control circuit unit 4 via the non-power supply side connection terminal 8d. ing.
  • the fluorescent lamp 1 configured as described above is connected to a fluorescent lamp driving device 2 that controls the operation of turning on and off.
  • the fluorescent lamp driving device 2 includes an input circuit unit 3 that converts a power supply voltage Vcc obtained from an external power source into a predetermined value, and a DC voltage generated by the input circuit unit 3 as a high-frequency AC voltage (hereinafter referred to as “high-frequency voltage”) Vout. And a lighting control circuit unit 4 that outputs the fluorescent light 1 to the fluorescent lamp 1.
  • the input circuit unit 3 is provided with an input terminal 9 to which the power supply voltage Vcc is input.
  • the input terminal 9 receives a power switch operation signal Ssw operated when the fluorescent lamp 1 is turned on or off.
  • Ssw power switch operation signal
  • the power switch When the power switch is turned on, an on signal indicating an on state is input as the operation signal Ssw.
  • an off signal indicating an off state is input as the operation signal Ssw. This on / off operation of the power switch is detected by the manual operation detection circuit 10 of the input circuit unit 3.
  • the input circuit unit 3 includes a noise filter 11 that removes noise included in the power supply voltage Vcc, an operation power generation circuit 12 that generates a power supply voltage for the lighting control circuit unit 4 using the power supply voltage Vcc after noise removal as a voltage source, and Is provided.
  • the operation power generation circuit 12 is configured to output the power supply voltage Vcc after noise removal to the lighting control circuit unit 4 as the lighting power source of the fluorescent lamp 1, that is, the main voltage Vs, and the lighting control circuit unit 4 Is configured to be stepped down to a DC voltage having a predetermined value as a reference voltage Vk for operating the LED and output to the lighting control circuit unit 4.
  • the input circuit unit 3 is provided with an overheat detection circuit 13 that can detect the presence or absence of overheating in the input circuit unit 3 as an overheat protection function.
  • an overheat detection circuit 13 that can detect the presence or absence of overheating in the input circuit unit 3 as an overheat protection function.
  • a temperature change can be detected by a thermistor, and in the case of this embodiment, the presence or absence of heat generation of the fluorescent lamp 1 can be detected.
  • the presence / absence of overheat detection is notified in a visible manner by turning on (when not detecting) or turning off (when detecting) the overheat detection notification unit 14 formed of a light emitting element such as an LED connected to the overheat detecting circuit 13.
  • the overheat protection function is a function of the protection circuit 2a that protects the fluorescent lamp driving device 2.
  • the input circuit unit 3 is provided with a signal output circuit 15 that outputs an operation signal Sd based on the detection results of the manual operation detection circuit 10 and the overheat detection circuit 13 to the lighting control circuit unit 4.
  • the signal output circuit 15 sends a lighting request (ON signal) as an operation signal Sd when the overheat detection circuit 13 does not detect overheating.
  • a turn-off request (off signal) is used as the operation signal Sd. Can be output to the lighting control circuit unit 4.
  • the lighting control circuit unit 4 includes a switch circuit 16 that manages power on / off of the lighting control circuit unit 4, for example, an oscillation circuit 17 that oscillates by PWM control, an inverter circuit 18 that includes a push-pull circuit, and a transformer 19 that boosts an input voltage. , Etc. are provided.
  • the switch circuit 16 outputs the reference voltage Vk to the oscillation circuit 17 when an ON signal is input as the operation signal Sd from the signal output circuit 15 when the reference voltage Vk is input from the operation power generation circuit 12.
  • the oscillation circuit 17 can be operated.
  • the oscillation circuit 17 remains in the stopped state without operating.
  • the switch circuit 16 is connected to an operation state notifying unit 20 for notifying whether or not the lighting operation by the lighting control circuit unit 4 can be performed.
  • the operation state notifying unit 20 is formed of an LED, for example, and is turned on when the lighting control circuit unit 4 is performing the lighting operation of the fluorescent lamp 1 and is turned off when the lighting operation is not performed.
  • the switch circuit 16 is provided with a disconnection monitoring unit 33 that monitors the presence or absence of disconnection of the fluorescent lamp 1 based on a detection signal Sds output from the disconnection detection circuit 27 described later as a disconnection detection function.
  • the disconnection monitoring unit 33 monitors whether or not the detection signal Sds is less than or equal to a threshold value. If the detection signal Sds is less than or equal to the threshold value, the disconnection monitoring unit 33 determines that the disconnection occurs in the fluorescent lamp 1 and switches The supply of the reference voltage Vk from the circuit 16 to the oscillation circuit 17 is stopped. This makes it possible to prevent the lighting control circuit unit 4 from performing a lighting operation under a disconnection situation.
  • This disconnection detection function is also a function of the protection circuit 2 a that protects the fluorescent lamp driving device 2.
  • the oscillation circuit 17 has a function of generating a predetermined high-frequency signal and alternately turning on / off switching elements (not shown) in the inverter circuit 18 connected to the oscillation circuit 17.
  • the oscillation switching circuit 43 connected to the oscillation circuit 17 is configured to selectively switch the oscillation frequency.
  • the oscillation switching circuit 43 can correspond to a “frequency control circuit” of the present invention together with a preheating time setting circuit 73 described later.
  • the oscillation circuit 17 is operated at a high frequency (for example, about 100 KHz) to enable heat generation by the first filament 5 and the second filament 6 for the purpose of preheating. It oscillates and is normally lit after the preheating period, so it oscillates at a relatively low frequency (for example, about 40 KHz). This makes it possible to eliminate insufficient heating of the filament before lighting.
  • preheating control is performed by the preheating control circuit part mentioned later.
  • the inverter circuit 18 is constituted by, for example, a push-pull circuit composed of two switching elements (for example, MOS-FETs) connected in series so that the high-frequency signals output from the oscillation circuit 17 are in opposite phases. By inputting to the control (gate) terminal, these switching elements are alternately turned on and off. As a result, a current can flow alternately to the pair of primary windings 21a and 21b of the transformer 19 connected to the inverter circuit 18, so that a high-frequency voltage Vout is generated in the secondary winding 22 of the transformer 19. Then, the fluorescent lamp 1 can be turned on by the high-frequency voltage Vout.
  • the resonance frequency when the fluorescent lamp 1 is lit is set by the inductance component of the secondary winding 22 and the choke coil 23 and the capacitance component of the capacitor 38 (described later).
  • the transformer 19 includes the pair of primary windings 21a and 21b and one secondary winding 22, and the first winding terminal 22a of the secondary winding 22 is the first connection terminal 7a.
  • 7b is connected to one side terminal 7a (hereinafter, “one side first connection terminal 7a”)
  • the second winding terminal 22b of the secondary winding 22 is a terminal on one side of the second connection terminals 8a, 8b. 8a (hereinafter “one-side second connection terminal 8a”).
  • One side first connection terminal 7 a is connected to the main voltage Vs
  • one side second connection terminal 8 a is connected to the main voltage Vs via the secondary winding 22 of the transformer 19.
  • a series circuit 25 of a choke coil 23 and a capacitor 24 (hereinafter referred to as “DC component blocking capacitor 24”) is connected between the one-side second connection terminal 8a and the second winding terminal 22b.
  • the choke coil 23 earns an inductance component on the secondary side of the transformer 19, thereby enabling the amount of winding of the secondary winding 22 of the transformer 19 to be reduced.
  • the secondary winding 22 and the choke coil 23 of the transformer 19 may correspond to “an inductor connected in series between the power supply side terminals” of the present invention.
  • the DC component blocking capacitor 24 is for cutting off the DC component so that no DC current flows, and the first filament 5 of the fluorescent lamp 1 and resistors 35 and 36 from the secondary winding 22 side of the transformer 19. , 37, the closed circuit reaching the second filament 6 and the choke coil 23 of the fluorescent lamp 1 is the current loop circuit 26 of the fluorescent lamp 1, so that no direct current flows through the current loop circuit 26.
  • the current loop circuit 26 may correspond to the “series resonance circuit” of the present invention.
  • a disconnection detection circuit 27 is connected to the current loop circuit 26.
  • the disconnection detection circuit 27 includes a circuit in which a plurality of resistors 28, 29, 30, and 31 are connected in series, and outputs a detection signal Sds to the switch circuit 16 as a voltage value corresponding to the current value flowing through the current loop circuit 26. It is configured.
  • the disconnection monitoring unit 33 of the switch circuit 16 monitors whether or not the detection signal Sds is equal to or lower than the threshold value as described above, and when the detection signal Sds is equal to or lower than the threshold value, the disconnection monitoring unit 33 It can be determined that a disconnection has occurred.
  • the other terminal 7b of the first connection terminals 7a and 7b (hereinafter “the other first connection terminal 7b”) and the other terminal 8b of the second connection terminals 8a and 8b (hereinafter “the other second connection terminal 8b”). ”) Constitutes a tube abnormality detection circuit 34 that detects, for example, a filament breakage or tube breakage lamp of the fluorescent lamp 1.
  • the tube abnormality detection circuit 34 can realize a tube breakage detection function as one function of the protection circuit 2 a that protects the fluorescent lamp driving device 2, and is provided between the first filament 5 and the second filament 6 of the fluorescent lamp 1.
  • the terminal voltage is monitored so that the presence or absence of tube abnormality can be detected.
  • the tube abnormality detection circuit 34 uses the divided voltage Vbb generated at the node of the first resistor 35 and the second resistor 36 when viewed from the first filament 5 side between the terminals of the filaments 5 and 6. Output as voltage.
  • a capacitor 38 for determining a resonance frequency when the fluorescent lamp 1 is lit is connected between the first connection terminal 7b and the second connection terminal 8b.
  • the capacitor 38 may correspond to the “capacitor” of the present invention.
  • a filter circuit 39 for removing a direct current component from the partial pressure Vbb of the tube abnormality detection circuit 34 is connected to the tube abnormality detection circuit 34.
  • the filter circuit 39 removes a direct current component from the divided voltage Vbb so as to have only an alternating current component, and rectifies it with a rectifier circuit 40 so that it can be converted into a constant direct current voltage.
  • a protection operation circuit 41 that can execute a protection operation by the tube abnormality detection circuit 34 is connected to the output side of the rectifier circuit 40.
  • the protection operation circuit 41 includes a shutdown execution unit 42 that forcibly terminates the lighting operation by the lighting control circuit unit 4 when the tube abnormality detection circuit 34 detects an abnormality in the fluorescent lamp 1, and the oscillation circuit 17 during filament preheating.
  • a shutdown pause unit 44 that temporarily stops the shutdown function is provided.
  • the shutdown execution unit 42 compares the rectified partial pressure Vbb with a threshold value, and when the partial pressure Vbb is less than the threshold value, determines that a tube abnormality has occurred in the fluorescent lamp 1 and outputs a shutdown request Ksd to the oscillation circuit 17. It is configured to be able to. Accordingly, the oscillation circuit 17 that has received the shutdown request Ksd stops the oscillation operation regardless of whether the reference voltage Vk is input from the input circuit unit 3 and forcibly ends the lighting operation of the fluorescent lamp 1.
  • the shutdown pause unit 44 prevents the shutdown function of the oscillation circuit 17 from operating during the preheating period.
  • the shutdown pause unit 44 is temporarily stopped only for a time determined from the time constant of the RC circuit composed of a resistor and a capacitor.
  • the request Kit can be output to the oscillation switching circuit 43.
  • the oscillation switching circuit 43 can perform an oscillation operation at a high frequency without causing the oscillation circuit 17 to perform shutdown while the shutdown temporary stop request Kit is input.
  • the preheating time of the fluorescent lamp 1 set by the shutdown temporary stop unit 44 is the same value as the predetermined preheating time set by the preheating time setting circuit 73 of the preheating control circuit unit described below, the preheating is performed. You may comprise so that the preheating period expiration signal which notifies that time passed may be acquired from the preheating time setting circuit 73. FIG. As a result, the RC time constant circuit for generating the preheating time in the shutdown temporary stop unit 44 can be omitted, so that the circuit configuration can be simplified.
  • the fluorescent lamp driving device 2 includes the protection circuit 2a that can realize the overheat protection function, the disconnection detection function, and the tube breakage detection function.
  • the fluorescent lamp driving device 2 according to the present embodiment is relatively simple.
  • a preheating control circuit unit 4a (see FIG. 2) that can be realized with a simple configuration is provided.
  • the fluorescent lamp 1 is not broken.
  • the operating power supply generation circuit 12 outputs the power supply voltage Vcc after noise removal to the lighting control circuit unit 4 as the main voltage Vs.
  • the main voltage Vs is input to the lighting control circuit unit 4, the main voltage Vs is applied to the fluorescent lamp 1.
  • the disconnection detection circuit 27 outputs the detection signal Sds to the disconnection monitoring unit 33 with a normal value. Therefore, the disconnection monitoring unit 33 recognizes that the disconnection has not occurred in the fluorescent lamp 1 by inputting the normal detection signal Sds.
  • the operation power supply generation circuit 12 generates the reference voltage Vk by stepping down the power supply voltage Vcc after noise removal together with the operation of supplying the main voltage Vs to the lighting control circuit unit 4. To the switch circuit 16.
  • the signal operation circuit 15 confirms that the power switch is turned on by the manual operation detection circuit 10
  • the signal output circuit 15 outputs an on signal to the switch circuit 16 as the operation signal Sd on the condition that the overheat detection circuit 13 has not detected overheat.
  • the overheat detection notification unit 14 performs the lighting operation, the user is notified that the fluorescent lamp 1 is not overheated.
  • the switch circuit 16 When an ON signal is input as the operation signal Sd from the signal output circuit 15, the switch circuit 16 generates the reference voltage Vk obtained from the operation power generation circuit 12 on the condition that the disconnection detection circuit 27 does not detect disconnection. 17 to output. As a result, the operating power is supplied to the oscillation circuit 17.
  • the oscillation circuit 17 oscillates using the reference voltage Vk as a power supply, and outputs a high-frequency AC voltage Vout according to a high frequency from the secondary winding 22 of the transformer 19 via the inverter circuit 18. Then, the fluorescent lamp 1 starts the lighting operation with the filament preheating.
  • the oscillation switching circuit 43 oscillates the oscillation circuit 17 at a high frequency in order to light the fluorescent lamp 1 with a preheating current.
  • the tube voltage of the fluorescent lamp 1 takes an unstable state. Therefore, depending on the timing, the partial pressure Vbb of the tube abnormality detection circuit 34 falls below the threshold value, and the protection operation circuit 41 is shut down.
  • the unit 42 functions. Therefore, the shutdown pause unit 44 outputs the shutdown pause request Kit to the oscillation switching circuit 43 only for a time determined by the constant of its own CR component so that the shutdown function is not used during filament preheating. To do. Therefore, the oscillation switching circuit 43 oscillates at a high frequency while preventing the oscillation circuit 17 from shutting down during the preheating period.
  • the shutdown pause unit 44 stops outputting the shutdown pause request Kit.
  • the oscillation switching circuit 43 takes a state in which the shutdown temporary stop request Kit is not input, and this time oscillates the oscillation circuit 17 at a low frequency. Therefore, the high frequency AC voltage Vout according to the low frequency is output from the secondary winding 22 of the transformer 19, and the lighting operation of the fluorescent lamp 1 is switched from the filament preheating up to the normal lighting.
  • the shutdown execution unit 42 confirms that the partial pressure Vbb is equal to or lower than the threshold value, the shutdown execution unit 42 recognizes that a tube abnormality has occurred in the fluorescent lamp 1 and outputs a shutdown request Ksd to the oscillation circuit 17.
  • the oscillation circuit 17 operates according to the shutdown request Ksd and forcibly ends the lighting operation of the fluorescent lamp 1.
  • the direct current component blocking capacitor 24 is provided in the current loop circuit 26 which is a closed loop circuit of the fluorescent lamp 1, and the direct current component is cut from the current flowing through the current loop circuit 26 when the fluorescent lamp 1 is turned on. .
  • the disconnection detection circuit 27 detects whether or not a disconnection has occurred on the current loop circuit 26 in which the DC component does not flow, that is, on the current path of the fluorescent lamp 1. Therefore, since it is not necessary to use a method in which a direct current is directly supplied to the secondary side of the transformer 19 when detecting the disconnection, it is possible to detect the presence / absence of the disconnection in a state where the secondary side of the transformer 19 is not demagnetized. . For this reason, it is possible to light the fluorescent lamp 1 efficiently while detecting the presence or absence of disconnection of the fluorescent lamp 1.
  • a tube abnormality detection circuit 34 for monitoring the voltage between the terminals 5, 6, that is, the tube voltage, is provided in the fluorescent lamp driving device 2, and the presence or absence of tube abnormality is monitored by the partial pressure Vbb obtained from this tube abnormality detection circuit 34 To do. Therefore, for example, if the tube abnormality detection circuit 34 as in this example is provided in the lighting control circuit unit 4 by utilizing the tendency that the partial pressure Vbb increases in response to the occurrence of filament breakage or tube breakage, By detecting an increase in the partial pressure Vbb, it is possible to detect the presence or absence of filament breakage or tube breakage without any problem.
  • a DC component blocking capacitor 24 is connected to the current loop circuit 26 connected to the fluorescent lamp 1, and the disconnection detection circuit 27 connected to the loop circuit 26 is monitored for the presence or absence of disconnection in the loop circuit 26. For this reason, the fluorescent lamp 1 can be efficiently turned on while monitoring the disconnection of the fluorescent lamp 1.
  • the tube abnormality detection circuit 34 for monitoring the presence or absence of tube abnormality is provided between the pair of filaments 5 and 6 of the fluorescent lamp 1, filament breakage or tube breakage occurring in the fluorescent lamp 1 is detected. be able to.
  • the operation of the fluorescent lamp driving device 2 is forcibly stopped, so that the fluorescent lamp driving device 2 can be switched to a stopped state in such an abnormal state. .
  • the tube abnormality detection circuit 34 is composed of a plurality of resistors 35 to 37, when it is desired to switch the detection output of the tube abnormality detection circuit 34 in accordance with the type of the fluorescent lamp 1, for example, the resistors 35 to 37 are replaced with other resistors 35 to 37. This can be dealt with by a simple operation such as switching to a resistance value or adding a resistance component.
  • the overheat detection circuit 13 is provided in the input circuit unit 3, and when the fluorescent lamp driving device 2 and thus the fluorescent lamp 1 is overheated, the lighting operation of the fluorescent lamp 1 by the fluorescent lamp driving device 2 is forcibly terminated. Therefore, the fluorescent lamp driving device 2 and thus the fluorescent lamp 1 can be protected from overheating.
  • the switch circuit 16, the oscillation circuit 17, the protection operation circuit 41, the oscillation switching circuit 43, and the like that mainly manage the lighting / extinguishing of the fluorescent lamp 1 continuously output signal states in response to continuous input changes. Consists of changing analog circuits. Therefore, the circuit portion for controlling the turning on / off in the fluorescent lamp driving device 2 can be a simple configuration called an analog circuit.
  • the fluorescent lamp driving device 102 is provided with a controller 51 that controls the lighting and extinction of the fluorescent lamp 1 in a programmable manner.
  • the control controller 51 is composed of a software circuit including, for example, a CPU (Central Processing Unit) 52, a memory 53, and the like, and executes a lighting operation and an extinguishing operation based on a control program 54 stored in the memory 53. Further, the control controller 51 is composed of a control IC (Integrated Circuit) integrated into one chip.
  • the control controller 51 of this example is a circuit that functions as, for example, the switch circuit 16, the oscillation circuit 17, the protection operation circuit 41, the oscillation switching circuit 43, and the like of the first embodiment.
  • the control controller 51 constitutes a lighting / extinguishing control means, and the control program 54 corresponds to a program.
  • the control controller 51 is connected to an input circuit unit 55 for inputting a power supply voltage Vcc and an operation signal Ssw and an overheat detection circuit unit 56 for detecting whether the fluorescent lamp 1 generates heat.
  • the input circuit unit 55 converts and outputs the input power supply voltage Vcc to the main voltage Vs and the reference voltage Vk, and notifies the control controller 51 that the operation signal Ssw has been input.
  • the overheat detection circuit unit 56 monitors the heat generation of the fluorescent lamp 1 by checking the presence or absence of heat generation in the input circuit unit 55, and outputs an overheat detection notification Skm corresponding to the monitoring result to the controller 51.
  • the overheat detection circuit unit 56 constitutes an overheat detection means.
  • a lighting circuit unit 58 is connected to the controller 51 via a gate drive circuit unit 57 that functions as a drive circuit.
  • the lighting circuit unit 58 of this example is a circuit that bears the functions of the inverter circuit 18, the transformer 19, the disconnection detection circuit 27, the tube abnormality detection circuit 34, the filter circuit 39, the rectifier circuit 40, and the like of the first embodiment.
  • the lighting circuit unit 58 converts the DC voltage input from the controller 51 into a high-frequency AC voltage Vout by the inverter circuit 18 and the transformer 19, and outputs the voltage Vout to the fluorescent lamp 1 to light the fluorescent lamp 1. Further, the lighting circuit unit 58 outputs the detection signal Sds of the disconnection detection circuit 27 and the partial pressure Vbb of the tube abnormality detection circuit 34 to the controller 51.
  • control controller 51 is provided with a display circuit unit 59 for displaying the operation state of the fluorescent lamp driving device 102.
  • the controller 51 detects disconnection of the fluorescent lamp 1 with the disconnection detection circuit 27, detects tube abnormality with the tube abnormality detection circuit 34, or detects overheating with the overheat detection circuit unit 56, the fluorescent lamp drive device The operation of 102 is stopped and a display request Kdp is output to the display circuit unit 59.
  • this display request Kdp is input, the display circuit unit 59 notifies the user of the occurrence of an abnormality, for example, by turning off the LED that has been lit up until then.
  • the fluorescent lamp 1 is turned on / off by the control controller 51 formed of a software circuit. For this reason, even if there is a desire to switch the operation pattern of turning on / off the fluorescent lamp 1, it can be handled by overwriting the control program 54 stored in the memory 53 of the controller 51 with another program. is there. Therefore, switching of the operation pattern of turning on / off the fluorescent lamp 1 can be performed by a simple operation of simply rewriting the program.
  • the following effects can be obtained in addition to the effects (1) to (5) of the first embodiment.
  • the circuit part that mainly manages the turning on / off of the fluorescent lamp 1 is configured by a software circuit called a controller 51. For this reason, for example, when it is desired to switch the operation content of turning on / off the fluorescent lamp 1, the control program 54 drawn in the memory 53 of the control controller 51 may be changed to another program. Therefore, the operation of turning on and off can be easily switched to another operation without changing the fluorescent lamp driving device 102 itself.
  • the preheating control circuit unit 4a includes a switch 71, a preheating time setting circuit 73, and a switch drive circuit 75.
  • the switch 71 is an analog switch composed of, for example, a MOS-FET or the like, and is configured to be able to be turned on / off by a gate control signal input to the gate terminal.
  • the analog switch may be a bipolar transistor or a unipolar transistor such as a CMOS as long as the analog switch is configured by a semiconductor capable of bidirectional input / output.
  • the filaments of the fluorescent lamp 1 first filament 5 and second filament 6) need to be heated and preheated, for example, the maximum allowable voltage is 400 V or more and the maximum allowable current is 1.5 A or more.
  • an SSR Solid State Relay
  • a mechanical relay or the like may be listed as a specific example of the switch 71.
  • the maximum allowable current decreases as the maximum allowable voltage increases. Since it is difficult to satisfy the above specifications from the balance between the maximum allowable voltage and the maximum allowable current, such that the maximum allowable voltage decreases when the allowable current is large, it is not suitable for the switch 71.
  • the fluorescent lamp driving device 112 employs an analog switch as the switch 71.
  • the switching speed of the analog switch is on the order of 100 nS, even if a photocoupler 77 is interposed in front of the switch 71 as shown in FIG.
  • the switching speed of the mechanical relay is on the order of 10 mS, which is 100 times slower than the analog switch.
  • Examples of the maximum allowable voltage and the maximum allowable current of the SSR include the following. G3VM-61A1 (made by OMRON Corporation): Allowable voltage 60V, Allowable current 0.5A G3VM-202J1 (made by OMRON Corporation): allowable voltage 200V, allowable current 0.2A G3VM-351G (manufactured by OMRON Corporation): allowable voltage 350V, allowable current 0.11A
  • the preheating time setting circuit 73 sets the preheating time of the fluorescent lamp 1, and in this embodiment, a predetermined preheating time is triggered by a lighting request (ON signal) as an operation signal Sd output from the input circuit unit 3. (For example, 0.4 seconds to 3.0 seconds) is started.
  • a lighting request ON signal
  • Sd operation signal
  • a control signal that is H level during the preheating period can be output to the switch drive circuit 75 and the oscillation switching circuit 43.
  • a control signal is output to the oscillation switching circuit 43 so that the oscillation frequency of the oscillation circuit 17 can be set.
  • the preheating time setting circuit 73 can correspond to the “frequency control circuit” of the present invention together with the oscillation switching circuit 43 described above.
  • the predetermined preheating time set by the preheating time setting circuit 73 is the same value as the preheating time of the fluorescent lamp 1 set by the above-described shutdown temporary stop unit 44, and therefore the preheating notifying that the preheating time has elapsed. You may comprise so that a period expiration signal may be acquired from the shutdown temporary stop part 44.
  • FIG. Thereby, since the RC time constant circuit for generating the preheating time in the preheating time setting circuit 73 can be omitted, the configuration of the preheating time setting circuit 73 can be simplified.
  • the switch drive circuit 75 enables on / off control of the switch 71 described above, and is configured to receive a control signal from the preheating time setting circuit 73 and to output a gate control signal to the switch 71.
  • the switching control of the switch 71 is performed so that the switch 71 is turned on in response to the H level control signal output from the preheating time setting circuit 73 only during the preheating period, and the switch 71 is turned off during other periods. I am doing.
  • the switch drive circuit 75 can correspond to the “switch control circuit” of the present invention.
  • the switch 71 is in a conductive state at both ends of the capacitor 38 during the preheating period when the switch 71 is turned on. Therefore, regardless of the presence of the capacitor 38, the fluorescent lamp 1
  • the non-power supply side connection terminals 7d and 8d of the filaments (first filament 5 and second filament 6) are short-circuited.
  • the power supply side connection terminals 7c and 8c can be brought into a DC conductive state via the short-circuited non-power supply side connection terminals 7d and 8d.
  • a control signal for causing the oscillation circuit 17 to oscillate at a high frequency (for example, about 100 KHz) is output from the preheating time setting circuit 73 to the oscillation switching circuit 43.
  • a high frequency voltage having a high frequency is output to the fluorescent lamp 1 from the connection terminal 7a and the second connection terminal 8a.
  • a configuration in which a photocoupler 77 is interposed between the gate terminal of the switch 71 and the output of the preheating time setting circuit 73 may be employed. That is, by driving the gate voltage applied to the gate terminal of the switch 71 on the output side of the photocoupler 77, the gate terminal is electrically connected from the current loop circuit 26 for supplying the high-frequency voltage Vout to the fluorescent lamp 1 and its peripheral circuits. Can be electrically insulated. As a result, even if the input impedance of the gate terminal of the switch 71 is relatively high, it is difficult to be affected by high-frequency noise or the like that can be generated from the current loop circuit 26 or the like. Is possible.
  • ⁇ Addition of a noise removal capacitor or inductor on the input side of the photocoupler 77 can further suppress malfunctions. Further, by providing a bleeder resistor or the like in parallel on the output side of the photocoupler 77, the on / off control of the switch 71 can be speeded up.
  • FIGS. 10A to 10E are six views of the first fluorescent lamp socket constituting the fluorescent lamp socket.
  • FIG. 11 is a reference perspective view of the first fluorescent lamp socket.
  • FIG. 12 is a reference cross-sectional view taken along line AA in FIG.
  • FIGS. 13A to 13E are six views of the second fluorescent lamp socket constituting the fluorescent lamp socket.
  • FIG. 14 is a reference perspective view of the second fluorescent lamp socket.
  • FIG. 15 is a reference cross-sectional view taken along line BB in FIG.
  • the fluorescent lamp mounting portion 100 is configured by a first fluorescent lamp socket 101 shown in FIGS. 10 to 12 and a second fluorescent lamp socket 121 shown in FIGS.
  • the caps at both ends of the fluorescent lamp 1 which is a tube fluorescent lamp are attached to the first fluorescent lamp socket 101 and the second fluorescent lamp socket 121, respectively.
  • the first fluorescent lamp socket 101 has a fluorescent lamp support portion 104 protruding from the fluorescent lamp mounting surface 103 of the socket body 102 in a shape along the outer peripheral surface of the fluorescent lamp 1. Yes.
  • the fluorescent lamp support unit 104 includes four protective pieces 104a to 104d that are provided in a protruding manner.
  • Gaps 106 and 107 are provided between the protective piece 104a and the protective piece 104b, and between the protective piece 104b and the protective piece 104c, respectively. Further, gaps 108 and 109 are provided between the protective piece 104a and the protective piece 104d. The gaps 106 and 107 are provided at a position directly above the receiving part 105 in the vertical direction, and the gaps 108 and 109 are provided at a right side position corresponding to the receiving part 105 in the horizontal direction. The widths of the gaps 106 to 109 are all wider than the thickness of the electrode terminal (not shown) of the fluorescent lamp 1.
  • the second fluorescent lamp socket 121 is assembled so that the fluorescent lamp movable support portion 123 is slidable with respect to the socket holder 122, and the movable support portion 123 is pushed out of the socket holder 122. It is configured to be urged by a spring (not shown) in the direction to be pressed. As a result, the fluorescent lamp support portion 125 can enter and exit through the opening 124 of the socket holder 122. Similar to the gaps 106 to 109 of the fluorescent lamp support 104, gaps 126 to 129 are provided in the fluorescent lamp support 125.
  • Each of the three circles shown in the rear view of the third fluorescent lamp socket 101 and the second fluorescent lamp socket 121 is a screw hole for attachment to the luminaire main body.
  • the fluorescent lamp is supported by the power terminal of the fluorescent lamp inserted into the socket. If the power terminal is not firmly inserted into the socket, the fluorescent lamp may fall. If a support member that supports the fluorescent lamp is added to prevent such a risk, the structure becomes complicated and the cost increases. Further, as compared with the case where the fluorescent lamp is merely inserted into the socket, there is a problem that more work time is required when the support member is attached / detached or the socket is disassembled for attaching / detaching the fluorescent lamp 1.
  • the fluorescent lamp support portion 125 is urged by a spring so as to be slidable with respect to the socket holder 122.
  • the power terminal of the fluorescent lamp 1 can be easily attached to and detached from the first fluorescent lamp socket 101 and the second fluorescent lamp socket 121 by sliding the fluorescent lamp support portion 125 of the second fluorescent lamp socket 121 in and out. Can do. Further, the power terminal can be easily put in and out of the fluorescent lamp support section 104 by passing the power terminals on the first fluorescent lamp socket 101 side through the gaps 106-109. Similarly, the fluorescent lamp 1 can be easily attached to the second fluorescent lamp socket 121 side by passing the power supply terminals through the gaps 126 to 129.
  • the power supply terminal can be passed from any one of the three directions. Therefore, the direction in which the fluorescent lamp 1 is attached or detached can be selected, and the workability is good.
  • the fluorescent lamp 1 is supported by the fluorescent lamp support portions 104 and 125 so that the ends of the fluorescent lamp are surrounded, and the fluorescent lamp 1 can be prevented from falling.
  • the power supply voltage Vcc when the power supply voltage Vcc is supplied from the outside to the fluorescent lamp driving device 112, the power supply voltage Vcc input from the input terminal 9 is input to the operating power generation circuit 12 after noise is removed by the noise filter 11.
  • the operating power supply generation circuit 12 generates the main voltage Vs based on the power supply voltage Vcc and generates a reference voltage Vk by stepping down. These voltages Vs and Vk are both output to the lighting control circuit unit 4. Accordingly, since the driving power is supplied to the lighting control circuit unit 4, the operation becomes possible, and the main voltage is supplied to the filaments 5 and 6 of the fluorescent lamp 1 through the resistors 35 to 37 of the lighting control circuit unit 4. Since a current due to Vs flows, the disconnection detection circuit 27 can detect the disconnection (FIG. 7A).
  • the presence or absence of overheating is detected by the overheat detection circuit 13.
  • an H level detection signal is output and the overheat detection notification unit 14 is turned on.
  • an L level detection signal is detected. Is output and the overheat detection notification unit 14 is turned off.
  • the description proceeds on the assumption that no overheating has been detected, so that an H level detection signal is output (FIG. 7B).
  • the disconnection detection circuit 27 Since it is assumed that the fluorescent lamp 1 is not disconnected, the disconnection detection circuit 27 outputs a normal detection signal Sds to the disconnection monitoring unit 33, and receives the disconnection monitoring unit 33. Determines that no breakage has occurred in the fluorescent lamp 1 (FIG. 7E).
  • the signal output circuit 15 is provided on the condition that the overheat detection circuit 13 does not detect overheat.
  • an ON signal is output as the operation signal Sd to the switch circuit 16 and the preheating time setting circuit 73 (FIG. 7D).
  • the switch circuit 16 uses the reference voltage Vk obtained from the operation power generation circuit 12 on the condition that the disconnection detection circuit 27 has not detected disconnection. Output to the oscillation circuit 17.
  • the ON signal as the operation signal Sd is also input to the preheating time setting circuit 73.
  • the preheating time setting circuit 73 starts a predetermined preheating time by using it as a trigger and outputs a control signal to the oscillation switching circuit 43 to increase the oscillation frequency of the oscillation circuit 17 (for example, about 100 KHz). Switch to.
  • the oscillation circuit 17 starts oscillating at a high frequency (FIG. 7G), and when the switching elements of the inverter circuit 18 are alternately turned on and off, the high-frequency voltage Vout is output from the secondary winding 22 of the transformer 19.
  • the preheating time setting circuit 73 When a predetermined preheating time is started, the preheating time setting circuit 73 outputs a gate control signal (for example, H level) for turning on the switch 71 to the switch 71 so as to output to the switch 71 during the preheating period.
