WO2011037055A1 - 給湯システム - Google Patents

給湯システム Download PDF

Info

Publication number
WO2011037055A1
WO2011037055A1 PCT/JP2010/065949 JP2010065949W WO2011037055A1 WO 2011037055 A1 WO2011037055 A1 WO 2011037055A1 JP 2010065949 W JP2010065949 W JP 2010065949W WO 2011037055 A1 WO2011037055 A1 WO 2011037055A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
scale
temperature
hot water
supply system
Prior art date
Application number
PCT/JP2010/065949
Other languages
English (en)
French (fr)
Inventor
裕亮 臂
美穂 冨所
村越 康司
浩隆 門
焦 石井
秀康 上岡
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Priority to EP20100818730 priority Critical patent/EP2469197A4/en
Priority to AU2010299259A priority patent/AU2010299259B2/en
Publication of WO2011037055A1 publication Critical patent/WO2011037055A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/0092Devices for preventing or removing corrosion, slime or scale
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/02Softening water by precipitation of the hardness
    • C02F5/025Hot-water softening devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0214Central heating systems using heat accumulated in storage masses using heat pumps water heating system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • F24D19/1054Arrangement or mounting of control or safety devices for water heating systems for domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/14Cleaning; Sterilising; Preventing contamination by bacteria or microorganisms, e.g. by replacing fluid in tanks or conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/227Temperature of the refrigerant in heat pump cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/281Input from user
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/305Control of valves
    • F24H15/32Control of valves of switching valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/335Control of pumps, e.g. on-off control
    • F24H15/34Control of the speed of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/395Information to users, e.g. alarms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • C02F5/14Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing phosphorus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/08Storage tanks

