WO2011036998A1 - 太陽電池モジュールの製造装置、その製造方法、及び、太陽電池モジュール - Google Patents

太陽電池モジュールの製造装置、その製造方法、及び、太陽電池モジュール Download PDF

Info

Publication number
WO2011036998A1
WO2011036998A1 PCT/JP2010/065155 JP2010065155W WO2011036998A1 WO 2011036998 A1 WO2011036998 A1 WO 2011036998A1 JP 2010065155 W JP2010065155 W JP 2010065155W WO 2011036998 A1 WO2011036998 A1 WO 2011036998A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
bonding material
edges
temporary
solar cell
Prior art date
Application number
PCT/JP2010/065155
Other languages
English (en)
French (fr)
Inventor
直行 熱田
和徳 中北
豊治 寺田
Original Assignee
東レエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レエンジニアリング株式会社 filed Critical 東レエンジニアリング株式会社
Publication of WO2011036998A1 publication Critical patent/WO2011036998A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module configured by connecting a plurality of solar cells, a manufacturing apparatus and a manufacturing method thereof.
  • the solar cell module described in Patent Document 1 is configured to obtain a practical voltage by connecting a plurality of solar cells (solar cell elements) in series. For this reason, in the solar cell module described in Patent Document 1, conductive materials are provided on the front and back surfaces of each of the strip-shaped solar cells, and the edges of adjacent solar cells are placed up and down. A configuration is employed in which electrical connection is achieved by overlapping.
  • such a solar cell module is manufactured on the edge 80 a of the rightmost solar cell 80 placed on the work panel 79 and on the edge 80 a of another solar cell 80.
  • the edge portions 80a are successively stacked one after another.
  • the plurality of solar cells 80 in this state are put into a heating furnace (not shown), and the solder (joining metal) 81 interposed between the overlapped edges 80a and 80a is heated and melted. Then, it is cooled and solidified, and connected electrically and structurally.
  • an object of the present invention is to provide a solar cell module manufacturing apparatus and manufacturing method with good workability, and a solar cell module obtained by these manufacturing apparatus and manufacturing method.
  • This invention manufactures the solar cell module which has the said several photovoltaic cell by superimposing the edge parts of a photovoltaic cell, and joining the said edge parts with the joining material solidified according to temperature.
  • the temporary bonding apparatus having a first control unit that heats the temporary bonding material and solidifies at the first temperature to temporarily bond the edges, and the first temperature provided in the overlapping portion,
  • the second heating device and the second heating device that heats the main bonding material solidified at different second temperatures, the main bonding material is heated and solidified at the second temperature, and the edges
  • the second control unit Characterized in that a by which the bonding apparatus is.
  • the manufacturing method performed using the manufacturing apparatus includes a plurality of solar cells by overlapping the edges of solar cells and joining the edges with a bonding material that solidifies according to temperature.
  • the temporary bonding material provided in the overlapping portion where the edges are overlapped with each other is heated to a first temperature to solidify the edges.
  • Temporary bonding is performed, and then the main bonding material provided in the overlapped portion is heated to a second temperature to be solidified and the edges are finally bonded to each other.
  • the manufacturing apparatus and the manufacturing method of the present invention since temporary joining can be performed before the edges of the solar battery cells are joined to each other, the joining is performed later on a plurality of temporarily joined solar battery cells. It is possible to move to the step (main joining apparatus) while maintaining the shape, and the workability is improved.
  • the solar cell module of the present invention manufactured by the manufacturing apparatus and the manufacturing method is such that the edges of the solar battery cells are overlapped with each other, and the edges are bonded together by a bonding material that solidifies according to temperature.
  • the overlapping portion where the portions are overlapped with each other is characterized by being bonded by a plurality of types of the bonding materials having different solidifying temperatures. That is, a plurality of types of bonding materials having different solidification temperatures are used, and temporary bonding and main bonding are performed by different solidification temperatures.
  • each of the temporary bonding material and the main bonding material is a material that is in a molten state at a predetermined temperature and is solidified by lowering from the predetermined temperature to the first temperature and the second temperature, respectively.
  • the first control unit sets the temporary bonding material to be lower than the second temperature and the first temperature.
  • the second control unit has a function of controlling the first heating device so as to be solidified (solidified) by cooling to the first temperature after being heated to a temperature higher than the temperature, and the second controller A structure having a function of controlling the second heating device so as to solidify (solidify) the bonding material by heating it to a temperature higher than the second temperature and then cooling it to the second temperature.
  • the temporary bonding material when temporarily bonding, the temporary bonding material is heated to a temperature lower than the second temperature and higher than the first temperature, and then cooled to the first temperature.
  • the present bonding material does not melt even if it exists close to the temporary bonding material, and is not finally bonded.
  • the temporary joining material temporarily joined since the 2nd temperature which carries out final joining is higher than the 1st temperature at the time of temporary joining, the temporary joining material temporarily joined also joins when carrying out final joining. For this reason, at the time of this joining, the restriction
  • natural cooling may be performed by performing control which stops the heating by said 1st and 2nd heating apparatus, or another It may be a case where it is forcibly performed by performing control for operating the cooling device.
  • the first control unit sets only the temporary bonding material higher than the first temperature.
  • the first controller has a function of controlling the first heating device to solidify (solidify), the second control unit, the main bonding material, It has a function of controlling the second heating device so as to solidify (solidify) by heating to a temperature lower than the first temperature and higher than the second temperature and then cooling to the second temperature.
  • the present invention it is possible to move a plurality of temporarily joined solar cells for a subsequent process while maintaining the shape, and the workability is good, and the production efficiency of the solar cell module is improved. Can do. And in the case of this joining, since a shape is stabilized, a quality solar cell module is obtained.
  • FIG. 1 is an explanatory view showing a part of a solar cell module manufactured by the solar cell module manufacturing apparatus of the present invention.
  • module M the configuration of the solar cell module M (hereinafter also simply referred to as module M) will be described.
  • a plurality of solar cells 7 (hereinafter also simply referred to as cells 7) are provided side by side in one direction, and electrodes 31 are provided on both sides of the plurality of cells 7.
  • the cell 7 and the electrode 31 are sandwiched by the cover member 32 from both surfaces, and the module M forms an integral sheet.
  • the cover members 32 on both sides are made of a film-like resin member that is flexible and transmits sunlight, and is in close contact with the front and back surfaces of the cell 7 and the electrode 31.
  • Each cell 7 is configured by laminating a lower electrode layer 7b, a semiconductor layer 7c, and an upper electrode layer 7d in this order on a conductive substrate 7a having conductivity.
  • Adjacent cells 7 and 7 are overlapped at their edges 7e and 7e, and are electrically and structurally connected at the overlapped edges 7e and 7e.
  • the overlapped edge portions 7e and 7e are referred to as an overlapping portion 8.
  • a joining metal is interposed in the present embodiment. Specifically, the joining metal is made of solder (solder balls) 5.
  • the solder 5 is scattered along the edge 7e.
  • the conductive film 9 is interposed between the cell 7 on the upper side and the solder 5 and between the solder 5 and the cell 7 on the lower side. It may be a case of not interposing.
  • Each cell 7 has a strip shape (elongated thin plate shape) in which a direction parallel to the arrangement direction is a short direction, and a direction orthogonal to the arrangement direction is a long direction, and an edge portion on the long side 7e constitutes the overlapping portion 8.
