WO2011037164A1 - 内燃機関システムおよび船舶 - Google Patents

内燃機関システムおよび船舶 Download PDF

Info

Publication number
WO2011037164A1
WO2011037164A1 PCT/JP2010/066505 JP2010066505W WO2011037164A1 WO 2011037164 A1 WO2011037164 A1 WO 2011037164A1 JP 2010066505 W JP2010066505 W JP 2010066505W WO 2011037164 A1 WO2011037164 A1 WO 2011037164A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
converter
generator
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2010/066505
Other languages
English (en)
French (fr)
Inventor
白石 啓一
岡部 雅彦
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN2010800424992A priority Critical patent/CN102577088A/zh
Priority to US13/496,025 priority patent/US20120169130A1/en
Priority to EP20100818836 priority patent/EP2482443A1/en
Priority to KR1020127007305A priority patent/KR101344169B1/ko
Publication of WO2011037164A1 publication Critical patent/WO2011037164A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/04Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using kinetic energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an internal combustion engine system and a ship, in particular, an internal combustion engine system and a ship provided with an internal combustion engine having a supercharger directly connected to a generator.
  • a turbocharger that turbocharges intake air of an internal combustion engine using energy contained in the exhaust gas of the internal combustion engine is known. Further, by directly connecting a generator to the supercharger, when the internal combustion engine is operated at a high load, power is generated using the rotation of the supercharger, so that the energy contained in the exhaust gas is converted into electric energy.
  • a technique is known in which a motor that is effectively recovered (power generation) is directly connected to an output shaft to drive the output shaft (see, for example, Patent Document 1).
  • hybrid turbocharger a turbocharger directly connected to a generator is mounted on the main propulsion engine (eg, diesel engine) of a large ship.
  • main propulsion engine eg, diesel engine
  • the electric power that can be generated in the hybrid turbocharger may exceed the electric power required in the ship.
  • control is performed to reduce the amount of power generated in the hybrid turbocharger so as not to generate surplus power, or the generated surplus power is converted into heat by a load bank or the like and discarded. Yes. That is, there is a problem that energy contained in the exhaust gas is wasted or electrical energy is wasted.
  • a ship equipped with a motor generator directly connected to the output shaft and equipped with a hybrid supercharger for the main propulsion engine needs to be equipped with two sets of frequency converters, which increases costs.
  • the main propulsion engine when the main propulsion engine is energized by supplying the electric power generated by the hybrid supercharger to the motor generator of the output shaft, the generated electric power is converted into a frequency converter disposed in the hybrid supercharger, and the motor generator Since it passes through the two frequency converters of the frequency converter arranged in the machine, there is a problem that power loss becomes large and power is wasted.
  • the electric power generated by the hybrid supercharger is rectified into direct current by a converter of a frequency converter arranged in the hybrid supercharger, and then converted into electric power having the same frequency as inboard power by an inverter.
  • the inverter After being converted into direct current by a converter of a frequency conversion device disposed in the motor generator, the inverter is converted into a voltage and frequency suitable for driving the motor generator. That is, since power passes through the converter and the inverter twice, there is a problem that power loss in these devices increases and power is wasted.
  • the main propulsion engine when the main propulsion engine is operated at a low load, as described above, in addition to the power generation by the hybrid supercharger, it is necessary to generate power by the diesel generator.
  • the diesel engine of the diesel generator is started before the load of the main propulsion engine gradually decreases and the power demand by the hybrid turbocharger is insufficient, and the hybrid turbocharger and the diesel generator are connected in parallel. It was necessary to drive at.
  • a certain amount of time is required from the start of the diesel engine, and there is a problem that fuel consumed in the diesel engine is wasted during that time.
  • a diesel generator cannot perform continuous operation at a low load, in other words, it cannot perform continuous operation unless a load equal to or higher than a predetermined load (lower limit value of load) is imposed. Therefore, when it is necessary to operate the hybrid turbocharger and the diesel generator in parallel, it was necessary to secure the minimum power generation by the diesel generator even if the power generation by the hybrid turbocharger was suppressed. . Therefore, there has been a problem that the energy saving effect due to the introduction of the hybrid supercharger is impaired.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an internal combustion engine system and a ship that can suppress the loss of the energy saving effect due to the introduction of a hybrid supercharger. .
  • An internal combustion engine system includes an internal combustion engine that generates a rotational driving force and an excess gas that is supplied with exhaust gas discharged from the internal combustion engine and supercharges intake air of the internal combustion engine.
  • a first generator that generates power by being connected to a charger, an output shaft that is rotationally driven by the internal combustion engine, and a rotational shaft of the supercharger, and that generates power; and the output shaft A second generator for generating power and driving the output shaft, and a first converter for converting AC power generated by the first generator into DC power
  • the AC power generated by the second generator is always converted to DC power having the same voltage as the DC power converted by the first converter, or the DC power converted by the first converter is AC Converted into electric power
  • the second A second converter for supplying the electric machine is characterized in that is provided.
  • it is desirable that the first converter and the second converter are electrically connected by electric wiring.
  • power can be generated by the first generator and the second generator. Therefore, even when the amount of power generated by the first generator is smaller than the amount of external power demand, or even when the first generator cannot generate power due to a failure, the power generated by the second generator is supplied to the outside. be able to. That is, it is not necessary to use the above-described diesel generator. Thereby, it is not necessary to secure the time required for starting the diesel generator, and fuel to be supplied to the diesel generator is not necessary.
  • the second generator can drive the output shaft to be energized.
  • the rotational driving force transmitted by the output shaft is supplied by the internal combustion engine and the second generator, and the load on the internal combustion engine is reduced.
  • the fuel consumption of the internal combustion engine can be reduced.