Definitions

  • the present invention relates to a hot water supply system, and more particularly to a hot water supply system for boiling water by a heat exchanger of a heating unit.
  • This type of hot water supply system is promoted to save energy and reduce the burden on the global environment, and heat flows from the hot water storage tank of the tank unit to the water circulation path by the high-temperature refrigerant flowing through the refrigerant circulation path of the heat pump unit (heating unit). It is equipped with a gas cooler (heat exchanger) that heats up.
  • the gas cooler has a refrigerant channel into which a high-temperature refrigerant is introduced and a water channel into which water is introduced.
  • a scale mainly composed of calcium carbonate adheres to and accumulates on the water channel, and the water channel is formed by this scale. Is known to occlude.
  • Patent Document 1 discloses water purification means having removal means such as activated carbon, hollow fiber membrane filter, ion exchange resin, etc. for removing organic substances, hardness components, chlorine and the like contained in water.
  • a hot water storage type hot water supply apparatus including In this water purification means, water is heated from a high-temperature refrigerant to a temperature equal to or higher than the solubility of the hardness component in the radiant heat exchanger provided in the water circuit, and as a result, the hardness component is deposited as a scale inside the radiant heat exchanger. Is preventing.
  • Patent Document 2 when a scale adheres to the fluid heating device, the bypass is opened to stop the circulation of the fluid to the bathtub, and the fluid heating device is cooked or boiled to the inner surface of the metal tube.
  • a technique for peeling the attached scale and removing it with a filter or the like is disclosed.
  • Patent Document 3 the clogging of the water circuit is detected by monitoring the flow rate of the water flowing through the water circuit, and the clogging of the water circuit is removed by causing the water circuit to pressurize and flow at a maximum flow rate. That is, a heat pump water heater provided with a removing means is disclosed.
  • Patent Document 1 it is difficult for the technique of Patent Document 1 to remove the scale that has once adhered to and accumulated in the water flow path. Moreover, it is not easy to peel off the hard scale firmly adhered to and accumulated in the water flow path by the empty cooking / boiling shown in Patent Document 2 or the pressurized water flow shown in Patent Document 3. There is also a problem that the configuration of the hot water supply system becomes complicated by requiring an empty cooking / boiling operation or pressurized water supply operation mode and equipment in the hot water supply system.
  • Patent Document 1 Although the removal means of the water purification means can be replaced and maintained by the open / close door, since the water is always passed through the removal means, the life of the removal means is shortened. There is also a problem that the frequency and cost of replacement and maintenance increase, and the running cost of the hot water supply system increases.
  • the present invention has been made in view of such a problem, and suppresses the generation of scale in the water flow path of the heat exchanger to easily and reliably prevent the clogging of the water flow path, thereby reducing the running cost and reducing the thermal efficiency. It aims at providing the hot-water supply system which can improve.
  • the hot water supply system according to claim 1, the high temperature refrigerant flowing through the refrigerant circulation path of the heating unit heats the low temperature water flowing through the water circulation path from the hot water storage tank of the tank unit to a predetermined tapping temperature.
  • a hot water supply system that performs a boiling operation to raise, a heat exchanger having a refrigerant flow path into which a high-temperature refrigerant flows in and a water flow path into which low-temperature water flows in by the operation of the boiling operation, and a scale in the water flow path
  • a scale generation suppressing means for adding to the low-temperature water along with water flow, and the scale generation suppressing means is provided in the water circulation path from the hot water storage tank to the water flow path when viewed from the flow direction of the low-temperature water. It is characterized by being able to.
  • the bypass passage that bypasses the scale generation suppression unit and allows water to flow through the water channel, and the first and the bypass channel and the scale generation suppression unit switch between the first and second water flows.
  • a flow path switching means wherein the first flow path switching means switches the scale from the bypass path to the scale generation suppression means to operate the scale generation suppression operation.
  • the invention described in claim 3 is characterized in that, in claim 2, the scale generation suppressing operation is operated at least one of immediately before the operation of the boiling operation and immediately after the operation.
  • the invention according to claim 4 is provided with scale deposit detection means for detecting scale deposition in the water flow path according to claim 2 or 3, wherein the scale deposit detection means detects that the scale is deposited. It is characterized by operating a scale generation suppressing operation.
  • the water pump is provided in the water circulation path from the hot water storage tank to the water flow path when viewed from the flow direction of the low-temperature water, It is characterized in that it is determined that scale has accumulated in the water flow path when the rotational speed is equal to or higher than a predetermined upper limit rotational speed.
  • the invention according to claim 6 further comprises refrigerant temperature detection means for detecting the temperature of the high-temperature refrigerant flowing into the refrigerant flow path according to claim 4 or 5, wherein the scale accumulation detection means is the refrigerant temperature detection means. When the detected temperature is equal to or higher than a predetermined upper limit set temperature, it is determined that scale has accumulated in the water flow path.
  • a drainage channel provided in the water circulation path from the water flow path to the hot water storage tank as viewed from the flow direction of the low temperature water, the water circulation path and the drainage
  • a second flow path switching means for switching the water path and allowing water to flow, and when the scale generation suppression operation is activated, the second flow path switching means switches the water circulation path to the drainage path to allow water flow.
  • the additive when the scale accumulation detecting means detects the accumulation of scale in the water flow path after the scale generation suppressing operation is activated, the additive is reduced. Or it has a reporting means for reporting the depletion.
  • the additive in any one of claims 1 to 8, the additive is mainly composed of polyphosphate, and the scale formation suppressing means dissolves polyphosphate in low-temperature water as water flows. It is characterized by being an adder to be added.
  • the heating unit is a heat pump unit.
  • the scale generation suppressing means is provided in the water circulation path from the hot water storage tank to the water flow path as seen from the direction of water flow.
  • the additive can be efficiently added to water targeting only the water flow path as compared with the case where the additive is added from, for example, a water supply channel to a hot water storage tank. While reducing the amount of additive added to water, scale formation in the water channel can be effectively suppressed, and blockage of the water channel can be simplified and reliably prevented. Therefore, the thermal efficiency of the hot water supply system can be improved while reducing the running cost of the hot water supply system.
  • the hot water supply system is switched from the bypass path to the scale generation suppression means by the first flow path switching means to operate the scale generation suppression operation.
  • the scale generation suppression operation by operating the scale generation suppression operation immediately after the boiling operation, the scale generation can be effectively suppressed in an environment where scale is easily generated in the water channel due to high temperature. Furthermore, it can prevent reliably. Furthermore, according to the invention described in claim 4, when the scale accumulation detecting means detects that the scale has accumulated, the scale generation suppressing operation is activated to further reduce the amount of the additive used. The generation of scale in the water channel can be effectively suppressed. Furthermore, according to the fifth aspect of the present invention, the scale accumulation detecting means determines that scale has accumulated in the water flow path when the rotation speed of the water pump is equal to or higher than a predetermined upper limit rotation speed.
  • the rotation speed of the water pump is controlled to be higher as the tapping temperature rises, the rotation speed of the water pump becomes abnormally higher than the tapping temperature set in the boiling operation. Can be detected. Therefore, since the heat exchange failure of the heat exchanger can be detected based on the operation information of the hot water supply system, the blockage due to the scale accumulation in the water flow path can be reliably detected.
  • the scale accumulation detecting means determines that the scale has accumulated in the water flow path when the temperature detected by the refrigerant temperature detecting means is equal to or higher than a predetermined upper limit set temperature. .
  • the high-temperature refrigerant heated in the heating unit becomes abnormally high in temperature as compared with the tapping temperature set in the boiling operation. Therefore, since the heat exchange failure of the heat exchanger that has caused the abnormally high temperature of the refrigerant can be detected based on the operation information of the hot water supply system, it is possible to reliably detect blockage due to scale accumulation in the water flow path.
  • the scale separated from the water flow path is made to flow by switching the water circulation path to the drainage path by the second flow path switching means. Since the water can be discharged out of the water circulation path and the water circulating through the water circulation path can be purified, the heat efficiency of the heat exchanger and thus the hot water supply system can be reliably improved.
  • the scale accumulation detecting unit detects the accumulation of scale in the water flow path after the scale generation suppressing operation is activated
  • the additive is reduced or depleted with respect to the scale generation suppressing unit.
  • Informing means for informing the user is provided.
  • the scale generation suppressing means is an adder that dissolves and adds polyphosphate to water with water flow.
  • Polyphosphate has a deflocating action that deforms the calcium carbonate crystals, which are the main components of the scale, to suppress growth and prevent the scale from adhering to and depositing on the water flow path. It is possible to effectively remove the hard scale.
  • polyphosphate does not dissolve and remove scale, but deforms calcium carbonate crystals, making it difficult to scale. It is possible to reliably prevent the water channel from being clogged without worrying about reprecipitation.
  • the heating unit is a heat pump unit.
  • FIG. 1 It is a figure showing the schematic structure of the hot-water supply system concerning a 1st embodiment. It is a longitudinal cross-sectional view of the adder of FIG. It is a figure which shows schematic structure of the hot water supply system which concerns on 2nd Embodiment. It is a figure which shows schematic structure of the hot water supply system which concerns on 3rd Embodiment. It is a figure which shows schematic structure of the hot water supply system which concerns on 4th Embodiment. It is a figure which shows schematic structure of the hot water supply system which concerns on 5th Embodiment.
  • FIG. 1 shows a schematic configuration of a hot water supply system 1 according to the first embodiment.
  • This hot water supply system 1 stores a heat pump unit (heating unit) 4 having a gas cooler (heat exchanger) 2 that heats water up to a predetermined hot water temperature with a high-temperature refrigerant and boils it, and hot water boiled by the gas cooler 2 is stored.
  • a tank unit 8 having a hot water storage tank 6.
  • a compressor 10, a gas cooler 2, an expansion valve 12, and an evaporator 14 are inserted into a refrigerant circulation path 5 in which CO 2 refrigerant circulates in order from a refrigerant flow direction indicated by a solid line arrow, and a refrigeration cycle is performed. It is composed.
  • the heat pump unit 4 heats and boiles water by exchanging heat between the high-temperature and high-pressure gas refrigerant compressed to the supercritical state by the compressor 10 with the water stored in the hot water storage tank 6 in the gas cooler 2.
  • the liquid refrigerant that has been liquefied while being high-temperature and high-pressure by this heat exchange is adiabatically expanded by the expansion valve 12 to become a low-temperature and low-pressure gas-liquid mixed refrigerant, and is further evaporated by the outside air by the fan 15 provided in the evaporator 14.
  • the gas refrigerant is changed to a low-temperature and low-pressure gas and is compressed again to the supercritical state by the compressor 10.
  • the gas cooler 2 is, for example, a tube-in-tube heat exchanger in which a refrigerant flow path 2a inserted in the refrigerant circulation path 5 is disposed in a water flow path 2b inserted in a water circulation path 9 described later.
  • the water flowing through the water flow path 2b is heated and heated by the refrigerant flowing through the refrigerant flow path 2a.
  • the tank unit 8 constitutes a water circuit in which a water pump 16, a gas cooler 2, and a hot water storage tank 6 are sequentially inserted into a water circulation path 9 through which water circulates in order from the direction of water flow indicated by solid arrows. .
  • a hot water supply path 18 is connected to the upper end of the hot water storage tank 6, and the hot water supply path 18 extends to a hot water supply destination 20 provided outside the hot water supply system 1 (water around baths, showers, kitchens, washrooms, etc.).
  • a low-temperature water passage 9b in the water circulation passage 9 through which low-temperature water before passing through the water flow passage 2b of the gas cooler 2 flows.
  • a water supply path 22 is connected to the lower end of the hot water storage tank 6, and the water supply path 22 extends to a water supply source 24 (such as a tap water tap) provided outside the hot water supply system 1.
  • Hot water having a predetermined temperature for example, about 70 ° C.
  • Low-temperature water having a predetermined temperature such as tap water is introduced through the water supply channel 22.