  • Each cell 7 at both ends in the arrangement direction is electrically and structurally connected to the electrode 31.
  • the module M is directed in one direction (left and right in FIG. 2) as shown in FIG.
  • the edges 7e and 7e of the adjacent cells 7 and 7 are overlapped with each other so that the lengths of the cells 7 and 7 are sequentially increased.
  • the edge portions 7e and 7e of the overlapping portions 8 may be joined together by the solder 5 that solidifies from the molten state due to the temperature change.
  • FIG. 2A the edge portions 7e of a plurality (seven) of cells 7 are already overlaid.
  • FIG. 2A shows a state where a new cell 7 is being superimposed on the seven cells 7 from above, and this new cell 7 is referred to as a connected cell 11.
  • the cell to which the connection cell 11 is connected among the seven cells 7 that are already overlaid is referred to as a connected cell 21.
  • a connected cell 21 the cell to which the connection cell 11 is connected among the seven cells 7 that are already overlaid.
  • temporary joining and this joining are performed, and temporary joining is performed whenever the edge parts 7e and 7e are superimposed. And this joining is performed simultaneously about all the superimposition parts 8.
  • the manufacturing apparatus for manufacturing the module M includes a temporary bonding apparatus 40 that temporarily bonds the cells 7 and 7 and a main bonding that main bonds the temporarily bonded cells 7 and 7 together.
  • Device 50 Further, the manufacturing apparatus includes a solder supply device 60 that supplies the solder 5 onto the edge portion 7e of the cell 7 before temporary bonding.
  • the cover attachment apparatus 70 which attaches the cover member 32 so that the said cover member 32 (refer FIG. 1) pinches
  • the solder supply device 60 is a device in which the solder 5 is provided on the edge 7e of each cell 7 before the operation of superimposing the edge 7e.
  • a temporary solder 5A as a temporary bonding material for temporarily bonding the edges 7e and 7e is provided in a part of the overlapping portion 8, and the edges 7e and 7e are further bonded to each other.
  • This is a device in which a main solder 5B as a main bonding material is provided in the other part of the overlapping portion 8.
  • Each of the solders 5A and 5B is made of a solder ball and is temporarily fixed on the flux (not shown).
  • the solders 5A and 5B are provided at intervals along the longitudinal direction of the edge portion 7e.
  • the temporary solder 5A and the final solder 5B are made of materials having different solidification temperatures (melting points), and details thereof will be described later.
  • the temporary joining device 40 includes heaters 41a, 41b, 42a, and 42b as first heating devices for heating the temporary solder 5A as shown in FIGS. 2 (b) and 4 (a). Yes.
  • the left heaters 41 a and 41 b and the right heaters 42 a and 42 b are arranged so that the heat generating parts face each other with the overlapping part 8 interposed therebetween, and a part of the overlapping part 8 is included.
  • the temporary solder 5A located in the area is heated. In the embodiment, the part to be heated becomes both side portions where the temporary solder 5A is provided.
  • the heaters 41 a, 41 b, 42 a, 42 b are configured to heat each overlapping portion 8.
  • the first heating device is configured to partially heat the overlapping portion 8 and can raise the temperature so as to melt the temporary solder 5A, but the book that exists in the center excluding both side portions. The temperature is not increased until the solder 5B is melted.
  • the temporary joining apparatus 40 has the 1st control apparatus 3A which controls these heaters 41a, 41b, 42a, 42b. Specific control means will be described later.
  • the main joining device 50 has a heating furnace 51 as a second heating device for heating the permanent solder 5A, and the temperature in the heating furnace 51 is further increased.
  • the second control device 3B is controlled.
  • the heating furnace 51 is configured to collectively store a plurality of cells 7 in an overlapped state, and includes heaters 52a and 52b that raise the temperature inside the furnace to a predetermined temperature.
  • the second control device 3B controls the inside of the furnace to a predetermined temperature by the heaters 52a and 52b. That is, the heating furnace 51 collectively heats the plurality of cells 7 to heat the solder in each overlapping portion 8 together and melt the predetermined solder together.
  • the specific control means by the second control device 3B and the solder to be melted will be described later.
  • the control devices 3A and 3B are constituted by a computer having a processing device (CPU) and a storage device. A predetermined computer program is stored in the storage device. When the processing device (CPU) executes this computer program, the control devices 3A and 3B have a function of controlling the heating temperature by the heaters 41a, 41b, 42a and 42b and the temperature in the heating furnace 51. is doing.
  • the cover attaching device 70 (see FIG. 3) is a device for collecting the plurality of cells 7 that are joined together by the joining device 50 and covering the cells 7 from the front and back with the cover member 32. By attaching the cover member 32 to the plurality of cells 7, a sheet-like solar cell module M can be obtained.
  • the soldering temperature is such that the solidification temperature (second solidification temperature T2) of the permanent solder 5B is higher than the solidification temperature (first solidification temperature T1) of the temporary solder 5A.
  • Materials of 5A and 5B are set (T2> T1).
  • the permanent solder 5B includes tin silver copper
  • the temporary solder 5B includes tin silver bismuth.
  • the temporary solder 5A and the final solder 5B are provided on the edge 7e of each cell 7 by the solder supply device 60 (see FIG. 3).
  • temporary solder 5A is provided on both sides of the edge portion 8
  • final solder 5B is provided between the temporary solders 5A and 5A on both sides. Then, as shown in FIG. 2A, the edges 7e and 7e of the cells 7 and 7 (the connected cell 11 and the connected cell 21) are overlapped.
  • the temporary bonding apparatus 40 performs temporary bonding for each of the overlapping portions 8 that are overlapped.
  • the first control device 3A controls the heaters 41a, 41b, 42a, and 42b to bring the heaters into a heated state, whereby the temporary solder 5A provided on both sides is replaced with the first temporary solder 5A. Heat to a temperature higher than the solidification temperature T1. Thereafter, the heating solder is turned off to cool the temporary solder 5A, and the first solidification temperature T1 is solidified to solidify the edges 7a and 7b.
  • the first control device 3A sets the temporary solder 5A to a temperature lower than the second solidification temperature T2 of the final solder 5B and higher than the first solidification temperature T1 of the temporary solder 5A. After heating to ta (T2> ta> T1), it is cooled to a first solidification temperature T1.
  • the cooling may be natural cooling or forced cooling.
  • the temporary solder 5A is heated to a temperature ta lower than the second solidification temperature T2 and higher than the first solidification temperature T1 (T2>ta> T1).
  • T2>ta> T1 the first solidification temperature
  • the permanent solder 5B is not melted and is finally joined. There is no.
  • this temporary joining is performed in order with respect to all the overlapping parts 8 of the plurality of cells 7 constituting the module M.
  • the plurality of temporarily joined cells 7 are put into the heating furnace 51 of the main joining device 50 (see FIG. 4B).
  • the second control device 3B controls the temperature in the heating furnace 51 to heat the permanent solder 5B to a temperature tb (T2 ⁇ tb) higher than the second solidification temperature T2 of the permanent solder 5B.
  • T2 ⁇ tb a temperature higher than the second solidification temperature T2 of the permanent solder 5B.
  • the first solidification temperature T1 ⁇ the second solidification temperature T2 and the heating temperature tb for the main joining is higher than the second solidification temperature T2 (T2 ⁇ tb). Is higher than the first solidification temperature T1 (T1 ⁇ T2 ⁇ tb).
  • the finally joined cell 7 is taken out from the heating furnace 51 and conveyed to the cover attaching device 70 (see FIG. 3).
  • the cover attaching device 70 collects the plurality of cells 7 that have been joined together and covers them from the front and back with the cover member 32. By attaching the cover member 32 to the plurality of cells 7, a sheet-like solar cell module M is obtained.