  • a gate control signal for example, H level
  • a control signal is output (FIG. 7 (I)).
  • the switch 71 is controlled from the OFF state to the ON state, so that the high-frequency voltage Vout output from the secondary winding 22 of the transformer 19 is applied to the filaments (first filament 5 and second filament 6) of the fluorescent lamp 1.
  • the other side second connection terminal 8b, the non-power source side connection terminal 8d, the second filament 6, the power source side connection terminal 8c, and the one side second connection terminal 8a through the two-way energization path, so that the preheating of the filament (FIG. 7 (H)).
  • the switch 71 Since the switch 71 is turned on during preheating of the filament, the divided voltage output from the tube abnormality detection circuit 34 is not generated without generating a divided voltage by the resistors 35 to 37 constituting the tube abnormality detection circuit 34. Vbb becomes 0V.
  • the shutdown execution unit 42 functions even though no tube abnormality has occurred, so that the shutdown pause request Kit is oscillated and switched for a time determined from the time constant of the RC circuit described above so that this does not work.
  • Output to the circuit 43 Thereby, the oscillation switching circuit 43 oscillates the oscillation circuit 17 at a high frequency while preventing the oscillation circuit 17 from shutting down during the preheating period.
  • the preheating time setting circuit 73 When the preheating period elapses, the preheating time setting circuit 73 outputs a control signal to the switch drive circuit 75 so as to output a gate control signal (for example, L level) for turning off the switch 71 to the switch 71.
  • a control signal is output to the oscillation switching circuit 43 so that the oscillation frequency of the oscillation circuit 17 is switched to a low frequency (for example, about 40 KHz).
  • the oscillation circuit 17 starts oscillating at a low frequency (FIG. 7 (G)) and the switch 71 is turned off (FIG. 7 (I)).
  • the control operation is switched to switch the lighting operation of the fluorescent lamp 1 from the previous filament preheating to the normal lighting (FIG. 7 (H)).
  • the shutdown execution unit 42 detects that the partial pressure Vbb is below the threshold, determines that a tube abnormality has occurred in the fluorescent lamp 1, and the oscillation circuit 17
  • the shutdown request Ksd is output to (Fig. 9 (G)).
  • the oscillation circuit 17 operates according to the shutdown request Ksd and forcibly ends the lighting operation of the fluorescent lamp 1 (FIG. 9 (H)).
  • the switch drive circuit 75 is the same as in the normal state shown in FIG.
  • the fluorescent lamp driving device 112 in the fluorescent lamp driving device 2 that converts the DC voltage Vcc into the high frequency voltage Vout by the inverter circuit 18 and lights the fluorescent lamp 1 by the high frequency voltage Vout.
  • the secondary winding 22 and the choke coil 23 of the transformer 19 connected in series between the power supply side connection terminals 7c and 8c of the first filament 5 and the second filament 6 constituting the fluorescent lamp 1, and the DC component are cut off.
  • Between the non-power supply side connection terminals 7d and 8d of the pair of the first filament 5 and the second filament 6 and the series resonance circuit configured to include the capacitor 24 and set to the resonance frequency when the fluorescent lamp 1 is turned on.
  • the non-power supply side connection terminal 7d and 8d are short-circuited by the switch 71, so that the pair of first filament 5 and second filament 6 constituting the fluorescent lamp 1 are connected between the non-power-supply side connection terminals 7d and 8d in the short-circuit state.
  • the power supply side connection terminals 7c and 8c can be connected in a direct current state.
  • the switch 71 and the switch drive circuit 75 for controlling on / off of the switch 71 are added, so that the first filament 5 and the first filament 5 and the second filament can be connected during the preheating period. Since the fluorescent lamp 1 does not light even when the high frequency voltage Vout is applied to the two filaments 6, it is possible to perform preheating control in which the first filament 5 and the second filament 6 are heated in advance without lighting before the end of preheating. . Therefore, it is possible to provide the fluorescent lamp driving device 2 that can enable proper preheating with a relatively simple configuration in which the switch 71 and the switch driving circuit 75 that controls on / off of the switch 71 are added.
  • the fluorescent lamp driving device 112 includes the oscillation switching circuit 43 and the preheating time setting circuit 73 configured to be able to control the frequency of the high frequency voltage Vout, and these include the high frequency voltage Vout during the preheating period.
  • the frequency is set to about 100 KHz, which is higher than the frequency after the preheating period (for example, about 40 KHz).
  • the high frequency voltage Vout of 100 KHz is applied to the first filament 5 and the second filament 6 that are in a DC state during the preheating period, so that the fluorescent lamp 1 can be preheated in a short time. .
  • the frequency of the high-frequency voltage Vout is set to about 100 KHz during the preheating period and about 40 KHz during normal lighting.
  • the present invention is not limited to this, and the high-frequency voltage Vout during the preheating period is set.
  • the frequency is a frequency band in which the first filament 5 and the second filament 6 can be overheated, the frequency may be, for example, 200 KHz, 400 KHz, 800 KHz, 1 MHz, or higher.
  • the gate terminal of the switch 71 is electrically connected by the photocoupler 77 to the current loop circuit 26 of the fluorescent lamp 1 to which the high frequency voltage Vout is supplied and its peripheral circuit. Is insulated.
  • the input impedance of the gate terminal of the switch 71 is relatively high, it is difficult to be affected by high-frequency noise or the like that can be generated from the current loop circuit 26 of the fluorescent lamp 1 and the like. be able to.
  • FIG. 16 is a block diagram showing the configuration of the light-emitting diode illuminating device
  • FIG. 17 is a circuit diagram showing the main part of the light-emitting diode illuminating circuit of the LED illuminating device.
  • the lighting device 510 includes a light emitting diode lighting circuit 501 and is a lighting device installed in a passenger room of a railway vehicle.
  • the light-emitting diode illumination circuit 501 is connected to a light-emitting unit 502 including LED circuits 502a, 502b, 502c, and 502d in parallel, and is connected to the light-emitting unit 502 via a power line 514 to supply a predetermined direct current to the light-emitting unit 502.
  • a drive current supply unit 503 that is connected to the light emitting unit 502 and the drive current supply unit 503, a failure detection unit 505 that detects that a failure has occurred in the LED circuits 502a to 502d, and a LED circuit 502a to 502d in parallel.
  • a failure alarm unit 506 that is connected and notifies the occurrence of a failure based on the detection result of the failure detection unit 505 is provided.
  • the drive current supply unit 503 is connected to a power source 504 that supplies power to the light emitting diode illumination circuit 501 from the outside.
  • the LED circuit 502a includes four light emitting diodes D1 to D4 connected in series.
  • the configuration of the LED circuits 502b to 502d is the same as that of the LED circuit 502a. Accordingly, the light emitting unit 502 is configured by connecting in parallel four LED circuits 502a to 502d each having four light emitting diodes connected in series.
  • the failure detection unit 505 includes voltage detection circuits 505a to 505d connected in parallel to each other.
  • the voltage detection circuit 505a branches at a first resistor 601 connected in series with the LED circuit 502a and a nodal point 602 inserted between the LED circuit 502a and the first resistor 601.
  • an FET 604 which is an N-channel MOSFET (detection means, semiconductor switching element) whose gate is connected in parallel, and a second resistor 603 disposed between the FET 604 and the node 602 are provided.
  • the voltage detection circuit 505b is disposed between the first resistor 611, the FET 614 that branches at the node 612 and has a gate connected in parallel to the first resistor 611, and the FET 614 and the node 612. And a second resistor 613.
  • the voltage detection circuit 505 c is disposed between the first resistor 621, the FET 624 that is branched at the node 622 and connected in parallel to the first resistor 621, and the FET 624 and the node 622. And a second resistor 623.
  • the voltage detection circuit 505 d is disposed between the first resistor 631, the FET 634 branched at the node 632 and connected in parallel to the first resistor 631, and the FET 634 and the node 632. And a second resistor 633.
  • the voltage detection circuits 505a to 505d of the failure detection unit 505 are connected to the LED circuits 502a to 502d, respectively.
  • a voltage detection circuit 505a is provided between the LED circuit 502a and the power supply line 514.
  • a voltage detection circuit 505b is provided between the LED circuit 502b and the power supply line 514, and a voltage detection is performed between the LED circuit 502c and the power supply line 514.
  • Fault detection circuits 505d are provided between the circuit 505c, the LED circuit 502d, and the power supply line 514, respectively.
  • the gate of the FET 604 is connected to the second resistor 603, the drain of the FET 604 is connected to the failure alarm unit 506 via the signal line 521, and the source of the FET 604 is connected to the power supply line 514.
  • the LED circuits 502b to 502d are also the same as the LED circuit 502a, the gate of the FET 614 is connected to the second resistor 613, the drain of the FET 614 is connected to the failure alarm unit 506 via the signal line 521, and the FET 614 The source is connected to the power line 514.
  • the gate of the FET 624 is connected to the second resistor 623, the drain of the FET 624 is connected to the failure alarm unit 506 via the signal line 521, and the source of the FET 624 is connected to the power supply line 514.
  • the gate of the FET 634 is connected to the second resistor 633, the drain of the FET 634 is connected to the failure alarm unit 506 via the signal line 521, and the source of the FET 634 is connected to the power supply line 514.
  • the second resistors 603, 613, 623, 633 all have sufficiently larger resistance values than the first resistors 601, 611, 621, 631, and a DC current within the rating is supplied from the drive current supply unit 503.
  • the FETs 604, 614, 624, and 634 are set not to conduct.
  • the failure alarm unit 506 includes an alarm display LED 561 and a current limiting resistor 562 connected in series.
  • the failure alarm unit 506 is connected to the light emitting unit 502 (power supply line 513) via the signal line 521 and is connected to the voltage detection unit 505. Are connected via a signal line 521.
  • the current limiting resistor 562 limits the current to prevent the alarm display LED 561 from being damaged due to overcurrent.
  • the normal operation state of the voltage detection circuit 505a will be described by taking the LED circuit 502a and the voltage detection circuit 505a as examples.
  • the LED circuit 502a When the LED circuit 502a is normal, when a predetermined current is supplied from the drive current supply unit 503, the voltage across the LED circuit 502a becomes a predetermined value, and the light emitting diodes D1 to D4 are lit.
  • the resistance value R2 of the second resistor 603 is sufficiently larger than the resistance value R1 of the first resistor 601, and the voltage at the gate of the FET 604 is smaller than the threshold voltage at which the FET 604 conducts. No current flows between them, and the alarm display LED 561 of the failure alarm unit 506 is not lit.
  • the operation state of the LED circuits 502a to 502d and the voltage detection circuits 505a to 505d when a short circuit failure occurs in the light emitting diode of the light emitting unit 502 will be described by taking the LED circuit 502a and the voltage detection circuit 505a as an example.
  • the voltage across the LED circuit decreases due to a decrease in the internal impedance of the light emitting diode.
  • a voltage detection circuit 505a is connected in series to the LED circuit 502a, and the current flowing through the voltage detection circuit 505a increases. When the current flowing through the voltage detection circuit 505a increases, the potential of the node 602 increases.
  • the voltage at the second resistor 6103 increases and the voltage at the gate of the FET 604 also increases.
  • the voltage of the gate of the FET 604 becomes higher than a predetermined threshold voltage, the drain and source of the FET 604 are electrically connected, current flows, and the alarm display LED 561 of the failure alarm unit 506 is turned on.
  • the voltage at the gate of FET 604 is determined. That is, as the resistance value R1 of the first resistor 601 becomes relatively larger than the resistance value R2 of the second resistor 603, the voltage at the gate of the FET 604 is likely to rise and easily exceed the threshold voltage. As the resistance value R1 of the first resistor 601 is larger, the detection sensitivity for detecting a short-circuit failure of the light emitting diodes D1 to D4 is higher.
  • the detection sensitivity for detecting the short-circuit failure of the light emitting diodes D1 to D4 becomes lower.
  • the current detection circuit 505a is sensitive to the occurrence of a short circuit failure of the light emitting diode, and the failure alarm unit 506 issues an alarm when a short circuit failure of a relatively small number of LEDs occurs.
  • the detection sensitivity for detecting a short circuit failure is low, it is necessary that the failure of the light emitting diode proceeds to some extent before the failure alarm unit 506 issues an alarm.
  • the detection sensitivity is determined in advance by the ratio of the resistance values of the first resistor 601 and the second resistor 603, and a failure alarm unit is set in accordance with the degree of failure of the LED circuit 502a that indicates how many light emitting diodes are short-circuited. 6 can be alerted.
  • the operation states of the voltage detection circuits 505b to 505d at the normal time and when a short circuit fault occurs are This is the same as that of the voltage detection circuit 505a. Since the voltage detection circuits 505a to 505d are provided in parallel with each other, the voltage detection circuits 505a to 505d operate independently of each other, and detect the occurrence of a short-circuit fault in the LED circuits 502b to 502d connected in series.
  • the voltage detection circuits 505a to 505d are connected in series to the LED circuits 502a to 502d, and the LED circuits 502a to 502d are connected. Since the flowing current is directly detected, there is little possibility of erroneously detecting a change due to other factors, and the detection accuracy of a short circuit failure of the light emitting diode is high.
  • the voltage detection circuits 505a to 505d individually detect short-circuit faults for the LED circuits 502a to 502d provided in parallel, a drain-source current flows for each FET of the voltage detection circuits 505a to 505d. By confirming whether or not, it is possible to easily identify which of the LED circuits 502a to 502d has failed.
  • the alarm display LED 561 emits light and can perform a visually recognizable alarm.
  • the lighting device 510 when a short circuit failure occurs in the light emitting diode of the light source, the voltage detection circuits 505a to 505d incorporated in the lighting device 510 detect the failure, and based on the detection result, the failure alarm unit 506
  • the alarm display LED 561 lights up. Before the light emitting diode fails due to the occurrence of an overcurrent due to a short circuit failure, the lighting of the alarm display LED 561 indicates that the lighting device needs to be repaired or replaced. Therefore, it is possible to prevent the possibility of further damage from failure. Further, even when the alarm display LED 561 is lit, the use is not immediately stopped, and the use can be continued temporarily.
  • the light-emitting diode illumination circuit 501 does not use a computer or an IC (integrated circuit), and is composed of a simple analog circuit, so that it can be manufactured at low cost. Also, maintenance and inspection are easy.
  • the reference value for determining the voltage drop of the LED circuits 502a to 502d is determined according to the resistance values of the first resistors 601, 611, 621, 631, the resistances of the first resistors 601, 611, 621, 631 are determined.
  • a reference value at which the alarm display LED 561 is turned on that is, a reference of how many LEDs are short-circuited to issue an alarm.
  • the drive current supply unit 503 is a constant current source that supplies a predetermined current
  • the light emitting unit 502 that receives supply of drive current from the drive current supply unit 503 includes a plurality of LED circuits. 502a to 502d are provided. For this reason, for example, when a short circuit failure occurs in the light emitting diode D3 among the four light emitting diodes D1 to D4 constituting the LED circuit 502a, the following phenomenon may occur.
  • the internal impedance of the light emitting diode D3 having the short circuit failure is reduced to almost zero, the internal impedance of the LED circuit 502a including the light emitting diode D3 becomes lower than that of the other normal LED circuits 502b to 502d. The drive current that flows through is increased.
  • the voltage across the LED circuit 502a including the light-emitting diode D3 having the short-circuit failure increases with an increase in the drive current, but the LED circuit 502a is connected to each other along with other normal LED circuits 502b to 502d. Connected in parallel. Therefore, the voltage across the LED circuit 502a is equal to the voltage across the normal LED circuits 502b to 502d.
  • the forward voltage of a normal light emitting diode is Vf
  • the forward voltage of an abnormal light emitting diode that has caused a short-circuit failure or the like is Vf ′
  • the forward current is I ′.
  • the number of light emitting diodes constituting the LED circuit 2a etc. is n
  • the number of abnormal light emitting diodes causing a short circuit failure is m
  • the resistance value of the first resistor 101 etc. connected in series to the LED circuit 2a etc. is R1 Then, the following equation (1) is established.
  • the forward voltages Vf and Vf ′ and the forward currents I and I ′ of the light emitting diode are based on a data sheet provided by the manufacturer of the light emitting diode.
  • n ⁇ Vf + R1 ⁇ I (nm) ⁇ Vf ′ + R1 ⁇ I ′ (1)
  • the following equation (2) for obtaining the number m of abnormal light emitting diodes causing a short circuit failure or the like can be obtained.
  • m [n ⁇ (Vf′ ⁇ Vf) + R1 ⁇ (I′ ⁇ I)] / Vf ′ (2)
  • each Vf ′ of the forward voltage corresponding to each current value of the drive current that is the forward current of the light emitting diode is provided as a two-dimensional map stored in the storage space of the memory IC or the like, and each LED circuit
  • each current sensor that can detect the drive current I ′ at the time of abnormality flowing through 502a to 502d, or a voltage sensor after converting it to a voltage, a short circuit failure or the like occurs based on the above equation (2).
  • the number m of abnormal light emitting diodes can be calculated by a microcomputer or the like.
  • the drive current supply unit 3 is configured so that the value of the drive current supplied from the drive current supply unit 3 to the light emitting unit 2 can be reduced.
  • the light-emitting diode illumination circuit 530 is a circuit for a lighting fixture installed in a vehicle cabin, similar to the light-emitting diode illumination circuit 501. As shown in FIG. 18, the light-emitting diode illumination circuit 530 is the same as the light-emitting diode illumination circuit 501 except that a light-emitting unit 700 is provided instead of the light-emitting unit 502 of the light-emitting diode illumination circuit 501. Therefore, in FIG. 18, components substantially the same as those in FIG. 17 are denoted by the same reference numerals, and only the light emitting unit 700 will be described below.
  • the light emitting unit 700 is configured by connecting LED circuits 700a, 700b, 700c, and 700d in parallel. As shown in FIG. 4, in the LED circuit 700a, light emitting diode groups 701 to 704 each having three light emitting diodes connected in parallel are connected in series.
  • the light emitting diode group 701 includes light emitting diodes D11 to D13
  • the light emitting diode group 702 includes light emitting diodes D21 to D23
  • the light emitting diode group 703 includes light emitting diodes D31 to D33
  • the light emitting diode group 704 includes light emitting diodes. D41 to D43. Since the LED circuits 700b to 700d have the same configuration as the LED circuit 700a, the description thereof is omitted.
  • the light emitting unit 700 includes a total of 48 light emitting diodes, voltage detecting circuits 705a to 705d are provided corresponding to the LED circuits 700a to 700d. Since it is only necessary to monitor voltage changes in 12 light emitting diodes, there is little risk of malfunction even with a simple circuit configuration. Therefore, as compared with the case where one voltage detection circuit is provided for the entire light emitting unit 700, the light emitting diode illumination circuit 530 can detect an abnormal voltage with higher accuracy.
  • a light emitting diode illumination circuit 540 according to a sixth embodiment of the present example will be described with reference to FIG.
  • a light-emitting diode illumination circuit 540 shown in FIG. 5 is obtained by replacing the FETs 604, 614, 624, and 634 of the light-emitting diode illumination circuit 501 of the fourth embodiment described with reference to FIG. 17 with bipolar transistors. For this reason, in FIG. 20, components that are substantially the same as the configuration of FIG.
  • the light-emitting diode illumination circuit 540 includes voltage detection circuits 640a to 640d connected in parallel to each other as the failure detection unit 640.
  • the voltage detection circuit 640a branches at a first resistor 641 connected in series to the LED circuit 502a and a node 642 inserted between the LED circuit 502a and the first resistor 641, and the first resistor 641 ,
  • a TR644 which is an NPN transistor (detection means, semiconductor switching element) having a base connected in parallel to the base, and a second resistor 643 disposed between TR644 and the node 642.
  • the voltage detection circuits 640b, 640c, and 640d include a first resistor, a second resistor, and an NPN transistor that are not shown.
  • the resistance value of the first resistor 641 is set by the value of the drive current flowing through the LED circuit 502a in the same manner as the first resistor 601 described in the fourth embodiment.
  • the second resistor 643 is set to have a higher resistance value than the second resistor 603 described in the fourth embodiment, because the input impedance of the bipolar transistor is lower than that of the MOSFET.
  • the failure detection unit 640 that functions similarly to the failure detection unit 510 of the sixth embodiment can also be configured by a bipolar transistor.
  • a light emitting diode illumination circuit 550 according to the seventh embodiment of the present example will be described with reference to FIG.
  • the light emitting diode illumination circuit 550 shown in FIG. 6 is configured to be able to output a control signal from the failure alarm unit 506 of the fourth embodiment described with reference to FIG. 16, and the control signal is output to the drive current supply unit 503. In other words, the feedback control is possible. Therefore, in FIG. 21, the same reference numerals are given to the substantially same components as those in FIG.
  • a control signal for reducing the drive current is transmitted via the signal line 665.
  • a photocoupler 660 that can output to the drive current supply unit 503 may be provided as the failure alarm unit 661.
  • the input side 660 a of the photocoupler 660 is connected to the failure detection unit 505 via the signal line 521, and the output side 660 b of the photocoupler 660 is connected to the drive current supply unit 503 via the signal line 665.
  • the drive current supply unit 503 needs to include an output adjustment circuit that can reduce the drive current supplied to the light emitting unit 502 to a predetermined current value when receiving the control signal.
  • the photocoupler 660 is used in the configuration shown in FIG. 6, the alarm display LED 561 is detected by an optical sensor (for example, a phototransistor, a photodiode, or a cadmium sulfide cell CdS) that can detect the light emission of the alarm display LED 561 shown in FIG. It may be configured to detect the light emission due to the light and output the detection signal as a control signal to the drive current supply unit 3 via the signal line 165. As a result, an overcurrent caused by a short-circuit failure can be suppressed, and expansion of damage due to damage to the semiconductor element or the like can be prevented.
  • an optical sensor for example, a phototransistor, a photodiode, or a cadmium sulfide cell CdS
  • the fourth to seventh embodiments of the present embodiment embody the following technical ideas.
  • a light-emitting diode illumination circuit provided in an illumination device using a light-emitting diode as a light source,
  • a light emitting unit comprising a plurality of LED circuits for supplying a driving current to a plurality of light emitting diodes connected in series or in parallel;
  • a failure detection unit that detects, for each of the plurality of LED circuits, whether or not each drive current flowing through the plurality of LED circuits is equal to or greater than a predetermined failure current value;
  • a failure alarm unit that performs a predetermined alarm operation when the failure detection unit detects that at least one of the drive currents is greater than or equal to the failure current value;
  • a light-emitting diode illumination circuit comprising:
  • the failure detection unit A first resistor connected in series to the LED circuit so that the drive current flows; A second resistor connected to the high potential side of the first resistor so that a voltage generated in the first resistor by the drive current can be taken out; Detection means for detecting whether or not a detection voltage proportional to the drive current and determined by the first resistor and the second resistor is equal to or higher than a predetermined voltage value; For each of the plurality of LED circuits, The light emitting diode illumination circuit according to the technical idea A, wherein the detection unit detects that the drive current is equal to or greater than the failure current value when the detected voltage is equal to or greater than the predetermined voltage value.
  • the detection means includes a control terminal, an input terminal, and an output terminal.
  • the detection voltage input to the control terminal is equal to or higher than a predetermined threshold voltage
  • the input terminal and the output terminal are in a conductive state.
  • the light emitting diode illumination circuit according to the technical idea B which is a semiconductor switching element that cuts off the input terminal and the output terminal when the detection voltage is lower than a predetermined threshold voltage.
  • the failure alarm unit includes a photocoupler that is connected to the drive current supply unit that supplies the drive current and can output a control signal that decreases the drive current, and the control signal is output from the photocoupler as the predetermined alarm operation.
  • the light emitting diode illumination circuit according to any one of the technical idea A to the technical idea C.
  • the embodiment of the present invention is not limited to the configuration described so far, and may be changed to the following mode.
  • the number of fluorescent lamps 1 to be controlled to be turned on / off is not limited to one and may be plural.
  • the fluorescent tube is not limited to a straight tube type fluorescent tube, and may be a compact fluorescent tube such as a ring shape or a U shape.
  • the power supply voltage Vcc is not limited to a DC voltage, and may be an AC voltage obtained from a commercial power supply, for example.
  • the type of the transformer 19 is not limited to a structure in which the primary side is composed of two windings, and for example, the primary side may be composed of one winding.
  • the inverter circuit 18 is not limited to a push-pull circuit, and other circuits may be employed.
  • the inverter circuit 18 may employ either a full bridge circuit or a half bridge circuit.
  • the capacitor 24 is not limited to being provided on the second winding terminal 22b side of the secondary winding 22, but may be provided on the first winding terminal 22a side, for example.
  • the fluorescent lamp driving device 2 is not limited to being mounted on a railway, but may be mounted on a vehicle such as an automobile.
  • the DC component blocking means is not limited to the capacitor 24 alone, and other components such as a coil may be used in combination.
  • the capacitor 24 is not limited to being provided on the second winding terminal 22b side of the secondary winding 22, but may be provided on the first winding terminal 22a side, for example.
  • the disconnection detection circuit 27 is not limited to a configuration including four resistors 28 to 31 connected in series and one capacitor 32, and any device can be used as long as disconnection can be detected. May be used.
  • the circuit for checking the presence / absence of disconnection that is, the disconnection monitoring unit 33 is not limited to being provided in the switch circuit 16, for example, it is incorporated in the oscillation circuit 17, and its arrangement location is changed as appropriate. May be.
  • the tube abnormality detecting means is not limited to the plurality of resistors 35 to 37 and the capacitor 38.
  • an auxiliary winding 61 provided in the transformer 19 may be substituted.
  • the auxiliary winding 61 is not limited to being formed in the transformer 19, for example, provided in the choke coil 23. Also good.
  • the power supply voltage Vcc is not limited to a DC voltage, and may be an AC voltage obtained from a commercial power supply, for example.
  • the type of the transformer 19 is not limited to a structure in which the primary side is composed of two windings, and for example, the primary side may be composed of one winding.
  • the inverter circuit 18 is not limited to a push-pull circuit, and other circuits may be employed.
  • the inverter circuit 18 may employ either a full bridge circuit or a half bridge circuit.
  • the oscillation operation of the oscillation circuit 17 may not be stopped, but the power supply operation of the switch circuit 16 may be stopped, for example. .
  • the overheat detection circuit 13 (overheat detection circuit unit 56) is not limited to being provided on the fluorescent lamp driving device 2 or 102 side, but is assembled integrally with the fluorescent lamp 1, for example. It may be one that directly detects the overheating of the lamp 1.
  • the number of fluorescent lamps 1 to be controlled to be turned on / off is not limited to one and may be plural.
  • the overheat detection notification unit 14 and the operation state notification unit 20 are not limited to being made of LEDs.
  • a display that can display characters and patterns may be used, and the display may be used to notify the abnormality more visually.
  • the fluorescent lamp driving device 2, 102 of this example is not limited to being mounted on a railway, but may be mounted on an automobile or the like.
  • the present invention is not limited to this, and the number of LED circuits is three or less, or Five or more may be connected.
  • the light emitting diode group is shown in which three light emitting diodes are connected in parallel.
  • the present invention is not limited to this, and the number of light emitting diodes included in the light emitting diode group and The connection relationship may be different. Further, a plurality of LED circuits having the same configuration are not connected, and LED circuits having different configurations may be connected in parallel.
  • the alarm display LED 561 is provided in parallel with each LED circuit, and the detection results of the voltage detection circuits 505a to 505d are collectively displayed by one alarm display LED 561. Although what is displayed is illustrated, it is not limited to this, You may make it provide one alarm display LED corresponding to each voltage detection circuit 505a-505d. According to this, since the alarm display LED corresponds to the LED circuit and the voltage detection circuit on a one-to-one basis, it is possible to quickly identify the LED circuit in which a short circuit failure has occurred.
  • the light-emitting diode illumination circuit can be used for purposes other than the on-vehicle illumination device such as the illumination device 510.
  • the illumination device 510 can be applied to a flashlight or a portable light equipped with a helmet.
  • it is possible to detect the failure at an early stage when some of the light emitting diodes fail, so it suddenly stops functioning during use in situations involving dangers such as in tunnels and disaster locations. This can prevent accidents caused by insufficient lighting.
  • the light-emitting diode illuminating circuit is provided with “a photosensor for detecting light emission of the alarm display LED and a drive current supply unit, and a detection result of the photosensor. And an output adjustment circuit for controlling the output of the drive current supply unit based on the feedback control, and reducing the direct current output of the drive current supply unit based on detection of light emission of the alarm indicator LED by the light sensor. It is good also as a thing.
  • the light sensor detects that the alarm display LED emits light. Based on the detection result, the output adjustment circuit in the drive current supply unit reduces the output of the direct current and quickly suppresses the occurrence of the overcurrent. Thereby, the progress of the breakage of the light emitting diode illumination circuit can be prevented when a short circuit failure occurs, and safety can be improved.
  • the light-emitting diode illumination circuit is “a light-emitting diode illumination circuit provided in an illumination device using a light-emitting diode as a light source, which is connected in series or in parallel.
  • a light emitting unit having a plurality of LED circuits for supplying a driving current to the plurality of light emitting diodes, a current detecting unit for detecting a current value flowing through the plurality of LED circuits, and a short circuit failure among the plurality of light emitting diodes.
  • a calculation unit that calculates the number of failures of the light emitting diodes for each LED circuit based on the current value of each driving current; and the LED circuit based on the number of failures calculated for each LED circuit.
  • a control unit that controls the amount of the drive current supplied to the light emitting diode for each of the plurality of LED circuits.
  • the fluorescent lamp preheating execution means for lighting the fluorescent lamp by a preheating current flowing through the fluorescent lamp at the initial start of lighting of the fluorescent lamp.
  • forcibly terminating temporary stop means for temporarily preventing the forced termination function when the fluorescent lamp performs a preheating operation is provided.
  • the forced termination is performed in a state in which the fluorescent lamp can be regarded as abnormal instantaneously.
  • the preheating operation can be executed without any problem even if the forced termination function is provided.
  • the present invention can be used in the lighting control field of lighting devices, particularly in the lighting control field of fluorescent lamps.
  • SYMBOLS 1 Fluorescent lamp 2,102,112 ... Fluorescent lamp drive device, 2a ... Protection circuit, 3 ... Input circuit part, 4 ... Lighting control circuit part, 4a ... Preheating control circuit part, 5 ... First filament (a pair of filaments) ), 6... 2nd filament (a pair of filaments), 7a... One side first connection terminal, 7b... The other side first connection terminal, 8a. , 8c ... power supply side connection terminal (filament power supply side terminal), 7d, 8d ... non-power supply side connection terminal (filament non-power supply side terminal), 9 ... input terminal, 11 ... noise filter, 12 ... operating power generation circuit, DESCRIPTION OF SYMBOLS 13 ...
  • Overheat detection circuit which comprises overheat detection means, 14 ... Overheat detection notification part, 15 ... Signal output circuit which comprises overheat suppression means, 16 ... Switch circuit which comprises lighting / extinguishing control means, 17 ... Lighting / extinguishing control means Oscillating circuit, 18 ... inverter circuit, 19 ... transformer, 20 ... operating state notification unit, 21a, 21b ... primary winding, 22 ... secondary winding (inductor), 23 ... choke coil (inductor), 24 ... direct current DC component blocking capacitor as component blocking means, 26 ... current loop circuit (power supply line), 27 ... disconnection detecting circuit as disconnection detecting means, 28 to 31 ... resistor, 32 ... capacitor, 33 ...
  • Monitoring unit 34 Tube abnormality monitoring circuit as voltage monitoring means, 35 to 37 ... Resistance, 38 ... Capacitor (condenser), 39 ... Filter circuit, 41 ... Protection operation circuit constituting lighting / extinguishing control means, 42 ... Forcible lighting Shutdown execution unit constituting end means, 43... Oscillation switching circuit (frequency control circuit) constituting lighting on / off control means, 44.
  • Switch analog switch
  • 73 .. preheating time setting circuit time constant determination circuit, frequency control circuit
  • 75 Switch drive circuit
  • 77 Photocoupler
  • 82 ... Fluorescent lamp drive device
  • 83 ... Inverter
  • 84 ... Transformer, 100 ... Fluorescent lamp mounting part, 101 ... First fluorescence Socket for lamp, 102 ... Fluorescent lamp driving device, 103 ... Fluorescent lamp mounting surface, 104 ... Fluorescent lamp support section, 104a to 104d ... Protective piece, 105 ... Receiver 121, second fluorescent lamp socket, 122 ... socket holder, 123 ... fluorescent lamp movable support section, 124 ...
  • Light-emitting diode illumination circuit 502, 600: Light-emitting unit, 502a to 502d, 600a-600d ... LED circuit, 503 ... Driving current supply unit, 504 ... Power source, 505 ... Fault detection unit, 505a-505d ... Voltage detection circuit, 506 ... Failure alarm unit, 510 ... lighting device, 514 ... power supply line, 521 ... signal line, 561 ... alarm indication LED, 601,611,621,631,641 ... first resistor, 602,612,622,632,642 ...
  • nodule Point 603, 613, 623, 633, 643 ... second resistance, 604, 614, 624, 634, 644 ... FET Semiconductor switching element
  • 640 ... failure detection unit 640a ... voltage detection circuit, 640b ... voltage detection circuit, 660 ... photocoupler, 660a ... input side, 660b ... output side, 661 ... failure alarm unit, 665 ... signal line, 700 ... Light emitting part, 700a to 700d ... LED circuit, 701,702,703,704 ... Light emitting diode group, 705a ... Voltage detection circuit, D1 to D4, D11 to D13, D21 to D23, D31 to D33, D41 to D43 ... Light emission Diode, Vcc ... power supply voltage (DC voltage) as input voltage, Vout ... high frequency AC voltage (high frequency voltage) as AC voltage.
  • DC voltage DC voltage
  • AC voltage high frequency voltage