  • a high-temperature water region 26 in which high-temperature water stays in order from the upper end portion thereof, a predetermined temperature zone that is lower than the high-temperature water and higher than the low-temperature water for example, about 32 ° C. to 37 ° C.
  • a medium temperature water region 28 in which medium temperature water stays and a low temperature water region 30 in which low temperature water stays are formed in layers.
  • the high-temperature water channel 9 a and the low-temperature water channel 9 b between the hot water storage tank 6 and the water pump 16 are connected by a communication path 32, and a three-way valve 34 is inserted at a connection point between the high-temperature water channel 9 a and the communication path 32.
  • the three-way valve 34 can communicate by switching the high temperature water passage 9a and the communication passage 32 by switching the valve body, and circulating water by bypassing the hot water storage tank 6 in the water circulation passage 9 by communicating the communication passage 32. Can be made.
  • the hot water supply system 1 includes an electronic control unit (ECU) 36 that comprehensively controls the heat pump unit 4 and the tank unit 8, and the ECU 36 includes a compressor 10, a fan 15, a water pump 16, a three-way valve 34, and the like.
  • the drive unit is electrically connected.
  • the ECU 36 boils low temperature water flowing from the hot water storage tank 6 of the tank unit 8 through the water circulation path 9 to high temperature water by the high temperature refrigerant flowing through the refrigerant circulation path 5 of the heat pump unit 4.
  • the raising operation is activated periodically.
  • the compressor 10 and the fan 15 are activated, and the high-temperature refrigerant compressed by the compressor 10 flows into the refrigerant flow path 2a.
  • the water pump 16 is activated, and the low-temperature water in the low-temperature water region 30 stored in the hot water storage tank 6 passes through the low-temperature water channel 9b and flows into the water channel 2b, and the above-described boiling operation is performed.
  • the rotation speed of the water pump 16 is controlled to be high as the hot water temperature preset by the user of the hot water supply system 1 increases.
  • the low-temperature water flowing through the water flow path 2b is heated to a high temperature by the high-temperature refrigerant flowing through the refrigerant flow path 2a so as to reach the hot water temperature.
  • the water flow path 2b has a scale mainly composed of calcium carbonate. An environment is created where production is promoted.
  • the scale of the water flow path 2b is connected to the water circulation path 9 from the hot water storage tank 6 to the water flow path 2b, more specifically, to the low temperature water path 9b between the water pump 16 and the water flow path 2b.
  • An adder (scale generation suppression means) 38 is provided that dissolves and supplies the additive 37 that suppresses generation in low-temperature water.
  • FIG. 2 shows a longitudinal sectional view of the adder 38.
  • the adder 38 includes an upper lid member 40 to which the pipe end of the low temperature channel 9b is connected, a cylindrical member 42 made of a transparent material such as plastic and glass, a lower lid member 44, and an addition made of a transparent material such as plastic and glass. And an accommodating member 46 for the agent 37. By forming the cylindrical member 42 and the housing member 46 with a transparent material, it is possible to visually confirm the reduction or depletion of the additive 37 filled in the housing member 46.
  • the upper lid member 40 and the lower lid member 44 are airtightly connected to the openings at both ends of the cylindrical member 42, and the accommodating member 46 can be accommodated in the cylindrical member 42 from the connection side of the upper lid member 40.
  • the lower lid member 44 and the housing member 46 are configured to be detachable from the cylindrical member 42.
  • the upper lid member 40 is formed with a low-temperature water inlet 40a at a side opening thereof, a low-temperature water outlet 40b is formed at an upper opening of the upper lid member 40, and a pipe end of the low-temperature water channel 9b is connected to the inlet 40a. And the outlet portion 40b.
  • the accommodating member 46 includes a cylindrical body 46a filled with the additive 37, an outlet 46b of low-temperature water whose diameter is reduced from the cylindrical body 46a in the upper part of the cylindrical body 46a, and a lower part of the cylindrical body 46a.
  • a plurality of low-temperature water inlet portions 46d opened in the connected bottom lid 46c.
  • the outlet 46 b of the housing member 46 is airtightly connected to the outlet 40 b of the upper lid member 40.
  • the bottom lid 46c is configured to be detachable with respect to the cylindrical body 46a, and the additive 37 can be filled into the containing member 46 by removing the bottom lid 46c.
  • the storage member 46 is filled with a plurality of additives 37, and each additive 37 has a white or transparent spherical shape with a diameter of about 20 mm mainly composed of polyphosphate.
  • the shape of the additive 37 spherical, the surface area of each additive 37 becomes constant, so that the amount dissolved in the low-temperature water is stable, the concentration control is easy, and the pressure loss when passing low-temperature water is also reduced. Can be reduced.
  • Polyphosphate has a peptizing action that deforms calcium carbonate crystals, which are the main component of the scale, to suppress growth and prevent the scale from adhering to and depositing on the water channel 2b.
  • polyphosphate changes the rhombohedral crystal of calcium carbonate to a small spherical crystal to prevent deposition on the water channel 2b, and gradually dissolves the hard scale deposited and deposited on the water channel 2b. . That is, the polyphosphate does not dissolve and remove the scale, but has a function of making it difficult to scale by deforming the calcium carbonate crystals.
  • low temperature water passes from the low temperature water passage 9b through the inlet 40a and the inner surface of the cylindrical member 42 and the outer surface of the cylindrical body 46a. And then flows into the cylindrical body 46a from the inlet 46d.
  • the additive 37 is dissolved in the low-temperature water when passing through the cylindrical body 46a, and the low-temperature water in which the additive 37 is dissolved is sequentially returned to the low-temperature channel 9b through the outlets 46a and 40b.
  • the adder 38 is provided in the low temperature water passage 9b, and the adder 38 dissolves and adds polyphosphate, which is the main component of the additive 37, with water flow.
  • the additive 37 can be efficiently added to water targeting only the water flow path 2b.
  • Scale formation in the water flow path 2b can be effectively suppressed while reducing the amount of additive 37 added to the low-temperature water with water flow, and the blockage of the water flow path 2b can be easily and reliably prevented. . Therefore, the thermal efficiency of the hot water supply system 1 can be improved while reducing the running cost of the hot water supply system 1.
  • polyphosphate has a deflocating action that deforms calcium carbonate crystals, which are the main components of the scale, to suppress growth and prevent the scale from adhering to and depositing on the water channel 2b. It is possible to effectively remove the adhered and deposited hard scale. Moreover, polyphosphate does not dissolve and remove the scale, but deforms the calcium carbonate crystals to make it difficult to scale. Therefore, compared with the case where the scale is dissolved and removed, the scale of the scale due to the reverse reaction is reduced. The blockage of the water flow path 2b can be reliably prevented without worrying about reprecipitation or the like.
  • FIG. 3 shows a schematic configuration of a hot water supply system 48 according to the second embodiment of the present invention.
  • the same components as those of the hot water supply system 1 of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the hot water supply system 48 is provided with a bypass 50 that bypasses the adder 38 from the low-temperature water channel 9b and branches again, and joins the low-temperature water channel 9b again.
  • the channel switching means) 52 is inserted.
  • the three-way valve 52 can communicate by switching the low temperature water passage 9b and the bypass passage 50 by switching the valve body, and circulating the water by bypassing the adder 38 in the water circulation passage 9 by making the bypass passage 50 communicate. Can be made.
  • the drive part of the three-way valve 52 is electrically connected to the ECU 36, and the ECU 36 switches the valve body of the three-way valve 52 from the bypass path 50 side to the adder 38 side and allows water to flow through the adder 38.
  • the scale generation suppression operation is activated immediately before the boiling operation is performed, so that the scale of the water flow path 2b is peeled off and the gas cooler 2 is operated.
  • the thermal efficiency of the hot water supply system 48 can be improved.
  • the three-way valve 52 is switched from the bypass passage 50 to the adder 38 and water is passed to activate the scale generation suppression operation.
  • the scale generation suppression operation may be activated during a predetermined time both immediately before and after the boiling operation (scale generation suppression means).
  • the scale generation suppression operation is activated immediately after the operation of the boiling operation, thereby generating the scale. Can be effectively suppressed, and blockage of the water flow path 2b can be more reliably prevented.
  • the rotation speed of the water pump (scale accumulation detection means) 16 set by the ECU 36 is equal to or higher than a predetermined upper limit rotation speed, it is determined that scale has accumulated in the water flow path 2b.
  • the scale generation suppression operation may be activated (scale generation suppression means).
  • FIG. 4 shows a schematic configuration of a hot water supply system 54 according to the third embodiment of the present invention.
  • the same components as those of the hot water supply system 48 of the second embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the hot water supply system 54 includes a refrigerant temperature sensor (refrigerant temperature detection) that detects the temperature of the high-temperature and high-pressure gas refrigerant compressed to the supercritical state by the compressor 10 in the refrigerant circuit 5 between the compressor 10 and the gas cooler 2.
  • Means, scale accumulation detecting means) 56 is provided.
  • the output terminal of the signal of the refrigerant temperature sensor 56 is electrically connected to the ECU 36, and the ECU 36 performs a scale generation suppression operation according to the refrigerant temperature detected by the refrigerant temperature sensor 56 (scale generation suppression means).
  • the ECU 36 determines that scale has accumulated in the water flow path 2b when the temperature of the high-temperature refrigerant detected by the refrigerant temperature sensor 56 is equal to or higher than a predetermined upper limit set temperature, and performs scale generation suppression operation. Operate.
  • the high temperature refrigerant heated in the heat pump unit 4 becomes abnormally high in temperature compared to the hot water temperature set in the boiling operation by using the scale accumulation detecting means as the refrigerant temperature sensor 56. Can be detected.
  • the heat exchange failure of the gas cooler 2 that has caused an abnormally high temperature of the refrigerant can be detected based on the operation information of the hot water supply system 54 called the refrigerant temperature, it is possible to reliably detect the blockage due to the scale accumulation of the water flow path 2b. it can.
  • FIG. 5 shows a schematic configuration of a hot water supply system 58 according to the fourth embodiment of the present invention.
  • the drainage channel 60 is connected to the high temperature water channel 9 a between the water channel 2 b and the three-way valve 34, and the drainage channel 60 extends to a drainage destination 62 provided outside the hot water supply system 58.
  • a three-way valve (second flow path switching means) 64 is inserted at a connection point with the path 60.
  • the three-way valve 64 can communicate with the high-temperature water passage 9a and the drainage passage 60 by switching the valve body, and the drive portion of the three-way valve 64 is electrically connected to the ECU 36.
  • FIG. 6 shows a schematic configuration of a hot water supply system 66 according to the fifth embodiment of the present invention.
  • the same components as those of the hot water supply system 58 of the fourth embodiment are denoted by the same reference numerals and description thereof is omitted. .
  • the hot water supply system 66 includes a notification device (notification means) 68 that notifies the user of the hot water supply system 66 by voice or screen display of the decrease or depletion of the additive 37 filled in the adder 38.
  • the notification device 68 is electrically connected to the ECU 36. Connected. The notification device 68 determines that the additive 37 has been reduced or depleted when the scale accumulation detection means detects the accumulation of the scale in the water flow path 2b after activating the scale generation suppressing operation, and notifies this. is there.
  • the replenishment management of the additive 37 of the scale generation suppressing means can be easily performed, the convenience of the user of the hot water supply system 66 can be greatly improved, and automation of the hot water supply system 66 is promoted. Therefore, the running cost related to the management cost of the hot water supply system 66 can be reduced.
  • the present invention is not limited to the first to fifth embodiments described above, and various modifications are possible.
  • the present invention is not limited to the configuration of the hot water supply systems 1, 48, 54, 58, and 66, and the same effect as described above can be obtained even if the hot water supply system includes a high temperature tank and a low temperature tank and has two tanks. is there.
  • the main component is not limited to polyphosphate
  • the refrigerant is not limited to CO 2 gas.
  • polyphosphates are known to have high safety, and CO 2 gas is preferably used because it has a low load on the global environment.
  • the present invention can be applied not only to the hot water supply system 1, 48, 54, 58, 66 provided with the heat pump unit 4, but also to a hot water supply system provided with other heating units such as a gas type or an electric water heater. .
  • Hot water supply system Gas cooler (heat exchanger) 2a Refrigerant channel 2b Water channel 4 Heat pump unit (heating unit) 5 Refrigerant circulation path 6 Hot water storage tank 8 Tank unit 9 Water circulation path 16 Water pump (scale accumulation detection means) 37 Additives 38 Adders (scale generation suppression means) 50 Bypass path 52 Three-way valve (first flow path switching means) 56 Refrigerant temperature sensor (refrigerant temperature detection means, scale accumulation detection means) 60 Drainage path 64 Three-way valve (second flow path switching means) 68 Alarm (notification means)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Details Of Fluid Heaters (AREA)