  • an inverter that converts DC power converted by at least one of the first converter and the second converter into AC power and supplies the AC power to the outside.
  • the cost and installation space in the internal combustion engine system according to the first aspect of the present invention can be obtained. Can be reduced.
  • the voltage of the DC power converted by the first converter and the second converter the same, if one voltage is different, two inverters for each voltage can be handled by one inverter. it can.
  • the same DC power voltage means that it is included in a voltage range that can be handled by one inverter.
  • a ship according to a second aspect of the present invention is provided with the internal combustion engine system according to the first aspect of the present invention.
  • the second aspect of the present invention since the internal combustion engine system according to the first aspect of the present invention is provided, the loss of the energy saving effect due to the introduction of the hybrid supercharger can be suppressed.
  • power can be generated by the first generator that is rotationally driven by the supercharger and the second generator that is rotationally driven by the output shaft. Since it is no longer necessary to provide a generator or the like, there is an effect that the loss of the energy saving effect due to the introduction of the hybrid supercharger can be suppressed. Furthermore, since power is transferred between the first generator and the second generator through a DC bus, there is no need to go through an inverter that converts direct current to alternating current in the ship's power system, and power can be supplied efficiently. It becomes possible.
  • FIG. 1 is a schematic diagram illustrating an outline of a diesel engine system according to the present embodiment.
  • the diesel engine system (internal combustion engine system) 1 of the present invention will be described as applied to an example used for a main propulsion engine of a ship.
  • the diesel engine system 1 includes a diesel engine (internal combustion engine) 2 provided with a hybrid supercharger (supercharger) 3 and a shaft motor generator (second generator) 4,
  • the 1 converter 5, the 2nd converter 6, the inverter 7, and the control part 8 are mainly provided.
  • the diesel engine 2 generates a driving force for propelling the ship and supplies electric power used in the ship.
  • the diesel engine 2 includes a hybrid supercharger 3, an engine body 21, an air cooler 22, a scavenging chamber 23, an exhaust gas collecting pipe 24, an output shaft 25, and a shaft electric motor.
  • a generator 4 is mainly provided.
  • the hybrid supercharger 3 supercharges the intake air of the engine body 21 and supplies electric power used in the ship depending on the case.
  • the hybrid turbocharger 3 is mainly provided with a turbine 31, a compressor 32, a rotating shaft 33, and a supercharger generator (first generator) 34.
  • the turbine 31 receives a supply of high-pressure exhaust gas discharged from the engine body 21 and generates a rotational driving force.
  • the turbine 31 is supported by a rotary shaft 33 so as to be rotatable about its axis.
  • the compressor 32 is rotationally driven to increase the pressure of air sucked from the atmosphere and supply it to the engine body 21, in other words, supercharges the intake air of the engine body.
  • the compressor 32 is supported by a rotary shaft 33 so as to be rotatable about its axis.
  • the rotating shaft 33 rotatably supports the turbine 31 and the compressor 32 and transmits the rotational driving force generated in the turbine 31 to the compressor 32 and the supercharger generator 34.
  • the supercharger / generator 34 is driven to rotate to generate AC power.
  • a rotating shaft 33 is connected to the supercharger generator 34 so as to be able to transmit a rotational driving force. Further, the supercharger generator 34 is connected to be able to supply AC power generated to the first converter 5.
  • the engine body 21 is a diesel engine that generates a propulsive force that propels the ship. In the present embodiment, description will be made by applying to a 2-stroke cycle diesel engine generally used as a main propulsion engine of a ship.
  • the engine body 21 is configured to generate a rotational driving force by reciprocating a piston by burning diesel fuel supplied from outside in a plurality of cylinders using supercharged air.
  • a hybrid supercharger 3 Around the engine body 21, a hybrid supercharger 3, an air cooler 22, a scavenging chamber 23, and an exhaust gas collecting pipe 24 are arranged as attached devices. Further, the engine body 21 is provided with an output shaft 25 that transmits a rotational driving force to the screw propeller 26.
  • the air cooler 22 cools the intake air supercharged by the hybrid supercharger 3.
  • the air cooler 22 is connected to a flow path to which intake air supercharged by the compressor 32 of the hybrid supercharger 3 is supplied. Further, the supercharged intake air cooled by the air cooler 22 is configured to flow into the scavenging chamber 23.
  • the scavenging chamber 23 is a space for supplying intake air supercharged to the engine body 21.
  • the scavenging chamber 23 is configured so that the supercharged intake air cooled from the air cooler 22 flows into the scavenging chamber 23. Further, the scavenging chamber 23 is configured to store the supercharged intake air therein and supply the supercharged intake air to the inside of a cylinder or the like.
  • the exhaust gas collecting pipe 24 is a pipe that collectively guides exhaust gases discharged from the engine body 21 to the outside of the ship.
  • the exhaust gas collecting pipe 24 is configured such that exhaust gas generated by combustion inside a cylinder or the like flows into the exhaust gas collecting pipe 24. Further, the exhaust gas collecting pipe 24 is configured to supply a part of the exhaust gas to the turbine 31 of the hybrid supercharger 3.
  • the output shaft 25 transmits the rotational driving force generated by the engine body 21 to the screw propeller 26.
  • the output shaft 25 is configured to be able to transmit a rotational driving force to and from the shaft motor generator 4.
  • the rotational driving force can be transmitted from the output shaft 25 to the shaft motor generator 4, and the rotational driving force can be transmitted from the shaft motor generator 4 to the output shaft 25.
  • the screw propeller 26 generates a propulsive force of the ship by being rotationally driven.
  • the shaft motor generator 4 is a generator that generates AC power by being rotationally driven, and is also an electric motor that generates AC rotational power by receiving the supply of AC power from the outside. In other words, the generator and the motor are reversible.
  • the shaft motor generator 4 is configured to be able to transmit rotational driving force to and from the shaft motor generator 4. Further, the shaft motor generator 4 is configured to be able to supply AC power to the second converter 6 and is also configured to be able to receive supply of AC power from the second converter 6. Yes.