  • the tacking step heating by a plurality of (four) heaters is performed for each overlapping portion 8, so the heating region may be narrow. This eliminates the need for strict soaking control for each heater and simplifies heater control. Further, since the temperature difference is unlikely to occur between the upper and lower edges 7e and 7e, the difference in thermal expansion and contraction due to the temperature difference between the edges 7e and 7e is also slight. Since the difference in thermal expansion / shrinkage between the connected cells 7 and 7 is small, the occurrence of warpage of the module M can be suppressed. Further, since the heating region for temporary bonding is partial, the influence on the region for main bonding in the vicinity thereof can be reduced. That is, it is possible to suppress a decrease in the function of the flux and oxidation of the conductive film 9 (see FIG. 1) provided for the permanent solder 5B in the portion of the overlapping portion 8 where the main bonding is performed.
  • the first solidification temperature T1 when the first solidification temperature T1 is exceeded, not only the permanent solder 5B but also the temporary solder 5A is melted, so that the restriction due to temporary bonding is released, and the thermal deformation between the edges 7e, 7e is achieved. Is free. For this reason, it is possible to prevent the residual stress from being generated in the overlapping portion 8, and it is possible to prevent the module M from undergoing deformation such as warping after the main joining.
  • the part to be temporarily joined has been described as the both sides of the edge 7e.
  • the center part of the edge 7e may be temporarily joined, and the number of parts to be temporarily joined is It can be changed, and the arrangement of the heaters may be changed accordingly.
  • FIG. 5 is a cross-sectional view illustrating the second embodiment.
  • the materials of the solders 5A and 5B are set so that the solidification temperature (second solidification temperature T2) of the permanent solder 5B is lower than the solidification temperature (first solidification temperature T1) of the temporary solder 5A. Is set (T2 ⁇ T1).
  • the final solder 5B includes tin silver bismuth
  • the temporary solder 5B includes tin silver copper.
  • the temporary solder 5A and the final solder 5B are provided on the edge 7e of each cell 7 by the solder supply device 60 (see FIG. 3).
  • the temporary solder 5 ⁇ / b> A is provided on the side portion (end portion) of the edge portion 8
  • the permanent solder 5 ⁇ / b> B is provided on the center side of the side portion.
  • the edges 7e and 7e of the cells 7 and 7 are overlapped.
  • the heater (first heating device) of the temporary joining device 40 is not present on both sides of the overlapping portion 8 but only on one side (part).
  • heaters 41a and 41b for heating the temporary solder 5A provided on one side (one end) of the edge 8 are provided.
  • the temporary solder 5A is not one side portion, but may be a central portion of the edge portion 8 or a portion between the side portion and the central portion (hereinafter, these are referred to as intermediate portions).
  • the cell 7 can be positioned with good balance.
  • the temporary bonding apparatus 40 performs temporary bonding with respect to each overlapping portion 8 that is overlapped. That is, the first control device 3A controls the heaters 41a and 41b to bring the heater into a heated state, so that only the temporary solder 5A provided on one side (or midway) is attached to the temporary solder 5A. To a temperature t3 higher than the first solidification temperature T1 (T1 ⁇ t3). After that, the heater is set in a heating stopped state, the temporary solder 5A is naturally cooled, and the first solidification temperature T1 is solidified to temporarily join the edges 7a and 7b. In such a temporary joining, only the temporary solder 5A is solidified after heating.
  • the heaters 41a and 41b are configured to heat not the entire region of the edge portion 7e but the narrow dotted side region of the edge portion 7e, and the heating region is the edge portion 7e of the cell 7. And just above and below the temporary solder 5A. For this reason, even if the second solidification temperature T2 of the permanent solder 5B is lower than the first solidification temperature T1 of the temporary solder 5A (T2 ⁇ T1), the permanent solder 5B does not melt and is finally joined. There is no.
  • this temporary joining is performed in order with respect to all the overlapping parts 8 of the plurality of cells 7 constituting the module M.
  • the plurality of cells 7 that are overlapped are integrated, and the shape is maintained, and can be moved to the next main joining step. .
  • the plurality of temporarily bonded cells 7 are put into the heating furnace 51 of the main bonding apparatus 50 (see FIG. 5B).
  • the temperature of the permanently attached solder 5B is lower than the first solidification temperature T1 and higher than the second solidification temperature T2 (T1> t4> T2). Then, it is cooled and set to the second solidification temperature T2 so as to be solidified, and the edges 7e and 7e are finally joined.
  • the finally joined cell 7 is taken out from the heating furnace 51 and conveyed to the cover attaching device 70 (see FIG. 3).
  • the cover attaching device 70 collects the plurality of cells 7 that have been joined together and covers them from the front and back with the cover member 32. By attaching the cover member 32 to the plurality of cells 7, a sheet-like solar cell module M is obtained.
  • the main solder 5B is heated to a temperature t4 (T1>t4> T2) lower than the first solidification temperature T1 and higher than the second solidification temperature T2.
  • T1>t4> T2 the edges 7e and 7e are finally joined by performing the second solidification temperature T2, and therefore, the temperature does not reach the first solidification temperature T1 during the final joining.
  • the temporary solder 5A does not melt. For this reason, when the main bonding is performed, the temporary bonding by the temporary solder 5A is not released, and the main bonding can be performed while the positioning state of the edges 7e and 7e of the cells 7 and 7 is maintained. That is, the position shift of the edge parts 7e and 7e can be prevented during this joining.
  • the portion temporarily joined by the temporary solder 5A is only one side portion, and the other side portion is not temporarily attached.
  • the cell 7 can be freely thermally expanded to the other side.
  • both sides are not attached temporarily, and the cell 7 can be thermally expanded to the both sides side freely in this joining.
  • the temporary joining by the temporary solder 5A is not solved, but no stress remains in the cell 7, and it is possible to prevent the occurrence of warpage and deformation that deteriorate the finished dimensions.
  • thermoelectric t4 (T1>t4> T2) lower than 1st solidification temperature T1 and higher than 2nd solidification temperature T2.
  • the heating temperature t4 may be lower than the first solidification temperature T1. That is, since the heating for the main bonding is low, damage to the cell 7 can be reduced.
  • the position of the temporary solder 5A is set to one end of the edge 8, but it may be provided on both ends.
  • the heater of the temporary joining apparatus 40 becomes a structure provided not only on one side but on both sides as in the first embodiment (see FIG. 4A).
  • each of the first and second embodiments described above it becomes possible to move a plurality of temporarily bonded cells 7 into the heating furnace 51 while maintaining the shape.
  • the production efficiency of the module M can be improved.
  • a shape is stabilized, a quality solar cell module is obtained.
  • the overlapping portion 8 where the edge portions 7e and 7e are overlapped is joined by two kinds of solders 5A and 5B having different solidification temperatures. It will be a thing.
  • the present invention is not limited to the illustrated form, and may be other forms within the scope of the present invention.
  • the solder 5 is used as a bonding metal in the present embodiment for bonding the solar cells to each other is described as a bonding metal, it may be other than this and may be a material that solidifies according to temperature. I just need it.
  • a thermoplastic resin or a thermosetting resin with good conductivity can be used.
  • the temporary bonding material may be vaporized by heat during main bonding, and the temporary bonding material may not remain after the main bonding.
  • the first heating device and the second heating device have been described as having a heater, but the heating device may be other than the heater, and a configuration in which solder is joined by ultrasonic waves,
  • the structure may be such that it is joined by plasma.
  • 3A Control device (first control unit), 3B: Control device (second control unit), 5: Solder (joining material), 5A: Temporary soldering (temporary joining material), 5B: Final soldering (main joining material) ), 7: solar cell, 7e: edge, 40: temporary joining device, 41a, 41b: heater (first heating device), 42a, 42b: heater (first heating device), 50: main joining device, 51 : Heating furnace (second heating device), M: solar cell module, T1: first solidification temperature (first temperature), T2: second solidification temperature (second temperature)