Abstract

【課題】熱交換器の水流路におけるスケールの生成を抑制して水流路の閉塞を簡易にして確実に防止し、ランニングコストを低減しつつ熱効率を向上することができる給湯システムを提供する。 【解決手段】冷媒循環路(5)を流れる高温冷媒によって貯湯タンク(6)から水循環路(9)を流れる低温水を所定の出湯温度まで加熱して沸き上げる沸き上げ動作を行う給湯システム(1,48,54,58,66)であって、沸き上げ動作の作動によって高温冷媒が流入される冷媒流路(2a)と、低温水が流入される水流路(2b)とを有する熱交換器(2)と、水流路(2)におけるスケールの生成を抑制する添加剤(37)を通水に伴い低温水に添加するスケール生成抑制手段(38)とを備え、スケール生成抑制手段(38)は、低温水の流れ方向からみて貯湯タンク(6)から水流路(2b)に至るまでの水循環路(9)に設けられる。

Description

給湯システム
 本発明は、給湯システムに関し、詳しくは加熱ユニットの熱交換器によって水を沸き上げる給湯システムに関する。
 この種の給湯システムは省エネや地球環境への負荷軽減を目的として普及が促進され、ヒートポンプユニット(加熱ユニット)の冷媒循環路を流れる高温冷媒によってタンクユニットの貯湯タンクから水循環路に流れる水を加熱して沸き上げるガスクーラ(熱交換器)を備えている。
 ガスクーラは、高温冷媒が流入される冷媒流路と水が流入される水流路とを有しており、水流路には炭酸カルシウムを主成分とするスケールが付着、堆積し、このスケールによって水流路が閉塞することが知られている。
 そして、このようなスケールを除去するために、特許文献1には、水に含まれる有機物、硬度成分、塩素などを除去する活性炭、中空糸膜フィルター、イオン交換樹脂などの除去手段を有する浄水手段を備えた貯湯式給湯装置が開示されている。この浄水手段は、水回路に設けられる放熱熱交換器内で水が高温冷媒から硬度成分の溶解度以上の温度まで加熱された結果、放熱熱交換器内部に硬度成分がスケールとして析出生成されることを防止している。
 また、特許文献2には、流体加熱装置内にスケールが付着した場合にバイパス路を開いて浴槽への流体の循環を停止し、流体加熱装置を空炊き又は煮沸させることにより金属管の内面に付着するスケールを剥離させ、フィルター等で除去する技術が開示されている。
 更に、特許文献3には、水回路を流れる水流量を監視することで水回路のつまりを検知するつまり検知手段と、水回路に最大流量で加圧通水させることで水回路のつまりを除去するつまり除去手段とを備えたヒートポンプ給湯機が開示されている。
特開2008-157517号公報 特開平7-324806号公報 特開2004-144445号公報
 しかしながら、上記特許文献1の技術では水流路に一旦付着して堆積したスケールを除去することは困難である。また、上記特許文献2に示される空炊き・煮沸や上記特許文献3に示される加圧通水によっても、水流路に強固に付着、堆積した硬いスケールを剥離するのは容易ではなく、また、給湯システムにおいて空炊き・煮沸運転や加圧通水運転のモード及び設備を要して給湯システムの構成が複雑になるとの問題もある。
 更に、上記特許文献1では、開閉扉によって浄水手段の除去手段の交換及びメンテナンスを行うことができるものの、除去手段には常時通水されることとなるため、除去手段の寿命が短くなり、その交換及びメンテナンス頻度やコストが増大し、給湯システムのランニングコストが増大するとの問題もある。
 本発明は、このような課題に鑑みてなされたもので、熱交換器の水流路におけるスケールの生成を抑制して水流路の閉塞を簡易にして確実に防止し、ランニングコストを低減しつつ熱効率を向上することができる給湯システムを提供することを目的とする。
 上記の目的を達成するべく、請求項1記載の給湯システムは、加熱ユニットの冷媒循環路を流れる高温冷媒によってタンクユニットの貯湯タンクから水循環路を流れる低温水を所定の出湯温度まで加熱して沸き上げる沸き上げ動作を行う給湯システムであって、沸き上げ動作の作動によって高温冷媒が流入される冷媒流路と、低温水が流入される水流路とを有する熱交換器と、水流路におけるスケールの生成を抑制する添加剤を通水に伴い低温水に添加するスケール生成抑制手段とを備え、スケール生成抑制手段は、低温水の流れ方向からみて貯湯タンクから水流路に至るまでの水循環路に設けられることを特徴としている。
 また、請求項2記載の発明では、請求項1において、スケール生成抑制手段を迂回して水流路に通水させるバイパス路と、バイパス路とスケール生成抑制手段とを切り換えて通水させる第1の流路切換手段とを備え、第1の流路切換手段によってバイパス路からスケール生成抑制手段に切り換えて通水させるスケール生成抑制動作を作動させることを特徴
としている。
 更に、請求項3記載の発明では、請求項2において、沸き上げ動作の作動直前または作動直後の少なくとも何れか一方のときにスケール生成抑制動作を作動させることを特徴としている。
 更にまた、請求項4記載の発明では、請求項2または3において、水流路におけるスケールの堆積を検出するスケール堆積検出手段を備え、スケール堆積検出手段にてスケールが堆積したことが検出されたときにスケール生成抑制動作を作動させることを特徴としている。
 また、請求項5記載の発明では、請求項4において、低温水の流れ方向からみて貯湯タンクから水流路に至るまでの水循環路に設けられる水ポンプを備え、スケール堆積検出手段は、水ポンプの回転数が所定の上限設定回転数以上となるときに、水流路にスケールが堆積したと判定することを特徴としている。
 更に、請求項6記載の発明では、請求項4または5において、冷媒流路に流入される高温冷媒の温度を検出する冷媒温度検出手段を備え、スケール堆積検出手段は、冷媒温度検出手段にて検出された温度が所定の上限設定温度以上となるときに、水流路にスケールが堆積したと判定することを特徴としている。
 更にまた、請求項7記載の発明では、請求項2乃至6の何れかにおいて、低温水の流れ方向からみて水流路から貯湯タンクに至るまでの水循環路に設けられる排水路と、水循環路と排水路とを切り換えて通水させる第2の流路切換手段とを備え、スケール生成抑制動作の作動時に、第2の流路切換手段によって水循環路から排水路に切り換えて通水させることを特徴としている。
 また、請求項8記載の発明では、請求項2乃至7の何れかにおいて、スケール生成抑制動作を作動させた後にスケール堆積検出手段が水流路におけるスケールの堆積を検出するときに、添加剤の減少または枯渇を報知する報知手段を備えることを特徴としている。
 更に、請求項9記載の発明では、請求項1乃至8の何れかにおいて、添加剤はポリ燐酸塩を主成分とし、スケール生成抑制手段は、通水に伴いポリ燐酸塩を低温水に溶解させて添加する添加器であることを特徴としている。
 更にまた、請求項10記載の発明では、請求項1乃至9の何れかにおいて、加熱ユニットはヒートポンプユニットであることを特徴としている。
 請求項1記載の本発明の給湯システムによれば、スケール生成抑制手段は、水の流れ方向からみて貯湯タンクから水流路に至るまでの水循環路に設けられる。これにより、例えば貯湯タンクへの給水路などから添加剤を添加する場合に比して、水流路のみを目標にして添加剤を効率的に水に添加することができるため、通水に伴い低温水に添加される添加剤の使用量を低減しつつ、水流路におけるスケールの生成を効果的に抑制し、水流路の閉塞を簡易にして確実に防止することができる。従って、給湯システムのランニングコストを低減しつつ、給湯システムの熱効率を向上することができる。
 また、請求項2記載の発明によれば、給湯システムは第1の流路切換手段によってバイパス路からスケール生成抑制手段に切り換えてスケール生成抑制動作を作動させる。これにより、水流路にスケールが付着、堆積した場合のみにスケール生成抑制動作を作動させることが可能であり、添加剤の使用量を更に低減しつつ水流路におけるスケールの生成を効果的に抑制することができる。
 更に、請求項3記載の発明によれば、沸き上げ動作の作動直前または作動直後の少なくとも何れか一方のときにスケール生成抑制動作を作動させることにより、水流路にスケールが付着、堆積した場合には、沸き上げ動作の作動直前にスケール生成抑制動作を作動させることで、水流路のスケールを剥離させて熱交換器、ひいては給湯システムの熱効率の向上を図ることができる。
 また、沸き上げ動作の作動直後にスケール生成抑制動作を作動させることで、高温により水流路にスケールが生成されやすい環境においてスケールの生成を効果的に抑制することができるため、水流路の閉塞を更に確実に防止することができる。
 更に、請求項4記載の発明によれば、スケール堆積検出手段にてスケールが堆積したことが検出されたときにスケール生成抑制動作を作動させることにより、添加剤の使用量をより一層低減しつつ、水流路におけるスケールの生成を効果的に抑制することができる。
 更にまた、請求項5記載の発明によれば、スケール堆積検出手段は、水ポンプの回転数が所定の上限設定回転数以上となるときに、水流路にスケールが堆積したと判定する。一般に、水ポンプはその回転数が出湯温度の上昇に伴い高回転に制御されることから、沸き上げ動作にて設定された出湯温度に比して、水ポンプの回転数が異常に高回転になることを検出することができる。従って、熱交換器の熱交換不良を給湯システムの運転情報に基づいて検出することができるため、水流路のスケール堆積による閉塞を確実に検出することができる。
 また、請求項6記載の発明によれば、スケール堆積検出手段は、冷媒温度検出手段にて検出された温度が所定の上限設定温度以上となるときに、水流路にスケールが堆積したと判定する。これにより、沸き上げ動作にて設定された出湯温度に比して、加熱ユニットにおいて加熱された高温冷媒が異常に高温になることを検出することができる。従って、冷媒の異常高温をもたらした熱交換器の熱交換不良を給湯システムの運転情報に基づいて検出することができるため、水流路のスケール堆積による閉塞を確実に検出することができる。