  • the first converter 5 converts AC power generated in the supercharger generator 34 into DC power. Further, the first converter 5 outputs DC power having the same voltage as that of the DC power converted by the second converter 6. On the other hand, the first converter 5 is configured to be supplied with AC power from the supercharger generator 34. Further, the first converter 5 is configured to be able to supply DC power to at least one of the inverter 7 and the second converter 6 by a DC bus (electrical wiring) 10.
  • the first converter 5 is configured to receive a control signal for controlling the first converter 5 from the control unit 8.
  • the voltage of the DC power converted by the first converter 5 and the voltage of the DC power converted by the second converter 6 are not only the case where these voltages are the same voltage, but 1 It also means the case where the voltage is within the range that can be handled by one inverter.
  • the DC bus 10 is for electrically connecting the first converter 5 and the inverter 7, the second converter 6 and the inverter 7, and the first converter 5 and the second converter 6.
  • the second converter 6 converts AC power generated by the shaft motor generator 4 into DC power, and also converts DC power supplied from the first converter 5 into AC power. Further, the second converter 6 outputs DC power having the same voltage as that of the DC power converted by the first converter 5.
  • the second converter 6 is configured so as to be supplied with AC power from the shaft motor generator 4 and so that DC power is supplied from the first converter 5 via the DC bus 10. It is configured. Further, the second converter 6 is configured to supply DC power to the inverter 7 via the DC bus 10. The second converter 6 is configured to receive a control signal for controlling the second converter 6 from the controller 8.
  • the inverter 7 converts the DC power converted by the first converter 5 or the second converter 6 into AC power having a predetermined frequency (for example, 50 Hz or 60 Hz).
  • the inverter 7 is configured to be supplied with DC power from the first converter 5 and the second converter 6 via a DC bus.
  • the inverter 7 is configured to supply AC power to the inboard power system 9.
  • the inverter 7 is configured to receive a control signal for controlling the inverter 7 from the control unit 8.
  • the controller 8 controls the first converter 5, the second converter 6 and the inverter 7. In other words, the sharing of the power generation amount in the supercharger generator 34 and the power generation amount in the shaft motor generator 4 is controlled. Further, the control unit 8 also controls whether the shaft motor generator 4 is used as a generator or a motor.
  • the rotational speed of the rotary shaft 33 in the hybrid turbocharger 3 is slowed down, and the flow rate of the intake air supercharged by the compressor 32 is also reduced.
  • the power generation amount in the supercharger generator 34 also decreases, and becomes smaller than the power demand amount in the ship. Therefore, the amount that is insufficient for the power demand is supplemented by the power generated by the shaft motor generator 4.
  • the amount of power generated by the supercharger generator 34 provided in the hybrid supercharger 3 affects the fuel consumption of the engine body 21 in the same manner as the air temperature sucked into the compressor 32. Therefore, the control unit 8 appropriately controls the power generation amount by the supercharger generator 34 and the ratio (sharing) of the power generation amount by the shaft motor generator 4 while considering the fuel consumption of the engine body 21.
  • control unit 8 outputs a control signal for converting AC power generated by the turbocharger generator 34 to DC power to the first converter 5, and shaft electric motors to the second converter 6.
  • a control signal for converting AC power generated by the generator 4 into DC power is output.
  • the control unit 8 outputs a control signal for converting DC power to AC power to the inverter 7.
  • the frequency of the AC power generated by the supercharger generator 34 changes in proportion to the rotational speed of the rotary shaft 33 of the hybrid turbocharger 3, and the frequency of the AC power generated by the shaft motor generator 4 is changed.
  • the frequency changes in proportion to the rotation speed of the output shaft 25. Therefore, when supplying AC power generated by the supercharger generator 34 and the shaft motor generator 4 to the inboard power system 9, a predetermined frequency is supplied via the first converter 5, the second converter 6 and the inverter 7. Converted to AC power.
  • the AC power generated by the supercharger generator 34 is converted into DC power by the first converter 5.
  • the AC power generated by the shaft motor generator 4 is converted into DC power by the second converter 6.
  • the direct-current power thus converted is supplied to the inverter 7 via the DC bus 10, converted into alternating-current power having a predetermined frequency, and then supplied to the inboard power system 9.
  • the above-described operation is performed not only when the load on the engine body 21 is low but also when the supercharger generator 34 cannot generate power due to a failure.
  • the control unit 8 appropriately controls the power generation amount in the supercharger generator 34 and the output in the shaft motor generator 4 so that the fuel consumption in the engine body 21 is minimized.
  • control unit 8 outputs a control signal for converting AC power generated by the supercharger generator 34 to DC power to the first converter 5, and converts DC power to the inverter 7.
  • a control signal to be converted into electric power is output.
  • a control signal for converting DC power into AC power is output to the second converter 6.
  • the frequency of the AC power converted by the second converter 6 is controlled so that the rotational speed of the shaft motor generator 4 becomes a rotational speed suitable for energizing the rotational drive of the output shaft 25.
  • the AC power generated by the supercharger generator 34 is converted into DC power by the first converter 5.
  • the converted DC power is supplied to the inverter 7 via the DC bus 10 and converted into AC power having a predetermined frequency, and then supplied to the inboard power system 9.
  • the surplus portion of the power generated by the supercharger generator 34 is converted into DC power by the first converter 5 and then supplied to the second converter 6 via the DC bus 10.
  • DC power is converted to AC power and supplied to the shaft motor generator 4.
  • the shaft motor generator 4 that receives the supply of AC power rotates the output shaft 25.
  • the output shaft 25 is rotationally driven by both the engine body 21 and the shaft motor generator 4.
  • the rotational driving force that generates the propulsive force necessary for the ship is shared by the engine body 21 and the shaft motor generator 4. Therefore, the rotational driving force required for the engine main body 21 is reduced as compared with the case where only the engine main body 21 generates the rotational driving force.
  • the shaft motor generator 4 can drive the output shaft 25 to be energized. Thereby, the rotational driving force transmitted by the output shaft 25 is supplied by the engine body 21 and the shaft motor generator 4, and the load on the engine body 21 is reduced. As a result, the fuel consumption of the engine body 21 can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supercharger (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