Abstract

【課題】断線の有無を検出しながらも、蛍光灯を高効率で点灯させることができる蛍光灯駆動装置の保護回路を提供する。 【解決手段】蛍光灯1の閉ループ回路である電流ループ回路26に直流成分遮断用コンデンサ24を設けて、蛍光灯1の点灯時において電流ループ回路26に流れる電流から直流成分をカットする。そして、この直流成分が流れない電流ループ回路26、つまり蛍光灯1の電流経路上に、断線が発生していないかどうかを断線検出回路27によって検出する。

Description

蛍光灯駆動装置及び蛍光灯駆動装置の保護回路
 本発明は、照明装置の制御に関し、詳しくは、蛍光灯の点灯消灯を制御する蛍光灯駆動装置及び蛍光灯駆動装置の保護回路に関する。
従来、鉄道等の室内灯具として、図23に示すような蛍光灯(蛍光ランプ)81が広く使用されている。蛍光灯81は、放電により発生する紫外線を管内の蛍光体に通し、これを可視光の光に変換して出力する灯具である。蛍光灯81には、蛍光灯81の点灯消灯を制御する蛍光灯駆動装置82が接続されている。蛍光灯駆動装置82には、インバータ83及びトランス84が設けられている。蛍光灯駆動装置82は、入力した直流電圧をインバータ83によって交流電圧に変換するとともに、この交流電圧をトランス84により昇圧し、この高周波交流電圧で蛍光灯81を点灯させる。
 ところで、蛍光灯81が寿命末期になると、蛍光灯81のフィラメント配線が断線することも想定される。このとき、高周波点灯の場合、蛍光灯駆動装置82から蛍光灯81に電圧をかけても点灯することがあり、このときに蛍光灯81内部において異常放電が発生し、発熱事故を希に起こしたりする恐れがあるため、蛍光灯81の寿命末期には、蛍光灯駆動装置82を動作させないようにしなければならない。そこで、蛍光灯駆動装置82に断線の有無を監視する保護機能(特許文献1参照)を搭載する場合がある。図24に示すように、特許文献1の技術は、蛍光灯81に流れる直流電流Ixをトランス84の2次側に流し、この直流電流Ixによって蛍光灯81の断線有無を監視するものである。
 一方、このような蛍光灯81は、点灯前におけるフィラメントの加熱が不足すると、点灯開始電圧になっても放電が開始されなかったり、フィラメントのエミッタが飛散して放電灯の寿命を短くなることがある。このため、点灯開始前にフィラメントを予め加熱する予熱制御が行われている。
 例えば、従来より用いられている予熱制御として「コンデンサ予熱方式」がある。これは、蛍光灯を構成する一対のフィラメントの電源側端子間にインダクタとコンデンサによる直列共振回路に接続するとともに同フィラメントの非電源側端子間に予熱用コンデンサを接続し、点灯開始前の予熱時にこのような直列共振回路による共振電流を予熱用コンデンサを介してフィラメントに流すことにより予熱を可能にしている。
 また、下記特許文献2に開示される「放電灯点灯装置」では、予熱モードと始動モードを備え、予熱モードにおいては熱電子を放出し始める目標温度までフィラメントを加熱してから始動モードに移行する予熱電源回路を設けて点灯開始前の予熱を可能にしている。
 他方で、鉄道等の室内灯具として、光源として発光ダイオードが多数接続されて構成された発光ダイオード照明装置がある。このような発光ダイオード照明装置は、発光ダイオードに短絡モードの故障が発生した場合には、故障した発光ダイオードのみでなく他の発光ダイオードに流れる電流も増大するため、当初に短絡故障した発光ダイオード以外の発光ダイオードや駆動電流供給部等の故障を誘発する虞があった。例えば、当初に短絡故障した発光ダイオードに直列に接続されている他の発光ダイオード等に、過電流が流れて破損する可能性がある。
 これに対し、特許文献3によれば、ダイオード破損によって内部インピーダンスによる電力消費が無くなることからダイオードの発熱が無くなる特性を利用し、回路中に設けられたダイオードの温度上昇の有無を温度センサを用いて監視してダイオード故障を検知する技術が開示されている。
 