 更に、請求項7記載の発明によれば、スケール生成抑制動作の作動時に、第2の流路切換手段によって水循環路から排水路に切り換えて通水させることにより、水流路から剥離されたスケールを水循環路外に排出させることができ、水循環路を循環する水の清浄化を図ることができるため、熱交換器、ひいては給湯システムの熱効率を確実に向上することができる。
 更にまた、請求項8記載の発明によれば、スケール生成抑制動作を作動させた後にスケール堆積検出手段が水流路におけるスケールの堆積を検出するときに、スケール生成抑制手段に対する添加剤の減少または枯渇を報知する報知手段を備える。これにより、スケール生成抑制手段の添加剤の補充管理を容易に行うことができ、給湯システムのユーザの利便性を向上することができる。従って、給湯システムの自動化を促進することができるため、給湯システムの管理費に係るランニングコストの低減を図ることができる。
 また、請求項9記載の発明によれば、スケール生成抑制手段は、通水に伴いポリ燐酸塩を水に溶解させて添加する添加器である。ポリ燐酸塩には、スケールの主成分である炭酸カルシウムの結晶を変形させて成長を抑制し、水流路に対するスケールの付着、堆積を防止する解膠作用があり、水流路に強固に付着、堆積した硬いスケールを効果的に除去することができる。しかも、ポリ燐酸塩は、スケールを溶解して除去するのではなく、炭酸カルシウムの結晶を変形させてスケール化し難くすることから、スケールを溶解して除去する場合に比して、逆反応によるスケールの再析出等を懸念することなく水流路の閉塞を確実に防止することができる。
 更に、請求項10記載の発明によれば、具体的には、加熱ユニットはヒートポンプユニットである。
第1実施形態に係る給湯システムの概略構成を示す図である。 図1の添加器の縦断面図である。 第2実施形態に係る給湯システムの概略構成を示す図である。 第3実施形態に係る給湯システムの概略構成を示す図である。 第4実施形態に係る給湯システムの概略構成を示す図である。 第5実施形態に係る給湯システムの概略構成を示す図である。
 以下、本発明の実施の形態を図面に基づき先ず第1実施形態から説明する。
 図1は第1実施形態に係る給湯システム1の概略構成を示している。この給湯システム1は、高温冷媒によって水を所定の出湯温度まで加熱して沸き上げるガスクーラ(熱交換器)2を有するヒートポンプユニット(加熱ユニット)4と、ガスクーラ2にて沸き上げられた湯水が貯留される貯湯タンク6を有するタンクユニット8とから構成されている。
 ヒートポンプユニット4は、CO冷媒が循環する冷媒循環路5に、実線矢印で示す冷媒の流れ方向から順に、圧縮機10、ガスクーラ2、膨張弁12、蒸発器14が介挿されて冷凍サイクルを構成している。
 ヒートポンプユニット4は、圧縮機10によって超臨界状態まで圧縮された高温高圧のガス冷媒をガスクーラ2において貯湯タンク6に貯湯された水と熱交換させて水を加熱して沸き上げる。この熱交換によって高温高圧のまま液化された液冷媒は、膨張弁12で断熱膨張されて低温低圧の気液混合の冷媒にされ、更に蒸発器14に備えられたファン15によって外気により蒸発されて低温低圧のガス冷媒にされ、再び圧縮機10にて超臨界状態まで圧縮される。
 ここで、ガスクーラ2は、例えば、冷媒循環路5に介挿される冷媒流路2aが後述する水循環路9に介挿される水流路2b内に配置されたチューブインチューブ式の熱交換器であって、水流路2bを流れる水は冷媒流路2aを流れる冷媒によって加熱して沸き上げられる。
 一方、タンクユニット8は、水が循環する水循環路9に、実線矢印で示す水の流れ方向から順に、水ポンプ16、ガスクーラ2、貯湯タンク6が順次介挿されて水回路を構成している。
 貯湯タンク6の上端部には、水循環路9のうち、ガスクーラ2の水流路2bを通過した高温水が流れる高温水路9aが接続されている。また、貯湯タンク6の上端部には給湯路18が接続され、給湯路18は給湯システム1の外部に設けられる給湯先20(風呂、シャワー、台所、洗面所等の水回り)に延びている。
 貯湯タンク6の下端部には、水循環路9のうち、ガスクーラ2の水流路2bを通過する前の低温水が流れる低温水路9bが接続されている。また、貯湯タンク6の下端部には給水路22が接続され、給水路22は給湯システム1の外部に設けられる給水源24(水道水栓等)に延びている。
 このように構成される貯湯タンク6には、その上端部からガスクーラ2にて沸き上げられた所定温度(例えば70℃程度)の高温水が高温水路9aを介して流入され、その下端部からは水道水等の所定温度(例えば15℃程度)の低温水が給水路22を介して流入される。そして、貯湯タンク6内には、その上端部から順に、高温水が滞留する高温水域26、高温水よりも低温で且つ低温水よりも高温となる所定温度帯(例えば32℃~37℃程度)の中温水が滞留する中温水域28、及び低温水が滞留する低温水域30が層状をなして形成される。
 一方、高温水路9aと、貯湯タンク6と水ポンプ16との間の低温水路9bとは連通路32によって接続され、高温水路9aと連通路32との接続箇所には三方弁34が介挿されている。
 三方弁34は、その弁体を切り換えることによって高温水路9aと連通路32とを切り換えて連通可能であり、連通路32を連通させることにより水循環路9において貯湯タンク6を迂回して水を循環させることができる。
 そして、給湯システム1は、ヒートポンプユニット4及びタンクユニット8を総合的に制御する電子制御ユニット(ECU)36を備え、ECU36には、圧縮機10、ファン15、水ポンプ16、三方弁34などの駆動部が電気的に接続されている。
 以下、このように構成された給湯システム1の作動について説明する。
 先ず、ECU36は、給湯システム1の学習制御に応じて、ヒートポンプユニット4の冷媒循環路5を流れる高温冷媒によってタンクユニット8の貯湯タンク6から水循環路9を流れる低温水を高温水に沸き上げる沸き上げ動作が定期的に作動される。
 詳しくは、ヒートポンプユニット4では、圧縮機10及びファン15が起動され、冷媒流路2aに圧縮機10にて圧縮された高温冷媒が流入される。タンクユニット8では、水ポンプ16が起動され、貯湯タンク6に貯留された低温水域30の低温水が低温水路9bを通過し水流路2bに流入され、上記沸き上げ動作が行われる。
 沸き上げ動作の作動に伴い、水ポンプ16はその回転数が給湯システム1のユーザによって予め設定された出湯温度の上昇に伴い高回転に制御される。そして、水流路2bを流れる低温水は冷媒流路2aを流れる高温冷媒によって上記出湯温度になるように高温に加熱され、この際に、水流路2b内には炭酸カルシウムを主成分とするスケールの生成が促進される環境が形成される。
 詳しくは、水道水中に含まれる塩化カルシウム(CaCl2)と炭酸水素ナトリウム(NaHCO3)とが反応し、中間反応物として塩化ナトリウム(NaCl)と炭酸水素カルシウム(Ca(HCO3)2)とが生成される。次に、上記中間反応物が互いに反応して、最終的に二酸化炭素(CO2)、水(H2O)、塩化ナトリウム(NaCl)、炭酸カルシウム(CaCO3)が生成される。この化学反応は可逆反応である。
 ここで、水の流れ方向からみて貯湯タンク6から水流路2bに至るまでの水循環路9、より詳しくは、水ポンプ16と水流路2bとの間の低温水路9bに、水流路2bにおけるスケールの生成を抑制する添加剤37を低温水に溶解させて供給する添加器(スケール生成抑制手段)38が介挿されている。
 図2は添加器38の縦断面図を示している。添加器38は、低温水路9bの管端が接続される上蓋部材40と、プラスティックやガラスなどの透明材からなる円筒部材42と、下蓋部材44と、プラスティックやガラスなどの透明材からなる添加剤37の収容部材46とから構成されている。円筒部材42及び収容部材46を透明材で形成することで、収容部材46に充填される添加剤37の減少や枯渇を目視で確認可能である。
 上蓋部材40及び下蓋部材44は、円筒部材42の両端開口に気密に接続され、上蓋部材40の接続側からは円筒部材42内に収容部材46が収容可能に構成されており、上蓋部材40、下蓋部材44、及び収容部材46は円筒部材42に対して着脱可能に構成されている。
 上蓋部材40には、その側部開口に低温水の入口部40aが形成され、上蓋部材40の上部開口には低温水の出口部40bが形成され、低温水路9bの管端はこれら入口部40a及び出口部40bに気密に接続されている。
 収容部材46は、添加剤37が充填される円筒胴部46aと、円筒胴部46aの上部において円筒胴部46aから縮径開口される低温水の出口部46bと、円筒胴部46aの下部に接続された底蓋46cに開口される複数の低温水の入口部46dとから構成されている。
 収容部材46の出口部46bは、上蓋部材40の出口部40bに気密に接続されている。また、円筒胴部46aに対して底蓋46cは着脱可能に構成されており、底蓋46cを外すことで収容部材46に添加剤37を充填することができる。
 ここで、収容部材46には添加剤37が複数充填されており、各添加剤37はポリ燐酸塩を主成分とした直径20mm程度の白色または透明な球状をなしている。添加剤37の形状を球状とすることによって個々の添加剤37の表面積が一定となるため、低温水に対する溶解量が安定し、濃度管理が容易となり、低温水の通水の際の圧力損失も低減することができる。
 ポリ燐酸塩には、スケールの主成分である炭酸カルシウムの結晶を変形させて成長を抑制し、水流路2bに対するスケールの付着、堆積を防止する解膠作用がある。詳しくは、ポリ燐酸塩は、炭酸カルシウムの菱面体の結晶を球面体の小さな結晶に変えて水流路2bへの沈着を防止するとともに、水流路2bに付着、堆積された硬いスケールも徐々に解きほぐす。すなわち、ポリ燐酸塩はスケールを溶解して除去するのではなく、炭酸カルシウムの結晶を変形させてスケール化し難くする作用を有している。