 第1発電機(34)は、過給機(3)の回転軸(33)により回転駆動されて発電を行う。第2発電機(4)は、発電および出力軸(25)の駆動を行う。第1コンバータ(5)は、第1発電機(34)が発電した交流電力を直流電力に変換する。第2コンバータ(6)は、第2発電機(4)が発電した交流電力を、第1コンバータ(5)により変換された直流電力と同じ電圧の直流電力に常に変換する直流電力に変換、または、第1コンバータ(5)が変換した直流電力を交流電力に変換して第2発電機(4)に供給する。インバータ(7)は、第1および第2コンバータ(5,6)の少なくとも一方が変換した直流電力を交流電力に変換する。

Description

内燃機関システムおよび船舶
 本発明は、内燃機関システムおよび船舶、特に発電機と直結した過給機を有する内燃機関が設けられた内燃機関システムおよび船舶に関する。
 一般に、内燃機関の排気に含まれるエネルギを用いて、内燃機関の吸気空気を過給する過給機(ターボチャージャ)が知られている。さらに、過給機に発電機を直結することにより、内燃機関が高負荷で運転されている場合に過給機の回転を用いて発電を行うことにより、排気ガスに含まれるエネルギを電気エネルギとして有効に回収し(発電する)出力軸に直結されたモーターを駆動して出力軸を加勢する技術が知られている(例えば、特許文献1参照。)。
 大型船の主推進機関(例えばディーゼル機関)に、発電機を直結した過給機(以下、「ハイブリッド過給機」と表記する。)が搭載される場合においても同様に、ハイブリッド過給機を用いて発電を行う技術が知られている。
 さらに、大型船においては、主推進機関に直結した電動発電機を装備し、船内で発生した余剰電力を用いて出力軸を加勢したり、出力軸の動力を用いて発電して船内の電力需要を賄ったりするシステムが実用化されている。
 しかしながら、主推進機関が低負荷で運転されている場合には、ハイブリッド過給機、あるいは軸電動発電機による発電量も低下するため、船内における電力需要をまかなうことができないという問題があった。この問題を解決するために、主推進機関とは別の内燃機関、例えばディーゼル機関で駆動される発電機(以下、「ディーゼル発電機」と表記する。)を設けて、不足する電力を補う技術が知られている。
特開2006-238700号公報
 しかしながら、上述のハイブリッド過給機を備えた主推進機関では、主推進機関が高負荷で運転されると、ハイブリッド過給機における発電可能電力が、船内で必要とされる電力を上回る場合がある。この場合、余剰な電力を出さないように、ハイブリッド過給機における発電量を小さくするように制御するか、発電された余剰な電力をロードバンク等で熱に変換して捨てることが行われている。
 つまり、排気ガスに含まれるエネルギが無駄に捨てられるか、電気エネルギが無駄に捨てられるという問題があった。
 その一方で、主推進機関の出力軸に直結された電動発電機を装備している場合には、余剰電力を用いて電動発電機を駆動して出力軸を加勢することで、主推進機関の燃料消費を低減させることができる。あるいは、出力軸の動力を用いて電動発電機により発電を行い、船内の電力需要を賄うこともできる。
 電動発電機により発電を行う場合、出力軸の回転数は一定でないため、電動発電機の回転駆動速度も一定ではない。そのため、電動発電機により発電された電力の周波数や電圧も一定ではないことから、周波数変換装置によって供給電力あるいは発電電力を船内の周波数や、電圧と一致させる必要があった。
 ハイブリッド過給機による発電についても同様に、回転数が一定ではないことから、発電された電力の周波数や電圧を、周波数変換装置によって供給電力あるいは発電電力を船内の周波数や、電圧と一致させる必要があった。
 従って、出力軸に直結された電動発電機を装備し、かつ、主推進機関にハイブリッド過給機を装備した船においては、2組の周波数変換装置を装備する必要があり、コスト高となる上にスペース確保も難しくなるという問題があった。
 さらに、ハイブリッド過給機により発電された電力を出力軸の電動発電機に供給して主推進機関を加勢する場合、発電された電力はハイブリッド過給機に配置された周波数変換装置、および電動発電機に配置された周波数変換装置の2つの周波数変換装置を通過するため、電力ロスが大きくなって電力が無駄に消費されるという問題があった。
 具体的には、ハイブリッド過給機により発電された電力は、ハイブリッド過給機に配置された周波数変換装置のコンバータで直流に整流された後にインバータで船内電力と同じ周波数の電力に変換され、さらに電動発電機に配置された周波数変換装置のコンバータで直流に変換された後、インバータで電動発電機を駆動するのに適した電圧と周波数に変換される。すなわち、電力はコンバータおよびインバータをそれぞれ2回通過するので、これらの機器における電力ロスが大きくなり、電力が無駄に消費される問題があった。
 その一方で、主推進機関が低負荷で運転されると、上述のように、ハイブリッド過給機による発電に加えて、ディーゼル発電機による発電を行う必要があった。例えば、主推進機関の負荷が徐々に低下し、ハイブリッド過給機による発電量では電力需要に不足するのに先立ってディーゼル発電機のディーゼル機関を起動し、ハイブリッド過給機およびディーゼル発電機を並列で運転する必要があった。
 このように、ディーゼル発電機による発電を並列で行うには、ディーゼル機関の起動からある程度の時間が必要になり、その間にディーゼル機関で消費される燃料が無駄になるという問題があった。
 さらに、一般にディーゼル発電機は低負荷での連続運転ができない、言い換えると、所定の負荷(負荷の下限値)以上の負荷を課した状態でないと連続運転を行うことができない。そのため、ハイブリッド過給機とディーゼル発電機を並列で運転する必要がある場合には、ハイブリッド過給機による発電量を抑えてでも、ディーゼル発電機による最低限の発電量を確保する必要があった。
 そのため、ハイブリッド過給機の導入による省エネルギ効果が損なわれるという問題があった。
 本発明は、上記の課題を解決するためになされたものであって、ハイブリッド過給機の導入による省エネルギ効果の毀損を抑制することができる内燃機関システムおよび船舶を提供することを目的とする。
 上記目的を達成するために、本発明は、以下の手段を提供する。
 本発明の第一の態様に係る内燃機関システムは、回転駆動力を発生させる内燃機関と、該内燃機関から排出された排気ガスの供給を受けて、前記内燃機関の吸入空気を過給する過給機と、前記内燃機関により回転駆動される出力軸と、前記過給機の回転軸との間で回転駆動力の伝達が可能に接続され、発電を行う第1発電機と、前記出力軸との間で回転駆動力の伝達が可能に接続され、発電および前記出力軸の駆動を行う第2発電機と、前記第1発電機により発電された交流電力を直流電力に変換する第1コンバータと、前記第2発電機により発電された交流電力を、前記第1コンバータにより変換された直流電力と同じ電圧の直流電力に常に変換する、または、前記第1コンバータにより変換された直流電力を交流電力に変換して前記第2発電機に供給する第2コンバータと、が設けられていることを特徴とする。
 本発明の第一の態様においては、前記第1コンバータおよび前記第2コンバータは、電気配線により電気的に接続されていることが望ましい。
 本発明の第一の態様によれば、第1発電機および第2発電機により発電を行うことができる。そのため、第1発電機による発電量が外部の電力需要量よりも小さい場合、あるいは、第1発電機が故障により発電できない場合であっても、第2発電機により発電した電力を外部に供給することができる。
 つまり、上述のディーゼル発電機を用いる必要がない。これにより、ディーゼル発電機の起動に必要な時間を確保する必要がなく、ディーゼル発電機に供給する燃料が必要なくなる。
 第1発電機による発電量が、外部の電力需要量よりも大きい場合には、第1発電機により発電された電力の一部を第1コンバータおよび第2コンバータを介して、船内電力系統を介さずに、第2発電機に供給することにより、第2発電機は出力軸を回転駆動し加勢することができる。
 これにより、出力軸により伝達される回転駆動力は、内燃機関および第2発電機によって供給されることになり、内燃機関の負荷が軽減する。その結果、内燃機関の燃料消費を低減できる。