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

太陽電池セル7,7の縁部7e,7e同士を重ね合わせ、半田5A,5Bによって縁部7e,7e同士を接合することで太陽電池モジュールが製造される。仮接合装置40では、重ね合わせ部8の一部に設けられ第一温度で凝固する仮付け半田5Aを、加熱した後に冷却して前記第一温度とすることで凝固させて、縁部7e,7e同士を仮接合させる。本接合装置50では、重ね合わせ部8の他部に設けられ第二温度で凝固する本付け半田5Bを、加熱した後に冷却して前記第二温度とすることで凝固させて、縁部7e,7e同士を本接合させる。

Description

太陽電池モジュールの製造装置、その製造方法、及び、太陽電池モジュール
 本発明は、複数枚の太陽電池セルが接続されて構成される太陽電池モジュール、その製造装置及び製造方法に関する。
 近年、エネルギー問題に対する意識の向上から、太陽電池モジュールを用いた太陽光発電に対する期待が高まっており、太陽電池モジュールの需要が増加している。そこで、このような需要の増加に伴って、性能の良い太陽電池モジュールを製造するための技術開発が望まれている。
 特許文献1に記載の太陽電池モジュールは、複数枚の太陽電池セル(太陽電池素子)を直列に接続することで実用的な電圧を得る構成となっている。このために、特許文献1に記載の太陽電池モジュールでは、短冊形状の太陽電池セルそれぞれの表面及び裏面に導電性を有する材料が設けられており、隣り合う太陽電池セルの縁部同士を上下に重ね合わせることにより、電気的に接続させる構成が採用されている。
 このような太陽電池モジュールの製造は、図6に示しているように、作業盤79上に置かれた右端の太陽電池セル80の縁部80a上に、別の太陽電池セル80の縁部80aを重ね合わせ、以下同様に縁部80a同士を次々と重ねる。そして、この状態とした複数の太陽電池セル80を、図外の加熱炉内に投入し、重ね合わせた縁部80a,80a間に介在させた半田(接合金属)81を、加熱して溶融し、その後冷却して凝固させ、電気的及び構造的に接続している。
特開2009-10355号公報(図9、図10参照)
 しかし、前記製造方法の場合、作業盤79上で太陽電池セル80の縁部80aを重ね合わせた状態では、まだ半田81による接合は行われていないため、非常に不安定な状態にある。したがって、図6に示しているように、作業盤79上に複数の太陽電池セル80を所定の姿勢及び所定の配置に設け、この作業盤79ごとを図外の加熱炉内へ移動させたとしても、重ね合わせた複数の太陽電池セル80の全体形状が崩れてしまうおそれがある。この場合、複数の太陽電池セル80の全体形状を再度整える必要があり、作業性が悪い。
 そこで本発明は、作業性の良い太陽電池モジュールの製造装置、製造方法、並びに、これら製造装置及び製造方法により得られる太陽電池モジュールを提供することを目的とする。
 本発明は、太陽電池セルの縁部同士を重ね合わせ、温度に応じて固化する接合材によって前記縁部同士を接合することで、複数枚の前記太陽電池セルを有する太陽電池モジュールを製造する製造装置であって、前記縁部同士が重ね合わされる重ね合わせ部に設けられた第一温度で固化する仮接合材を加熱する第一加熱装置、及び、前記第一加熱装置を制御することにより、前記仮接合材を加熱し前記第一温度で固化させて前記縁部同士を仮接合させる第一制御部を有している仮接合装置と、前記重ね合わせ部に設けられた前記第一温度と異なる第二温度で固化する本接合材を加熱する第二加熱装置、及び、前記第二加熱装置を制御することにより、前記本接合材を加熱し前記第二温度で固化させて前記縁部同士を本接合させる第二制御部を有している本接合装置とを備えたことを特徴とする。
 前記製造装置が用いられて行われる製造方法は、太陽電池セルの縁部同士を重ね合わせ、温度に応じて固化する接合材によって前記縁部同士を接合することで、複数枚の前記太陽電池セルを有する太陽電池モジュールを製造する方法であって、前記縁部同士が重ね合わされる重ね合わせ部に設けられた仮接合材を、加熱し第一温度とすることで固化させて前記縁部同士を仮接合し、その後、前記重ね合わせ部に設けられた本接合材を、加熱し第二温度とすることで固化させて前記縁部同士を本接合することを特徴とする。
 本発明の前記製造装置及び前記製造方法によれば、太陽電池セルの縁部同士を本接合する前に、仮接合することができるので、仮接合した複数の太陽電池セルを、後に行う本接合の工程(本接合装置)に、形状を維持した状態で移動させることが可能となり、作業性が良くなる。
 そして、この製造装置及び製造方法によって製造される本発明の太陽電池モジュールは、太陽電池セルの縁部同士が重ね合わされ、温度に応じて固化する接合材によって前記縁部同士が接合され、前記縁部同士が重ね合わされている重ね合わせ部は、固化する温度が異なる複数種類の前記接合材によって接合されていることを特徴とする。
 すなわち、固化する温度が異なる複数種類の接合材が用いられ、固化する温度がそれぞれ異なることにより仮接合と本接合とが行われる。
 また、前記仮接合材及び前記本接合材それぞれは、所定の温度で溶融状態にあり、この所定の温度から、それぞれが第一温度及び第二温度に下がることで凝固する材料であるとすると、前記本接合材が、前記第二温度が前記第一温度よりも高くなる材料から成る場合には、前記第一制御部は、前記仮接合材を、前記第二温度よりも低くかつ前記第一温度よりも高い温度まで加熱した後に冷却させて前記第一温度とすることで、固化(凝固)させるように前記第一加熱装置を制御する機能を有し、前記第二制御部は、前記本接合材を、前記第二温度よりも高い温度まで加熱した後に冷却させて当該第二温度とすることで、固化(凝固)させるように前記第二加熱装置を制御する機能を有している構成とする。
 この場合、前記製造装置によって行われる製造方法では、仮接合する際、仮接合材を、第二温度よりも低くかつ第一温度よりも高い温度まで加熱した後に冷却して第一温度とすることで、固化(凝固)させるため、本接合材は、仮接合材に近くに存在していても溶融せず、本接合されることはない。
 そして、本接合する第二温度は、仮接合する際の第一温度よりも高いため、本接合する際、仮接合した仮接合材も溶融する。このため、本接合する際、仮接合による拘束が解かれ縁部同士の熱変形が自由となり、残留応力が生じることを防ぐことができる。
 なお、前記第一及び第二制御部による前記冷却について説明するが、前記第一及び第二加熱装置による加熱を停止させる制御を行うことにより、自然冷却が行われる場合でもよく、又は、別の冷却装置を動作させる制御を行うことにより、強制的に行われる場合であってもよい。
 これに対して、前記本接合材は、前記第二温度が前記第一温度よりも低くなる材料から成る場合、前記第一制御部は、前記仮接合材のみを、前記第一温度よりも高い温度まで加熱した後に冷却して前記第一温度とすることで、固化(凝固)させるように前記第一加熱装置を制御する機能を有し、前記第二制御部は、前記本接合材を、前記第一温度よりも低くかつ前記第二温度よりも高い温度まで加熱した後に冷却して当該第二温度とすることで、固化(凝固)させるように前記第二加熱装置を制御する機能を有している構成とする。
 この場合、前記製造装置によって行われる製造方法では、仮接合する際、第一温度よりも高い温度まで加熱した後に冷却して当該第一温度することで、固化(凝固)させるのは、仮接合材のみであるため、本接合材の第二温度が仮接合材の第一温度よりも低くても、当該本接合材は溶融せず、本接合されることはない。
 そして、本接合材を、第一温度よりも低くかつ第二温度よりも高い温度まで加熱した後に冷却して当該第二温度することで、固化(凝固)させて縁部同士を本接合するため、本接合する際は、仮接合した仮接合材は溶融しない。このため、本接合する際に、仮接合が解かれず、太陽電池セルの縁部同士の位置決め状態が維持されたまま本接合を行うことができる。
 本発明によれば、仮接合した複数の太陽電池セルを、形状を維持した状態で後に行う工程のために移動させることが可能となり、作業性が良く、太陽電池モジュールの生産効率を向上させることができる。そして、本接合の際、形状が安定することから品質の良い太陽電池モジュールが得られる。
太陽電池モジュールの一部を示す説明図である。 本発明の製造装置及び製造方法を説明する概略構成図である。 本発明の製造装置のブロック図である。 本発明の製造装置及び製造方法の第一実施形態を説明する断面図である。 本発明の製造装置及び製造方法の第二実施形態を説明する断面図である。 従来技術を説明する説明図である。
 以下、本発明の実施の形態を図面に基づいて説明する。
 図1は本発明の太陽電池モジュールの製造装置によって製造される太陽電池モジュールの一部を示す説明図である。まず、太陽電池モジュールM(以下、単にモジュールMともいう)の構成について説明する。
 このモジュールMは、複数の太陽電池セル7(以下、単にセル7ともいう)が一方向に並んで設けられていて、これら複数のセル7の両側に電極31が設けられている。これらセル7及び電極31は、その両面からカバー部材32によって挟まれ、モジュールMは一体のシート状を成している。両面のカバー部材32は、可撓性を有し太陽光を透過させるフィルム状の樹脂部材から成り、セル7及び電極31の表面及び裏面に密着した状態となっている。