 このように構成される添加器38では、図2中に実線で示されるように、低温水が低温水路9bから入口部40aを通過して円筒部材42の内側面と円筒胴部46aの外側面との隙間を流れた後に入口部46dから円筒胴部46aに流入される。低温水には円筒胴部46aを通過する際に添加剤37が溶解され、添加剤37が溶解された低温水は出口部46a、40bを順次通過して低温水路9bに戻される。
 以上のように、本実施形態では、添加器38が低温水路9bに設けられ、添加器38は通水に伴い添加剤37の主成分であるポリ燐酸塩を水に溶解させて添加する。これにより、添加剤37を例えば貯湯タンク6への給水路22などから添加する場合に比して、水流路2bのみを目標にして添加剤37を効率的に水に添加することができるため、通水に伴い低温水に添加される添加剤37の使用量を低減しつつ水流路2bにおけるスケールの生成を効果的に抑制し、水流路2bの閉塞を簡易にして確実に防止することができる。従って、給湯システム1のランニングコストを低減しつつ、給湯システム1の熱効率を向上することができる。
 また、ポリ燐酸塩にはスケールの主成分である炭酸カルシウムの結晶を変形させて成長を抑制し、水流路2bに対するスケールの付着、堆積を防止する解膠作用があり、水流路2bに強固に付着、堆積した硬いスケールを効果的に除去することができる。しかも、ポリ燐酸塩はスケールを溶解して除去するのではなく、炭酸カルシウムの結晶を変形させてスケール化し難くすることから、スケールを溶解して除去する場合に比して、逆反応によるスケールの再析出等を懸念することなく水流路2bの閉塞を確実に防止することができる。
 図3は、本発明の第2実施形態に係る給湯システム48の概略構成を示しており、上記第1実施形態の給湯システム1と同一の構成については、同じ符号を付して説明を省略する。
 給湯システム48は、低温水路9bから添加器38を迂回して分岐し、再び低温水路9bに合流するバイパス路50を備え、バイパス路50の低温水路9bからの分岐箇所には三方弁(第1の流路切換手段)52が介挿されている。三方弁52は、その弁体を切り換えることによって低温水路9bとバイパス路50とを切り換えて連通可能であり、バイパス路50を連通させることにより水循環路9において添加器38を迂回して水を循環させることができる。
 三方弁52の駆動部はECU36に電気的に接続されており、ECU36は、三方弁52の弁体をバイパス路50側から添加器38側に切り換えて添加器38に通水させるスケール生成抑制動作を作動させる(スケール生成抑制手段)。
 詳しくは、まず給湯システム48の初期状態においては、バイパス路50が連通され、添加器38には通水されていない。次に、給湯システム48の学習制御に応じて沸き上げ動作の作動が開始される所定時間前から沸き上げ動作の作動直前までの間に、三方弁52によってバイパス路50から添加器38に切り換えて通水され、スケール生成抑制動作が作動される。
 この給湯システム48では、水流路2bにスケールが既に付着、堆積している場合において、沸き上げ動作の作動直前にスケール生成抑制動作を作動させることで、水流路2bのスケールを剥離させてガスクーラ2、ひいては給湯システム48の熱効率の向上を図ることができる。
 また、変形例として、沸き上げ動作の作動直後から所定時間の間に、三方弁52によってバイパス路50から添加器38に切り換えて通水し、スケール生成抑制動作を作動させるようにしても良いし、沸き上げ動作の作動直前及び作動直後の両方の所定時間の間においてスケール生成抑制動作を作動させるようにしても良い(スケール生成抑制手段)。
 この場合には、沸き上げ動作の作動直後は高温により水流路2bにスケールが生成されやすい環境が形成されるため、沸き上げ動作の作動直後にスケール生成抑制動作を作動させることで、スケールの生成を効果的に抑制することができ、水流路2bの閉塞を更に確実に防止することができる。
 更に、別の変形例として、ECU36にて設定される水ポンプ(スケール堆積検出手段)16の回転数が所定の上限設定回転数以上となるときに、水流路2bにスケールが堆積したと判定し、スケール生成抑制動作を作動させても良い(スケール生成抑制手段)。
 この場合には、スケールが堆積したことが検出されたときにのみスケール生成抑制動作を作動させることが可能であり、添加剤37の使用量をより一層低減しつつ、水流路2bにおけるスケールの生成を効果的に抑制することができる。
 特に、水ポンプ16の回転数が出湯温度の上昇に伴い高回転に制御されることから、沸き上げ動作にて設定された出湯温度に比して、水ポンプ16の回転数が異常に高回転になることを検出することができる。従って、ガスクーラ2の熱交換不良を給湯システム48の運転情報に基づいて検出することができるため、水流路2bのスケール堆積による閉塞を確実に検出することができる。
 図4は、本発明の第3実施形態に係る給湯システム54の概略構成を示しており、上記第2実施形態の給湯システム48と同一の構成については、同じ符号を付して説明を省略する。
 給湯システム54には、圧縮機10とガスクーラ2との間の冷媒循環路5に、圧縮機10によって超臨界状態まで圧縮された高温高圧のガス冷媒の温度を検出する冷媒温度センサ(冷媒温度検出手段、スケール堆積検出手段)56が設けられている。冷媒温度センサ56の信号の出力端子はECU36に電気的に接続されており、ECU36は、冷媒温度センサ56にて検出された冷媒温度に応じてスケール生成抑制動作を行う(スケール生成抑制手段)。
 具体的には、ECU36は、冷媒温度センサ56にて検出された高温冷媒の温度が所定の上限設定温度以上となるときに、水流路2bにスケールが堆積したと判定し、スケール生成抑制動作を作動させる。
 この給湯システム54では、スケール堆積検出手段を冷媒温度センサ56とすることで、沸き上げ動作にて設定された出湯温度に比して、ヒートポンプユニット4において加熱された高温冷媒が異常に高温になることを検出することができる。従って、冷媒の異常高温をもたらしたガスクーラ2の熱交換不良を冷媒温度という給湯システム54の運転情報に基づいて検出することができるため、水流路2bのスケール堆積による閉塞を確実に検出することができる。
 図5は、本発明の第4実施形態に係る給湯システム58の概略構成を示しており、上記第3実施形態の給湯システム54と同一の構成については、同じ符号を付して説明を省略する。
 給湯システム58では、水流路2bと三方弁34との間の高温水路9aに排水路60が接続され、排水路60は給湯システム58の外部に設けられる排水先62に延び、高温水路9aと排水路60との接続箇所には三方弁(第2の流路切換手段)64が介挿されている。三方弁64は、その弁体を切り換えることによって高温水路9aと排水路60とを切り換えて連通可能であり、三方弁64の駆動部はECU36に電気的に接続されている。
 この場合には、ECU36はスケール生成抑制動作の作動時に三方弁64の弁体を高温水路9a側から排水路60側に切り換えて排水路60に通水させることにより、水流路2bから剥離されたスケールを水循環路9外に排出させることができる。従って、水循環路9を循環する水の清浄化を図ることができるため、ガスクーラ2、ひいては給湯システム58の熱効率の更なる向上を図ることができる。
 図6は、本発明の第5実施形態に係る給湯システム66の概略構成を示しており、上記第4実施形態の給湯システム58と同一の構成については、同じ符号を付して説明を省略する。
 給湯システム66は、添加器38に充填された添加剤37の減少または枯渇を給湯システム66のユーザに音声や画面表示で報知する報知器(報知手段)68を備え、報知器68はECU36に電気的に接続されている。報知器68は、スケール生成抑制動作を作動させた後にスケール堆積検出手段が水流路2bにおけるスケールの堆積を検出するときに、添加剤37が減少または枯渇したと判定してこれを報知するものである。
 この場合には、スケール生成抑制手段の添加剤37の補充管理を容易に行うことができるため、給湯システム66のユーザの利便性を大幅に向上することができ、給湯システム66の自動化を促進することができるため、給湯システム66の管理費に係るランニングコストの低減を図ることができる。
 本発明は、上述した第1乃至第5実施形態に限定されることはなく種々の変形が可能である。
 例えば、給湯システム1,48,54,58,66の構成に限らず、給湯システムを高温タンクと低温タンクとを備え2タンク構成にしても上記と同様の効果を得ることができるのは勿論である。
 また、添加剤37は同様の作用を有するのであれば、その主成分はポリ燐酸塩に限定されないし、冷媒もCOガスに限定されない。しかし、ポリ燐酸塩は安全性が高いことが知られており、また、COガスは地球環境に対して低負荷であることから、これらを使用するのが好ましい。
 更に、ヒートポンプユニット4を備えた給湯システム1,48,54,58,66に限らず、ガス式や電気式の温水器など他の加熱ユニットを備えた給湯システムにも適用できることは云うまでもない。
  1,48,54,58,66  給湯システム
  2  ガスクーラ(熱交換器)
 2a  冷媒流路
 2b  水流路
  4  ヒートポンプユニット(加熱ユニット)
  5  冷媒循環路
  6  貯湯タンク
  8  タンクユニット
  9  水循環路
 16  水ポンプ(スケール堆積検出手段)
 37  添加剤
 38  添加器(スケール生成抑制手段)
 50  バイパス路
 52  三方弁(第1の流路切換手段)
 56  冷媒温度センサ(冷媒温度検出手段、スケール堆積検出手段)
 60  排水路
 64  三方弁(第2の流路切換手段)
 68  報知器(報知手段)

Claims (10)

  1.  加熱ユニットの冷媒循環路を流れる高温冷媒によってタンクユニットの貯湯タンクから水循環路を流れる低温水を所定の出湯温度まで加熱して沸き上げる沸き上げ動作を行う給湯システムであって、
     前記沸き上げ動作の作動によって前記高温冷媒が流入される冷媒流路と、前記低温水が流入される水流路とを有する熱交換器と、
     前記水流路におけるスケールの生成を抑制する添加剤を通水に伴い前記低温水に添加するスケール生成抑制手段とを備え、
     前記スケール生成抑制手段は、前記低温水の流れ方向からみて前記貯湯タンクから前記水流路に至るまでの前記水循環路に設けられることを特徴とする給湯システム。
  2.  前記スケール生成抑制手段を迂回して前記水流路に通水させるバイパス路と、
     前記バイパス路と前記スケール生成抑制手段とを切り換えて通水させる第1の流路切換手段とを備え、
     前記第1の流路切換手段によって前記バイパス路から前記スケール生成抑制手段に切り換えて通水させるスケール生成抑制動作を作動させることを特徴とする請求項1に記載の給湯システム。
  3.  前記沸き上げ動作の作動直前または作動直後の少なくとも何れか一方のときに前記スケール生成抑制動作を作動させることを特徴とする請求項2に記載の給湯システム。
  4.  前記水流路におけるスケールの堆積を検出するスケール堆積検出手段を備え、
     前記スケール堆積検出手段にてスケールが堆積したことが検出されたときに前記スケール生成抑制動作を作動させることを特徴とする請求項2または3に記載の給湯システム。
  5.  前記低温水の流れ方向からみて前記貯湯タンクから前記水流路に至るまでの前記水循環路に設けられる水ポンプを備え、
     前記スケール堆積検出手段は、前記水ポンプの回転数が所定の上限設定回転数以上となるときに、前記水流路にスケールが堆積したと判定することを特徴とする請求項4に記載の給湯システム。
  6.  前記冷媒流路に流入される前記高温冷媒の温度を検出する冷媒温度検出手段を備え、
     前記スケール堆積検出手段は、前記冷媒温度検出手段にて検出された温度が所定の上限設定温度以上となるときに、前記水流路にスケールが堆積したと判定することを特徴とする請求項4または5に記載の給湯システム。
  7.  前記低温水の流れ方向からみて前記水流路から前記貯湯タンクに至るまでの前記水循環路に設けられる排水路と、
     前記水循環路と前記排水路とを切り換えて通水させる第2の流路切換手段とを備え、
     前記スケール生成抑制動作の作動時に、前記第2の流路切換手段によって前記水循環路から前記排水路に切り換えて通水させることを特徴とする請求項2乃至6の何れかに記載の給湯システム。
  8.  前記スケール生成抑制動作を作動させた後に前記スケール堆積検出手段が前記水流路におけるスケールの堆積を検出するときに、前記添加剤の減少または枯渇を報知する報知手段を備えることを特徴とする請求項2乃至7の何れかに記載の給湯システム。
  9.  前記添加剤はポリ燐酸塩を主成分とし、
     前記スケール生成抑制手段は、通水に伴い前記ポリ燐酸塩を前記低温水に溶解させて添加する添加器であることを特徴とする請求項1乃至8の何れかに記載の給湯システム。
  10.  前記加熱ユニットはヒートポンプユニットであることを特徴とする請求項1乃至9の何れかに記載の給湯システム。
     
PCT/JP2010/065949 2009-09-28 2010-09-15 給湯システム WO2011037055A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20100818730 EP2469197A4 (en) 2009-09-28 2010-09-15 HOT WATER SUPPLY SYSTEM
AU2010299259A AU2010299259B2 (en) 2009-09-28 2010-09-15 Hot water supply system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-222336 2009-09-28
JP2009222336A JP5308977B2 (ja) 2009-09-28 2009-09-28 給湯システム

Publications (1)

Publication Number Publication Date
WO2011037055A1 true WO2011037055A1 (ja) 2011-03-31

Family

ID=43795805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065949 WO2011037055A1 (ja) 2009-09-28 2010-09-15 給湯システム

Country Status (4)