 本発明の第一の態様においては、前記第1コンバータおよび前記第2コンバータの少なくとも一方により変換された直流電力を交流電力に変換して外部に供給するインバータがさらに設けられていることが望ましい。
 この構成によれば、第1コンバータおよび第2コンバータにより変換された直流電力を1つのインバータにより交流電力に変換することにより、本発明の第一の態様に係る内燃機関システムにおけるコストや、設置スペースを削減することができる。
 例えば、第1コンバータおよび第2コンバータにより変換された直流電力の電圧を同じにすることにより、電圧が異なっていれば電圧ごとに2つのインバータが必要なところを、1つのインバータで対応することができる。ここで、直流電力の電圧が同じとは、1つのインバータで対応可能な電圧の範囲に含まれることを意味する。
 本発明の第二の態様に係る船舶は、上記本発明の第一の態様に係る内燃機関システムが設けられていることを特徴とする。
 本発明の第二の態様によれば、上記本発明の第一の態様に係る内燃機関システムが設けられているため、ハイブリッド過給機の導入による省エネルギ効果の毀損を抑制することができる。
 本発明の内燃機関システムおよび船舶によれば、過給機により回転駆動される第1発電機、および、出力軸により回転駆動される第2発電機により発電を行うことができるため、別途にディーゼル発電機などを備える必要がなくなることから、ハイブリッド過給機の導入による省エネルギ効果の毀損を抑制することができるという効果を奏する。
 さらに、第1発電機、第2発電機間での電力の受け渡しは、DCバスを通じて行われるので、直流から船内電力系統の交流に変換するインバータを介する必要がなく、効率的に電力の供給が可能になる。
本発明の一実施形態に係るディーゼル機関システムの概要を説明する模式図である。
 この発明の一実施形態に係るディーゼル機関システムについて、図1を参照して説明する。
 図1は、本実施形態に係るディーゼル機関システムの概要を説明する模式図である。
 本実施形態では、本発明のディーゼル機関システム(内燃機関システム)1を、船舶の主推進機関に用いられる例に適用して説明する。
 ディーゼル機関システム1には、図1に示すように、ハイブリッド過給機(過給機)3および軸電動発電機(第2発電機)4が備えられたディーゼル機関(内燃機関)2と、第1コンバータ5と、第2コンバータ6と、インバータ7と、制御部8と、が主に設けられている。
 ディーゼル機関2は、船舶を推進させる推進力を発生するとともに、船舶内で使用される電力を供給するものである。
 ディーゼル機関2には、図1に示すように、ハイブリッド過給機3と、機関本体21と、空気冷却器22と、掃気室23と、排気ガス集合管24と、出力軸25と、軸電動発電機4と、が主に設けられている。
 ハイブリッド過給機3は、機関本体21の吸気空気を過給するとともに、場合によっては船舶内で使用される電力を供給するものである。
 ハイブリッド過給機3には、図1に示すように、タービン31と、コンプレッサ32と、回転軸33と、過給機発電機(第1発電機)34と、が主に設けられている。
 タービン31は、機関本体21から排出された高圧の排気ガスの供給を受けて回転駆動力を発生させるものである。タービン31は回転軸33により、その軸線まわりに回転可能に支持されたものである。
 コンプレッサ32は回転駆動されることにより、大気から吸入した空気を昇圧して機関本体21に供給するもの、言い換えると、機関本体の吸気空気を過給するものである。コンプレッサ32は回転軸33により、その軸線まわりに回転可能に支持されたものである。
 回転軸33は、タービン31およびコンプレッサ32を回転可能に支持するとともに、タービン31において発生された回転駆動力をコンプレッサ32や過給機発電機34に伝達するものである。
 過給機発電機34は回転駆動されることにより交流電力を発生するものである。過給機発電機34には、回転軸33が回転駆動力を伝達可能に接続されている。さらに、過給機発電機34は、第1コンバータ5に対して発電した交流電力を供給可能に接続されている。
 機関本体21は、船舶を推進させる推進力を発生させるディーゼル機関である。本実施形態では、船舶の主推進機関として一般的に用いられる2ストロークサイクルのディーゼル機関に適用して説明する。
 機関本体21は、複数のシリンダ内で外部から供給されたディーゼル燃料を過給された空気を用いて燃焼させることにより、ピストンを往復動させて回転駆動力を発生させる構成とされている。
 機関本体21の周囲には、付属する機器としてハイブリッド過給機3や、空気冷却器22や、掃気室23や、排気ガス集合管24が配置されている。さらに、機関本体21には、スクリュープロペラ26に回転駆動力を伝達する出力軸25が設けられている。
 空気冷却器22は、ハイブリッド過給機3によって過給された吸気空気を冷却するものである。
 空気冷却器22には、ハイブリッド過給機3のコンプレッサ32により過給された吸気空気が供給される流路が接続されている。さらに、空気冷却器22により冷却された過給された吸気空気が、掃気室23に流入するように構成されている。
 掃気室23は、機関本体21に過給された吸気空気を供給する空間である。
 掃気室23には、空気冷却器22から冷却された過給された吸気空気が流入するように構成されている。さらに、掃気室23は過給された吸気空気を内部に蓄え、シリンダ等の内部に過給された吸気空気を、それぞれ供給する構成とされている。
 排気ガス集合管24は、機関本体21から排出された排気ガスをまとめて船舶の外部に導く配管である。
 排気ガス集合管24には、シリンダ等の内部の燃焼により生じた排気ガスが、それぞれ流入するように構成されている。さらに、排気ガス集合管24は、排気ガスの一部をハイブリッド過給機3のタービン31に供給するように構成されている。
 出力軸25は、機関本体21により発生した回転駆動力をスクリュープロペラ26に伝達するものである。
 出力軸25は、軸電動発電機4との間で回転駆動力の伝達が可能に構成されている。つまり、出力軸25から軸電動発電機4に回転駆動力を伝達可能に構成されているとともに、軸電動発電機4から出力軸25に回転駆動力を伝達可能に構成されている。
 スクリュープロペラ26は、回転駆動されることにより船舶の推進力を発生させるものである。
 軸電動発電機4は、回転駆動されることにより交流電力を発生させる発電機であるとともに、外部から交流電力の供給を受けて回転駆動力を発生させる電動機でもあるものである。言い換えると発電機と電動機とが可逆なものである。
 軸電動発電機4は、軸電動発電機4との間で回転駆動力の伝達が可能に構成されている。さらに、軸電動発電機4は、第2コンバータ6に対して交流電力を供給することが可能に構成されているとともに、第2コンバータ6から交流電力の供給を受けることが可能にも構成されている。
 第1コンバータ5は、過給機発電機34において発電された交流電力を直流電力に変換するものである。さらに、第1コンバータ5は、第2コンバータ6により変換された直流電力の電圧と同じ電圧の直流電力を出力するものである。
 その一方で、第1コンバータ5は、過給機発電機34から交流電力の供給が受けられるように構成されている。さらに、第1コンバータ5は、DCバス(電気配線)10によって、インバータ7および第2コンバータ6の少なくとも一方に直流電力を供給できるように構成されている。
 第1コンバータ5には、制御部8から第1コンバータ5を制御する制御信号が入力されるように構成されている。
 ここで、第1コンバータ5により変換された直流電力の電圧と、第2コンバータ6により変換された直流電力の電圧とが同じとは、これらの電圧が同一の電圧である場合だけでなく、1つのインバータで対応可能な電圧の範囲に含まれる場合も意味する。
 DCバス10は、第1コンバータ5およびインバータ7と、第2コンバータ6およびインバータ7と、第1コンバータ5と第2コンバータ6と、を電気的に接続するものである。
 第2コンバータ6は、軸電動発電機4において発電された交流電力を直流電力に変換するものであり、第1コンバータ5から供給された直流電力を交流電力に変換するものでもある。さらに、第2コンバータ6は、第1コンバータ5により変換された直流電力の電圧と同じ電圧の直流電力を出力するものである。