米国特許6504318号 特開2006-59622号公報 特開平9-327120号公報
 しかし、特許文献1の技術は、トランス84の2次側に、断線検出のための直流電流Ixを直接流すので、この直流電流Ixによって、トランス84の2次側から出すべき高周波交流電圧が偏磁してしまう問題があった。偏磁とは、図25に示すように、高周波交流電圧の一周期の電圧が、直流成分によって重畳し、それぞれの半周期で偏って出力されてしまう現象のことをいう。トランス84の2次側が偏磁すると、その分だけ電力が損失することになるので、断線の有無を検出しなからも高効率で蛍光灯81を点灯させたいという要望があった。
 一方、前述した「コンデンサ予熱方式」では、予熱時においても通常点灯時に用いる直列共振回路から供給される共振電流をフィラメントに流すことになる。このため、予熱時の管電圧が高くなる傾向があり、充分な温度に達する前に蛍光灯が点灯してしまうことから、フィラメントのエミッタが飛散し得るという問題がある。
 また、上記特許文献2の「放電灯点灯装置」では、予熱モード時にフィラメントを加熱する専用の予熱電源回路を設ける必要があることから、回路構成の複雑化を招くばかりか、このような予熱電源回路を構成するため、トランスT1、キャパシタC2,C3、インダクタL2,L3等の回路部品の数の増加や装置の大型化を招くという問題がある。
 加えて、特許文献3のダイオード故障検出回路によれば、電圧または電流を直接検出しないので、LED故障以外の要因で温度低下が発生した場合にも故障と判断される可能性があり、故障検出の精度が低かった。また、温度センサのみによる検出では、断線故障であるのか、短絡故障であるのかが特定できなかった。短絡故障の場合には、上記のように過電流の発生によって他の発光ダイオードなどにも故障が派生する虞があるため、短絡故障を確実に検出することが求められていた。
 上記目的に鑑み、本発明は、比較的簡易な構成で適正な予熱を可能にすることを第1の課題に、断線の有無を検出しながらも、蛍光灯を高効率で点灯させることができる蛍光灯駆動装置の保護回路を提供することを第2の課題に、発光ダイオードを用いた場合には、短絡故障を高精度で検出する故障検出回路を備えた発光ダイオード照明回路及び該回路を備えた照明装置を提供することを第3の課題とし、これらの課題の少なくとも一つを達成することを目的とした。
 前記第1の課題を解決するために、本発明では、入力電圧をトランスによって高周波の交流電圧に変換し、当該交流電圧によって蛍光灯を点灯させる蛍光灯駆動装置の保護回路において、前記トランスの2次側に接続され、当該2次側における前記蛍光灯の電流ループ回路の直流成分をカットする直流成分遮断手段と、前記直流成分遮断手段が接続された前記電流ループ回路の電流を監視し、該回路に断線が生じたか否かを検出する断線検出手段と、前記断線を検出した際、前記蛍光灯の点灯動作を不可とする点灯停止手段とを備えたことを要旨とする。
 なお、定義として、「入力電圧」とは、例えば直流バッテリ等から得る直流電圧や、商用電源(系統)から得る交流電源との両方を広義に含むものとする。この入力電圧が直流電圧の場合には、当然ながら、交流電圧に変換して使用する。また、定義として「電流ループ回路」とは、蛍光灯を点灯させる際に該蛍光灯を流れる電流の閉ループ回路のことを言う。
 この構成によれば、蛍光灯に繋がる電流ループ回路に直流成分遮断手段を設け、この電流ループ回路において断線有無を断線検出手段によって検出するので、蛍光灯に繋がる電流ループ回路の断線有無を検出するに際して、トランスの2次側に直流電流を直接流して断線有無を検出する方式を使用せずに済む。ところで、トランスの2次側に直流電流を直接流して断線を検出する方式は、トランスの2次側出力が偏磁してしまい、蛍光灯を効率よく点灯させることができない問題がある。しかし、本構成の場合は、新たに設けた直流成分遮断手段が利いて、トランスの2次側に偏磁が発生し難くなるので、トランスの2次側に偏磁が発生し難い状態で断線有無を検出することが可能となる。よって、蛍光灯の断線有無を検出しながらも、効率よく蛍光灯を点灯させることが可能となる。
 本発明では、前記蛍光灯に発生する電圧を監視する電圧監視手段と、前記電圧が閾値以上となって前記蛍光灯に異常が発生した際、前記蛍光灯の点灯動作を強制終了する点灯強制終了手段とを備えたことを要旨とする。
 この構成によれば、蛍光灯に発生する電圧を監視すれば、寿命末期のフィラメント切れや管破損を原因とする蛍光灯の電圧上昇を検出することが可能となるので、このような蛍光灯の異常を検出することが可能となる。
 本発明では、前記電圧監視手段は、抵抗からなることを要旨とする。
 この構成によれば、電圧監視手段が抵抗であれば、使用する蛍光灯の種類に合わせて、抵抗を他の抵抗値のものに変えたり、或いは抵抗成分を増設したりするなどの簡素な作業によって、検出レベルを簡単に変更することが可能となる。
 本発明では、前記蛍光灯駆動装置の発生熱を検知する過熱検知手段と、前記発生熱が閾値以上となったとき、前記蛍光灯の点灯動作を強制終了する過熱抑制手段とを備えたことを要旨とする。
 この構成によれば、蛍光灯駆動装置が過熱した際には、蛍光灯駆動装置による蛍光灯の点灯動作を強制終了するので、蛍光灯駆動装置を過熱から保護することが可能となる。
 本発明では、前記蛍光灯の点灯消灯の制御を管理する点灯消灯制御手段を備え、当該点灯消灯制御手段は、連続した入力信号の変化に対して出力信号の状態も連続的に変化するアナログ回路から構成されていることを要旨とする。
 この構成によれば、蛍光灯駆動装置の制御回路部をアナログ回路により構成したので、制御回路部を簡素な構成のもので済ますことが可能となる。
 本発明では、前記蛍光灯の点灯消灯の制御を管理する点灯消灯制御手段を備え、当該点灯消灯制御手段は、メモリに格納されたプログラムによって動作するソフトウェア回路から構成されていることを要旨とする。
 この構成によれば、蛍光灯駆動装置の制御回路部をソフトウェア回路により構成したので、蛍光灯の点灯消灯の動作を切り換えたい場合には、ソフトウェア回路のプログラムを他のプログラムに変更すれば済む。よって、蛍光灯駆動装置自体を変更しなくとも、点灯消灯の動作を他動作に簡単に切り換えることが可能となる。
 また、前記第2の課題を解決するために、本発明は、直流電圧をインバータ回路により高周波電圧に変換しこの高周波電圧により蛍光灯を点灯させる蛍光灯駆動装置において、前記蛍光灯を構成する一対のフィラメントのそれぞれの電源側端子間に直列に接続されるインダクタ及び前記一対のフィラメントの非電源側端子間に接続されるコンデンサを含んで構成され前記蛍光灯の点灯時の共振周波数に設定される直列共振回路と、前記コンデンサに並列に接続されるアナログスイッチと、前記アナログスイッチをオンオフ制御可能に構成され前記蛍光灯の点灯前における予熱期間中は前記アナログスイッチをオンにし予熱期間後はオフに制御するスイッチ制御回路と、を備えたことを要旨とする。
 本発明によれば、通常の点灯制御に必要な直列共振回路を構成するインダクタ及び一対のフィラメントの非電源側端子間に接続されるコンデンサに加えて、このコンデンサと並列にアナログスイッチを接続し、このアナログスイッチをスイッチ制御回路により蛍光灯の点灯前における予熱期間中はオンに、予熱期間後はオフにそれぞれ制御する。これにより、アナログスイッチがオンになる予熱期間中においては、フィラメントの非電源側端子間にコンデンサが接続されていても当該非電源側端子間はアナログスイッチにより短絡状態になるので、蛍光灯を構成する一対のフィラメントは短絡状態の非電源側端子間を経由して電源側端子間を直流的に導通状態にすることができる。したがって、アナログスイッチとそれをオンオフ制御するスイッチ制御回路を追加する比較的簡易な構成により、予熱期間中においてはフィラメントに高周波電圧を印加しても蛍光灯が点灯することがないため、点灯開始前に点灯させることなくフィラメントを予め加熱する予熱制御が可能となる。
 また、本発明の蛍光灯駆動装置によれば、前記高周波電圧の周波数を制御可能に構成される周波数制御回路を備え、この周波数制御回路は、前記予熱期間中における前記高周波電圧の周波数を予熱期間後における周波数よりも高い50KHz以上100KHz以下に設定する。これにより、予熱期間中において直流的に導通状態になったフィラメントには50KHz以上100KHz以下の高周波電圧が印加されるため、蛍光灯の予熱を短期間に行うことができる。
 さらに、本発明の蛍光駆動装置によれば、前記アナログスイッチの制御端子は、前記高周波電圧が供給される前記蛍光灯の電源ライン及びその周辺回路に対してフォトカプラにより電気的に絶縁されている。これにより、アナログスイッチの制御端子の入力インピーダンスが比較的高くても、蛍光灯の電源ライン及びその周辺回路から発生し得る高周波ノイズ等の影響を受け難いため、このようなノイズによる誤動作を抑制することができる。
 さらにまた、本発明の蛍光灯駆動装置によれば、前記スイッチ制御回路は、抵抗及びコンデンサの値により前記予熱期間を決定する時定数回路を含む。これにより、このような抵抗やコンデンサの値を適宜変更することで予熱期間を容易に設定することができる。
 加えて、前記第3の課題を解決するために、以下に第4~第7の実施の形態を示す。これらは、発光ダイオードを光源とする照明装置に設けられる発光ダイオード照明回路であって、直列または並列に接続される複数の発光ダイオードに駆動電流を供給するLED回路を複数備えた発光部と、前記複数のLED回路に流れる各駆動電流が所定の故障電流値以上であるか否かを前記複数のLED回路ごとに検出する故障検出部と、前記各駆動電流の少なくとも一つが前記故障電流値以上であると前記故障検出部により検出された場合には所定の警報動作を行う故障警報部と、を具備したことを要旨とする。
 これら第4~第7の実施の形態によると、故障検出部により、複数のLED回路に流れる各駆動電流が所定の故障電流値以上であるか否かを複数のLED回路ごとに検出し、各駆動電流の少なくとも一つが故障電流値以上であると故障検出部により検出された場合には故障警報部によって所定の警報動作を行う。
 これにより、LED回路中のいずれかの発光ダイオードに短絡故障が生じた場合、LED回路の内部インピーダンスが低下して駆動電流が増加し故障電流値以上になると故障警報部によって所定の警報動作を行うことから、このような短絡故障の検出が可能となる。従って、短絡故障発生を高い精度で検出することができる。
 また、これら第4~第7の実施の形態の発光ダイオード照明回路は、前記故障検出部は、前記駆動電流が流れるように前記LED回路に直列に接続される第一抵抗と、前記駆動電流により前記第一抵抗に生じる電圧を取り出し可能に前記第一抵抗の高電位側に接続される第二抵抗と、前記駆動電流に比例しかつ前記第一抵抗と前記第二抵抗とにより定まる検出電圧が所定の電圧値以上であるか否かを検出する検出手段と、を前記複数のLED回路ごとに備え、前記検出手段は、前記検出電圧が前記所定の電圧値以上である場合には前記駆動電流が前記故障電流値以上であることを検出する、構成を採り得る。
 この構成によると、検出手段により、駆動電流に比例しかつ第一抵抗と第二抵抗とにより定まる検出電圧が所定の電圧値以上であるか否かを検出し、検出電圧が所定の電圧値以上である場合には駆動電流が故障電流値以上であることを検出する。LED回路中のいずれかの発光ダイオードに短絡故障が生じた場合、LED回路の抵抗値が低下して駆動電流が増加すると、駆動電流に比例しかつ第一抵抗と第二抵抗とにより定まる検出電圧が増加するので、検出電圧が所定の電圧値以上である場合には駆動電流が故障電流値以上であることを検出する。これにより、第一抵抗及び第二抵抗の抵抗値の組み合わせにより検出電圧を定めることができるので、何個の発光ダイオードが短絡故障をしたら故障警報部を動作させるのかなどをこれらの抵抗の組み合わせによって容易に設定することができる。
 また、これら第4~第7の実施の形態の発光ダイオード照明回路によれば、前記検出手段は、制御端子、入力端子および出力端子を備え、前記制御端子に入力される前記検出電圧が所定の閾値電圧以上である場合には前記入力端子と前記出力端子と間を導通状態にし、前記検出電圧が所定の閾値電圧未満である場合には前記入力端子と前記出力端子と間を遮断状態にする半導体スイッチング素子である、構成を採り得る。
 ここで、半導体スイッチング素子がバイポーラ・トランジスタであれば、「制御端子」はベースを意味し、「入力端子」はコレクタを意味し、「出力端子」はエミッタを意味する。また半導体スイッチング素子が電界効果トランジスタであれば、「制御端子」はゲートを意味し、「入力端子」はドレインを意味し、「出力端子」はソースを意味する。半導体スイッチング素子の種類が限定されることはなく、任意に選択してもよい。
 この構成によると、検出手段は、制御端子、入力端子および出力端子を備えた半導体スイッチング素子で、制御端子に入力される検出電圧が所定の閾値電圧以上である場合には入力端子と出力端子との間を導通状態にし、検出電圧が所定の閾値電圧未満である場合には入力端子と出力端子との間を遮断状態にする。LED回路中のいずれかの発光ダイオードに短絡故障が生じた場合、LED回路の内部インピーダンスが低下して駆動電流が増加すると、駆動電流に比例しかつ第一抵抗と第二抵抗とにより定まる検出電圧も増加するので、この検出電圧が所定の閾値電圧以上であれば入力端子と出力端子と間を導通状態にして「駆動電流が故障電流値以上であること」を検出する。これにより、駆動電流が故障電流値以上であるか否かを半導体スイッチング素子のオンオフ動作により検出することができるので、当該半導体スイッチによって故障警報部の警報動作を制御することができる。
 また、これら第4~第7の実施の形態の発光ダイオード照明回路によれば、前記故障警報部は、警報状態を表示する警報表示LEDを備え、前記所定の警報動作としてこの警報表示LEDを点灯させる、構成を採り得る。
 この構成によると、故障警報部が動作すると、警報表示LEDが点灯するので、簡素な構成によって視覚的に認識可能に警報を行うことができる。
 さらに、これら第4~第7の実施の形態の発光ダイオード照明回路によれば、前記駆動電流を供給する駆動電流供給部に接続されて前記駆動電流を減少させる制御信号を出力可能なフォトカプラを備え、前記所定の警報動作としてこのフォトカプラから前記制御信号を出力させる、構成を採り得る。
 この構成によると、故障警報部が動作すると、駆動電流を減少させる制御信号がフォトカプラから出力されるので、増加した駆動電流を減少させることで、正常な発光ダイオードに過電流が流れることを防止することができる。
 これら第4~第7の実施の形態の発光ダイオード照明回路を具備する照明装置によれば、LED回路のいずれかの発光ダイオードに短絡故障が生じると、LED回路の内部インピーダンスが低下して駆動電流が増加する。これにより、増加した駆動電流が故障電流値以上になると故障警報部によって所定の警報動作を行うことから、このような短絡故障の検出が可能となる。
 従って、照明装置の光源である発光ダイオードに短絡故障が生じた場合には、照明装置に組み込まれた故障検出部が故障を検出し、検出結果に基き故障警報部が故障警報動作を行うことによって、比較的早期に照明装置の修理や交換の必要性を示唆できるので、短絡故障で生じた過電流によってさらに故障被害が拡大する虞を防ぐことができる。
 こうすることにより、故障検出部によって、複数のLED回路に流れる各駆動電流が所定の故障電流値以上であるか否かを複数のLED回路ごとに検出できるため、LED回路に含まれる発光ダイオードの短絡故障を高い精度で検出することが可能な発光ダイオード照明回路及び照明装置を提供することができる。
 本発明によれば、断線の有無を検出しながらも、蛍光灯を高効率で点灯させることができる。また、アナログスイッチとそれをオンオフ制御するスイッチ制御回路を追加する比較的簡易な構成で、適正な予熱を可能にし得る蛍光灯駆動装置を提供することができる。
本発明の一実施形態に係る蛍光灯駆動装置の構成例を示す説明図である。 図2(A)は、図1に示す構成から予熱制御に関する構成部分を抜き出したブロック図で、図2(B)はフォトカプラを追加した構成例を示すブロック図である。 断線や異常が発生していない正常点灯時のタイムチャート。 断線発生時のタイムチャート。 管異常発生時のタイムチャート。 第2実施形態における蛍光灯駆動装置の概略構成を示す構成図。 第3実施形態における断線等が発生していない正常点灯時のタイムチャートである。 第3実施形態における断線発生時のタイムチャートである。 第3実施形態における管異常発生時のタイムチャートである。 蛍光灯用ソケット部を構成する第一蛍光灯用ソケットの六面図である。 第一蛍光灯用ソケットの参考斜視図である。 図10のAA線における参考断面図である。 蛍光灯用ソケットを構成する第二蛍光灯ソケットの六面図である。 第二蛍光灯用ソケットの参考斜視図である。 図13のBB線における参考断面図である。 第4実施形態における発光ダイオード照明装置の構成を示すブロック図である。 第4実施形態における発光ダイオード照明回路の主要部を示す回路図である。 第5実施形態の主要部を示す回路図である。 LED回路周辺の構成を示す回路図である。 第6実施形態の主要部を示す回路図である。 第7実施形態の主要部を示す回路図である。 別例における管異常検出回路の構成を示す回路図。 従来における蛍光灯駆動装置の概略構成を示す構成図。 従来における保護機能を備えた蛍光灯駆動装置の概略構成を示す構成図。 蛍光灯に印加される高周波交流電圧の一例を示す波形図。
 (第1実施形態)
 以下、本発明を具体化した蛍光灯駆動装置の保護回路の第1実施形態を図1~図5に従って説明する。
 まず、第1実施形態に係る蛍光灯駆動装置2により点灯消灯を制御される蛍光灯1について簡単に説明をする。図1に示すように、蛍光灯1は、例えば、棒状の直管形蛍光管で、その両端に固定される口金には、一対のフィラメントが対向するようにそれぞれ設けられている。
 これらのうち一方のフィラメント(以降「第1フィラメント」という。)5は、その一端側(電源側端子)が、蛍光灯取付部100に設けられた電源側接続端子7cを介して点灯制御回路部4の第1接続端子7aに電気的に接続可能に構成されており、また他端側(非電源側端子)が非電源側接続端子7dを介して点灯制御回路部4の第1接続端子7bに電気的に接続可能に構成されている。
 同様に、他方のフィラメント(以降「第2フィラメント」という)6は、その一端側(電源側端子)が、蛍光灯取付部100に設けられた電源側接続端子8cを介して点灯制御回路部4の第2接続端子8aに、また他端側(非電源側端子)が非電源側接続端子8dを介して点灯制御回路部4の第2接続端子8bに、それぞれ電気的に接続可能に構成されている。
 このように構成される蛍光灯1には、点灯消灯の動作を制御する蛍光灯駆動装置2が接続されている。この蛍光灯駆動装置2は、外部電源から得た電源電圧Vccを所定値に変換する入力回路部3と、入力回路部3で生成した直流電圧を高周波の交流電圧(以降「高周波電圧」)Voutに変換して蛍光灯1に出力する点灯制御回路部4とを備えている。
<入力回路部3>
 入力回路部3には、電源電圧Vccが入力される入力端子9が設けられている。この入力端子9には、外部電源からの電源電圧Vccの他に、蛍光灯1を点灯又は消灯する際に操作する電源スイッチの操作信号Sswが入力される。電源スイッチがオン操作されると、操作信号Sswとしてオン状態を示すオン信号が入力され、電源スイッチがオフ操作されると、操作信号Sswとしてオフ状態を示すオフ信号が入力される。この電源スイッチのオンオフ操作は、入力回路部3の手動操作検出回路10によって検出される。
 入力回路部3には、電源電圧Vccに含まれるノイズを除去するノイズフィルタ11と、ノイズ除去後の電源電圧Vccを電圧源として点灯制御回路部4の電源電圧を生成する動作電源発生回路12とが設けられている。この動作電源発生回路12は、ノイズ除去後の電源電圧Vccを、蛍光灯1の点灯電源、即ち主電圧Vsとして点灯制御回路部4に出力し得るように構成されるとともに、点灯制御回路部4が動作するための基準電圧Vkとして所定値の直流電圧に降圧して点灯制御回路部4に出力し得るように構成されている。
 また、入力回路部3には、過熱保護機能として、入力回路部3における過熱の有無を検知し得る過熱検知回路13が設けられている。例えば、サーミスタにより温度変化を検知し得るように構成されており、本実施形態の場合、蛍光灯1の発熱有無を検知可能にしている。過熱検知の有無は、過熱検知回路13に接続されるLED等の発光素子からなる過熱検知通知部14の点灯(非検出時)や消灯(検出時)により視認可能に通知される。なお、この過熱保護機能は、蛍光灯駆動装置2を保護する保護回路2aの一機能である。
 さらに、入力回路部3には、手動操作検出回路10及び過熱検知回路13の検出結果に基づく動作信号Sdを点灯制御回路部4に出力する信号出力回路15が設けられている。この信号出力回路15は、手動操作検出回路10が電源オン操作を検出した際に過熱検知回路13が過熱を検出していない場合には、動作信号Sdとして点灯要求(オン信号)を点灯制御回路部4に出力し得るように、また手動操作検出回路10が電源オフ操作を検出した場合や、過熱検知回路13が過熱を検知している場合には、動作信号Sdとして消灯要求(オフ信号)を点灯制御回路部4に出力し得るように、構成されている。
<点灯制御回路部4>
 点灯制御回路部4には、点灯制御回路部4の電源オンオフを管理するスイッチ回路16、例えばPWM制御により発振する発振回路17、例えばプッシュプル回路からなるインバータ回路18、入力電圧を昇圧するトランス19、等が設けられている。
 スイッチ回路16は、動作電源発生回路12から基準電圧Vkが入力された際に、信号出力回路15から動作信号Sdとしてオン信号が入力されている場合には、基準電圧Vkを発振回路17に出力して発振回路17を動作し得るように構成されている。これにより、動作電源発生回路12から基準電圧Vkが入力されていても、信号出力回路15から動作信号Sdとしてオフ信号が入力されている場合には発振回路17を動作させることなく停止状態のままにする。
 このようなスイッチ回路16には、点灯制御回路部4による点灯動作の実行可否を通知する動作状態通知部20が接続されている。この動作状態通知部20は、例えばLEDからなり、点灯制御回路部4が蛍光灯1の点灯動作を実行しているときには点灯し、点灯動作を実行していないときには消灯する。
 また、スイッチ回路16には、断線検出機能として、後述する断線検出回路27から出力される検出信号Sdsに基づいて蛍光灯1の断線有無を監視する断線監視部33が設けられている。この断線監視部33は、検出信号Sdsが閾値以下となるか否かを監視し、検出信号Sdsが閾値以下となった場合には、蛍光灯1に断線が生じていると判断して、スイッチ回路16から発振回路17への基準電圧Vkの供給を停止する。これにより、断線状況下において点灯制御回路部4が点灯動作を行うことを防止可能にしている。なお、この断線検出機能も、蛍光灯駆動装置2を保護する保護回路2aの一機能である。
 発振回路17は、所定の高周波信号を発生させて、当該発振回路17に接続されるインバータ回路18内のスイッチング素子(図略)を交互にオンオフし得る機能を有するもので、本実施形態では当該発振回路17に接続される発振切換回路43によって発振周波数を選択切り換え可能に構成されている。なお、発振切換回路43は、後述の予熱時間設定回路73とともに本発明の「周波数制御回路」に相当し得るものである。
 例えば、後述するように、蛍光灯1の点灯前においては、予熱を目的とした第1フィラメント5及び第2フィラメント6による発熱を可能にするため、発振回路17を高い周波数(例えば約100KHz)で発振させ、予熱期間の経過後においては通常点灯するため、比較的低い周波数(例えば約40KHz)で発振させる。これにより、点灯前におけるフィラメントの加熱不足を解消可能にしている。なお、予熱制御は後述する予熱制御回路部により行われる。