 各セル7は、導電性を有する導電性基板7a上に、下部電極層7b、半導体層7c及び上部電極層7dがこの順で積層されて構成されている。
 隣り合うセル7,7同士は、その縁部7e,7eにおいて重ね合わされた状態にあり、この重ね合わされた縁部7e,7eにおいて電気的及び構造的に接続されている。なお、この重ね合わされた縁部7e,7eを、重ね合わせ部8と呼ぶ。縁部7e,7eを接合するために、本実施形態では、接合金属が介在していて、具体的には、接合金属は半田(半田ボール)5から成る。半田5は、縁部7eに沿って点在している。なお、本実施形態では、上側にあるセル7と半田5との間、及び、この半田5と下側にあるセル7との間には、導電膜9が介在しているが、導電膜9を介在させない場合であってもよい。
 各セル7は、その配列方向と平行な方向が短尺方向となり、当該配列方向と直交する方向が長尺方向となる短冊形状(細長い薄板形状)を有していて、長尺側にある縁部7eによって前記重ね合わせ部8が構成される。なお、配列方向両端部におけるセル7それぞれは、電極31と電気的及び構造的に接続されている。
 以上のような複数枚の太陽電池セル7を有する太陽電池モジュールMを製造するためには、図2(a)に示しているように、一方向(図2では左右方向)に向かってモジュールMが順次長くなるように、隣り合うセル7,7の縁部7e,7e同士を重ね合わせ、全てのセル7においてこの重ね合わせを行う。そして、温度変化により溶融状態から凝固する半田5によって、重ね合わせ部8それぞれの縁部7e,7e同士を接合すればよい。
 なお、図2(a)では、既に複数枚(7枚)のセル7の縁部7eが、重ね合わされた状態となっている。そして、図2(a)は、この7枚のセル7に対して、さらに上から新たにセル7を重ね合わせようとしている状態を示していて、この新たなセル7を接続セル11と呼ぶ。これに対して、既に重ね合わされた状態にある前記7枚のセル7の内の、前記接続セル11が接続されるセルを被接続セル21と呼ぶ。
 なお、後に詳しく説明するが、重ね合わせ部8では仮接合と本接合とが行われ、縁部7e,7eが重ね合わされる毎に仮接合が行われる。そして、本接合は、全ての重ね合わせ部8について同時に行われる。
 モジュールMを製造するための製造装置は、図3に示しているように、前記セル7,7同士を仮接合する仮接合装置40と、仮接合したセル7,7同士を本接合する本接合装置50とを備えている。
 さらに、この製造装置は、仮接合する前のセル7の縁部7e上に半田5を供給する半田供給装置60を備えている。また、本接合を終えた複数のセル7を前記カバー部材32(図1参照)が表裏から挟むようにして、カバー部材32を取り付けるカバー取り付け装置70を備えている。
 半田供給装置60(図3参照)は、前記縁部7eの重ね合わせを行う作業の前に、各セル7の縁部7e上に半田5を設ける装置である。特に本発明では、縁部7e,7e同士を仮接合する仮接合材としての仮付け半田5Aを、重ね合わせ部8の内の一部に設け、さらに、縁部7e,7e同士を本接合する本接合材としての本付け半田5Bを、重ね合わせ部8の内の他部に設ける装置である。半田5A,5Bそれぞれは半田ボールから成り、図示しないが、フラックス上に仮止めされた状態となる。半田5A,5Bは、縁部7eの長手方向に沿って間隔を有して設けられる。なお、仮付け半田5Aと本付け半田5Bとは、凝固温度(溶融点)が異なる材質から成り、その詳細は後に説明する。
 仮接合装置40は、前記仮付け半田5Aを加熱する第一加熱装置として、図2(b)及び図4(a)に示しているように、ヒータ41a,41b,42a,42bを有している。図4(a)において、左側のヒータ41a,41b及び右側のヒータ42a,42bそれぞれは、重ね合わせ部8を挟んで発熱部が上下で対向する配置にあり、重ね合わせ部8の内の一部にある仮付け半田5Aを加熱する。実施形態では、加熱する前記一部は、仮付け半田5Aが設けられている両側部となる。また、図2(b)に示しているように、ヒータ41a,41b,42a,42bは重ね合わせ部8毎に加熱する構成である。
 すなわち、第一加熱装置は、重ね合わせ部8を部分的に加熱する構成であり、仮付け半田5Aを溶融させるように昇温させることができるが、両側部を除く中央に存在している本付け半田5Bを溶融させるまで昇温させることはない。
 また、仮接合装置40は、これらヒータ41a,41b,42a,42bを制御する第一制御装置3Aを有している。具体的な制御手段については、後に説明する。
 本接合装置50は、前記本付け半田5Aを加熱する第二加熱装置として、図4(b)に示しているように、加熱炉51を有していて、さらに、この加熱炉51内の温度を制御する第二制御装置3Bを有している。
 加熱炉51は、重ね合わせた状態にある複数のセル7をまとめて収納する構成であり、炉内を所定の温度に昇温させるヒータ52a,52bを備えている。第二制御装置3Bがヒータ52a,52bによって、炉内を所定の温度とするように制御を行う。すなわち、加熱炉51が、複数のセル7をまとめて加熱することで、各重ね合わせ部8にある半田をまとめて加熱し、所定の半田をまとめて溶融させる。なお、第二制御装置3Bによる具体的な制御手段、及び、溶融させる半田については、後に説明する。
 前記制御装置3A,3Bは、処理装置(CPU)及び記憶装置を有するコンピュータによって構成されている。記憶装置には、所定のコンピュータプログラムが記憶されている。このコンピュータプログラムを前記処理装置(CPU)が実行することで、制御装置3A,3Bは、前記ヒータ41a,41b,42a,42bによる加熱温度、及び、加熱炉51内の温度を制御する機能を有している。
 カバー取り付け装置70(図3参照)は、本接合装置50によって、本接合された複数のセル7をまとめて、カバー部材32によって表及び裏から覆うための装置である。このカバー部材32が複数のセル7に取り付けられることにより、シート状の太陽電池モジュールMを得ることができる。
 以上の構成を有する製造装置によって行われる太陽電池モジュールMの製造方法を説明する。
〔第一実施形態〕
 図4に示している第一実施形態では、本付け半田5Bの凝固温度(第二凝固温度T2)が、仮付け半田5Aの凝固温度(第一凝固温度T1)よりも高くなるように、半田5A,5Bの材料が設定されている(T2>T1)。例えば、本付け半田5Bは、錫銀銅を含むものであり、仮付け半田5Bは、錫銀ビスマスを含むものである。
 半田供給装置60(図3参照)によって、仮付け半田5A及び本付け半田5Bが、各セル7の縁部7e上に設けられる。図4の実施形態では、縁部8のうちの両側部に仮付け半田5Aが設けられ、両側の仮付け半田5A,5A間に、本付け半田5Bが設けられる。
 そして、図2(a)に示しているように、セル7,7(接続セル11と被接続セル21)の縁部7e,7e同士が重ね合わされる。
 そして、重ね合わされた重ね合わせ部8毎に対して、図4(a)に示しているように、仮接合装置40が仮接合を行う。すなわち、第一制御装置3Aがヒータ41a,41b,42a,42bを制御し、ヒータを加熱状態とすることで、両側部に設けられている仮付け半田5Aを、当該仮付け半田5Aの第一凝固温度T1よりも高い温度まで加熱する。その後、ヒータを加熱停止状態とすることで、仮付け半田5Aを、冷却させて、第一凝固温度T1とすることで凝固させて縁部7a,7b同士を仮接合する。特に、本実施形態では、第一制御装置3Aは、仮付け半田5Aを、本付け半田5Bの第二凝固温度T2よりも低く、かつ、仮付け半田5Aの第一凝固温度T1よりも高い温度ta(T2>ta>T1)まで加熱した後に、冷却させて、第一凝固温度T1とする。なお、前記冷却は、自然冷却であってもよく、強制的な冷却であってもよい。
 この仮接合工程によれば、仮接合する際、仮り付け半田5Aを、第二凝固温度T2よりも低くかつ第一凝固温度T1よりも高い温度ta(T2>ta>T1)まで加熱した後に、冷却して、第一凝固温度T1とすることで、凝固させるため、本付け半田5Bが仮付け半田5Aの近くに存在していても、本付け半田5Bは溶融せず、本接合されることはない。
 そして、この仮接合は、モジュールMを構成する複数のセル7全ての重ね合わせ部8に対して順に行う。
 この仮接合工程により、重ね合わされた複数のセル7は(接続セル11と被接続セル21とは)一体となり、形状が維持された状態となって、次の本接合工程へ移動させることができる。
 そして、仮接合された複数のセル7が、本接合装置50の加熱炉51内に投入される(図4(b)参照)。第二制御装置3Bが加熱炉51内の温度を制御することにより、本付け半田5Bを、当該本付け半田5Bの第二凝固温度T2よりも高い温度tb(T2<tb)まで加熱した後に、冷却して、当該第二凝固温度T2とすることで、凝固させ、縁部7e,7e同士を本接合する。なお、本実施形態では、第一凝固温度T1<第二凝固温度T2であり、本接合のための前記加熱温度tbは第二凝固温度T2よりも高いため(T2<tb)、この加熱温度tbは第一凝固温度T1よりも高い(T1<T2<tb)。
 そして、本接合されたセル7は、加熱炉51から取り出され、カバー取り付け装置70(図3参照)へ搬送される。このカバー取り付け装置70は、本接合した複数のセル7をまとめて、カバー部材32によって表及び裏から覆う。このカバー部材32が複数のセル7に取り付けられることにより、シート状の太陽電池モジュールMが得られる。