 その一方で、第2コンバータ6は、軸電動発電機4から交流電力の供給が受けられるように構成されているとともに、第1コンバータ5からDCバス10を介して直流電力の供給が受けられるように構成されている。さらに、第2コンバータ6は、DCバス10を介してインバータ7に直流電力を供給できるように構成されている。
 第2コンバータ6には、制御部8から第2コンバータ6を制御する制御信号が入力されるように構成されている。
 インバータ7は、第1コンバータ5や第2コンバータ6により変換された直流電力を、所定周波数(例えば50Hzや60Hz)の交流電力に変換するものである。
 インバータ7は、DCバスを介して第1コンバータ5や第2コンバータ6から直流電力の供給が受けられるように構成されている。その一方で、インバータ7は、船内電力系統9に交流電力を供給できるように構成されている。
 インバータ7には、制御部8からインバータ7を制御する制御信号が入力されるように構成されている。
 制御部8は、第1コンバータ5、第2コンバータ6およびインバータ7を制御するものである。言い換えると、過給機発電機34における発電量と、軸電動発電機4における発電量の分担を制御するものである。
 さらに制御部8は、軸電動発電機4を発電機として用いるか、電動機として用いるかを制御するものでもある。
 次に、上記の構成からなるディーゼル機関システム1における動作について説明する。
 まず、機関本体21に対する負荷が低い場合におけるディーゼル機関システム1の動作について説明し、その後、機関本体21に対する負荷が高い場合におけるディーゼル機関システム1の動作について説明する。
 機関本体21に対する負荷が低い場合には、図1に示すように、機関本体21から排気ガス集合管24に排出される排気ガスの流量が減少し、排気ガス集合管24からハイブリッド過給機3のタービン31に供給される排気ガスの流量も減少する。
 すると、ハイブリッド過給機3における回転軸33の回転速度が遅くなり、コンプレッサ32により過給される吸気空気の流量も減少する。その一方で、過給機発電機34における発電量も減少し、船舶における電力需要量よりも小さくなる。そこで、電力需要量に足りない分は、軸電動発電機4によって発電された電力により補われる。
 ハイブリッド過給機3に設けられた過給機発電機34による発電量は、コンプレッサ32に吸込まれる空気温度と同じように、機関本体21の燃費に影響を与える。そのため、制御部8は、機関本体21の燃費を考慮しながら、過給機発電機34による発電量、および、軸電動発電機4による発電量の割合(分担)の制御を適宜行っている。
 具体的には、制御部8は、第1コンバータ5に対して過給機発電機34により発電された交流電力を直流電力に変換する制御信号を出力し、第2コンバータ6に対して軸電動発電機4により発電された交流電力を直流電力に変換する制御信号を出力する。さらに制御部8は、インバータ7に対して直流電力を交流電力に変換する制御信号を出力する。
 ここで、過給機発電機34により発電された交流電力における周波数は、ハイブリッド過給機3の回転軸33における回転速度に比例して変化し、軸電動発電機4により発電された交流電力における周波数は、出力軸25の回転速度に比例して変化する。そこで、過給機発電機34および軸電動発電機4により発電された交流電力を船内電力系統9に供給する場合には、第1コンバータ5や第2コンバータ6およびインバータ7を介して所定周波数の交流電力に変換される。
 これにより、過給機発電機34により発電された交流電力は、第1コンバータ5において直流電力に変換される。その一方で、軸電動発電機4により発電された交流電力は、第2コンバータ6において直流電力に変換される。このようにして変換された直流電力は、DCバス10を介してインバータ7に供給され、所定周波数の交流電力に変換された後に船内電力系統9に供給される。
 なお、機関本体21に対する負荷が低い場合だけでなく、故障により過給機発電機34による発電ができない場合にも、上述の動作が行われる。
 機関本体21に対する負荷が高い場合には、図1に示すように、機関本体21から排気ガス集合管24に排出される排気ガスの流量が増大し、排気ガス集合管24からハイブリッド過給機3のタービン31に供給される排気ガスの流量も増大する。
 すると、ハイブリッド過給機3における回転軸33の回転速度が速くなり、コンプレッサ32により過給される吸気空気の流量も増大する。その一方で、過給機発電機34における発電量も増大し、船舶における電力需要量よりも大きくなる。そこで、過給機発電機34により発電された余剰な電力は、軸電動発電機4に供給される。
 制御部8は、機関本体21における燃料消費が最も少なくなるように、過給機発電機34における発電量、および、軸電動発電機4における出力の制御を適宜行っている。
 具体的には、制御部8は、第1コンバータ5に対して過給機発電機34により発電された交流電力を直流電力に変換する制御信号を出力し、インバータ7に対して直流電力を交流電力に変換する制御信号を出力する。その一方で、第2コンバータ6に対して直流電力を交流電力に変換する制御信号を出力する。第2コンバータ6により変換された交流電力における周波数は、軸電動発電機4の回転数が出力軸25の回転駆動を加勢するのに適した回転数になるように制御されている。
 これにより、過給機発電機34により発電された交流電力は、第1コンバータ5において直流電力に変換される。変換された直流電力は、DCバス10を介してインバータ7に供給され所定周波数の交流電力に変換された後、船内電力系統9に供給される。
 その一方で、過給機発電機34により発電された電力のうちの余剰分は、第1コンバータ5において直流電力に変換された後、DCバス10を介して第2コンバータ6に供給される。第2コンバータ6において直流電力は、交流電力に変換されて軸電動発電機4に供給される。交流電力の供給を受けた軸電動発電機4は、出力軸25を回転駆動する。
 これにより出力軸25は、機関本体21および軸電動発電機4の両者により回転駆動される。言い換えると、船舶に必要な推進力を発生させる回転駆動力は、機関本体21および軸電動発電機4により分担される。そのため、機関本体21のみが回転駆動力を発生させている場合と比較して、機関本体21に要求される回転駆動力が低減される。
 上記の構成によれば、過給機発電機34および軸電動発電機4により発電を行うことができる。そのため、過給機発電機34による発電量が船舶の電力需要量よりも小さい場合、あるいは、過給機発電機34が故障により発電できない場合であっても、軸電動発電機4により発電した電力を船舶に供給することができる。
 つまり、上述のディーゼル発電機を別途に用いる必要がなく、ディーゼル発電機の起動に必要な時間を確保する必要がない。さらに、ディーゼル発電機に供給する燃料が必要なくなる。
 その結果、ディーゼル機関システム1において、ハイブリッド過給機3の導入したことによる省エネルギ効果が損なわれることを抑制することができる。
 過給機発電機34による発電量が、船舶の電力需要量よりも大きい場合には、過給機発電機34により発電された電力の一部を第1コンバータ5および第2コンバータ6を介して軸電動発電機4に供給することにより、軸電動発電機4は出力軸25を回転駆動し加勢することができる。
 これにより、出力軸25により伝達される回転駆動力は、機関本体21および軸電動発電機4によって供給されることになり、機関本体21の負荷が軽減する。その結果、機関本体21の燃料消費を低減できる。
 第1コンバータ5および第2コンバータ6により変換された直流電力の電圧を同じにすることにより、電圧が異なっていれば電圧ごとに2つのインバータが必要なところを、1つのインバータ7とすることができる。そのため、本実施形態のディーゼル機関システム1におけるコストや、設置スペースを削減することができる。
 1 ディーゼル機関システム(内燃機関システム)
 2 ディーゼル機関(内燃機関)
 3 ハイブリッド過給機(過給機)
 4 軸電動発電機(第2発電機)
 5 第1コンバータ
 6 第2コンバータ
 7 インバータ
 10 DCバス(電気配線)
 25 出力軸
 33 回転軸
 34 過給機発電機(第1発電機)