 インバータ回路18は、例えば、直列に接続された2つのスイッチング素子(例えばMOS-FET)からなるプッシュプル回路により構成されており、発振回路17から出力される高周波信号を互いに逆相になるように制御(ゲート)端子に入力することで、これらのスイッチング素子を交互にオンオフする。これにより、このインバータ回路18に接続されたトランス19の一対の1次巻線21a,21bに対して交互に電流を流すことができるため、トランス19の2次巻線22に高周波電圧Voutが発生し、この高周波電圧Voutによって蛍光灯1を点灯させることが可能となる。蛍光灯1が点灯する際の共振周波数は、2次巻線22及びチョークコイル23のインダクタンス成分と、コンデンサ38(後述する)のキャパシタンス成分とによって設定されている。
 トランス19は、前述したように、一対の1次巻線21a,21bと、1つの2次巻線22とからなり、2次巻線22の第1巻線端子22aは、第1接続端子7a,7bの一方側の端子7a(以降「一方側第1接続端子7a」)に接続され、2次巻線22の第2巻線端子22bは、第2接続端子8a,8bの一方側の端子8a(以降「一方側第2接続端子8a」)に接続されている。一方側第1接続端子7aは主電圧Vsに接続され、一方側第2接続端子8aはトランス19の2次巻線22を介して主電圧Vsに接続されている。
 一方側第2接続端子8aと第2巻線端子22bとの間には、チョークコイル23及びコンデンサ24(以降「直流成分遮断用コンデンサ24」)の直列回路25が接続されている。チョークコイル23は、トランス19の2次側のインダクタンス成分を稼ぐもので、これにより、トランス19の2次巻線22の巻線量を低減可能にしている。なお、トランス19の2次巻線22とチョークコイル23とは、本発明の「電源側端子間に直列に接続されるインダクタ」に相当し得るものである。
 直流成分遮断用コンデンサ24は、直流成分をカットして直流電流が流れないようにするためのもので、トランス19の2次巻線22側から蛍光灯1の第1フィラメント5、抵抗35,36,37を経由して蛍光灯1の第2フィラメント6、チョークコイル23に至る閉回路を蛍光灯1の電流ループ回路26とすると、この電流ループ回路26に直流電流が流れないようにしている。なお、この電流ループ回路26は、本発明の「直列共振回路」に相当し得るものである。
 本実施形態では、この電流ループ回路26に断線検出回路27が接続されている。この断線検出回路27は、複数の抵抗28,29,30,31を直列接続した回路からなり、電流ループ回路26を流れる電流値に応じた電圧値として検出信号Sdsをスイッチ回路16に出力するように構成されている。これにより、スイッチ回路16の断線監視部33は、前述したように、検出信号Sdsが閾値以下となるか否かを監視して検出信号Sdsが閾値以下になると、蛍光灯1を繋ぐ通電経路に断線が発生していることを判断可能になる。
 第1接続端子7a,7bの他方側の端子7b(以降「他方側第1接続端子7b」)と、第2接続端子8a,8bの他方側の端子8b(以降「他方側第2接続端子8b」)との間に直列に接続される抵抗35,36,37は、例えば蛍光灯1のフィラメント切れや管破損灯を検出する管異常検出回路34を構成している。
 この管異常検出回路34は、蛍光灯駆動装置2を保護する保護回路2aの一機能として管破損検出機能を実現し得るもので、蛍光灯1の第1フィラメント5と第2フィラメント6との間の端子間電圧を監視して、管異常の有無を検出可能に構成されている。本実施形態の場合、管異常検出回路34は、第1フィラメント5側から見て1番目の抵抗35と2番目の抵抗36とのノードに発生する分圧Vbbを、フィラメント5,6の端子間電圧として出力する。また、第1接続端子7bと第2接続端子8bとの間には、蛍光灯1が点灯する際の共振周波数を決定するコンデンサ38が接続されている。なお、このコンデンサ38は、本発明の「コンデンサ」に相当し得るものである。
 また、管異常検出回路34には、管異常検出回路34の分圧Vbbから直流分を取り除くフィルタ回路39が接続されている。このフィルタ回路39は、この分圧Vbbから直流成分を取り除いて交流成分のみとし、これを整流回路40で整流することで一定値の直流電圧に変換可能にしている。整流回路40の出力側には、管異常検出回路34による保護動作を実行し得る保護動作回路41が接続されている。
 即ち、保護動作回路41には、管異常検出回路34が蛍光灯1の異常を検出した際に点灯制御回路部4による点灯動作を強制終了するシャットダウン実行部42や、フィラメント予熱時に発振回路17のシャットダウン機能を一時的に停止させるシャットダウン一時停止部44が設けられている。
 シャットダウン実行部42は、整流後の分圧Vbbと閾値とを比較し、分圧Vbbが閾値未満となると、蛍光灯1に管異常が発生したと判断して発振回路17にシャットダウン要求Ksdを出力し得るように構成されている。これにより、シャットダウン要求Ksdを受けた発振回路17は、入力回路部3からの基準電圧Vkの入力有無にかかわらず発振動作を停止して蛍光灯1の点灯動作を強制終了する。
 これに対して、シャットダウン一時停止部44は、予熱期間中、発振回路17のシャットダウン機能が動作しないようにするもので、例えば抵抗とコンデンサからなるRC回路の時定数から決まる時間だけ、シャットダウン一時停止要求Kitを発振切換回路43に出力し得るように構成されている。これにより、発振切換回路43は、シャットダウン一時停止要求Kitが入力される間、発振回路17にシャットダウンを実行させることなく高い周波数での発振動作を実行可能にしている。
 なお、シャットダウン一時停止部44で設定される蛍光灯1の予熱時間は、次に説明する予熱制御回路部の予熱時間設定回路73によって設定される所定の予熱時間と同じ値であるので、当該予熱時間が経過した旨を知らせる予熱期間満了信号を予熱時間設定回路73から取得するように構成しても良い。これにより、シャットダウン一時停止部44において予熱時間を生成するRC時定数回路が省略できるので、回路構成を簡素にできる。
 このように蛍光灯駆動装置2は、過熱保護機能、断線検出機能や管破損検出機能を実現し得る保護回路2aを備えているが、本実施形態に係る蛍光灯駆動装置2では、比較的簡易な構成で実現可能な予熱制御回路部4a(図2参照)を備えている。
 次に、本例の蛍光灯駆動装置2の動作を図3~図5に従って説明する。
 まず、図3に示すように、蛍光灯1に断線が発生していない場合を想定する。入力端子9に電源電圧Vccが入力されると、電源電圧Vccはノイズフィルタ11によってノイズが除去され、ノイズ除去後の電源電圧Vccが動作電源発生回路12に出力される。動作電源発生回路12は、ノイズ除去後の電源電圧Vccを主電圧Vsとして点灯制御回路部4に出力する。主電圧Vsが点灯制御回路部4に入力されると、この主電圧Vsは蛍光灯1に印加される。ここでは、蛍光灯1に断線が発生していない場合を想定しているので、断線検出回路27は正常値で以て検出信号Sdsを断線監視部33に出力する。よって、断線監視部33は、正常な検出信号Sdsを入力することによって、蛍光灯1に断線が発生していないと認識する。
 また、動作電源発生回路12は、点灯制御回路部4への主電圧Vsの供給動作とともに、ノイズ除去後の電源電圧Vccを降圧して基準電圧Vkを生成し、これを発振回路17の動作電源としてスイッチ回路16に出力する。
 この状態下において、電源スイッチがオン操作されたとする。信号出力回路15は、電源スイッチのオン操作を手動操作検出回路10で確認すると、過熱検知回路13が過熱を検出していないことを条件に、動作信号Sdとしてオン信号をスイッチ回路16に出力する。このとき、過熱検知通知部14は点灯動作をとるので、蛍光灯1が過熱していないことがユーザに通知される。
 スイッチ回路16は、信号出力回路15から動作信号Sdとしてオン信号を入力すると、断線検出回路27が断線を検出していないことを条件に、動作電源発生回路12から得た基準電圧Vkを発振回路17に出力する。これにより、発振回路17に動作電源が供給された状態となる。発振回路17は、スイッチ回路16から基準電圧Vkを入力すると、これを電源として発振し、インバータ回路18を介してトランス19の2次巻線22から、高い周波数に準じた高周波交流電圧Voutが出力され、蛍光灯1がまずはフィラメント予熱で以て点灯動作を開始する。
 このとき、発振切換回路43は、蛍光灯1を予熱電流で点灯させるために、発振回路17を高い周波数で発振させる。ところで、蛍光灯1がフィラメント予熱する際、蛍光灯1の管電圧は不安定な状態をとるので、タイミングによっては管異常検出回路34の分圧Vbbが閾値を下回り、保護動作回路41のシャットダウン実行部42が機能してしまうことも想定される。よって、シャットダウン一時停止部44は、フィラメント予熱の際にシャットダウン機能が利かないようにするために、自身のCR成分の定数から決まる時間の間だけ、シャットダウン一時停止要求Kitを発振切換回路43に出力する。よって、発振切換回路43は、予熱期間の間、発振回路17をシャットダウンしないようにしながら高い周波数で発振させる。
 予熱期間がタイムアップすると、シャットダウン一時停止部44はシャットダウン一時停止要求Kitの出力を停止する。これにより、発振切換回路43は、シャットダウン一時停止要求Kitを入力しない状態をとり、今度は発振回路17を低い周波数で発振させる。よって、トランス19の2次巻線22から、低い周波数に準じた高周波交流電圧Voutが出力され、蛍光灯1の点灯動作がそれまでのフィラメント予熱から通常点灯に切り換えられる。
 続いて、図4に示すように、例えば蛍光灯1に断線が発生していた場合、主電圧Vsが蛍光灯1に印加されても、蛍光灯1の電流ループ回路26に電流が流れないので、断線検出回路27はオン信号を出力することができない。よって、電源スイッチがオン操作されて信号出力回路15からスイッチ回路16にオン信号が入力されても、スイッチ回路16はこれに応答しない。従って、発振回路17には基準電圧Vkが供給されないので、結果として点灯制御回路部4が動作せず、蛍光灯1は消灯状態を維持する。
 また、図5に示すように、例えば蛍光灯1に管異常が発生していた場合、フィラメント5,6の端子間電圧は低くなるので、管異常検出回路34の分圧Vbbが閾値以下に落ち込む。よって、シャットダウン実行部42は、分圧Vbbが閾値以下となることを確認するので、蛍光灯1に管異常が発生したと認識し、発振回路17にシャットダウン要求Ksdを出力する。発振回路17は、このシャットダウン要求Ksdに従って動作し、蛍光灯1の点灯動作を強制終了する。
 従って、本例においては、蛍光灯1の閉ループ回路である電流ループ回路26に直流成分遮断用コンデンサ24を設けて、蛍光灯1の点灯時において電流ループ回路26に流れる電流から直流成分をカットする。そして、この直流成分が流れない電流ループ回路26、つまり蛍光灯1の電流経路上に、断線が発生していないかどうかを断線検出回路27によって検出する。よって、断線検出するに際してトランス19の2次側に直流電流を直接流す方式を用いずに済むので、トランス19の2次側に偏磁をさせない状態で、断線有無を検出することが可能となる。このため、蛍光灯1の断線有無を検出しながらも、効率よく蛍光灯1を点灯させることが可能となる。
 また、フィラメント5,6の間の端子間電圧、つまり管電圧を見る管異常検出回路34を蛍光灯駆動装置2に設け、この管異常検出回路34から得る分圧Vbbによって管異常の有無を監視する。よって、例えばフィラメント切れや管破損が発生すると、それに応じて分圧Vbbが上昇するという傾向を利用して、本例のような管異常検出回路34を点灯制御回路部4に設けておけば、分圧Vbbの上昇を検出することを以て、フィラメント切れや管破損の有無も問題なく検出することが可能となる。
 本実施形態の構成によれば、以下のような効果を得ることができる。
 (1)蛍光灯1に繋がる電流ループ回路26に直流成分遮断用コンデンサ24を接続し、同ループ回路26に繋がる断線検出回路27によって同ループ回路26における断線有無を監視する。このため、蛍光灯1の断線有無を監視しながらも、効率よく蛍光灯1を点灯させることができる。
 (2)蛍光灯1の一対のフィラメント5,6の間に、管異常の発生有無を監視する管異常検出回路34を設けたので、蛍光灯1に発生するフィラメント切れや管破損等を検出することができる。そして、蛍光灯1にフィラメント切れや管破損が発生した際には、蛍光灯駆動装置2の動作を強制停止するので、このような異常状態時に蛍光灯駆動装置2を停止状態に切り換えることができる。
 (3)管異常検出回路34を複数の抵抗35~37により構成したので、蛍光灯1の種類に合わせて管異常検出回路34の検出出力を切り換えたい場合に、例えば抵抗35~37を他の抵抗値のものに切り換えたり、或いは抵抗成分を増設したりするなどの簡単な作業によって、これに対応することができる。
 (4)入力回路部3に過熱検知回路13を設け、蛍光灯駆動装置2ひいては蛍光灯1が過熱した際には、蛍光灯駆動装置2による蛍光灯1の点灯動作を強制終了する。よって、蛍光灯駆動装置2ひいては蛍光灯1を過熱から保護することができる。
 (5)蛍光灯1の点灯消灯を主に管理するスイッチ回路16、発振回路17、保護動作回路41、発振切換回路43等は、連続した入力の変化に対して出力信号の状態も連続的に変化するアナログ回路から構成される。よって、蛍光灯駆動装置2において点灯消灯を制御する回路部分を、アナログ回路という簡素な構成のもので済ますことができる。
 (第2実施形態)
 次に、本例の第2実施形態を図6に従って説明する。なお、本例は、第1実施形態に対して、蛍光灯1の点灯消灯をソフトウェア回路によって制御する点のみが異なっている。よって、第1実施形態と同一部分には同一符号を付して詳しい説明を省略し、異なる部分についてのみ詳述する。
 図5に示すように、蛍光灯駆動装置102には、蛍光灯1の点灯消灯をプログラマブルに制御する制御コントローラ51が設けられている。制御コントローラ51は、例えばCPU(Central Processing Unit)52やメモリ53等を備えたソフトウェア回路からなり、メモリ53に格納された制御プログラム54に基づいて点灯動作や消灯動作を実行する。また、制御コントローラ51は、1チップ化された制御IC(Integrated Circuit)からなっている。本例の制御コントローラ51は、第1実施形態の例えばスイッチ回路16、発振回路17、保護動作回路41及び発振切換回路43等の働きを担う回路である。なお、制御コントローラ51が点灯消灯制御手段を構成し、制御プログラム54がプログラムに相当する。
 制御コントローラ51には、電源電圧Vccや操作信号Sswを入力する入力回路部55と、蛍光灯1の発熱有無を検知する過熱検知回路部56とが接続されている。入力回路部55は、入力した電源電圧Vccを主電圧Vs及び基準電圧Vkに変換出力するとともに、操作信号Sswを入力したことを制御コントローラ51に通知する。過熱検知回路部56は、入力回路部55における発熱有無を見ることで蛍光灯1の発熱を監視し、その監視結果に応じた過熱検出通知Skmを制御コントローラ51に出力する。なお、過熱検知回路部56が過熱検知手段を構成する。
 制御コントローラ51には、駆動回路として働くゲートドライブ回路部57を介して点灯回路部58が接続されている。本例の点灯回路部58は、第1実施形態の例えばインバータ回路18、トランス19、断線検出回路27、管異常検出回路34、フィルタ回路39、整流回路40等の働きを担う回路である。点灯回路部58は、制御コントローラ51から入力した直流電圧をインバータ回路18及びトランス19によって高周波交流電圧Voutに変換し、同電圧Voutを蛍光灯1に出力して蛍光灯1を点灯させる。また、点灯回路部58は、断線検出回路27の検出信号Sdsや、管異常検出回路34の分圧Vbbを制御コントローラ51に出力する。
 また、制御コントローラ51には、蛍光灯駆動装置102の動作状態を表示する表示回路部59が設けられている。制御コントローラ51は、断線検出回路27で蛍光灯1の断線を検出したり、管異常検出回路34で管異常を検出したり、過熱検知回路部56で過熱を検知したりすると、蛍光灯駆動装置102の動作を停止するとともに、表示要求Kdpを表示回路部59に出力する。表示回路部59は、この表示要求Kdpを入力すると、例えばそれまで点灯していたLEDを消灯するなどして、異常発生をユーザに通知する。
 さて、本例の場合は、蛍光灯1の点灯消灯を、ソフトウェア回路からなる制御コントローラ51により実行する。このため、もし仮に蛍光灯1の点灯消灯の動作パターンを切り換えたい要望があっても、このときは制御コントローラ51のメモリ53に格納されている制御プログラム54を他プログラムに上書きすれば対応可能である。よって、蛍光灯1の点灯消灯の動作パターンの切り換えを、単なるプログラムの書き換えという簡単な作業で済ますことが可能となる。
 本実施形態の構成によれば、第1実施形態の(1)~(5)の効果に加え、以下に記載の効果を得ることができる。
 (6)蛍光灯1の点灯消灯を主に管理する回路部分を、制御コントローラ51というソフトウェア回路によって構成した。このため、例えば蛍光灯1の点灯消灯の動作内容を切り換えたい場合には、制御コントローラ51のメモリ53に描き込まれた制御プログラム54を他のプログラムに変更すれば済む。よって、蛍光灯駆動装置102自体を変更せずとも、点灯消灯の動作を簡単に他動作に切り換えることができる。
 (第3実施形態)
 次に、本例の第3実施形態を図1に示す説明図の構成から予熱制御に関する構成部分を抜き出した図2も図1とともに参照しながら説明する。なお、蛍光灯駆動装置112のうち、蛍光灯1、入力回路部3及び点灯制御回路部4については、第1実施形態と同様であるため、第1実施形態と同一部分には同一符号を付して詳しい説明を省略し、異なる部分についてのみ詳述する。
<予熱制御回路部4a>
 図2(A)に示すように、予熱制御回路部4aは、スイッチ71、予熱時間設定回路73及びスイッチ駆動回路75により構成されている。スイッチ71は、例えば、MOS-FET等で構成されるアナログスイッチで、ゲート端子に入力されるゲート制御信号によってオンオフ制御し得るように構成されている。
 このアナログスイッチは、双方向に入出力が可能で半導体により構成されているものであれば、その構成要素はバイポーラトランジスタでもCMOS等のユニポーラトランジスタ等であっても良い。ただし、蛍光灯1のフィラメント(第1フィラメント5及び第2フィラメント6)を発熱させて予熱する必要から、例えば、最大許容電圧は400V以上で、最大許容電流は1.5A以上の仕様が要求される。
 このため、例えば、SSR(ソリッドステート・リレー)や機械的なリレー等がスイッチ71の具体例として挙がるかもしれないが、SSRは、一般に、最大許容電圧が高いと最大許容電流が小さくなり、最大許容電流が大きいと最大許容電圧が低くなる、といった最大許容電圧と最大許容電流のバランスから前記の仕様を満たし難いため、スイッチ71には不向きである。
 また、機械的なリレーやスイッチは、半導体スイッチに比べるとスイッチング速度が極めて遅く、アーク放電によるノイズやチャタリングの発生、さらには蛍光灯駆動装置自体の大型化を招きやすいことから、スイッチ71として機械的なリレー等を使うことは、想定し難い。このような理由から本実施形態に係る蛍光灯駆動装置112では、スイッチ71としてアナログスイッチを採用している。
 なお、アナログスイッチのスイッチング速度は100nSオーダであるため、図2(B)に示すようにスイッチ71の前段にフォトカプラ77を介在させても1mS以下に収まる。これに対し、機械的なリレーのスイッチング速度は10mSオーダで、アナログスイッチに比べて100倍以上遅い。
 また、SSRの最大許容電圧と最大許容電流の例としては、下記のものが挙げられる。
  G3VM-61A1 (オムロン株式会社製):許容電圧 60V、許容電流0.5A
  G3VM-202J1(オムロン株式会社製):許容電圧200V、許容電流0.2A
  G3VM-351G (オムロン株式会社製):許容電圧350V、許容電流0.11A
 予熱時間設定回路73は、蛍光灯1の予熱時間を設定するもので、本実施形態では入力回路部3から出力される動作信号Sdとしての点灯要求(オン信号)をトリガにして所定の予熱時間(例えば、0.4秒~3.0秒間)をスタートさせる。例えば、前述したシャットダウン一時停止部44と同様に抵抗とコンデンサからなるRC回路の時定数から決まる時間(T=R×C)だけ蛍光灯1の第1フィラメント5及び第2フィラメント6を発熱させて予熱し得るように、当該予熱期間中はHレベルとなる制御信号をスイッチ駆動回路75と発振切換回路43に出力可能に構成されている。
 予熱期間中は、発振回路17を高い周波数(例えば約100KHz)で発振させるため、発振切換回路43に制御信号を出力して発振回路17の発振周波数を設定可能にしている。なお、予熱時間設定回路73は、前述の発振切換回路43とともに本発明の「周波数制御回路」に相当し得るものである。
 なお、予熱時間設定回路73で設定される所定の予熱時間は、前述したシャットダウン一時停止部44によって設定する蛍光灯1の予熱時間と同じ値であるので、当該予熱時間が経過した旨を知らせる予熱期間満了信号をシャットダウン一時停止部44から取得するように構成しても良い。これにより、予熱時間設定回路73において予熱時間を生成するRC時定数回路が省略できるので、予熱時間設定回路73の構成を簡素できる。
 スイッチ駆動回路75は、前述したスイッチ71のオンオフ制御を可能にするもので、予熱時間設定回路73からの制御信号を受けてスイッチ71にゲート制御信号を出力可能に構成されている。本実施形態では、予熱期間中だけ予熱時間設定回路73から出力されるHレベルの制御信号を受けてスイッチ71をオンにし、それ以外の期間はスイッチ71をオフにするようにスイッチ71のスイッチング制御をしている。なお、このスイッチ駆動回路75は、本発明の「スイッチ制御回路」に相当し得るものである。
 このように予熱制御回路部4aを構成することによって、スイッチ71がオンになる予熱期間中においてはコンデンサ38の両端をスイッチ71が導通状態にするので、コンデンサ38の存在にかかわらず、蛍光灯1のフィラメント(第1フィラメント5、第2フィラメント6)の非電源側接続端子7d,8dの間は短絡状態になる。これにより、短絡状態の非電源側接続端子7d,8dを経由して電源側接続端子7c,8cの間を直流的に導通状態にすることができる。
 また、この予熱期間中においては、発振回路17を高い周波数(例えば約100KHz)で発振させる制御信号が予熱時間設定回路73から発振切換回路43に出力されるので、当該予熱期間中は、第1接続端子7a及び第2接続端子8aから高い周波数の高周波電圧が蛍光灯1に出力される。これにより、短期間に蛍光灯1のフィラメントを発熱させて予熱を完了させることが可能となる。
 なお、図2(B)に示すように、スイッチ71のゲート端子と予熱時間設定回路73の出力との間にフォトカプラ77を介在させる構成を採っても良い。即ち、スイッチ71のゲート端子に印加されるゲート電圧をフォトカプラ77の出力側でドライブすることによって、蛍光灯1に高周波電圧Voutを供給する電流ループ回路26及びその周辺回路から当該ゲート端子を電気的に絶縁することができる。これにより、スイッチ71のゲート端子の入力インピーダンスが比較的高くても、電流ループ回路26等から発生し得る高周波ノイズ等の影響を受け難いため、このようなノイズによるスイッチ71の誤動作を抑制することが可能となる。
 フォトカプラ77の入力側にノイズ除去用のコンデンサやインダクタを追加することで、さらに誤動作を抑制することができる。またフォトカプラ77の出力側にブリーダ抵抗等を並列に設けることで、スイッチ71のオンオフ制御を速くすることができる。
 次に、蛍光灯1に設けられた蛍光灯取付部100について説明する。図10(a)~(e)は、蛍光灯用ソケット部を構成する第一蛍光灯ソケットの六面図である。図11は、第一蛍光灯用ソケットの参考斜視図である。図12は、図10のAA線における参考断面図である。図13(a)~(e)は、蛍光灯用ソケットを構成する第二蛍光灯ソケットの六面図である。図14は、第二蛍光灯用ソケットの参考斜視図である。図15は、図13のBB線における参考断面図である。
 蛍光灯取付部100は、図10~図12に示す第一蛍光灯用ソケット101及び図13~図15に示す第二蛍光灯用ソケット121が、対向して設けられて構成されており、直管形蛍光灯である蛍光灯1の両端の口金が第一蛍光灯用ソケット101及び第二蛍光灯用ソケット121に夫々取り付けられる。図10~図12に示すように、第一蛍光灯用ソケット101は、ソケット本体102の蛍光灯取付面103から、蛍光灯1の外周面に沿う形状で蛍光灯サポート部104が突設されている。蛍光灯サポート部104は、突設された4つの保護片104a~dから成る。保護片104a及び保護片104b、保護片104b及び保護片104cの間には、夫々に隙間106,107が設けられている。また、保護片104aと保護片104dとの間には隙間108,109が設けられている。隙間106,107は、受容部105に垂直方向で対応する真上の位置に設けられており、隙間108,109は、受容部105に水平方向で対応する真横の位置に設けられている。隙間106~109の幅は、いずれも蛍光灯1の電極端子(図示しない)の太さより広い。
 図13~図15に示すように、第二蛍光灯用ソケット121は、ソケットホルダ122に対して蛍光灯可動サポート部123が摺動可能にて組み付けられ、可動サポート部123がソケットホルダ122から押し出される方向にばね(図示省略)で付勢されて構成されている。これにより、ソケットホルダ122の開口部124を通して蛍光灯サポート部125が出入可能となっている。蛍光灯サポート部125には、蛍光灯サポート部104の隙間106~109と同様に隙間126~129が設けられている。
 なお、第3蛍光灯用ソケット101及び第二蛍光灯用ソケット121の背面図に表れる各3個の円形は、いずれも照明器具本体への取付用のネジ穴である。
 従来は、ソケットに挿入した蛍光灯の電源端子で蛍光灯を支持しており、電源端子がソケットにしっかり挿入されていないと蛍光灯が落下する虞があった。このような危険を防ぐために蛍光灯を支持する支持部材を追加すると、構造が複雑になりコストが上昇する。また、蛍光灯をソケットに挿入するだけの場合と比べて、蛍光灯1の着脱のために支持部材の着脱を行ったりソケットを分解したりするとより多くの作業時間を要するという問題があった。
 これに対し、本例の蛍光灯取付部100においては、蛍光灯サポート部125がばねで付勢されてソケットホルダ122に対して摺動可能に設けられており、蛍光灯1の着脱時には、第二蛍光灯用ソケット121の蛍光灯サポート部125を摺動させ出入させることで蛍光灯1の電源端子を第一蛍光灯用ソケット101及び第二蛍光灯用ソケット121に対して着脱しやすくすることができる。また、第一蛍光灯用ソケット101側の電源端子を隙間106~109を通すことにより、蛍光灯サポート部104内に電源端子を容易に出し入れすることができる。第二蛍光灯用ソケット121側についても、電源端子を隙間126~129に通すことで同様に蛍光灯1を取り付けやすくすることができる。隙間106~109,126~129が設けられていることで、3方向のいずれの方向からも電源端子を通すことができるので、蛍光灯1を着脱する方向が選択可能であり作業性が良い。蛍光灯1が取り付けられると蛍光灯サポート部104,125によって蛍光灯の端部が囲まれるように保持されて蛍光灯1が支持され、蛍光灯の落下を防ぐことができる。
 次に、本実施形態に係る蛍光灯駆動装置112の動作を図7及び図8に基づいて説明する。最初に図7を参照しながら蛍光灯1に断線等の異常が発生していない場合について説明した後、蛍光灯1に異常が発生している場合について図8を参照して説明する。
 まず、外部から蛍光灯駆動装置112に電源電圧Vccが供給されると、入力端子9から入力された電源電圧Vccはノイズフィルタ11によりノイズ除去された後、動作電源発生回路12に入力される。動作電源発生回路12では、この電源電圧Vccに基づいて主電圧Vsを生成するとともに降圧して基準電圧Vkも生成する。これらの電圧Vs,Vkはいずれも点灯制御回路部4に出力される。これにより、点灯制御回路部4には駆動電力が供給されるためその動作が可能になり、また蛍光灯1のフィラメント5,6には点灯制御回路部4の抵抗35~37を介して主電圧Vsによる電流が流れるため、断線検出回路27による断線検出が可能となる(図7(A))。
 また、過熱検知回路13による過熱の有無も検出される。蛍光灯1等の過熱が検知されていない場合には、例えばHレベルの検出信号が出力されて過熱検知通知部14が点灯し、過熱が検知されている場合には、例えばLレベルの検出信号が出力されて過熱検知通知部14が消灯する。ここでは過熱が検知されていないことを前提として説明を進めるのでHレベルの検出信号が出力される(図7(B))。
 また、蛍光灯1に断線が発生していない場合を想定しているので、断線検出回路27からは正常値の検出信号Sdsが断線監視部33に出力されて、これを受けた断線監視部33は蛍光灯1に断線が発生していないと判断する(図7(E))。
 電源スイッチがオンに操作されオン状態の操作信号Sswが手動操作検出回路10により検出されると(図7(C))、信号出力回路15は、過熱検知回路13による過熱検出のないことを条件に動作信号Sdとしてオン信号をスイッチ回路16と予熱時間設定回路73に出力する(図7(D))。
 スイッチ回路16は、信号出力回路15から動作信号Sdとしてオン信号が入力されると、断線検出回路27が断線を検出していないことを条件に、動作電源発生回路12から得た基準電圧Vkを発振回路17に出力する。この動作信号Sdとしてのオン信号は、予熱時間設定回路73にも入力される。このオン信号を受けると予熱時間設定回路73は、それをトリガに所定の予熱時間をスタートさせるとともに発振切換回路43に制御信号を出力して発振回路17の発振周波数を高い周波数(例えば約100KHz)に切り換える。これにより、発振回路17は高い周波数で発振を開始し(図7(G))、インバータ回路18のスイッチング素子を交互にオンオフすると、トランス19の2次巻線22からは高周波電圧Voutが出力される。
 所定の予熱時間をスタートさせると予熱時間設定回路73は、当該予熱期間中、スイッチ71をオンにするゲート制御信号(例えはHレベル)をスイッチ71に出力するようにスイッチ駆動回路75に対して制御信号を出力する(図7(I))。
 これにより、スイッチ71はオフ状態からオン状態に制御されるので、トランス19の2次巻線22から出力された高周波電圧Voutが蛍光灯1のフィラメント(第1フィラメント5、第2フィラメント6)に印加されると、オン状態のスイッチ71を介して、一方側第1接続端子7a,電源側接続端子7c,第1フィラメント5,非電源側接続端子7d,他方側第1接続端子7b,スイッチ71,他方側第2接続端子8b,非電源側接続端子8d,第2フィラメント6,電源側接続端子8c,一方側第2接続端子8aの双方向の通電経路で高周波電圧Voutが流れてフィラメントの予熱が可能となる(図7(H))。
 なお、フィラメント予熱の際はスイッチ71がオン状態になることから、管異常検出回路34を構成する抵抗35~37による分圧電圧は発生することなく、管異常検出回路34から出力される分圧Vbbは0Vになる。つまり、管異常が発生していないにもかかわらず、シャットダウン実行部42が機能してしまうため、これが働かないように前述したRC回路の時定数から決まる時間だけ、シャットダウン一時停止要求Kitを発振切換回路43に出力する。これにより、発振切換回路43は、予熱期間中、発振回路17をシャットダウンしないようにしながら高い周波数で発振回路17を発振させる。
 予熱期間が経過すると、予熱時間設定回路73は、スイッチ71をオフにするゲート制御信号(例えはLレベル)をスイッチ71に出力するようにスイッチ駆動回路75に対して制御信号を出力する。またこれとほぼ同時に発振回路17の発振周波数を低い周波数(例えば約40KHz)に切り換えるように発振切換回路43に制御信号を出力する。これにより、発振回路17は低い周波数で発振を開始するとともに(図7(G))、スイッチ71がオフ状態になるため(図7(I))、スイッチ71のない状態と同様、通常の点灯制御に移行して蛍光灯1の点灯動作がそれまでのフィラメント予熱から通常点灯に切り換えられる(図7(H))。
 続いて、蛍光灯1に異常が発生している場合について図8,図9を参照して説明する。
 まず、蛍光灯1のフィラメントが断線している場合について説明する。
 図8に示すように、フィラメントが断線している場合には、ノイズ除去後の電源電圧Vccに基づいて動作電源発生回路12が主電圧Vsを生成し蛍光灯1に印加されても、蛍光灯1の電流ループ回路26には電流が流れない。
 このため、断線検出回路27はオン信号を出力することができないことから(図8(E))、電源スイッチがオン操作され信号出力回路15からスイッチ回路16にオン信号が入力されても(図8(D))、スイッチ回路16はこれに応答しない。したがって、発振回路17には基準電圧Vkが供給されないので、点灯制御回路部4は動作することなく(図8(F),(G),(I))、蛍光灯1は消灯状態を維持する(図8(H))。
 次に、蛍光灯1に管異常が発生している場合について説明する。
 図5に示すように、管異常が発生している場合には、第1フィラメント5や第2フィラメント6の端子間電圧が低くなるので、管異常検出回路34の分圧Vbbが閾値未満に低下する(図9(F))。
 閾値未満に低下した分圧Vbbが入力されると、シャットダウン実行部42は、分圧Vbbが閾値未満であることを検出して蛍光灯1に管異常が発生したと判断して、発振回路17にシャットダウン要求Ksdを出力する(図9(G))。これにより、発振回路17は、このシャットダウン要求Ksdに従って動作し蛍光灯1の点灯動作を強制終了させる(図9(H))。なお、蛍光灯1に管異常が発生している場合には、当初、蛍光灯1は正常に点灯しているため、スイッチ駆動回路75の動作については図7に示す正常時と同様になる。
 以上説明したように、本実施形態に係る蛍光灯駆動装置112によると、直流電圧Vccをインバータ回路18により高周波電圧Voutに変換しこの高周波電圧Voutにより蛍光灯1を点灯させる蛍光灯駆動装置2において、蛍光灯1を構成する第1フィラメント5及び第2フィラメント6のそれぞれの電源側接続端子7c,8cの間に直列に接続されるトランス19の2次巻線22とチョークコイル23と直流成分遮断用コンデンサ24とを含んで構成され蛍光灯1の点灯時の共振周波数に設定される直列共振回路と、一対の第1フィラメント5及び第2フィラメント6の非電源側接続端子7d,8dの間に接続されるコンデンサ38と、コンデンサ38に並列に接続されるスイッチ71と、スイッチ71をオンオフ制御可能に構成され蛍光灯1の点灯前における予熱期間中はスイッチ71をオンにし予熱期間後はオフに制御するスイッチ駆動回路75と、を備える。
 これにより、スイッチ71がオンになる予熱期間中においては、第1フィラメント5及び第2フィラメント6の非電源側接続端子7d,8dの間にコンデンサ38が接続されていても当該非電源側接続端子7d,8dの間はスイッチ71により短絡状態になるので、蛍光灯1を構成する一対の第1フィラメント5及び第2フィラメント6は短絡状態の非電源側接続端子7d,8dの間を経由して電源側接続端子7c,8cの間を直流的に導通状態にすることができる。したがって、通常の点灯制御に必要な直列共振回路を構成するトランス19の2次巻線22、チョークコイル23、直流成分遮断用コンデンサ24や一対の第1フィラメント5、第2フィラメント6の非電源側接続端子7d,8dの間に接続されるコンデンサ38に加えて、スイッチ71とそれをオンオフ制御するスイッチ駆動回路75を追加する比較的簡易な構成により、予熱期間中においては第1フィラメント5及び第2フィラメント6に高周波電圧Voutを印加しても蛍光灯1が点灯することがないため、予熱終了前に点灯させることなく第1フィラメント5及び第2フィラメント6を予め加熱する予熱制御が可能となる。よって、スイッチ71とそれをオンオフ制御するスイッチ駆動回路75を追加する比較的簡易な構成で、適正な予熱を可能にし得る蛍光灯駆動装置2を提供することができる。
 また、本実施形態に係る蛍光灯駆動装置112によると、高周波電圧Voutの周波数を制御可能に構成される発振切換回路43及び予熱時間設定回路73を備え、これらは予熱期間中における高周波電圧Voutの周波数を予熱期間後における周波数(例えば約40KHz)よりも高い約100KHzに設定する。これにより、予熱期間中において直流的に導通状態になった第1フィラメント5及び第2フィラメント6には100KHzの高周波電圧Voutが印加されるため、蛍光灯1の予熱を短期間に行うことができる。なお、本実施形態では、高周波電圧Voutの周波数として、予熱期間中においては約100KHz、通常点灯時においては約40KHzにそれぞれ設定したが、これに限られることはなく、予熱期間中における高周波電圧Voutの周波数として、第1フィラメント5及び第2フィラメント6を過熱することが可能な周波数帯域であれば、例えば、200KHz,400KHz,800KHz,1MHz等、あるいはそれ以上の周波数であっても良い。
 さらに、本実施形態に係る蛍光灯駆動装置2によると、スイッチ71のゲート端子は、高周波電圧Voutが供給される蛍光灯1の電流ループ回路26やその周辺回路に対してフォトカプラ77により電気的に絶縁されている。これにより、スイッチ71のゲート端子の入力インピーダンスが比較的高くても、蛍光灯1の電流ループ回路26等から発生し得る高周波ノイズ等の影響を受け難いため、このようなノイズによる誤動作を抑制することができる。
(第4の実施形態)
 次に、本例の第4実施形態である照明装置510について、図16及び図17に基き説明する。図16は、発光ダイオード照明装置の構成を示すブロック図であり、図17は、LED照明装置の発光ダイオード照明回路の主要部を示す回路図である。
 以下、図16に基き説明する。照明装置510は、発光ダイオード照明回路501を備えており、鉄道車両の客室に設置される照明装置である。発光ダイオード照明回路501は、LED回路502a,502b,502c,502dを並列に備えた発光部502と、発光部502に対して電源線路514で接続されており発光部502に所定の直流電流を供給する駆動電流供給部503と、発光部502及び駆動電流供給部503に接続されておりLED回路502a~502dに故障が生じたことを検出する故障検出部505と、LED回路502a~502dに並列に接続されており故障検出部505の検出結果に基いて故障発生を報知する故障警報部506とを備えている。また、駆動電流供給部503には、発光ダイオード照明回路501に対して外部から電力を供給する電源504が接続されている。
 図17に示すように、LED回路502aは、直列に接続された4個の発光ダイオードD1~D4によって構成されている。LED回路502b~502dの構成は、LED回路502aと同様である。従って、発光部502は、各々4個の発光ダイオードが直列に接続された4つのLED回路502a~502dが並列に接続されて構成されている。
 故障検出部505は、相互に並列に接続された電圧検出回路505a~505dによって構成されている。電圧検出回路505aは、LED回路502aに対して直列に接続される第一抵抗601と、LED回路502aと第一抵抗601との間に挿入された結節点602で分岐し、第一抵抗601に対して並列にゲートが接続されたNチャネルMOSFET(検出手段、半導体スイッチング素子)であるFET604と、FET604及び結節点602の間に配設された第二抵抗603とを備えている。同様に、電圧検出回路505bは、第一抵抗611と、結節点612で分岐して第一抵抗611に対して並列にゲートが接続されたFET614と、FET614及び結節点612の間に配設された第二抵抗613とを備えている。また、電圧検出回路505cは、同様に第一抵抗621と、結節点622で分岐して第一抵抗621に対して並列に接続されたFET624と、FET624及び結節点622の間に配設された第二抵抗623とを備えている。また、電圧検出回路505dは、同様に第一抵抗631と、結節点632で分岐して第一抵抗631に対して並列に接続されたFET634と、FET634及び結節点632の間に配設された第二抵抗633とを備えている。
 LED回路502a~502dには、故障検出部505の電圧検出回路505a~505dが夫々接続されている。LED回路502aと電源線路514との間に電圧検出回路505aが設けられており、LED回路502bと電源線路514との間に電圧検出回路505b、LED回路502cと電源線路514との間に電圧検出回路505c、LED回路502dと電源線路514との間に故障検出回路505dが夫々設けられている。FET604のゲートは第二抵抗603に接続されており、FET604のドレインは、信号線路521を介して故障警報部506に接続され、FET604のソースは電源線路514に接続されている。LED回路502b~502dも、LED回路502aと同様であり、FET614のゲートは第二抵抗613に接続されており、FET614のドレインは、信号線路521を介して故障警報部506に接続され、FET614のソースは電源線路514に接続されている。FET624のゲートは第二抵抗623に接続されており、FET624のドレインは、信号線路521を介して故障警報部506に接続され、FET624のソースは電源線路514に接続されている。FET634のゲートは第二抵抗633に接続されており、FET634のドレインは、信号線路521を介して故障警報部506に接続され、FET634のソースは電源線路514に接続されている。
 なお、第二抵抗603,613,623,633は、いずれも、第一抵抗601,611,621,631よりも抵抗値が十分大きく、駆動電流供給部503から定格内の直流電流が供給されてLED回路502a~502d中の発光ダイオードが正常に機能しているときには、FET604,614,624,634は導通しないように設定されている。
 故障警報部506は、直列に接続された警報表示LED561及び電流制限抵抗562を備えており、発光部502(電源線路513)に対して信号線路521を介して接続され、電圧検出部505に対して信号線路521を介して接続されている。FET604,614,624,634のいずれかが導通して警報表示部506に電流が流れた場合には、電流制限抵抗562が電流を制限し、過電流による警報表示LED561の破損を防ぐ。
 以下、LED回路502a及び電圧検出回路505aを例に採って、電圧検出回路505aの通常の作動状態について説明する。LED回路502aが正常であるときには、駆動電流供給部503から所定の電流が供給されると、LED回路502aの両端電圧は所定の値となり、発光ダイオードD1~D4は点灯する。このとき、第二抵抗603の抵抗値R2は、第一抵抗601の抵抗値R1よりも十分に大きく、FET604のゲートにおける電圧は、FET604が導通する閾値電圧よりも小さいため、FET604のドレイン-ソース間に電流が流れることなく、故障警報部506の警報表示LED561は点灯しない。
 次に、発光部502の発光ダイオードに短絡故障が生じた場合のLED回路502a~502d及び電圧検出回路505a~505dの作動状態について、LED回路502a及び電圧検出回路505aを例に採って説明する。発光ダイオードD1~D4のいずれか1個以上に短絡故障が生じると、発光ダイオードの内部インピーダンスの低下により、当該LED回路の両端電圧が低下する。LED回路502aには電圧検出回路505aが直列に接続されており、電圧検出回路505aに流れる電流が増加する。電圧検出回路505aに流れる電流が増加すると、結節点602の電位は上昇する。第二抵抗6103の電圧が上昇し、FET604のゲートにおける電圧もまた上昇する。FET604のゲートの電圧が所定の閾値電圧よりも大きくなると、FET604のドレイン-ソース間が導通して電流が流れ、故障警報部506の警報表示LED561が点灯する。
 電圧検出回路505aに流れる電流が増加し、第一抵抗601及び第二抵抗603の電圧が上昇する際に、第一抵抗601の抵抗値R1及び第二抵抗603の抵抗値R2の比に応じてFET604のゲートにおける電圧が決定される。すなわち、第一抵抗601の抵抗値R1が、第二抵抗603の抵抗値R2に比して相対的に大きくなるほど、FET604のゲートにおける電圧は上昇しやすく、閾値電圧を超えやすくなる。第一抵抗601の抵抗値R1が大きいほど、発光ダイオードD1~D4の短絡故障を検出するための検出感度は高くなる。第二抵抗603の抵抗値R2が大きいほど発光ダイオードD1~D4の短絡故障を検出するための検出感度は低くなる。検出感度が高いと、電流検出回路505aは、発光ダイオードの短絡故障発生に対して敏感となり、比較的少数のLEDの短絡故障発生で故障警報部506が警報を発する。一方、短絡故障を検出する検出感度が低いと、故障警報部506が警報を発するまでに発光ダイオードの故障がある程度進行することを要する。これにより、第一抵抗601と第二抵抗603の抵抗の抵抗値の比によって検出感度を予め定め、何個の発光ダイオードが短絡故障したかというLED回路502aの故障の度合いに応じて故障警報部6が警報を発するようにできる。
 LED回路502b~502dはLED回路502aと同等であり、電圧検出回路505b~505dは電圧検出回路505aと同等であるので、電圧検出回路505b~505dの通常時及び短絡故障発生時の作動状態は、上記の電圧検出回路505aのそれと同様である。電圧検出回路505a~505dは、相互に並列に備えられているので、夫々独立して作動し、直列に接続されたLED回路502b~502dにおける短絡故障発生を検出する。
 以上のように、本発明の第4実施形態である発光ダイオード照明回路501によれば、電圧検出回路505a~505dがLED回路502a~502dに夫々直列に接続されており、LED回路502a~502dを流れる電流を直接検出するため、誤って他の要因による変化を検出する虞が小さく、発光ダイオードの短絡故障の検出精度が高い。
 また、並列に設けられたLED回路502a~502dについて、電圧検出回路505a~505dが夫々個別に短絡故障を検出するので、電圧検出回路505a~505dの各FETについてドレイン-ソース間の電流が流れているか否かを確認することで、LED回路502a~502dのどれが故障したかを容易に特定することができる。
 また、発光ダイオード照明回路501によれば、FETが導通して故障警報部506に電流が流れると、警報表示LED561が発光して視覚的に認識可能に警報を行うことができる。
 また、照明装置510によれば、光源の発光ダイオードに短絡故障が生じた場合に、照明装置510に組み込まれた電圧検出回路505a~505dが故障を検出し、検出結果に基き故障警報部506の警報表示LED561が点灯する。短絡故障による過電流の発生のために派生的に発光ダイオードが故障する前に、警報表示LED561の点灯で照明装置の修理や交換の必要性を示唆することで、短絡故障で生じた過電流のためにさらに故障被害が拡大する虞を防ぐことができる。また、警報表示LED561が点灯した状態でも直ちに使用停止とはならず、一時的に使用を継続することも可能である。
 さらに、発光ダイオード照明回路501は、コンピュータやIC(集積回路)を使用せず、簡素なアナログ回路で構成されているので安価にて製造可能である。また、メンテナンスにおいても検査や修理が容易である。
 また、第一抵抗601,611,621,631の抵抗値に応じて、LED回路502a~502dの電圧低下を判定する基準値が決定されるので、第一抵抗601,611,621,631の抵抗値を調節することで警報表示LED561が点灯に至る基準値、すなわち何個のLEDが短絡故障したら警報を発するかという基準を設定することができる。これにより、LEDの特性や数に応じて、あるいは照明器具の特性に応じて、短絡故障検出の精度を適宜設定することができる。
 なお、上述した第4実施形態等では、駆動電流供給部503は所定電流を供給する定電流源であり、かつ駆動電流供給部503から駆動電流の供給を受ける発光部502は、複数のLED回路502a~502dを備えている。このため、LED回路502aを構成する4個の発光ダイオードD1~D4のうち、例えば発光ダイオードD3に短絡故障が生じると次のような現象が生じ得る。
 ・短絡故障をした発光ダイオードD3の内部インピーダンスがほぼゼロに低下すると、当該発光ダイオードD3を含むLED回路502aの内部インピーダンスが、他の正常なLED回路502b~502dよりも低くなるため、LED回路502aに流れる駆動電流が増加する。
 ・すると、短絡故障をした発光ダイオードD3を含むLED回路502aの両端電圧は、駆動電流の増加に伴い上昇することになるが、当該LED回路502aは、他の正常なLED回路502b~502dとともに互いに並列に接続されている。このため、当該LED回路502aの両端電圧は正常なLED回路502b~502dの両端電圧と等しくなる。
 以上から、正常な発光ダイオードの順方向電圧をVf、順方向電流(=駆動電流)をI、短絡故障等を生じた異常な発光ダイオードの順方向電圧をVf’、その順方向電流をI’、LED回路2a等を構成する発光ダイオードの個数をn、短絡故障等を生じた異常な発光ダイオードの個数をm、LED回路2a等に直列に接続される第一抵抗101等の抵抗値をR1とすると、次式(1)が成立する。なお、発光ダイオードの順方向電圧Vf、Vf’や順方向電流I,I’は当該発光ダイオードの製造元等から提供されるデータシートに基づくものである。
   n×Vf+R1×I = (n-m)×Vf’+R1×I’    … (1)
 そして、この式(1)を変形すると、短絡故障等を生じた異常な発光ダイオードの個数mを求める次式(2)を得ることができる。
   m = [n×(Vf’-Vf)+R1×(I’-I)]/Vf’ … (2)
 これにより、例えば、発光ダイオードの順方向電流である駆動電流の各電流値に対応した順方向電圧の各Vf’をメモリIC等による記憶空間に格納される2次元マップとして持ち、さらに各LED回路502a~502dを流れる異常時の駆動電流I’を夫々に検出可能な電流センサ、またはそれを電圧に変換した後の電圧センサを設けることにより、上式(2)に基づいて短絡故障等を生じた異常な発光ダイオードの個数mをマイコン等により算出することが可能となる。そして、これにより算出された個数mに基づいて、駆動電流供給部3から発光部2に供給される駆動電流の値を減少させ得るように当該駆動電流供給部3を構成することによって、短絡故障が生じた発光ダイオードの個数分だけ駆動電流を下げることで他の正常な発光ダイオードに適正電流値を超えた過電流が流れないようにすることが可能となる。これらの構成を実現するには、第一の実施形態のものに比べ、マイコン等によるロジック回路を付加する必要があるが、短絡故障のある発光ダイオードの個数まで正確に検出できるので、より一層高精度な短絡検出が可能となる。
 次に、本例の第5実施形態である発光ダイオード照明回路530について、図18及び図19に基づき説明する。発光ダイオード照明回路530は、発光ダイオード照明回路501と同様に車両の客室に設置される照明器具のための回路である。図18に示すように、発光ダイオード照明回路530は、発光ダイオード照明回路501の発光部502に代えて発光部700を備える点を除いては発光ダイオード照明回路501と同様である。従って、図18において、図17の構成と実質的に同一の構成部分については同一符号を付して以下は発光部700についてのみ説明する。
 発光部700は、LED回路700a,700b,700c,700dが並列に接続されて構成されている。図4に示すように、LED回路700aは、各々3個の発光ダイオードが並列に接続された発光ダイオード群701~704が、直列に接続されている。発光ダイオード群701は、発光ダイオードD11~D13からなり、発光ダイオード群702は、発光ダイオードD21~D23からなり、発光ダイオード群703は、発光ダイオードD31~D33からなり、発光ダイオード群704は、発光ダイオードD41~D43からなる。LED回路700b~700dは、LED回路700aと同様の構成であるので説明を省略する。
 発光ダイオードD11~D43に含まれる発光ダイオードが短絡故障した場合には、短絡故障した発光ダイオードを含むLED回路700a~700dの両端電圧は低下する。発光部700には合計48個の発光ダイオードが備えられているのであるが、各LED回路700a~700dに対応して電圧検出回路705a~705dが設けられているので、48個の発光ダイオード全てではなく12個の発光ダイオードにおける電圧変化を監視すればよいので、簡素な回路構成であっても誤作動の虞が小さい。従って、発光部700の全体に対して一つの電圧検出回路が設けられている場合と比較すると、発光ダイオード照明回路530によれば、より精度良く異常電圧検出を行うことができる。
 続いて、本例の第6実施形態である発光ダイオード照明回路540について、図20に基づいて説明する。図5に示す発光ダイオード照明回路540は、図17を参照しながら説明した第4実施形態の発光ダイオード照明回路501のFET604,614,624,634をバイポーラ・トランジスタに置き換えたものである。このため、図20において、図2の構成と実質的に同一の構成部分については同一符号を付して説明を省略する。
 発光ダイオード照明回路540では、故障検出部640として、相互に並列に接続された電圧検出回路640a~640dを備えている。例えば、電圧検出回路640aは、LED回路502aに対して直列に接続される第一抵抗641と、LED回路502aと第一抵抗641との間に挿入された結節642で分岐し、第一抵抗641に対して並列にベースが接続されたNPNトランジスタ(検出手段、半導体スイッチング素子)であるTR644と、TR644及び結節642の間に配設された第二抵抗643とを備えている。また、これと同様に、電圧検出回路640b,640c,640dも図略の第一抵抗、第二抵抗及びNPNトランジスタを備えている。なお、第一抵抗641は、第4実施形態で説明した第一抵抗601と同様にLED回路502aを流れる駆動電流値によって抵抗値が設定されている。また、第二抵抗643は、MOSFETよりもバイポーラ・トランジスタの方が入力インピーダンスが低いぶん、第4の実施形態で説明した第二抵抗603よりも抵抗値が高めに設定されている。このようにバイポーラ・トランジスタによっても、第6実施形態の故障検出部510と同様に機能する故障検出部640を構成することができる。
 さらに、本例の第7実施形態である発光ダイオード照明回路550について、図21に基づいて説明する。図6に示す発光ダイオード照明回路550は、図16を参照しならがら説明した第4実施形態の故障警報部506から制御信号を出力し得るように構成し、当該制御信号を駆動電流供給部503に戻す、つまりフィードバック制御可能に構成したものである。このため、図21において、図16の構成と実質的に同一の構成部分については同一符号を付して説明を省略する。
 発光ダイオード照明回路550では、第4実施形態で説明した発光ダイオード照明回路501の故障警報部506による警報表示LED561に代えて(または加えて)駆動電流を減少させる制御信号を信号線路665を介して駆動電流供給部503に出力し得るフォトカプラ660を故障警報部661として設けてもよい。この場合、フォトカプラ660の入力側660aは信号線路521を介して故障検出部505に接続されており、またフォトカプラ660の出力側660bは、信号線路665を介して駆動電流供給部503に接続されている。また、駆動電流供給部503には、当該制御信号を受けると発光部502に供給する駆動電流を所定電流値まで減少させ得る出力調整回路等を備えている必要がある。なお、図6に示す構成ではフォトカプラ660を用いているが、図17に示す警報表示LED561の発光を検出可能な光センサ(例えはフォトトランジスタやフォトダイオードあるいは硫化カドミウムセルCdS)により警報表示LED561による発光を検出しその検出信号を制御信号として信号線路165を介して駆動電流供給部3に出力するように構成してもよい。これにより、短絡故障に伴って生じる過電流を抑制し、半導体素子の破損等による被害の拡大を防ぐことができる。
 本例の第4~第7実施形態は、以下のような技術的思想を具現化したものである。
 (技術的思想A)
 発光ダイオードを光源とする照明装置に設けられる発光ダイオード照明回路であって、
 直列または並列に接続される複数の発光ダイオードに駆動電流を供給するLED回路を複数備えた発光部と、
 前記複数のLED回路に流れる各駆動電流が所定の故障電流値以上であるか否かを前記複数のLED回路ごとに検出する故障検出部と、
 前記各駆動電流の少なくとも一つが前記故障電流値以上であると前記故障検出部により検出された場合には所定の警報動作を行う故障警報部と、
 を具備する発光ダイオード照明回路。
 (技術的思想B)
 前記故障検出部は、
 前記駆動電流が流れるように前記LED回路に直列に接続される第一抵抗と、
 前記駆動電流により前記第一抵抗に生じる電圧を取り出し可能に前記第一抵抗の高電位側に接続される第二抵抗と、
 前記駆動電流に比例しかつ前記第一抵抗と前記第二抵抗とにより定まる検出電圧が所定の電圧値以上であるか否かを検出する検出手段と、
を前記複数のLED回路ごとに備え、
 前記検出手段は、前記検出電圧が前記所定の電圧値以上である場合には前記駆動電流が前記故障電流値以上であることを検出する、技術的思想Aに記載の発光ダイオード照明回路。
(技術的思想C)
 前記検出手段は、制御端子、入力端子および出力端子を備え、前記制御端子に入力される前記検出電圧が所定の閾値電圧以上である場合には前記入力端子と前記出力端子と間を導通状態にし、前記検出電圧が所定の閾値電圧未満である場合には前記入力端子と前記出力端子と間を遮断状態にする半導体スイッチング素子である、技術的思想Bに記載の発光ダイオード照明回路。
(技術的思想D)
 前記故障警報部は、警報状態を表示する警報表示LEDを備え、前記所定の警報動作としてこの警報表示LEDを点灯させる、技術的思想A乃至技術的思想Cのいずれか一つに記載の発光ダイオード照明回路。
(技術的思想E)
 前記故障警報部は、前記駆動電流を供給する駆動電流供給部に接続されて前記駆動電流を減少させる制御信号を出力可能なフォトカプラを備え、前記所定の警報動作としてこのフォトカプラから前記制御信号を出力させる、技術的思想A乃至技術的思想Cのいずれか一つに記載の発光ダイオード照明回路。
(技術的思想F)
 発光ダイオードを光源とする照明装置であって、技術的思想A乃至技術的思想Eのいずれか一つに記載の発光ダイオード照明回路を具備する照明装置。
 なお、本願発明の実施の形態は、これまでに述べた構成に限らず、次の態様に変更しても良い。
 ・点灯消灯の制御対象となる蛍光灯1は、1本に限らず複数としても良い。また直管形蛍光管に限らず、環形やU字形状等のコンパクト形の蛍光管であっても良い。
 ・電源電圧Vccは、直流電圧に限らず例えば商用電源から得た交流電圧としても良い。
 ・トランス19の種類は、1次側が2つの巻線からなる構造のものに限らず、例えば1次側が1つの巻線からなるものでも良い。
 ・インバータ回路18は、プッシュプル回路からなるものに限らず、他の回路を採用しても良い。また、インバータ回路18は、フルブリッジ回路及びハーフブリッジ回路のどちらを採用しても良い。
 ・コンデンサ24は、2次巻線22の第2巻線端子22b側に設けられることに限らず、例えば第1巻線端子22a側に設けられても良い。
 ・蛍光灯駆動装置2は、鉄道に搭載されることに限らず、自動車等の車両に搭載されても良い。
 ・第1及び第2実施形態において、直流成分遮断手段は、コンデンサ24のみに限定されるものではなく、例えばコイル等の他の成分を組み合わせて用いてもよい。
 ・第1及び第2実施形態において、コンデンサ24は、2次巻線22の第2巻線端子22b側に設けられることに限らず、例えば第1巻線端子22a側に設けられてもよい。
 ・第1及び第2実施形態において、断線検出回路27は、4つの直列接続された抵抗28~31と1つのコンデンサ32からなる構成のものに限定されず、断線を検出できれば、どのようなデバイスを用いてもよい。
 ・第1及び第2実施形態において、断線有無を見る回路、即ち断線監視部33は、スイッチ回路16に設けられることに限らず、例えばこれを発振回路17に組み込むなど、その配置箇所を適宜変えてもよい。
 ・第1及び第2実施形態において、管異常検出手段は、複数の抵抗35~37及びコンデンサ38からなることに限定されない。例えば、図22に示すように、トランス19に設けた補助巻線61により代用してもよい。
 ・第1及び第2実施形態において、管異常検出手段をトランス19の補助巻線61で代用する場合、補助巻線61はトランス19に形成されることに限らず、例えばチョークコイル23に設けてもよい。
 ・第1及び第2実施形態において、電源電圧Vccは、直流電圧に限らず、例えば商用電源から得た交流電圧としてもよい。
 ・第1及び第2実施形態において、トランス19の種類は、1次側が2つの巻線からなる構造のものに限らず、例えば1次側が1つの巻線からなるものでもよい。
 ・第1及び第2実施形態において、インバータ回路18は、プッシュプル回路からなるものに限らず、他の回路を採用してもよい。また、インバータ回路18は、フルブリッジ回路及びハーフブリッジ回路のどちらを採用してもよい。
 ・第1及び第2実施形態において、管異常や過熱が発生したときには、発振回路17の発振動作を止めにいくのではなく、例えばスイッチ回路16の電源供給動作を止めにいくようにしてもよい。
 ・第1及び第2実施形態において、過熱検知回路13(過熱検知回路部56)は、蛍光灯駆動装置2,102側に設けられることに限らず、例えば蛍光灯1に一体組み付けして、蛍光灯1の過熱を直に検出するものでもよい。
 ・第1及び第2実施形態において、点灯消灯の制御対象となる蛍光灯1は、1本に限らず、複数としてもよい。
 ・第1及び第2実施形態において、過熱検知通知部14や動作状態通知部20は、LEDからなることに限定されない。例えば、文字や絵柄を表示可能なディスプレイとし、同ディスプレイによって、より視覚的に異常を通知するものでもよい。
 ・第1及び第2実施形態において、本例の蛍光灯駆動装置2,102は、鉄道に搭載されることに限らず、自動車等に搭載されてもよい。
 上記の第4実施形態乃至第7実施形態においては、いずれも4個のLED回路が並列に接続された例を示したが、これに限定されるものではなく、LED回路が3個以下、または5個以上接続されているものであってもよい。また、第二の実施形態においては発光ダイオード群は3個の発光ダイオードが並列に接続されたものを示したが、これに限定されるものではなく、発光ダイオード群に含まれる発光ダイオードの数及び接続関係は異なる構成であってもよい。また、同一構成のLED回路が複数接続されているものでなく、異なる構成のLED回路が並列に接続されていてもよい。
 また、上記の第4実施形態乃至第7実施形態においては、警報表示LED561を各LED回路と並行に備え、各電圧検出回路505a~505dの検出結果を1個の警報表示LED561にて一括して表示するものを例示したが、これに限定されるものではなく、各電圧検出回路505a~505dに対応して1個ずつ警報表示LEDを備えるようにしてもよい。これによれば、警報表示LEDとLED回路及び電圧検出回路とが1対1で対応するため、短絡故障が生じたLED回路を速やかに特定することができる。
 なお、第4~第7実施形態を具現化した技術的思想において、発光ダイオード照明回路は、照明装置510のような車載照明装置以外の用途に用いることも可能である。一例を挙げると、懐中電灯やヘルメット装着の携帯式ライトに適用することができる。この場合には、一部の発光ダイオードが故障した段階で早期に故障を検出することができるため、例えば坑道内や災害場所等の危険性を伴う状況で使用中に急に機能しなくなって、照明不足のために事故を誘発するといった事態を防ぐことができる。
 また、第4~第7実施形態を具現化した技術的思想において、発光ダイオード照明回路は、「警報表示LEDの発光を検出する光センサと、駆動電流供給部に設けられ、光センサの検出結果に基いて前記駆動電流供給部の出力を制御する出力調整回路とをさらに具備し、前記光センサによる前記警報表示LEDの発光の検出に基き前記駆動電流供給部の直流電流出力を減少させるフィードバック制御を行う」ものとしてもよい。
 上記の構成によれば、発光ダイオードに短絡故障が生じた場合、警報表示LEDが発光したことを光センサで検出する。当該検出結果に基き、駆動電流供給部中の出力調整回路は、直流電流の出力を減少させ、過電流の発生を速やかに抑制する。これにより、短絡故障発生時に発光ダイオード照明回路の破損の進行を防ぎ、安全性を高めることができる。
 また、第4~第7実施形態を具現化した技術的思想において、発光ダイオード照明回路は、「発光ダイオードを光源とする照明装置に設けられる発光ダイオード照明回路であって、直列または並列に接続される複数の発光ダイオードに駆動電流を供給するLED回路を複数備えた発光部と、前記複数のLED回路に流れる電流値を検出する電流検出部と、前記複数の発光ダイオードのうち短絡故障をしている発光ダイオードの故障個数を前記各駆動電流の電流値に基づいて各LED回路ごとに算出する演算部と、前記各LED回路ごとに算出された前記故障個数に基づいて前記LED回路により前記複数の発光ダイオードに供給される前記駆動電流の電流量を前記複数のLED回路ごと制御する制御部と、を具備する」ものとしてもよい。
 上記の構成によれば、短絡故障が生じた発光ダイオードの個数分だけ駆動電流を下げることで他の正常な発光ダイオードに適正電流値を超えた過電流が流れないようにすることが可能となるので、短絡故障のある発光ダイオードの個数まで正確に検出できるので、より一層高精度な短絡検出が可能となる。
 次に、上記実施形態及び別例から把握できる技術的思想について、それらの効果とともに以下に追記する。
 (技術的思想G)
 請求項2~7のいずれかにおいて、前記蛍光灯の点灯開始初期時、当該蛍光灯を流れる予熱電流によって該蛍光灯を点灯させる蛍光灯予熱実行手段を備えた。ところで、蛍光灯には予熱電流で放電させると長寿命化する傾向があるので、本構成を採用すれば蛍光灯の寿命を長く延ばすことが可能となる。
 (技術的思想H)
 技術的思想Gにおいて、前記蛍光灯が予熱動作する際、前記強制終了の機能を一時的に利かないようにする強制終了一時停止手段を備えた。ところで、予熱動作時の蛍光灯は動作が不安定であるので、蛍光灯が瞬間的に異常とみなし得る状態をとって、強制終了が働いてしまうことも想定される。しかし、本構成においては、予熱動作時には強制終了の機能を一時的に停止するので、強制終了の機能を設けても、予熱動作を問題なく実行することが可能となる。
産業上利用可能性
 本発明は、照明装置の点灯制御分野、特に、蛍光灯の点灯制御分野に利用することができる。
 1…蛍光灯、2,102、112…蛍光灯駆動装置、2a…保護回路、3…入力回路部、4…点灯制御回路部、4a…予熱制御回路部、5…第1フィラメント(一対のフィラメント)、6…第2フィラメント(一対のフィラメント)、7a…一方側第1接続端子、7b…他方側第1接続端子、8a…一方側第2接続端子、8b…他方側第2接続端子、7c,8c…電源側接続端子(フィラメントの電源側端子)、7d,8d…非電源側接続端子(フィラメントの非電源側端子)、9…入力端子、11…ノイズフィルタ、12…動作電源発生回路、13…過熱検知手段を構成する過熱検知回路、14…過熱検知通知部、15…過熱抑制手段を構成する信号出力回路、16…点灯消灯制御手段を構成するスイッチ回路、17…点灯消灯制御手段を構成する発振回路、18…インバータ回路、19…トランス、20…動作状態通知部、21a,21b…一次巻線、22…2次巻線(インダクタ)、23…チョークコイル(インダクタ)、24…直流成分遮断手段としての直流成分遮断用コンデンサ、26…電流ループ回路(電源ライン)、27…断線検出手段としての断線検出回路、28~31…抵抗、32…コンデンサ、33…点灯停止手段としての断線監視部、34…電圧監視手段としての管異常監視回路、35~37…抵抗、38…コンデンサ(コンデンサ)、39…フィルタ回路、41…点灯消灯制御手段を構成する保護動作回路、42…点灯強制終了手段を構成するシャットダウン実行部、43…点灯消灯制御手段を構成する発振切換回路(周波数制御回路)、44…シャットダウン一時停止部、51…点灯消灯制御手段を構成する制御コントローラ、52…CPU、53…メモリ、54…プログラムとしての制御プログラム、55…入力回路部、56…過熱検知手段を構成する過熱検知回路部、57…ゲートドライブ回路部、58…点灯回路部、59…表示回路部、61…補助巻線、71…スイッチ(アナログスイッチ)、73…予熱時間設定回路(時定数決定回路,周波数制御回路)、75…スイッチ駆動回路(スイッチ制御回路)、77…フォトカプラ、81…蛍光灯、82…蛍光灯駆動装置、83…インバータ、84…トランス、100…蛍光灯取付部、101…第一蛍光灯用ソケット、102…蛍光灯駆動装置、103…蛍光灯取付面、104…蛍光灯サポート部、104a~104d…保護片、105…受容部、121…第二蛍光灯用ソケット、122…ソケットホルダ、123…蛍光灯可動サポート部、124…開口部、125…蛍光灯サポート部、165…信号線路、501,530、540、550…発光ダイオード照明回路、502,600…発光部、502a~502d,600a~600d…LED回路、503…駆動電流供給部、504…電源、505…故障検出部、505a~505d…電圧検出回路、506…故障警報部、510…照明装置、514…電源線路、521…信号線路、561…警報表示LED、601,611,621,631、641…第一抵抗、602,612,622,632、642…結節点、603,613,623,633、643…第二抵抗、604,614,624,634、644…FET(半導体スイッチング素子)、640…故障検出部、640a…電圧検出回路、640b…電圧検出回路、660…フォトカプラ、660a…入力側、660b…出力側、661…故障警報部、665…信号線路、700…発光部、700a~700d…LED回路、701,702,703,704…発光ダイオード群、705a…電圧検出回路、D1~D4,D11~D13,D21~D23,D31~D33,D41~D43…発光ダイオード、Vcc…入力電圧としての電源電圧(直流電圧)、Vout…交流電圧としての高周波交流電圧(高周波電圧)。
 
 
 

Claims (11)

  1.  入力電圧を入力回路で変換して蛍光灯を点灯させる蛍光灯駆動装置において、
     前記蛍光灯の点灯時に用いられる回路を備えることを特徴とする蛍光灯駆動装置。
  2.  請求項1に記載の蛍光灯駆動装置の保護回路において、
     前記入力回路は、前記入力電圧をトランスによって高周波の交流電圧に変更する回路であり、
     前記トランスの2次側に接続され、当該2次側における前記蛍光灯の電流ループ回路の直流成分をカットする直流成分遮断手段と、
     前記直流成分遮断手段が接続された前記電流ループ回路の電流を監視し、前記電流ループ回路に断線が生じたか否かを検出する断線検出手段と、
     前記断線を検出した際、前記蛍光灯の点灯動作を不可とする点灯停止手段とを備えたことを特徴とする請求項1に記載の蛍光灯駆動装置の保護回路。
  3.  前記蛍光灯に発生する電圧を監視する電圧監視手段と、
     前記電圧が閾値以上となって前記蛍光灯に異常が発生した際、前記蛍光灯の点灯動作を強制終了する点灯強制終了手段とを備えたことを特徴とする請求項2に記載の蛍光灯駆動装置の保護回路。
  4.  前記電圧監視手段は、抵抗を備えることを特徴とする請求項3に記載の蛍光灯駆動装置の保護回路。
  5.  前記蛍光灯駆動装置の発生熱を検知する過熱検知手段と、
     前記発生熱が閾値以上となったとき、前記蛍光灯の点灯動作を強制終了する過熱抑制手段とを備えたことを特徴とする請求項3に記載の蛍光灯駆動装置の保護回路。
  6.  前記蛍光灯の点灯消灯の制御を管理する点灯消灯制御手段を備え、
     当該点灯消灯制御手段は、連続した入力信号の変化に対して出力信号の状態も連続的に変化するアナログ回路から構成されていることを特徴とする請求項2~5のうちいずれか一項に記載の蛍光灯駆動装置の保護回路。
  7.  前記蛍光灯の点灯消灯の制御を管理する点灯消灯制御手段を備え、
     当該点灯消灯制御手段は、メモリに格納されたプログラムによって動作するソフトウェア回路から構成されていることを特徴とする請求項2~5のうちいずれか一項に記載の蛍光灯駆動装置の保護回路。
  8.  請求項1に記載の蛍光灯駆動装置において、
     前記入力回路は、直流電圧を高周波電圧に変換するインバータ回路であり、
     前記回路は、前記蛍光灯を構成する一対のフィラメントのそれぞれの電源側端子間に直列に接続されるインダクタ及び前記一対のフィラメントの非電源側端子間に接続されるコンデンサを含んで構成され前記蛍光灯の点灯時の共振周波数に設定される直列共振回路であり、
     前記コンデンサに並列に接続されるアナログスイッチと、
     前記アナログスイッチをオンオフ制御可能に構成され前記蛍光灯の点灯前における予熱期間中は前記アナログスイッチをオンにし予熱期間後はオフに制御するスイッチ制御回路と、を備えることを特徴とする蛍光灯駆動装置。
  9.  前記高周波電圧の周波数を制御可能に構成される周波数制御回路を備え、
     当該周波数制御回路は、前記予熱期間中における前記高周波電圧の周波数を前記予熱期間後における周波数よりも高い50KHz以上100KHz以下に設定することを特徴とする請求項8に記載の蛍光灯駆動装置。
  10.  前記アナログスイッチの制御端子を備え、
     当該アナログスイッチの制御端子は、前記高周波電圧が供給される前記蛍光灯の電源ライン及びその周辺回路に対してフォトカプラにより電気的に絶縁されていることを特徴とする請求項8又は9に記載の蛍光灯駆動装置。
  11.  前記スイッチ制御回路は、抵抗及びコンデンサの値により前記予熱期間を決定する時定数回路を含むことを特徴とする請求項8又は9に記載の蛍光灯駆動装置。
     
PCT/JP2010/067054 2009-10-02 2010-09-30 蛍光灯駆動装置及び蛍光灯駆動装置の保護回路 WO2011040512A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011534297A JPWO2011040512A1 (ja) 2009-10-02 2010-09-30 蛍光灯駆動装置及び蛍光灯駆動装置の保護回路
US13/433,131 US20120235574A1 (en) 2009-10-02 2012-03-28 Fluorescent lamp drive and a protection circuit therein

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009-230902 2009-10-02
JP2009230902 2009-10-02
JP2010142204 2010-06-23
JP2010-142204 2010-06-23
JP2010152612 2010-07-05
JP2010-152612 2010-07-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/433,131 Continuation-In-Part US20120235574A1 (en) 2009-10-02 2012-03-28 Fluorescent lamp drive and a protection circuit therein

Publications (1)

Publication Number Publication Date
WO2011040512A1 true WO2011040512A1 (ja) 2011-04-07

Family

ID=43826324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067054 WO2011040512A1 (ja) 2009-10-02 2010-09-30 蛍光灯駆動装置及び蛍光灯駆動装置の保護回路

Country Status (3)

Country Link
US (1) US20120235574A1 (ja)
JP (3) JPWO2011040512A1 (ja)
WO (1) WO2011040512A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105325062A (zh) * 2013-06-19 2016-02-10 戴乐格半导体公司 具有综合故障保护的led驱动器
WO2020183935A1 (ja) * 2019-03-13 2020-09-17 ソニーセミコンダクタソリューションズ株式会社 故障検出装置、発光駆動装置および発光装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2962532B1 (en) * 2013-02-27 2021-07-28 OLEDWorks GmbH Detection of a hazard condition of a load
US11119130B2 (en) * 2013-06-11 2021-09-14 Snap One, Llc Systems and methods for investigating a load and obtaining load information
JP6220981B2 (ja) * 2014-01-28 2017-10-25 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 短絡検出回路を有するエレクトロルミネセンス装置
EP2922368B1 (en) * 2014-03-18 2019-05-22 Goodrich Lighting Systems GmbH Multi-color interior aircraft light unit and passenger transport vehicle comprising the same
WO2016047242A1 (ja) * 2014-09-26 2016-03-31 シャープ株式会社 照明装置
US9648705B2 (en) * 2015-01-15 2017-05-09 Heraeus Noblelight America Llc Intelligent lamp head assemblies, light sources including intelligent lamp head assemblies, and methods of operating the same
JP6829947B2 (ja) * 2016-05-17 2021-02-17 ローム株式会社 発光素子駆動用半導体集積回路、発光素子駆動装置、発光装置、車両
WO2017203989A1 (ja) * 2016-05-26 2017-11-30 シャープ株式会社 発光装置及び照明装置
JP6327320B2 (ja) * 2016-11-16 2018-05-23 富士ゼロックス株式会社 光伝送装置
TWI636590B (zh) * 2017-09-20 2018-09-21 宏齊科技股份有限公司 發光二極體封裝
JP2020191229A (ja) * 2019-05-22 2020-11-26 セイコーエプソン株式会社 発光制御装置、光源装置及び投写型映像表示装置
JP7326073B2 (ja) * 2019-09-05 2023-08-15 東芝テック株式会社 Led駆動回路及び液体吐出観察装置
JP7185676B2 (ja) * 2020-10-27 2022-12-07 アオイ電子株式会社 半導体リレー装置
KR102650608B1 (ko) 2020-12-18 2024-03-25 세메스 주식회사 광 처리 부재, 그를 포함하는 기판 처리 장치 및 기판 처리 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0850993A (ja) * 1994-08-05 1996-02-20 Kijima:Kk 熱陰極放電管の点灯装置
JPH09153397A (ja) * 1995-11-29 1997-06-10 Matsushita Electric Works Ltd 放電灯点灯装置
JP3039893U (ja) * 1997-01-24 1997-07-31 國賢 鄭 蛍光灯装置の予熱式安定器
JP2001284072A (ja) * 2000-04-03 2001-10-12 Shihen Tech Corp 放電灯点灯装置
JP2003347084A (ja) * 2002-05-30 2003-12-05 Nec Lighting Ltd 蛍光ランプ点灯装置
JP2004185878A (ja) * 2002-11-29 2004-07-02 Toshiba Lighting & Technology Corp 放電ランプ点灯装置および照明装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171995U (ja) * 1984-10-17 1986-05-16
JPS61284096A (ja) * 1985-06-07 1986-12-15 三菱電機株式会社 放電灯点灯装置
JPS6328299U (ja) * 1986-08-07 1988-02-24
JP2003173886A (ja) * 2001-12-05 2003-06-20 Noritz Corp 放電灯の点灯回路
JP2004119637A (ja) * 2002-09-25 2004-04-15 Fuji Mach Mfg Co Ltd 電子部品実装方法、電子部品実装装置および電子部品実装プログラム
JP4244154B2 (ja) * 2003-04-16 2009-03-25 株式会社小糸製作所 車両用灯具
JP2006210219A (ja) * 2005-01-31 2006-08-10 Koito Mfg Co Ltd 車両用灯具の点灯制御回路
JP4791299B2 (ja) * 2006-09-05 2011-10-12 日星電気株式会社 Led破壊検出装置
JP2008130377A (ja) * 2006-11-21 2008-06-05 Matsushita Electric Works Ltd Led点灯回路およびそれを用いる照明器具
TW200826400A (en) * 2006-12-12 2008-06-16 Inventec Appliances Corp Circuit for alerting users that a loading current is overly high and method thereof
JP2009224046A (ja) * 2008-03-13 2009-10-01 Koizumi Lighting Technology Corp Ledモジュール、点灯装置、および照明装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0850993A (ja) * 1994-08-05 1996-02-20 Kijima:Kk 熱陰極放電管の点灯装置
JPH09153397A (ja) * 1995-11-29 1997-06-10 Matsushita Electric Works Ltd 放電灯点灯装置
JP3039893U (ja) * 1997-01-24 1997-07-31 國賢 鄭 蛍光灯装置の予熱式安定器
JP2001284072A (ja) * 2000-04-03 2001-10-12 Shihen Tech Corp 放電灯点灯装置
JP2003347084A (ja) * 2002-05-30 2003-12-05 Nec Lighting Ltd 蛍光ランプ点灯装置
JP2004185878A (ja) * 2002-11-29 2004-07-02 Toshiba Lighting & Technology Corp 放電ランプ点灯装置および照明装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105325062A (zh) * 2013-06-19 2016-02-10 戴乐格半导体公司 具有综合故障保护的led驱动器
CN105325062B (zh) * 2013-06-19 2017-11-10 戴乐格半导体公司 具有综合故障保护的led驱动器
US9999110B2 (en) 2013-06-19 2018-06-12 Dialog Semiconductor Inc. LED driver with comprehensive fault protections
US10448480B2 (en) 2013-06-19 2019-10-15 Dialog Semiconductor Inc. LED driver with comprehensive fault protections
WO2020183935A1 (ja) * 2019-03-13 2020-09-17 ソニーセミコンダクタソリューションズ株式会社 故障検出装置、発光駆動装置および発光装置
US11564305B2 (en) 2019-03-13 2023-01-24 Sony Semiconductor Solutions Corporation Malfunction detection device, light-emission driving device, and light emitting device

Also Published As

Publication number Publication date
JPWO2011040512A1 (ja) 2013-02-28
JP2012230923A (ja) 2012-11-22
JP2013012487A (ja) 2013-01-17
US20120235574A1 (en) 2012-09-20

Similar Documents

Publication Publication Date Title
WO2011040512A1 (ja) 蛍光灯駆動装置及び蛍光灯駆動装置の保護回路
JP4236894B2 (ja) 点灯回路
JP5576638B2 (ja) 点灯装置及びそれを用いた前照灯点灯装置、前照灯、車輌
JP4647674B2 (ja) 点灯回路
JP2009010100A (ja) 電源装置および照明装置
JP2006286339A (ja) 誘導灯点灯装置
JP6245433B2 (ja) Led電源装置及びled照明装置
KR101561067B1 (ko) Led조명등의 수명연장을 위한 전원공급장치
JP2010129209A (ja) 非常用点灯装置
JP5724516B2 (ja) Led点灯装置
KR101000401B1 (ko) 자가진단 기능을 갖는 조명장치
JP5212639B2 (ja) 非常用点灯装置
JP2010129210A5 (ja)
JP5413694B2 (ja) 電源装置および照明装置
KR200310502Y1 (ko) 가로등의 전구단락 및 과전류 검출장치
JP6350139B2 (ja) 放電灯点灯装置、照明装置、及び放電灯点灯装置の制御方法
JP2014107040A (ja) 蛍光灯型ledランプ
US8723436B2 (en) LED lighting device and illumination apparatus including same
JP5275116B2 (ja) 光源灯点灯回路ならびに光源点灯方法
JP2011004462A (ja) 電源装置及び照明装置
JP5821233B2 (ja) Led点灯装置
JP4925286B2 (ja) 放電灯点灯装置、及び照明器具
JP2007066628A (ja) 放電ランプ点灯装置および照明器具
JP2005063844A (ja) 照明装置
JP2013218987A (ja) Led点灯回路および、これを用いたled光源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820627

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011534297

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10820627

Country of ref document: EP

Kind code of ref document: A1