Country Link
EP (1) EP2469197A4 (ja)
JP (1) JP5308977B2 (ja)
AU (1) AU2010299259B2 (ja)
WO (1) WO2011037055A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2664860A1 (en) * 2012-05-18 2013-11-20 Panasonic Corporation Water heater comprising scale suppressing device
CN113520155A (zh) * 2020-04-14 2021-10-22 广东美的生活电器制造有限公司 液体加热装置的控制方法、液体加热装置和存储介质
US20220235945A1 (en) * 2019-11-05 2022-07-28 Daikin Industries, Ltd. Hot water supply apparatus

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5824638B2 (ja) * 2011-06-13 2015-11-25 パナソニックIpマネジメント株式会社 給湯装置
JP5938573B2 (ja) * 2011-12-20 2016-06-22 パナソニックIpマネジメント株式会社 給湯装置
JP2014081115A (ja) * 2012-10-16 2014-05-08 Panasonic Corp 給湯装置
JP2014081116A (ja) 2012-10-16 2014-05-08 Panasonic Corp 給湯装置
JP6212698B2 (ja) * 2012-10-16 2017-10-18 パナソニックIpマネジメント株式会社 給湯装置
JP2014081117A (ja) * 2012-10-16 2014-05-08 Panasonic Corp 給湯装置
JP6078787B2 (ja) * 2013-02-21 2017-02-15 パナソニックIpマネジメント株式会社 給湯装置
JP2014163567A (ja) 2013-02-25 2014-09-08 Panasonic Corp 給湯装置
JP2014163566A (ja) 2013-02-25 2014-09-08 Panasonic Corp 給湯装置
EP2778561B1 (en) 2013-03-12 2018-12-19 Panasonic Corporation Water heater
JP2014173825A (ja) 2013-03-13 2014-09-22 Panasonic Corp 給湯装置
JP2015218925A (ja) 2014-05-15 2015-12-07 パナソニックIpマネジメント株式会社 給湯装置
US10871481B2 (en) 2015-01-30 2020-12-22 Hewlett Packard Enterprise Development Lp Sensors for cooling system fluid attributes
NL2014366B1 (en) * 2015-02-27 2016-10-14 Jb Horeca & Advies Component of a heating or cooling system.
JP6532494B2 (ja) * 2017-03-16 2019-06-19 栗田工業株式会社 逆浸透処理方法及び装置
GB2564834A (en) * 2017-05-04 2019-01-30 Dyson Technology Ltd Scale inhibition composition
JP2018153799A (ja) * 2018-01-10 2018-10-04 栗田工業株式会社 逆浸透処理方法及び装置
JP2022138749A (ja) * 2021-03-11 2022-09-26 株式会社小澤製作所 スケール抑制ユニット
KR20220146101A (ko) * 2021-04-23 2022-11-01 엘지전자 주식회사 수 처리 장치

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07324806A (ja) 1994-05-31 1995-12-12 Kyocera Corp 流体加熱装置及び循環温水器
JPH11125464A (ja) * 1997-10-22 1999-05-11 Matsushita Electric Ind Co Ltd ヒートポンプ給湯装置
JP2001324296A (ja) * 2000-05-18 2001-11-22 Kurita Water Ind Ltd 開放循環式冷却設備
JP2003097850A (ja) * 2001-09-21 2003-04-03 Toto Ltd 給湯機
JP2004144445A (ja) 2002-10-28 2004-05-20 Matsushita Electric Ind Co Ltd ヒートポンプ給湯機
JP2007181797A (ja) * 2006-01-10 2007-07-19 Kurita Water Ind Ltd ボイラプラント用液体清缶剤
JP2008157517A (ja) 2006-12-22 2008-07-10 Matsushita Electric Ind Co Ltd 貯湯式給湯装置
JP2008240132A (ja) * 2007-03-29 2008-10-09 Hakuto Co Ltd 腐食抑制剤
JP2009165955A (ja) * 2008-01-16 2009-07-30 Panasonic Corp 軟水化装置およびそれを用いた給湯装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2838661B2 (ja) * 1994-10-27 1998-12-16 夛加三 坂本 温泉水のスケール除去装置と温泉水を利用した熱交換装置
JP2004190924A (ja) * 2002-12-10 2004-07-08 Matsushita Electric Ind Co Ltd 給湯機
DE202004015423U1 (de) * 2004-10-01 2005-01-27 Judo Wasseraufbereitung Gmbh Vorrichtung zur Behandlung von Heizungswasser
GB2437605B (en) * 2006-08-21 2011-12-14 Christopher Sheppard System for introducing an additive into a water conduit
JP5224041B2 (ja) * 2007-06-27 2013-07-03 ダイキン工業株式会社 ヒートポンプ式給湯装置
JP5169267B2 (ja) * 2008-02-06 2013-03-27 三菱電機株式会社 風呂給湯装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07324806A (ja) 1994-05-31 1995-12-12 Kyocera Corp 流体加熱装置及び循環温水器
JPH11125464A (ja) * 1997-10-22 1999-05-11 Matsushita Electric Ind Co Ltd ヒートポンプ給湯装置
JP2001324296A (ja) * 2000-05-18 2001-11-22 Kurita Water Ind Ltd 開放循環式冷却設備
JP2003097850A (ja) * 2001-09-21 2003-04-03 Toto Ltd 給湯機
JP2004144445A (ja) 2002-10-28 2004-05-20 Matsushita Electric Ind Co Ltd ヒートポンプ給湯機
JP2007181797A (ja) * 2006-01-10 2007-07-19 Kurita Water Ind Ltd ボイラプラント用液体清缶剤
JP2008157517A (ja) 2006-12-22 2008-07-10 Matsushita Electric Ind Co Ltd 貯湯式給湯装置
JP2008240132A (ja) * 2007-03-29 2008-10-09 Hakuto Co Ltd 腐食抑制剤
JP2009165955A (ja) * 2008-01-16 2009-07-30 Panasonic Corp 軟水化装置およびそれを用いた給湯装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2469197A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2664860A1 (en) * 2012-05-18 2013-11-20 Panasonic Corporation Water heater comprising scale suppressing device
CN103423808A (zh) * 2012-05-18 2013-12-04 松下电器产业株式会社 供热水装置
US20220235945A1 (en) * 2019-11-05 2022-07-28 Daikin Industries, Ltd. Hot water supply apparatus
US11674695B2 (en) * 2019-11-05 2023-06-13 Daikin Industries, Ltd. Hot water supply apparatus
CN113520155A (zh) * 2020-04-14 2021-10-22 广东美的生活电器制造有限公司 液体加热装置的控制方法、液体加热装置和存储介质
CN113520155B (zh) * 2020-04-14 2022-07-08 广东美的生活电器制造有限公司 液体加热装置的控制方法、液体加热装置和存储介质

Also Published As

Publication number Publication date
EP2469197A4 (en) 2013-06-26
AU2010299259B2 (en) 2014-01-09
JP2011069572A (ja) 2011-04-07
EP2469197A1 (en) 2012-06-27
AU2010299259A1 (en) 2012-04-19
JP5308977B2 (ja) 2013-10-09

Similar Documents

Publication Publication Date Title
JP5308977B2 (ja) 給湯システム
JP3724475B2 (ja) ヒートポンプ給湯機
KR100795293B1 (ko) 알칼리 얼음 제조 기능을 구비한 냉온 얼음 정수기
WO2015057344A1 (en) A refrigerator appliance and a method for monitoring a water filter assembly within the same
JP2008232576A (ja) 給湯装置
JP2011025114A (ja) 切替型ro浄水器
JP2012117776A (ja) ヒートポンプ式給湯機
EP2824398B1 (en) Method of controlling a heat pump hot water supply system
JP2014200696A (ja) 給湯装置
US20100115989A1 (en) Apparatus and method for producing potable water
JP5517873B2 (ja) ヒートポンプ給湯機
KR101936733B1 (ko) 직수식 정수장치 및 직수식 정수장치의 디스케일 방법
JP5366744B2 (ja) 室外機用冷却装置
CN105776685B (zh) 净水器
JP2010210157A (ja) 給湯機
WO2013069684A1 (ja) フライヤー
JP2010190466A (ja) 給湯装置
JP2018065584A (ja) 浄水供給装置
US9889478B2 (en) Consumable descaling cartridges for a refrigerator appliance
JP2011112293A (ja) ヒートポンプ式給湯機
KR101339659B1 (ko) 정수기의 온수가열장치 및 그 제어방법
JP5842597B2 (ja) 貯湯式給湯機
KR100487799B1 (ko) 냉장고의 디스펜서용 히팅장치
CN220541442U (zh) 一种制冰机的水路系统及制冰机
JP2007120799A (ja) 貯湯式給湯器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10818730

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010818730

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010299259

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2010299259

Country of ref document: AU

Date of ref document: 20100915

Kind code of ref document: A