Claims (4)

  1.  回転駆動力を発生させる内燃機関と、
     該内燃機関から排出された排気ガスの供給を受けて、前記内燃機関の吸入空気を過給する過給機と、
     前記内燃機関により回転駆動される出力軸と、
     前記過給機の回転軸との間で回転駆動力の伝達が可能に接続され、発電を行う第1発電機と、
     前記出力軸との間で回転駆動力の伝達が可能に接続され、発電および前記出力軸の駆動を行う第2発電機と、
     前記第1発電機により発電された交流電力を直流電力に変換する第1コンバータと、
     前記第2発電機により発電された交流電力を、前記第1コンバータにより変換された直流電力と同じ電圧の直流電力に常に変換する、または、前記第1コンバータにより変換された直流電力を交流電力に変換して前記第2発電機に供給する第2コンバータと、
    が設けられている内燃機関システム。
  2.  前記第1コンバータおよび前記第2コンバータは、電気配線により電気的に接続されている請求項1記載の内燃機関システム。
  3.  前記第1コンバータおよび前記第2コンバータの少なくとも一方により変換された直流電力を交流電力に変換して外部に供給するインバータがさらに設けられている請求項1または2に記載の内燃機関システム。
  4.  請求項1から請求項3のいずれかに記載の内燃機関システムが設けられている船舶。
PCT/JP2010/066505 2009-09-25 2010-09-24 内燃機関システムおよび船舶 WO2011037164A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2010800424992A CN102577088A (zh) 2009-09-25 2010-09-24 内燃机系统及船舶
US13/496,025 US20120169130A1 (en) 2009-09-25 2010-09-24 Internal-combustion engine system and ship
EP20100818836 EP2482443A1 (en) 2009-09-25 2010-09-24 Internal combustion engine system and ship
KR1020127007305A KR101344169B1 (ko) 2009-09-25 2010-09-24 내연 기관 시스템 및 선박