 以上の第一実施形態の製造装置及び製造方法によれば、仮付け工程では、複数の(四つの)ヒータによる加熱が、重ね合わせ部8毎に行われるので、加熱領域は狭くてよい。このため、ヒータ毎に厳密な均熱性の管理が不要となり、ヒータの制御が簡単となる。さらに、上下の縁部7e,7eで温度差が生じにくいので、縁部7e,7e間の温度差による熱膨張・熱収縮の差も僅かである。接続するセル7,7間での熱膨張・熱収縮の差が僅かであるため、モジュールMの反りの発生を抑制することができる。
 また、仮接合のための加熱領域が部分的であるため、その近傍にある本接合のための領域への影響を軽減することができる。すなわち、重ね合わせ部8の内の本接合を行う部分において、本付け半田5Bのために設けられた、フラックスの機能の低下及び導電膜9(図1参照)の酸化を抑制することができる。
 そして、本接合工程では、本接合する際の第二凝固温度T2は、仮接合する際の第一凝固温度T1よりも高く(T2>T1)、加熱炉51内での処理であるため、本接合する際、仮接合した仮付け半田5Aも溶融する。これにより、以下の作用を奏する。
 すなわち、加熱炉51内では、第一凝固温度T1に達するまでは、仮付け半田5Aによって全体形状が維持されている。この際、重ね合わせ部8では上下の縁部7e,7eは、相互に拘束した状態にあり、仮に相互の熱膨張が不均一であると、一方の縁部7eの熱膨張が他方の縁部7eに影響を及ぼし、残留応力が生じる状態にある。
 しかし、本実施形態では、第一凝固温度T1を超えると、本付け半田5B以外にも、仮付け半田5Aも溶融するため仮接合による前記拘束が解かれ、縁部7e,7e同士の熱変形が自由となる。このため、重ね合わせ部8に残留応力が生じることを防ぐことができ、本接合後にモジュールMに反り等の変形が発生することを防ぐことが可能となる。
 本第一実施形態では、仮接合を行う部分を縁部7eの両側部として説明したが、これ以外に、縁部7eの中央部においても仮接合してもよく、仮接合する部分の数は変更可能であり、これに応じてヒータの配置を変更すればよい。
〔第二実施形態〕
 図5は第二実施形態を説明する断面図である。この第二実施形態では、本付け半田5Bの凝固温度(第二凝固温度T2)が、仮付け半田5Aの凝固温度(第一凝固温度T1)よりも低くなるように、半田5A,5Bの材料が設定されている(T2<T1)。例えば、本付け半田5Bは、錫銀ビスマスを含むものであり、仮付け半田5Bは、錫銀銅を含むものである。
 半田供給装置60(図3参照)によって、仮付け半田5A及び本付け半田5Bが、各セル7の縁部7e上に設けられる。図5の実施形態では、縁部8のうちの側部(端部)に仮付け半田5Aが設けられ、この側部よりも中央側に、本付け半田5Bが設けられる。
 そして、図2(a)に示しているように、セル7,7(接続セル11と被接続セル21)の縁部7e,7e同士が重ね合わされる。
 この第二実施形態では、仮接合装置40のヒータ(第一加熱装置)は、重ね合わせ部8の両側ではなく、一方側(一部)のみに存在している。すなわち、縁部8のうちの一側部(一端部)に設けられた仮付け半田5Aを加熱するヒータ41a,41bが設けられている。
 なお、図示しないが、仮付け半田5Aは、一側部ではなく、縁部8のうちの中央部又は側部と中央部との間の部分(以下、これらを途中部という)であってもよく、この場合、セル7をバランスよく位置決めすることができる。
 そして、重ね合わされた重ね合わせ部8毎に対して、図5(a)に示しているように、仮接合装置40が仮接合を行う。すなわち、第一制御装置3Aがヒータ41a,41bを制御し、ヒータを加熱状態とすることで、一側部(又は途中部)に設けられている仮付け半田5Aのみを、当該仮付け半田5Aの第一凝固温度T1よりも高い温度t3まで加熱する(T1<t3)。その後、ヒータを加熱停止状態とすることで、仮付け半田5Aを、自然冷却させて、第一凝固温度T1とすることで凝固させて縁部7a,7b同士を仮接合する。
 このように仮接合する際、加熱した後に凝固させるのは、仮付け半田5Aのみとする。すなわち、ヒータ41a,41bは、縁部7eの全体の領域ではなく、縁部7eの内の点状の狭い側部の領域を加熱する構成であり、その加熱領域は、セル7の縁部7eを介して、仮付け半田5Aの直上及び直下のみである。このため、本付け半田5Bの第二凝固温度T2が、仮付け半田5Aの第一凝固温度T1よりも低くても(T2<T1)、本付け半田5Bは溶融せず、本接合されることはない。
 そして、この仮接合は、モジュールMを構成する複数のセル7全ての重ね合わせ部8に対して順に行う。
 この仮接合工程により、重ね合わされた複数のセル7は(接続セル11と被接続セル21とは)一体となり、形状が維持された状態となって、次の本接合工程へ移動させることができる。
 そして、仮接合された複数のセル7が、本接合装置50の加熱炉51内に投入される(図5(b)参照)。第二制御装置3Bが加熱炉51内の温度を制御することにより、本付け半田5Bを、第一凝固温度T1よりも低くかつ第二凝固温度T2よりも高い温度t4(T1>t4>T2)まで加熱した後に、冷却して、第二凝固温度T2とすることで、凝固させ、縁部7e,7e同士を本接合する。
 そして、本接合されたセル7は、加熱炉51から取り出され、カバー取り付け装置70(図3参照)へ搬送される。このカバー取り付け装置70は、本接合した複数のセル7をまとめて、カバー部材32によって表及び裏から覆う。このカバー部材32が複数のセル7に取り付けられることにより、シート状の太陽電池モジュールMが得られる。
 以上の第二実施形態の製造装置及び製造方法によれば、本付け半田5Bを、第一凝固温度T1よりも低くかつ第二凝固温度T2よりも高い温度t4(T1>t4>T2)まで加熱した後に、冷却して、第二凝固温度T2することで、縁部7e,7e同士を本接合するため、本接合する際は、温度が第一凝固温度T1にまで達しないので、仮接合した仮付け半田5Aは溶融しない。
 このため、本接合する際に、仮付け半田5Aによる仮接合は解かれず、セル7,7の縁部7e,7e同士の位置決め状態が維持されたまま本接合を行うことができる。すなわち、本接合の間、縁部7e,7eの位置ずれを防止することができる。
 さらに、この第二実施形態では、前記のとおり、重ね合わせ部8毎において、仮付け半田5Aによって仮接合されている部分は、一方側部のみであり、他方側部は仮付けされていない。このため、本接合の際、セル7は、他方側へ自由に熱膨張することができる。なお、仮接合されている部分が、前記途中部である場合は、両側部は仮付けされておらず、本接合の際、セル7は、両側部側へ自由に熱膨張することができる。
 このため、本接合する際に、仮付け半田5Aによる仮接合は解かれないが、セル7に応力が残留せず、仕上がり寸法を悪化させるような反りや変形の発生を防止することができる。
 また、複数のセル7の全体を加熱炉51によって加熱する本接合では、第一凝固温度T1よりも低くかつ第二凝固温度T2よりも高い温度t4(T1>t4>T2)で加熱することから、その加熱温度t4は、第一凝固温度T1よりも低くて済む。つまり、本接合のための加熱は低温で済むため、セル7へのダメージを軽減することができる。
 なお、本第二実施形態では、仮付け半田5Aの位置を、縁部8の内の一方側の端部としたが、両端部側に設けてもよい。この場合、仮接合装置40のヒータは、一方側のみならず、第一実施形態(図4(a)参照)のように、両方側に設ける構成となる。
 以上の第一及び第二の実施形態それぞれの製造装置及び製造方法によれば、仮接合した複数のセル7を、形状を維持した状態で加熱炉51内に移動させることが可能となり、作業性が良く、モジュールMの生産効率を向上させることができる。そして、本接合の際、形状が安定することから品質の良い太陽電池モジュールが得られる。
 また、この製造装置及び製造方法によって製造される太陽電池モジュールMは、縁部7e,7e同士が重ね合わされている重ね合わせ部8は、凝固温度が異なる二種類の半田5A,5Bによって接合されたものとなる。
 また、本発明は、図示する形態に限らず本発明の範囲内において他の形態のものであっても良い。例えば、太陽電池セル同士を接合するための接合材を、本実施形態では、接合金属として半田5を用いた場合を説明したが、これ以外であってもよく、温度に応じて固化する材料であればよい。例えば、導電性の良い熱可塑性樹脂や熱硬化性樹脂とすることができる。特に第一実施形態では、仮接合材は、本接合する際の熱によって気化するものであってもよく、本接合後に仮接合材が残っていなくてもよい。
 また、前記実施形態では、第一加熱装置及び第二加熱装置はヒータを有している構成として説明したが、加熱装置はヒータ以外であってもよく、超音波によって半田を接合する構成や、プラズマによって接合する構成であってもよい。
 3A:制御装置(第一制御部)、 3B:制御装置(第二制御部)、 5:半田(接合材)、 5A:仮付け半田(仮接合材)、 5B:本付け半田(本接合材)、 7:太陽電池セル、 7e:縁部、 40:仮接合装置、 41a,41b:ヒータ(第一加熱装置)、 42a,42b:ヒータ(第一加熱装置)、 50:本接合装置、 51:加熱炉(第二加熱装置)、 M:太陽電池モジュール、 T1:第一凝固温度(第一温度)、 T2:第二凝固温度(第二温度)

Claims (7)

  1.  太陽電池セルの縁部同士を重ね合わせ、温度に応じて固化する接合材によって前記縁部同士を接合することで、複数枚の前記太陽電池セルを有する太陽電池モジュールを製造する製造装置であって、
     前記縁部同士が重ね合わされる重ね合わせ部に設けられた第一温度で固化する仮接合材を加熱する第一加熱装置、及び、前記第一加熱装置を制御することにより、前記仮接合材を加熱し前記第一温度で固化させて前記縁部同士を仮接合させる第一制御部を有している仮接合装置と、
     前記重ね合わせ部に設けられた前記第一温度と異なる第二温度で固化する本接合材を加熱する第二加熱装置、及び、前記第二加熱装置を制御することにより、前記本接合材を加熱し前記第二温度で固化させて前記縁部同士を本接合させる第二制御部を有している本接合装置と、
     を備えたことを特徴とする太陽電池モジュールの製造装置。
  2.  前記本接合材は、前記第二温度が前記第一温度よりも高くなる材料から成り、
     前記第一制御部は、前記仮接合材を、前記第二温度よりも低くかつ前記第一温度よりも高い温度まで加熱した後に冷却させて前記第一温度とすることで、固化させるように前記第一加熱装置を制御する機能を有し、
     前記第二制御部は、前記本接合材を、前記第二温度よりも高い温度まで加熱した後に冷却させて当該第二温度とすることで、固化させるように前記第二加熱装置を制御する機能を有している請求項1に記載の太陽電池モジュールの製造装置。
  3.  前記本接合材は、前記第二温度が前記第一温度よりも低くなる材料から成り、
     前記第一制御部は、前記仮接合材のみを、前記第一温度よりも高い温度まで加熱した後に冷却して前記第一温度とすることで、固化させるように前記第一加熱装置を制御する機能を有し、
     前記第二制御部は、前記本接合材を、前記第一温度よりも低くかつ前記第二温度よりも高い温度まで加熱した後に冷却して当該第二温度とすることで、固化させるように前記第二加熱装置を制御する機能を有している請求項1に記載の太陽電池モジュールの製造装置。
  4.  太陽電池セルの縁部同士を重ね合わせ、温度に応じて固化する接合材によって前記縁部同士を接合することで、複数枚の前記太陽電池セルを有する太陽電池モジュールを製造する方法であって、
     前記縁部同士が重ね合わされる重ね合わせ部に設けられた仮接合材を、加熱し第一温度とすることで固化させて前記縁部同士を仮接合し、
     その後、前記重ね合わせ部に設けられた本接合材を、加熱し第二温度とすることで固化させて前記縁部同士を本接合することを特徴とする太陽電池モジュールの製造方法。
  5.  前記本接合材は、前記第二温度が前記第一温度よりも高くなる材料から成り、
     前記仮接合の際、前記仮接合材を、前記第第二温度よりも低くかつ前記第一温度よりも高い温度まで加熱した後に冷却して当該第一温度とすることで、固化させて前記縁部同士を仮接合し、
     前記本接合の際、前記本接合材を、前記第二温度よりも高い温度まで加熱した後に冷却して当該第二温度とすることで、固化させて前記縁部同士を本接合する請求項4に記載の太陽電池モジュールの製造方法。
  6.  前記本接合材は、前記第二温度が前記第一温度よりも低くなる材料から成り、
     前記仮接合の際、前記仮接合材のみを、前記第一温度よりも高い温度まで加熱した後に冷却して当該第一温度とすることで、固化させて前記縁部同士を仮接合し、
     前記本接合の際、前記本接合材を、前記第一温度よりも低くかつ前記第二温度よりも高い温度まで加熱した後に冷却して当該第二温度とすることで、固化させて前記縁部同士を本接合する請求項4に記載の太陽電池モジュールの製造方法。
  7.  太陽電池セルの縁部同士が重ね合わされ、温度に応じて固化する接合材によって前記縁部同士が接合され構成されている太陽電池モジュールであって、
     前記縁部同士が重ね合わされている重ね合わせ部は、固化する温度が異なる複数種類の前記接合材によって接合されていることを特徴とする太陽電池モジュール。
PCT/JP2010/065155 2009-09-25 2010-09-03 太陽電池モジュールの製造装置、その製造方法、及び、太陽電池モジュール WO2011036998A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-221028 2009-09-25
JP2009221028A JP5320238B2 (ja) 2009-09-25 2009-09-25 太陽電池モジュールの製造装置、及びその製造方法

Publications (1)

Publication Number Publication Date
WO2011036998A1 true WO2011036998A1 (ja) 2011-03-31

Family

ID=43795752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065155 WO2011036998A1 (ja) 2009-09-25 2010-09-03 太陽電池モジュールの製造装置、その製造方法、及び、太陽電池モジュール

Country Status (2)

Country Link
JP (1) JP5320238B2 (ja)
WO (1) WO2011036998A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013001924A1 (ja) * 2011-06-29 2013-01-03 東レエンジニアリング株式会社 太陽電池モジュールの製造システム及びその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203387A (ja) * 1986-03-04 1987-09-08 Mitsubishi Electric Corp 非晶質光発電素子モジユ−ルの製造方法
JPH11186576A (ja) * 1997-12-19 1999-07-09 Dainippon Printing Co Ltd 薄膜太陽電池とその製造方法
JP2009010355A (ja) * 2007-05-29 2009-01-15 Toray Eng Co Ltd 太陽電池モジュール
JP2009130193A (ja) * 2007-11-26 2009-06-11 Toyota Motor Corp 太陽電池モジュール

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203387A (ja) * 1986-03-04 1987-09-08 Mitsubishi Electric Corp 非晶質光発電素子モジユ−ルの製造方法
JPH11186576A (ja) * 1997-12-19 1999-07-09 Dainippon Printing Co Ltd 薄膜太陽電池とその製造方法
JP2009010355A (ja) * 2007-05-29 2009-01-15 Toray Eng Co Ltd 太陽電池モジュール
JP2009130193A (ja) * 2007-11-26 2009-06-11 Toyota Motor Corp 太陽電池モジュール

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013001924A1 (ja) * 2011-06-29 2013-01-03 東レエンジニアリング株式会社 太陽電池モジュールの製造システム及びその製造方法
JP2013012575A (ja) * 2011-06-29 2013-01-17 Toray Eng Co Ltd 太陽電池モジュールの製造システム及びその製造方法

Also Published As

Publication number Publication date
JP2011071311A (ja) 2011-04-07
JP5320238B2 (ja) 2013-10-23

Similar Documents

Publication Publication Date Title
JP6996698B2 (ja) 太陽電池相互接続
CN102473794B (zh) 用于为太阳能电池制造薄膜状电连接器的方法、这样制造的连接元件以及用于把至少两个太阳能电池电连接为太阳能模块的方法
JP4395733B2 (ja) 熱電変換素子モジュールの製造方法および熱電変換素子モジュールの製造方法に使用する電極構成体
JP2014175425A5 (ja)
WO2014190854A1 (zh) 一种激光焊接联接晶体硅太阳能电池的方法
JP2011077148A (ja) 太陽電池モジュールの製造装置及びその製造方法
JP2007273830A (ja) 太陽電池装置の製造方法
WO2015012195A1 (ja) ラミネート型蓄電デバイスの製造方法
JP5173921B2 (ja) 太陽電池モジュールのラミネータ
CN102742023B (zh) 太阳能电池用集电片
JP2007188932A (ja) 太陽電池素子の接続方法及び接続装置
JP5320238B2 (ja) 太陽電池モジュールの製造装置、及びその製造方法
JP4838787B2 (ja) 太陽電池素子の接続方法及び太陽電池素子の接続装置
JP2013207112A (ja) 太陽電池モジュールの製造装置及び製造方法
JP6413254B2 (ja) 二次電池用電極の製造方法
JPH11103078A (ja) 太陽電池モジュールの製造方法及び製造装置並びに太陽電池モジュール
EP3211676B1 (en) Method for producing solar cell module
JP5459841B2 (ja) 太陽電池モジュールの接合方法および接合装置
JP6163014B2 (ja) 太陽電池モジュールの製造方法
JP5664357B2 (ja) パワーモジュール用基板用の導体パターン部材
JP4280064B2 (ja) 熱電変換モジュールの製造方法
JP5241113B2 (ja) 太陽電池モジュールおよび太陽電池モジュールの製造方法
JP2013065690A (ja) 半導体モジュール、配線シート付き半導体セル及び配線シート並びに半導体モジュールの製造方法及び配線シート付き半導体セルの製造方法
JP2003338633A (ja) 太陽電池セルの電気的接続方法および接続装置
JP2011077174A (ja) 太陽電池モジュール及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10818674

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10818674

Country of ref document: EP

Kind code of ref document: A1