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-220628 2009-09-25
JP2009220628A JP2011072117A (ja) 2009-09-25 2009-09-25 内燃機関システムおよび船舶

Publications (1)

Publication Number Publication Date
WO2011037164A1 true WO2011037164A1 (ja) 2011-03-31

Family

ID=43795909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066505 WO2011037164A1 (ja) 2009-09-25 2010-09-24 内燃機関システムおよび船舶

Country Status (6)

Country Link
US (1) US20120169130A1 (ja)
EP (1) EP2482443A1 (ja)
JP (1) JP2011072117A (ja)
KR (1) KR101344169B1 (ja)
CN (1) CN102577088A (ja)
WO (1) WO2011037164A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101500886B1 (ko) * 2010-08-26 2015-03-09 미쓰비시덴키 가부시키가이샤 차량용 제어장치 및 디젤/하이브리드 차량 시스템
JP2013100794A (ja) * 2011-11-09 2013-05-23 Ygk:Kk コージェネレーションシステム
US20160138463A1 (en) * 2014-11-17 2016-05-19 Arnold Magnetic Technologies System and method for providing multiple voltage buses on a single vehicle
US10027210B2 (en) * 2014-12-10 2018-07-17 Hamilton Sundstrand Corporation Dual-output generators
JP2017166405A (ja) * 2016-03-16 2017-09-21 トヨタ自動車株式会社 内燃機関の発電システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0791269A (ja) * 1993-09-24 1995-04-04 Isuzu Motors Ltd タ−ボチャ−ジャ用回転電機の制御装置
JP2006238700A (ja) 2006-06-13 2006-09-07 Toyota Motor Corp 車両制御装置
JP2007505261A (ja) * 2003-09-12 2007-03-08 メス インターナショナル,インコーポレイテッド 多軸タービン発電機システム及び制御方法
WO2007124968A1 (de) * 2006-05-02 2007-11-08 Siemens Aktiengesellschaft Verfahren zum betrieb eines schiffsantriebssystems mit abwärmerückgewinnung sowie schiffsantriebssystem mit abwärmerückgewinnung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293429A (ja) * 1985-10-19 1987-04-28 Isuzu Motors Ltd タ−ボコンパウンドエンジン
JPH07180564A (ja) * 1993-12-22 1995-07-18 Isuzu Motors Ltd エンジンのエネルギ−回収装置
US7047743B1 (en) * 2005-03-14 2006-05-23 Deere & Company Electric turbo compound configuration for an engine/electric generator system
TWI336160B (en) * 2006-12-01 2011-01-11 Ind Tech Res Inst Hybrid power-generating device
US20100144219A1 (en) * 2008-12-05 2010-06-10 Brunswick Corporation Marine Vessel Hybrid Propulsion System

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0791269A (ja) * 1993-09-24 1995-04-04 Isuzu Motors Ltd タ−ボチャ−ジャ用回転電機の制御装置
JP2007505261A (ja) * 2003-09-12 2007-03-08 メス インターナショナル,インコーポレイテッド 多軸タービン発電機システム及び制御方法
WO2007124968A1 (de) * 2006-05-02 2007-11-08 Siemens Aktiengesellschaft Verfahren zum betrieb eines schiffsantriebssystems mit abwärmerückgewinnung sowie schiffsantriebssystem mit abwärmerückgewinnung
JP2006238700A (ja) 2006-06-13 2006-09-07 Toyota Motor Corp 車両制御装置

Also Published As

Publication number Publication date
CN102577088A (zh) 2012-07-11
JP2011072117A (ja) 2011-04-07
KR101344169B1 (ko) 2013-12-20
EP2482443A1 (en) 2012-08-01
KR20120058561A (ko) 2012-06-07
US20120169130A1 (en) 2012-07-05

Similar Documents

Publication Publication Date Title
US8244419B2 (en) Marine power train system and method of storing energy in a marine vehicle
US8584459B2 (en) Engine induction system
AU2009287341B2 (en) Hybrid marine drivetrain
KR101172568B1 (ko) 선박의 대형 디젤엔진의 배기가스 내 과잉 에너지 이용 시스템
KR101602507B1 (ko) 선박용 대형 디젤 엔진의 배기가스 에너지를 이용하는 선박 추진 시스템
JP2011506180A5 (ja)
WO2011037164A1 (ja) 内燃機関システムおよび船舶
CN101767645A (zh) 新型电力推进系统
JP2013227012A (ja) 廃熱回収システムを備えるターボ過給式大型2ストローク往復ピストン機関を有する船舶推進システム、及び船舶推進システムを制御する方法
CA3100059A1 (en) Aircraft power architecture
Ono et al. Application of a large hybrid turbocharger for marine electric-power generation
KR101979131B1 (ko) 주기의 제어 장치 및 방법, 주기, 선박
JP2012229007A (ja) 船舶推進システム
JP5704455B2 (ja) 船舶用主機の余剰エネルギー回収システム
JPH03138430A (ja) 事務用移動車両
US20070184728A1 (en) Drive-line mounted direct coupled AC generator for marine water craft
JP5374489B2 (ja) 発電設備
JP2007326391A (ja) 船舶推進システム
KR20150138056A (ko) 선박 구동 시스템 및 그의 작동
CN218431697U (zh) 一种大功率直流混动系统及船舶
JP5804728B2 (ja) ハイブリッド過給機発電システム
CN106081045A (zh) 使用船舶驱动的余热的装置
JPS5918216A (ja) 電気推進装置
WO2023089497A1 (en) Marine propulsion system
JPS5918231A (ja) エンジンの排気および制動エネルギ−回収装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080042499.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10818836

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13496025

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010818836

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127007305

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE