WO2011036956A1 - 蒸気供給システム及びそれに用いる逆止弁 - Google Patents

蒸気供給システム及びそれに用いる逆止弁 Download PDF

Info

Publication number
WO2011036956A1
WO2011036956A1 PCT/JP2010/063383 JP2010063383W WO2011036956A1 WO 2011036956 A1 WO2011036956 A1 WO 2011036956A1 JP 2010063383 W JP2010063383 W JP 2010063383W WO 2011036956 A1 WO2011036956 A1 WO 2011036956A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
steam
flow rate
opening
ejector
Prior art date
Application number
PCT/JP2010/063383
Other languages
English (en)
French (fr)
Inventor
松川直樹
Original Assignee
株式会社テイエルブイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社テイエルブイ filed Critical 株式会社テイエルブイ
Priority to AU2010299261A priority Critical patent/AU2010299261B2/en
Priority to US13/497,437 priority patent/US8881761B2/en
Priority to KR1020127006777A priority patent/KR101780679B1/ko
Priority to CN201080044694.9A priority patent/CN102725537B/zh
Priority to SG2012014171A priority patent/SG178917A1/en
Priority to EP10818632.1A priority patent/EP2484918B1/en
Publication of WO2011036956A1 publication Critical patent/WO2011036956A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/42Applications, arrangements, or dispositions of alarm or automatic safety devices
    • F22B37/44Applications, arrangements, or dispositions of alarm or automatic safety devices of safety valves
    • F22B37/446Safety devices responsive to overpressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/02Check valves with guided rigid valve members
    • F16K15/06Check valves with guided rigid valve members with guided stems
    • F16K15/063Check valves with guided rigid valve members with guided stems the valve being loaded by a spring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/48Control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K2200/00Details of valves
    • F16K2200/30Spring arrangements
    • F16K2200/305Constructional features of springs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7837Direct response valves [i.e., check valve type]
    • Y10T137/7904Reciprocating valves
    • Y10T137/7922Spring biased
    • Y10T137/7925Piston-type valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7837Direct response valves [i.e., check valve type]
    • Y10T137/7904Reciprocating valves
    • Y10T137/7922Spring biased
    • Y10T137/7929Spring coaxial with valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7837Direct response valves [i.e., check valve type]
    • Y10T137/7904Reciprocating valves
    • Y10T137/7922Spring biased
    • Y10T137/7929Spring coaxial with valve
    • Y10T137/7932Valve stem extends through fixed spring abutment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/87571Multiple inlet with single outlet
    • Y10T137/87587Combining by aspiration
    • Y10T137/87643With condition responsive valve

Definitions

  • the present invention relates to a steam supply system used for supplying steam to equipment using steam in equipment such as a steam plant, and a check valve used therefor.
  • a pressure reducing valve is provided in a steam supply path for supplying steam to a steam-using device, and a steam ejector is provided downstream of the pressure reducing valve in the steam supply path.
  • the suction part of the ejector and the re-evaporation tank that re-evaporates the condensate are connected by a suction path, and the re-evaporated steam in the re-evaporation tank is made by the steam ejector in the form that the steam passing through the pressure reducing valve is the driving steam of the steam ejector
  • a structure is known in which a suction valve is configured to mix with the passing steam, and a check valve is provided in the suction path to prevent backflow of steam to the re-evaporation tank (for example, Patent Document 1 below) reference).
  • this steam supply system uses the re-evaporated steam in the re-evaporation tank as the supply steam to the equipment that uses the steam by the suction action of the steam ejector installed in the steam supply path, thereby saving the energy of the entire equipment such as the steam plant. We are trying to make it.
  • the characteristic flow rate characteristic (the characteristic flow rate characteristic shown by (a) in FIG. 2) in which the rate of increase of the flow rate with the increase in the degree is larger in the small opening range where the valve opening is smaller than in the large opening range where the valve opening is large.
  • the structure had.
  • the valve body 43 has a structure in which a disc-like valve lid 42 having a flat surface 42 a on the valve port 41 side is formed in the valve body 43.
  • FIG. 8A shows the valve closing state
  • FIG. 8B shows the valve opening state when the flow rate (specifically, Cv value described later) is about 20%.
  • the check valve shown in FIG. 8 includes a valve seat abutting portion (the outer peripheral portion of the lower surface 42a of the valve lid portion 42) of the valve body 43 and an annular valve seat 48 as the valve body 43 moves due to the fluid pressure of the fluid. Since the area of the annular gap A1 formed between the two is the minimum area of the fluid inflow passage, the flow rate of the fluid is determined by the area of the annular gap A1 when the valve is opened. Since the rate of increase in the area of the gap A1 accompanying the increase in the valve opening based on the amount of movement (stroke) of the valve 43 away from the valve seat 48 gradually decreases as the valve opening increases, FIG. The characteristic flow characteristics shown in FIG.
  • the re-evaporated steam with a very small flow rate is also used for the suction action of the steam ejector to further improve the energy saving effect of the entire equipment, and the type of steam-using equipment and the major equipment equipped with it.
  • the supply steam etc. with respect to this steam use apparatus are controlled by adjustment of the suction pressure of a steam ejector by adjustment of the opening of a pressure reducing valve.
  • the check valve interposed in the suction path has a characteristic flow rate characteristic in which the rate of increase of the flow rate with the increase of the valve opening is relatively large in a small opening region where the valve opening is small. Therefore, the minimum adjustable flow rate based on the valve opening of the check valve is not so small (in other words, the range ability is not so wide).
  • the check valve is slightly opened when the suction pressure of the steam ejector is kept fairly low by adjusting the valve opening by the pressure reducing valve so as to utilize the re-evaporated steam with a very small flow rate.
  • An unstable state that repeats the valve state and the valve closed state (the valve body repeatedly hits the valve seat) occurs, which causes the suction pressure of the steam ejector to become unstable and There was a problem of inaccurate steam control.
  • the present invention has been made in view of the above circumstances, and its main problem is to effectively solve the above-described problems by rationally improving the check portion of the suction path.
  • a first characteristic configuration of the present invention relates to a steam supply system,
  • a decompression valve is installed in the steam supply path for supplying steam to the equipment that uses the steam,
  • a steam ejector is installed downstream of the decompression valve in the steam supply path, and the suction part and condensate of the steam ejector are reevaporated.
  • a steam supply system in which a check valve for suppressing backflow of steam to the re-evaporation tank is interposed in the suction path With the configuration of adjusting the valve opening of the pressure reducing valve according to the temperature or pressure of the steam downstream of the steam ejector in the steam supply path,
  • the non-return valve has an inherent flow rate characteristic or an increase rate at which the rate of increase in flow rate associated with an increase in the valve opening is equal in a small opening region where the valve opening is small and a large opening region where the valve opening is large Is a structure having an inherent flow rate characteristic that is smaller in the small opening region than in the large opening region.
  • the increase rate in the small opening range of the check valve interposed in the suction path is smaller than that in the conventional system, and accordingly, the check valve is opened accordingly.
  • the minimum adjustable flow rate in the state is reduced, and the re-evaporated steam having a smaller flow rate can be allowed to pass in a stable state in which chattering described above does not occur in the check valve.
  • the valve opening degree of the pressure reducing valve is adjusted according to the temperature or pressure of the steam on the downstream side of the steam ejector in the steam supply path, the temperature or pressure of the steam on the downstream side of the steam ejector is highly accurate. Therefore, it is possible to supply steam with a high energy-saving effect using re-evaporated steam even to equipment using steam that requires precisely controlled steam.
  • the increase rate of the check valve in the large opening range is large, so that the large amount of re-evaporated steam can be quickly handled in the large opening region where chattering cannot occur.
  • the re-evaporated vapor having a large flow rate can be passed quickly.
  • the second characteristic configuration of the present invention relates to a steam supply system
  • a decompression valve is installed in the steam supply path for supplying steam to the equipment that uses the steam
  • a steam ejector is installed downstream of the decompression valve in the steam supply path, and the suction part and condensate of the steam ejector are reevaporated.
  • a steam supply system in which a check valve for suppressing backflow of steam to the re-evaporation tank is interposed in the suction path, While having a configuration to adjust the valve opening of the pressure reducing valve according to the temperature or pressure of the passing steam of the pressure reducing valve,
  • the non-return valve has an inherent flow rate characteristic or an increase rate at which the rate of increase in flow rate associated with an increase in the valve opening is equal in a small opening region where the valve opening is small and a large opening region where the valve opening is large Is a structure having an inherent flow rate characteristic that is smaller in the small opening region than in the large opening region.
  • the increase rate in the small opening region of the check valve interposed in the suction path is smaller than that in the conventional system, as in the first embodiment. Accordingly, the minimum adjustable flow rate when the check valve is opened is reduced, and a smaller flow rate of re-evaporated steam can be passed in a stable state where chattering does not occur in the check valve.
  • the passing steam of the pressure reducing valve (in other words, driving steam of the steam ejector)
  • the temperature or pressure of the steam ejector can be controlled with high accuracy to a suitable one according to the structure and required performance of the steam ejector, so that the steam ejector can effectively achieve high efficiency and long life. Can do.
  • the increase rate of the check valve in the large opening range is large, so that the large amount of re-evaporated steam can be quickly handled in the large opening region where chattering cannot occur.
  • the re-evaporated vapor having a large flow rate can be passed quickly.
  • the third characteristic configuration of the present invention relates to a steam supply system,
  • a decompression valve is installed in the steam supply path for supplying steam to the equipment that uses the steam,
  • a steam ejector is installed downstream of the decompression valve in the steam supply path, and the suction part and condensate of the steam ejector are reevaporated.
  • a steam supply system in which a check valve for suppressing backflow of steam to the re-evaporation tank is interposed in the suction path, While having a configuration for adjusting the valve opening of the pressure reducing valve according to the temperature or pressure of the reevaporated vapor in the reevaporation tank,
  • the non-return valve has an inherent flow rate characteristic or an increase rate at which the rate of increase in flow rate associated with an increase in the valve opening is equal in a small opening region where the valve opening is small and a large opening region where the valve opening is large Is a structure having an inherent flow rate characteristic that is smaller in the small opening region than in the large opening region.
  • the increase rate in the small opening range of the check valve interposed in the suction path is smaller than in the conventional system. Therefore, the minimum adjustable flow rate in the open state of the check valve is reduced by that amount, and a smaller flow rate of re-evaporated steam can be passed in a stable state where chattering does not occur in the check valve. .
  • the temperature or pressure of the reevaporated vapor in the reevaporated tank is set to a predetermined value. Therefore, for example, it is possible to effectively avoid the disadvantage that the utilization rate of the re-evaporated steam decreases due to, for example, the re-evaporated steam becoming higher than the intended temperature or pressure. .
  • the increase rate of the check valve in the large opening range is large, so that the large amount of re-evaporated steam can be quickly handled in the large opening region where chattering cannot occur.
  • the re-evaporated vapor having a large flow rate can be passed quickly.
  • the fourth characteristic configuration of the present invention relates to a check valve, the characteristic of which is A check valve used in the steam supply system according to any one of the first to third characteristic configurations,
  • a valve body is provided that is seated on the valve seat in a state of being in surface contact with the entire circumference of the annular valve seat provided at the outer peripheral edge of the valve port, and closes the valve port.
  • the valve body is urged toward the valve closing side, and the valve body moves to the side away from the valve seat against the urging force of the urging means by the fluid inflow pressure from the valve port, thereby opening the valve port.
  • a flow rate control protrusion that controls the flow rate of fluid in a form that keeps the area of The outer shape of the flow rate control protrusion is configured to have the inherent flow rate characteristic.
  • the valve body is provided that is seated on the valve seat in a state of being in surface contact with the entire circumference of the annular valve seat provided on the outer peripheral edge portion of the valve port and closes the valve port.
  • the flow rate control protrusion formed on the valve port side has the characteristic flow rate characteristic, so that the valve body contact portion of the valve body and the entire circumference of the annular valve seat are in surface contact. While obtaining a high water stop performance when the valve is closed, the above-mentioned intrinsic flow characteristics can be exhibited in a stable state with few failures and malfunctions.
  • the fifth characteristic configuration of the present invention is a configuration suitable for the implementation of the fourth characteristic configuration. While providing a valve shaft for moving and guiding the valve body along a direction orthogonal to the opening surface of the valve port,
  • the flow rate control protrusion is configured in a shape having symmetry or substantially symmetry around the center axis of the opening surface of the valve port.
  • the valve body is moved by the inflow pressure of the fluid (from the valve closing posture to the valve opening posture) by the valve shaft that moves and guides the valve body along the direction orthogonal to the opening surface of the valve port. Can be efficiently performed.
  • the said flow control projection part is comprised in the shape which has the symmetry (what is called rotational symmetry) or the general symmetry around the central-axis center of the opening surface of the said valve opening, the inflow pressure of the fluid is controlled.
  • the valve body is kept in a predetermined posture using the inflow pressure of the fluid in such a manner that the inflow pressure of the fluid is uniformly received in the inflow direction of the fluid when the valve body moves along the direction orthogonal to the opening surface. Can do.
  • the fluctuation of the valve body from a predetermined posture during the movement of the valve body may cause damage or wear around the support portion of the valve shaft or the interference portion with the valve shaft such as the connection portion between the valve shaft and the valve body. It can be effectively suppressed and the desired performance can be maintained for a long time.
  • the sixth feature configuration of the present invention is a configuration suitable for the implementation of the fourth or fifth feature configuration,
  • the flow rate control protrusion is configured to have an outer shape that does not contact the inner peripheral surface of the valve port or the valve seat in the movement process until the valve body moves toward the valve seat and sits on the valve seat. In the point.
  • the block diagram which shows 1st Embodiment of a steam supply system A graph showing the relationship between valve opening and flow rate in a check valve (A) Longitudinal sectional view showing the closed state of the check valve, (b) Enlarged view of the main part (A) Longitudinal sectional view showing the open state of the check valve, (b) Enlarged view of the main part
  • the block diagram which shows 2nd Embodiment of a steam supply system The block diagram which shows 3rd Embodiment of a steam supply system
  • the block diagram which shows another embodiment of a steam supply system (A) Longitudinal sectional view showing the closed state of the conventional check valve, (b) Longitudinal sectional view showing the opened state of the conventional check valve
  • FIG. 1 shows a schematic view of a steam supply system used in a steam use facility such as a steam plant, and supplies steam S (in this example, medium pressure or low pressure steam) to a steam use device (not shown).
  • a pressure reducing valve 3 is interposed in the path 1
  • a steam ejector 4 is interposed downstream of the pressure reducing valve 3 in the steam supply path 1.
  • Reference numeral 2 denotes a re-evaporation tank for re-evaporating the condensate D1 (in this example, high-temperature condensate generated from steam having a pressure higher than that of the steam S), and the condensate D1 is caused to flow into the re-evaporation tank 2.
  • a condensate inflow channel 5 is connected.
  • a condensate discharge path 6 for discharging the condensate D2 after reevaporation is connected to the lower layer side of the reevaporation 2 tank.
  • a steam trap 7 is interposed in the condensate discharge path 6.
  • the upper region of the reevaporation tank 2 and the suction part 8 of the steam ejector 4 are connected by a suction path 9, and a check valve 10 that suppresses the backflow of steam to the reevaporation tank 2 is connected to the suction path 9. Is intervening.
  • the re-evaporated steam FS in the re-evaporation tank 2 is sucked by the steam ejector 4 and mixed with the passed steam S in a form in which the passing steam S ′ of the pressure reducing valve 3 is the driving steam of the steam ejector 4.
  • the mixed steam MA is supplied to the steam-using equipment.
  • a pressure sensor 11 for detecting the pressure of the mixed steam MS is provided on the downstream side of the steam ejector 4 in the steam supply path 1, and the pressure sensor 11 and the pressure reducing valve 3 are electrically connected to each other.
  • the rate of increase of the flow rate r (in this example, the flow rate coefficient (Cv value)) accompanying the increase of the valve opening degree (valve opening degree based on the movement amount of the valve body 24) d is the valve opening degree.
  • the inherent flow rate characteristic (the inherent flow rate characteristic indicated by (b) in FIG. 2) or the increase rate in the small opening range where d is small and the large opening range where the valve opening is large is greater than the large opening range.
  • a structure having a specific flow rate characteristic (specific flow rate characteristic indicated by (c) in FIG. 2) that is small in a small opening range is desirable, and in this example, a structure having the latter specific flow rate characteristic is used. .
  • the Cv value is a numerical value representing the valve capacity, and is specifically represented by the following equation.
  • Cv Q ⁇ (G / ⁇ p)
  • Q Flow rate (gal (US) / min)
  • G Specific gravity
  • ⁇ p Differential pressure (1 lbf / in 2)
  • a gas-liquid separator 12 and a steam trap 13 are integrally provided below the pressure reducing valve 3 so as to separate the condensate from the inflowing steam S to the pressure reducing valve 3, and the gas-liquid separator 12 and the steam trap are provided.
  • a communication pipe 14 is provided for guiding the condensate D3 separated through 13 to the upper area of the reevaporation tank 2. By these things, it is set as the structure which supplies passing steam S 'with a very low condensate mixing rate to the nozzle part (not shown) incorporated in the suction part 4a of the steam ejector 4.
  • FIG. Reference numeral 15 denotes a check valve 15 interposed in the communication pipe 14.
  • the check valve 10 interposed in the suction passage 9 includes an outlet side valve case 18 having a valve chamber 16 and an outflow passage 17 therein, an inflow passage 19 and an annular passage.
  • a substantially cylindrical inlet side valve case 21 having a valve seat 23 is integrally assembled in an airtight state.
  • valve chamber 16 is seated on the valve seat 23 in a state of being in surface contact with the entire circumference of the valve seat 23 formed on the outer peripheral edge of the valve port 22 that opens the inflow passage 19 to the valve chamber 16.
  • the valve body 24 which can be closed is housed.
  • a compression coil spring 25 (an example of a biasing means) that biases the valve body 24 toward the valve closing side is provided between the valve body 24 and the outlet side valve case 18 in the valve chamber 16.
  • valve chamber 16 is provided with a valve shaft 26 for moving and guiding the valve body 24 along the X direction orthogonal to the opening surface of the valve port 22.
  • the valve shaft 26 is a pair of rods that protrude from both end sides of the valve body 24 so as to be in a straight line along the passage direction (the X direction in the present example) of the fluid (revaporized vapor FS in the present example). It consists of parts.
  • One end side bearing that supports one end side (the upper end side in the figure) of the valve shaft 26 movably along the X direction orthogonal to the opening surface of the valve port 22 is provided at a portion of the valve chamber 16 on the outflow passage 17 side. 27 is provided. Inside the inflow path 19, there is provided the other end side bearing 28 that supports the other end side of the valve shaft 26 slidably along the X direction.
  • the check valve 10 is basically in a closed state (the state shown in FIG. 3) in which the valve port 22 is closed by the urging force of the compression coil spring 25 and receives a predetermined fluid inflow pressure.
  • the valve port 22 is opened only when the valve body 24 moves away from the valve seat 23 (upper side in FIG. 3) against the urging force of the compression coil spring 25 by the fluid inflow pressure.
  • the valve is open (state shown in FIG. 4).
  • the valve open state shown in FIG. 4 is a state where the Cv value is about 20%.
  • the valve body 24 includes a valve lid portion 29 that protrudes in a bowl shape along the radial direction of the valve shaft 26, and a valve seat contact portion of the valve body 24 when the valve body 24 moves away from the valve seat 23. (Specifically, it is formed between the inner surface of the valve opening 22 rather than the area of the annular gap (opening surface) A1 formed between the valve seat 23 and the outer periphery of the lower surface of the valve lid portion 29).
  • a flow rate control protrusion 30 that protrudes to the center position of the surface on the valve port 22 side of the valve lid portion 29 so as to control the flow rate of the re-evaporated vapor FS in a form that reduces the area of the gap (opening surface) A2.
  • the valve shaft 26 is integrally formed.
  • the shape (specifically, the outer shape) of the flow rate control protrusion 30 is such that the rate of increase of the flow rate r accompanying the increase of the valve opening d is smaller in the small opening region than in the large opening region. It is configured to have a characteristic (characteristic flow characteristic shown by (c) in FIG. 2). Specifically, the shape of the protrusion 30 for flow control is such that the rate of increase in the area of the gap A2 in the valve lid side half 30a (upper half in the figure) with respect to the upward movement amount of the valve body 24 is the valve opening.
  • the outer diameter R1 (that is, the maximum diameter of the flow control protrusion 30) of the flow control protrusion 30 on the side of the valve lid 29 is configured to be the same as the inner diameter R2 of the inflow passage 19, and By chamfering the inner edge and making the inner diameter R3 of the valve port 22 slightly larger than the outer diameter R1 of the valve lid 29 side end of the flow rate control projection 30, the valve element 24 approaches the valve seat 23. In the moving process until the valve lid 29 is seated on the valve seat 23, the flow rate control projection 30 is located on either the inner peripheral surface of the valve port 22 or the inner peripheral surface of the valve seat 23 and the inflow passage 19. Is configured so as not to contact.
  • a pressure sensor 32 for detecting the pressure of the reevaporated vapor FS in the reevaporation tank 2 is provided in the reevaporation tank 2, and the pressure sensor 32 and the pressure reducing valve 3 are provided. Electrically connected, the valve opening degree of the pressure reducing valve 3 is adjusted so that the pressure of the re-evaporated steam FS in the re-evaporation tank 2 becomes a predetermined value according to the detection value of the pressure sensor 32.
  • valve opening degree of the pressure reducing valve 3 is adjusted according to the pressure of the steam on the downstream side of the steam ejector 4 in the steam supply path 1 is shown as an example.
  • the opening degree of the pressure reducing valve 3 may be adjusted according to the pressure of the passing steam S ′.
  • a pressure sensor 33 that detects the pressure of the steam S ′ passing through the pressure reducing valve 3 is provided at a location between the pressure reducing valve 3 and the steam ejector 2 in the steam supply path 1.
  • the pressure sensor 33 and the pressure reducing valve 3 are electrically connected, and the pressure reducing valve 3 is opened so that the pressure of the re-evaporated vapor FS in the re-evaporating tank 2 becomes a predetermined value according to the detection value of the pressure sensor 33. It is configured to adjust the degree.
  • valve opening degree of the pressure reducing valve 3 is adjusted according to the detection values of the pressure sensors 11, 32, and 33 is shown as an example.
  • the valve opening degree of the pressure reducing valve 3 may be mechanically adjusted according to the pilot pressure through 34.
  • valve opening degree of the pressure reducing valve 3 is adjusted according to the detection values of the pressure sensors 11, 32, and 33
  • the saturated steam pressure and temperature have a fixed relationship.
  • a temperature sensor may be provided instead of the pressure sensor, and the valve opening degree of the pressure reducing valve 3 may be adjusted in accordance with the detected value of the temperature sensor.
  • the check valve 10 has an inherent flow rate characteristic in which the rate of increase of the flow rate r accompanying the increase in the valve opening d is smaller in the small opening region than in the large opening region (FIG. 2).
  • the structure having the characteristic flow characteristic shown in (c) of FIG. 5 is shown as an example.
  • the increase rate of the flow rate r accompanying the increase in the valve opening d is small in the check valve 10 due to the increase in the valve opening d.
  • a structure having a specific flow rate characteristic (a specific flow rate characteristic shown in FIG. 2B) equivalent to a small opening range and a large opening range having a large valve opening d may be used.
  • the specific configuration such as the shape of the flow rate control protrusion 30 is not limited to the above-described hemispherical or substantially hemispherical shape, but has a desired intrinsic flow characteristic such as a conical shape, a truncated cone shape, a truncated pyramid shape, or a truncated pyramid shape. It may be changed as appropriate.
  • the urging means of the check valve 10 is constituted by the compression coil spring 25 is shown as an example.
  • the urging means is constituted by an elastic body such as rubber or a valve structure using gravity as the urging force. May be.
  • the flow rate control protrusion 30 moves to the inner periphery of the valve port 22 during the movement process until the valve body 24 moves toward the valve seat 23 and the valve lid portion 29 is seated on the valve seat 23.
  • the outer diameter R1 of the end of the flow rate control projection 30 on the side of the valve lid portion 29 is set to the inner diameter R2 of the inflow passage 19 so as not to contact any of the surface and the inner peripheral surface of the valve seat 23 and the inflow passage 19.
  • the inner edge portion of the valve port 22 is chamfered so that the inner diameter R3 of the valve port 22 is slightly larger than the outer diameter R1 of the end of the flow control protrusion 30 on the valve lid portion 29 side.
  • the outer diameter R1 of the end of the flow rate control protrusion 30 on the valve lid 29 side may be smaller than the inner diameter R2 of the inflow passage 19 and the inner diameter R3 of the valve port 22.
  • the present invention can be suitably used for various facilities equipped with steam-using equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Check Valves (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Safety Valves (AREA)

Abstract

 減圧弁による蒸気の制御精度を高める。 蒸気供給路1に減圧弁3を介装し、蒸気供給路1における減圧弁3の下流側に蒸気エゼクタ4を介装するとともに、蒸気エゼクタ4の吸引部4aと復水D1を再蒸発させる再蒸発タンク2とを吸引路9で接続し、減圧弁3の通過蒸気S´を蒸気エゼクタ4の駆動蒸気とする形態で再蒸発タンク2内の再蒸発蒸気FSを蒸気エゼクタ4で吸引して通過蒸気S´と混合する構成にするとともに、再蒸発タンク2への蒸気の逆流を抑止する逆止弁10を吸引路9に介装してある蒸気供給システムであって、蒸気供給路1における蒸気エゼクタ4の下流側の蒸気の温度又は圧力に応じて減圧弁3の弁開度を調整する構成にし、逆止弁10を、それの弁開度の増大に伴う流量の増大率が弁開度の小さな小開度域と弁開度の大きな大開度域とで同等となる固有流量特性又は増大率が大開度域よりも小開度域で小さくなる固有流量特性を有する構造にする。

Description

蒸気供給システム及びそれに用いる逆止弁
 本発明は、蒸気プラント等の設備において蒸気使用機器に蒸気を供給するのに用いられる蒸気供給システム及びそれに用いる逆止弁に関する。
 従来、この種の蒸気供給システムとしては、蒸気使用機器に蒸気を供給する蒸気供給路に減圧弁を介装し、前記蒸気供給路における減圧弁の下流側に蒸気エゼクタを介装し、その蒸気エゼクタの吸引部と復水を再蒸発させる再蒸発タンクとを吸引路で接続し、前記減圧弁の通過蒸気を蒸気エゼクタの駆動蒸気とする形態で再蒸発タンク内の再蒸発蒸気を蒸気エゼクタで吸引して前記通過蒸気と混合する構成にするとともに、前記再蒸発タンクへの蒸気の逆流を抑止する逆止弁を前記吸引路に介装したものが知られている(例えば、下記特許文献1参照)。
 つまり、この蒸気供給システムは、蒸気供給路に介装した蒸気エゼクタによる吸引作用でもって再蒸発タンク内の再蒸発蒸気を蒸気使用機器に対する供給蒸気に活用することで蒸気プラント等の設備全体の省エネ化を図っている。
 そして、従来では、再蒸発蒸気を極力素早く通過させて即座に閉弁状態とするのが逆流の確実な防止につながることから、前記吸引路に介装する前記逆止弁を、それの弁開度の増大に伴う流量の増大率が弁開度の大きな大開度域よりも弁開度の小さな小開度域で大きくなる固有流量特性(図2中の(a)で示す固有流量特性)を有する構造にしていた。例えば、図8に示すように、弁口41側の面42aが平面となるディスク状の弁蓋部42を弁体43に形成する構造にしていた。なお、44は流入路、45は流出路、46は圧縮コイルスプリング(前記付勢手段の一例)、47は弁室、48は環状の弁座である。また、図8(a)は閉弁状態を示し、図8(b)は流量(具体的には、後述するCv値)約20%時の開弁状態を示す。
 この図8に示す逆止弁は、流体の流体圧による弁体43の移動に伴い弁体43の弁座当接部(弁蓋部42の下面42aの外周部)と環状の弁座48との間に形成される環状の隙間A1の面積が流体の流入通路の最小面積となるため、開弁時における環状の隙間A1の面積によって流体の通過流量が決定されることになるが、弁体43の弁座48から離れる側への移動量(ストローク)に基づく弁開度の増大に伴う隙間A1の面積の増大率が弁開度の増大に連れて徐々に小さくなるために、図2の(a)に示すタイプの固有流量特性を有することになる。
 ところで、近年になって、極めて小流量の再蒸発蒸気をも蒸気エゼクタの吸引作用で利用して設備全体の省エネ効果を更に高めることと、蒸気使用機器の種別やそれを備える大元の設備の種別或いは設備管理者の意向等の種々の事情に応じて蒸気使用機器に対する供給蒸気等を精密に制御することとの双方が同時に求められてきている。そして、この蒸気使用機器に対する供給蒸気等は減圧弁の開度調整による蒸気エゼクタの吸い込み圧の調整で制御される。
特開2007-332859号公報
 ところが、上記従来の蒸気供給システムでは、前記吸引路に介装した逆止弁が、弁開度の小さな小開度域で弁開度の増大に伴う流量の増加率が比較的大きい固有流量特性を有することから、その逆止弁の弁開度に基づく最小調整可能流量があまり小さくはない(換言すれば、レンジアビリティがあまり広くはない)。そのため、この蒸気供給システムでは、極めて少流量の再蒸発蒸気を活用すべく減圧弁による弁開度の調整で蒸気エゼクタの吸い込み圧をかなり低く保つようにしたときに、逆止弁が僅かな開弁状態と閉弁状態とを繰り返す(弁体が繰り返し弁座をたたく)不安定な状態(所謂、チャタリング)が発生し、そのことで、蒸気エゼクタの吸い込み圧が不安定になって減圧弁による蒸気の制御が不精密になる問題があった。
 本発明は上述の如き実情に鑑みてなされたものであって、その主たる課題は、吸引路の逆止部の合理的な改良により、上記の如き問題点を効果的に解消する点にある。
 本発明の第1特徴構成は、蒸気供給システムに係り、その特徴は、
 蒸気使用機器に蒸気を供給する蒸気供給路に減圧弁を介装し、前記蒸気供給路における減圧弁の下流側に蒸気エゼクタを介装するとともに、前記蒸気エゼクタの吸引部と復水を再蒸発させる再蒸発タンクとを吸引路で接続し、
 前記減圧弁の通過蒸気を蒸気エゼクタの駆動蒸気とする形態で再蒸発タンク内の再蒸発蒸気を蒸気エゼクタで吸引して前記通過蒸気と混合する構成にするとともに、
 前記再蒸発タンクへの蒸気の逆流を抑止する逆止弁を前記吸引路に介装してある蒸気供給システムであって、
 前記蒸気供給路における前記蒸気エゼクタの下流側の蒸気の温度又は圧力に応じて前記減圧弁の弁開度を調整する構成にするとともに、
 前記逆止弁を、それの弁開度の増大に伴う流量の増大率が弁開度の小さな小開度域と弁開度の大きな大開度域とで同等となる固有流量特性又は前記増大率が前記大開度域よりも前記小開度域で小さくなる固有流量特性を有する構造にした点にある。
 つまり、上記構成によれば、前記の従来システムに比べ、前記吸引路に介装した逆止弁の前記小開度域での前記増大率が小さくなるから、その分、逆止弁の開弁状態での最小調整可能流量が小さくなって、前述したチャタリングが逆止弁に発生しない安定した状態でより小流量の再蒸発蒸気を通過させることができる。
 したがって、より小流量の再蒸発蒸気を活用すべく減圧弁の開度の調整で蒸気エゼクタの吸い込み圧を低く保つ場合でも、逆止弁のチャタリングの発生で蒸気エゼクタの吸い込み圧が不安定になるのを抑止することができ、減圧弁の蒸気制御の精度を高めることができる。
 それ故に、蒸気供給路における蒸気エゼクタの下流側の蒸気の温度又は圧力に応じて減圧弁の弁開度を調整する上記構成にあって、蒸気エゼクタの下流側の蒸気の温度又は圧力を高精度に制御することできるから、精密に制御された蒸気を要する蒸気使用機器に対しても再蒸発蒸気を利用した省エネ効果の高い蒸気供給を行うことができる。
 しかも、前記の従来システムに比べ、前述した前記逆止弁の前記大開度域での前記増大率が大きくなるから、チャタリングの発生し得ない大開度域では大流量の再蒸発蒸気に素早く対応して、その大流量の再蒸発蒸気を素早く通過させることができる。
 さらに、前述の如く、逆止弁のチャタリングの発生を抑止することによって、そのチャタリングの発生で逆止弁の弁体や弁座の磨耗や損傷をも抑止することができ、システムの維持コストの低廉化も図ることができる。
 本発明の第2特徴構成は、蒸気供給システムに係り、その特徴は、
 蒸気使用機器に蒸気を供給する蒸気供給路に減圧弁を介装し、前記蒸気供給路における減圧弁の下流側に蒸気エゼクタを介装するとともに、前記蒸気エゼクタの吸引部と復水を再蒸発させる再蒸発タンクとを吸引路で接続し、
 前記減圧弁の通過蒸気を蒸気エゼクタの駆動蒸気とする形態で再蒸発タンク内の再蒸発蒸気を蒸気エゼクタで吸引して前記通過蒸気と混合する構成にするとともに、
 前記再蒸発タンクへの蒸気の逆流を抑止する逆止弁を前記吸引路に介装してある蒸気供給システムであって、
 前記減圧弁の通過蒸気の温度又は圧力に応じて前記減圧弁の弁開度を調整する構成にするとともに、
 前記逆止弁を、それの弁開度の増大に伴う流量の増大率が弁開度の小さな小開度域と弁開度の大きな大開度域とで同等となる固有流量特性又は前記増大率が前記大開度域よりも前記小開度域で小さくなる固有流量特性を有する構造にした点にある。
 つまり、上記構成によれば、前述の第1実施形態と同様、前記の従来システムに比べ、前記吸引路に介装した逆止弁の前記小開度域での前記増大率が小さくなるから、その分、逆止弁の開弁状態での最小調整可能流量が小さくなって、前述したチャタリングが逆止弁に発生しない安定した状態でより小流量の再蒸発蒸気を通過させることができる。
 したがって、より小流量の再蒸発蒸気を活用すべく減圧弁の開度の調整で蒸気エゼクタの吸い込み圧を低く保つ場合でも、逆止弁のチャタリングの発生で蒸気エゼクタの吸い込み圧が不安定になるのを抑止することができ、減圧弁の蒸気制御の精度を高めることができる。
 それ故に、前記減圧弁を通過中の蒸気の温度又は圧力に応じて前記減圧弁の弁開度を調整する上記構成にあって、減圧弁の通過蒸気(換言すれば、蒸気エゼクタの駆動蒸気)の温度又は圧力をその蒸気エゼクタの構造や要求される性能等に応じた好適なものに高精度に制御することができるから、蒸気エゼクタの高効率化や長寿命化を効果的に達成することができる。
 しかも、前記の従来システムに比べ、前述した前記逆止弁の前記大開度域での前記増大率が大きくなるから、チャタリングの発生し得ない大開度域では大流量の再蒸発蒸気に素早く対応して、その大流量の再蒸発蒸気を素早く通過させることができる。
 さらに、前述の如く、逆止弁のチャタリングの発生を抑止することによって、そのチャタリングの発生で逆止弁の弁体や弁座の磨耗や損傷をも抑止することができ、システムの維持コストの低廉化も図ることができる。
 本発明の第3特徴構成は、蒸気供給システムに係り、その特徴は、
 蒸気使用機器に蒸気を供給する蒸気供給路に減圧弁を介装し、前記蒸気供給路における減圧弁の下流側に蒸気エゼクタを介装するとともに、前記蒸気エゼクタの吸引部と復水を再蒸発させる再蒸発タンクとを吸引路で接続し、
 前記減圧弁の通過蒸気を蒸気エゼクタの駆動蒸気とする形態で再蒸発タンク内の再蒸発蒸気を蒸気エゼクタで吸引して前記通過蒸気と混合する構成にするとともに、
 前記再蒸発タンクへの蒸気の逆流を抑止する逆止弁を前記吸引路に介装してある蒸気供給システムであって、
 前記再蒸発タンク内の再蒸発蒸気の温度又は圧力に応じて前記減圧弁の弁開度を調整する構成にするとともに、
 前記逆止弁を、それの弁開度の増大に伴う流量の増大率が弁開度の小さな小開度域と弁開度の大きな大開度域とで同等となる固有流量特性又は前記増大率が前記大開度域よりも前記小開度域で小さくなる固有流量特性を有する構造にした点にある。
 つまり、上記構成によれば、前記第1、第2特徴構成と同様、前記の従来システムに比べ、前記吸引路に介装した逆止弁の前記小開度域での前記増大率が小さくなるから、その分、逆止弁の開弁状態での最小調整可能流量が小さくなって、前述したチャタリングが逆止弁に発生しない安定した状態でより小流量の再蒸発蒸気を通過させることができる。
 したがって、より小流量の再蒸発蒸気を活用すべく減圧弁の開度の調整で蒸気エゼクタの吸い込み圧を低く保つ場合でも、逆止弁のチャタリングの発生で蒸気エゼクタの吸い込み圧が不安定になるのを抑止することができ、減圧弁の蒸気制御の精度を高めることができる。
 それ故に、前記再蒸発タンク内の再蒸発蒸気の温度又は圧力に応じて前記減圧弁の弁開度を調整する上記構成にあって、再蒸発タンク内の再蒸発蒸気の温度又は圧力を所定値に高精度に制御することができるから、例えば、再蒸発蒸気が所期の温度又は圧力よりも高くなる等のことで再蒸発蒸気の利用率が低下する不都合を効果的に回避することができる。
 しかも、前記の従来システムに比べ、前述した前記逆止弁の前記大開度域での前記増大率が大きくなるから、チャタリングの発生し得ない大開度域では大流量の再蒸発蒸気に素早く対応して、その大流量の再蒸発蒸気を素早く通過させることができる。
 さらに、前述の如く、逆止弁のチャタリングの発生を抑止することによって、そのチャタリングの発生で逆止弁の弁体や弁座の磨耗や損傷をも抑止することができ、システムの維持コストの低廉化も図ることができる。
 本発明の第4特徴構成は、逆止弁に係り、その特徴は、
 前記第1~第3特徴構成のいずれかに記載の蒸気供給システムに用いる逆止弁であって、
 弁口の外周縁部に設けた環状の弁座の全周に面当接する状態で弁座に着座して弁口を閉弁する弁体を設け、付勢手段の付勢力によって前記弁体を閉弁側に付勢し、且つ、前記弁口からの流体流入圧によって前記付勢手段の付勢力に抗して弁体が弁座から離れる側に移動して弁口を開弁する構造にするとともに、
 前記弁体が前記弁座から離れる側に移動するときに弁体の弁座当接部と弁座との間に形成される隙間の面積よりも弁口の内面との間に形成される隙間の面積を小さく保つ形態で流体の通過流量を制御する流量制御用の突出部を弁体の弁口側に設け、
 前記固有流量特性を有するように前記流量制御用突出部の外郭形状を構成した点にある。
 上記構成によれば、弁口の外周縁部に設けた環状の弁座の全周に面当接する状態で弁座に着座して弁口を閉弁する弁体を設けることに対し、弁体の弁口側に形成された流量制御用突出部の外郭形状によって前記固有流量特性を有するものとするから、弁体の弁体当接部と環状の弁座の全周とが面当接することによる閉弁時の高い止水性能を得ながらも、故障や誤動の少ない安定した状態で前記固有流量特性を発揮させることができる。
 本発明の第5特徴構成は、第4特徴構成の実施に好適な構成であり、その特徴は、
 前記弁体を前記弁口の開口面に直交する方向に沿って移動案内する弁軸を設けるとともに、
 前記流量制御用突出部を、前記弁口の開口面の中心軸芯周りで対称性又は略対称性を有する形状に構成した点にある。
 上記構成によれば、先ずは、前記弁体を前記弁口の開口面に直交する方向に沿って移動案内する弁軸によって流体の流入圧による弁体の移動(閉弁姿勢から開弁姿勢への移動)に効率的に行わせることができる。
 そして、前記流量制御用突出部を、前記弁口の開口面の中心軸芯周りで対称性(所謂、回転対称性)又は略対称性を有する形状に構成してあるから、流体の流入圧を受けて弁体が開口面に直交する方向に沿って移動するときに流体の流入圧を流体の流入方向で均等に受け流す形態でその流体の流入圧を利用して弁体を所定姿勢に保つことができる。
 したがって、弁体の移動時における弁体の所定姿勢からの変動で弁軸の支持部周りや弁軸と弁体との接続部周り等の弁軸との干渉部位に損傷や磨耗が生じる不具合を効果的に抑止することができて、所期の性能を長く保つことができる。
 本発明の第6特徴構成は、第4又は第5特徴構成の実施に好適な構成であり、その特徴は、
 前記流量制御用突出部を、前記弁体が前記弁座に近づく側に移動して弁座に着座するまでの移動過程において前記弁口の内周面又は弁座に接触しない外郭形状に構成した点にある。
 上記構成によれば、閉弁動作に伴う流体制御用突出部と弁口の内周面及び弁座との接触によって流体制御用突出部の外面形状が変化する不具合を防止することができるから、流体制御用突出部の外郭形状が変化することに伴う流量制御の精度の低下を抑止することができる。
蒸気供給システムの第1実施形態を示す構成図 逆止弁における弁開度と流量の関係を示すグラフ (a)逆止弁の閉弁状態を示す縦断面図、(b)要部の拡大図 (a)逆止弁の開弁状態を示す縦断面図、(b)要部の拡大図 蒸気供給システムの第2実施形態を示す構成図 蒸気供給システムの第3実施形態を示す構成図 蒸気供給システムの別実施形態を示す構成図 (a)従来の逆止弁の閉弁状態を示す縦断面図、(b)従来の逆止弁の開弁状態を示す縦断面図
 [第1実施形態]
 図1は、蒸気プラント等の蒸気使用設備に用いられる蒸気供給システムの概略図を示し、蒸気使用機器(図示しない)に蒸気S(本例では、中圧又は低圧の蒸気)を供給する蒸気供給路1に減圧弁3を介装するとともに、蒸気供給路1における減圧弁3の下流側に蒸気エゼクタ4を介装してある。
 2は、復水D1(本例では、蒸気Sよりも高圧の蒸気から生じた高温の復水)を再蒸発させる再蒸発タンクであり、この再蒸発タンク2には、復水D1を流入させる復水流入路5を接続してある。再蒸発2タンクの下層側には、再蒸発後の復水D2を排出する復水排出路6を接続してある。また、復水排出路6には、蒸気トラップ7を介装してある。
 そして、再蒸発タンク2の上層域と蒸気エゼクタ4の吸引部8とを吸引路9で接続するとともに、この吸引路9には、再蒸発タンク2への蒸気の逆流を抑止する逆止弁10を介装してある。
 つまり、この蒸気供給システムは、減圧弁3の通過蒸気S´を蒸気エゼクタ4の駆動蒸気とする形態で再蒸発タンク2内の再蒸発蒸気FSを蒸気エゼクタ4で吸引して通過蒸気Sと混合し、この混合蒸気MAを蒸気使用機器に供給する構成にしてある。
 また、混合蒸気MSの圧力を検出する圧力センサ11を蒸気供給路1における蒸気エゼクタ4の下流側に設けるとともに、この圧力センサ11と前記減圧弁3とを電気的に接続し、圧力センサ11の検出値に応じて混合蒸気MSの圧力が所定値になるように減圧弁3の弁開度を調整する構成(蒸気供給路1における蒸気エゼクタ4の下流側の蒸気の温度又は圧力に応じて減圧弁3の弁開度を調整する構成の一例)にしてある。
 前記逆止弁10としては、弁開度(弁体24の移動量に基づく弁開度)dの増大に伴う流量r(本例では、流量係数(Cv値))の増大率が弁開度dの小さな小開度域と弁開度の大きな大開度域とで同等となる固有流量特性(図2中の(b)で示す固有流量特性)又は前記増大率が前記大開度域よりも前記小開度域で小さくなる固有流量特性(図2中の(c)で示す固有流量特性)を有する構造のものが望ましく、本例では、後者の固有流量特性を有する構造のものを用いている。
 なお、Cv値は、弁の容量を表す数値であって、具体的には次式で表される。
 Cv=Q√(G/Δp)
 Q:流量(gal(US)/min)
 G:比重
 Δp:差圧(1lbf/in2)
 つまり、この蒸気供給システムでは、吸引路9に介装する逆止弁10として、前記増大率が前記大開度域よりも前記小開度域で小さくなる固有流量特性を有するものを採用することによって、逆止弁10の小開度域での小さな前記増大率でもって開弁状態での最小調整可能流量を小さくする形態で逆止弁10にチャタリングの発生しない状況下で極めて少流量の再蒸発蒸気FSを活用できるようにし、さらに、大開度域での大きな前記増大率でもってチャタリングの発生し得ない大開度域では大流量の再蒸発蒸気に素早く対応して通過させることができるようにしてある。
 前記減圧弁3の下部には、減圧弁3への流入蒸気Sから復水を分離するように気液分離機12と蒸気トラップ13を一体的に設け、また、気液分離機12と蒸気トラップ13を経て分離された復水D3を再蒸発タンク2の上方域に導く連通管14を設けてある。これらのことによって、蒸気エゼクタ4の吸込部4aに内蔵されたノズル部(図示しない)に復水の混入率の極めて低い通過蒸気S´を供給する構成にしてある。なお、15は連通管14に介装した逆止弁15である。
 図3、図4に示すように、前記吸引路9に介装された前記逆止弁10は、弁室16及び流出路17を内部に有する出口側弁ケース18と、流入路19及び環状の弁座23とを有する略円筒状の入口側弁ケース21を気密状態で一体的に組み付けて構成してある。
 前記弁室16には、流入路19を弁室16に開口させる弁口22の外周縁部に形成した前記弁座23の全周に面当接する状態で弁座23に着座して弁口22を閉弁可能な弁体24を内装してある。弁室16における弁体24と出口側弁ケース18との間には、弁体24を閉弁側に付勢する圧縮コイルスプリング25(付勢手段の一例)を設けてある。
 また、前記弁室16には、弁体24を弁口22の開口面に直交するX方向に沿って移動案内する弁軸26を設けてある。この弁軸26は、流体(本例では、再蒸発蒸気FS)の通過方向(本例では前記X方向)に沿って一直線状になるように弁体24の両端側に突出させた一対の棒状部から構成されている。
 前記弁室16における流出路17側の部位には、弁軸26の一端側(図中の上端側)を弁口22の開口面に直交するX方向に沿って移動自在に支持する一端側軸受け27を設けてある。流入路19の内部には、弁軸26の他端側を前記X方向に沿って摺動自在に支持する他端側軸受け28が設けられている。
 つまり、この逆止弁10は、基本的には、圧縮コイルスプリング25の付勢力で弁口22を閉弁した閉弁状態(図3に示す状態)にしておき、所定の流体流入圧を受けたときのみ、その流体流入圧で圧縮コイルスプリング25の付勢力に抗して弁体24が弁座23から離れる側(図3中の上方側)に移動することによって弁口22を開弁した開弁状態(図4に示す状態)となる構造にしてある。なお、図4に示す開弁状態はCv値が約20%の状態である。
 前記弁体24は、弁軸26の径方向に沿って鍔状に突出する弁蓋部29と、弁体24が弁座23から離れる側に移動するときに弁体24の弁座当接部(具体的には、弁蓋部29の下面の外周部)と弁座23との間に形成される環状の隙間(開口面)A1の面積よりも弁口22の内面との間に形成される隙間(開口面)A2の面積を小さくする形態で再蒸発蒸気FSの通過流量を制御するよう弁蓋部29の弁口22側の面の中央位置に突出させた流量制御用突出部30と、前記弁軸26とが一体形成されている。
 前記流量制御用突出部30の形状(具体的には、外郭形状)は、弁開度dの増大に伴う流量rの増大率が前記大開度域よりも前記小開度域で小さくなる固有流量特性(図2の(c)で示す固有流量特性)を有するように構成してある。詳しくは、流量制御用突出部30の形状は、弁体24の上方側への移動量に対する弁蓋側半部30a(図中の上半部)での隙間A2の面積の増大率が弁口側半部30b(図中の下半部)での隙間A2の面積の増大率よりも小さくなるように弁蓋側半部30aよりも弁口側半部30bが急に収斂する形状、具体的には、弁口22の開口面の中心軸芯周り(本例では、前記X方向に沿う軸芯周り、弁軸26の軸芯周り)で対称性(所謂、回転対称性)を有する半球状又は略半球状に構成してある。
 また、流量制御用突出部30の弁蓋部29側端の外径R1(つまり、流量制御用突出部30の最大径)を流入路19の内径R2と同一に構成するとともに、弁口22の内縁部を面取りして弁口22の内径R3を流量制御用突出部30の弁蓋部29側端の外径R1よりも僅かに大に構成することによって、弁体24が弁座23に近づく側に移動して弁蓋部29が弁座23に着座するまでの移動過程において流量制御用突出部30が弁口22の内周面及び弁座23及び流入路19の内周面のいずれにも接触しないように構成してある。
 [第2実施形態]
 前述の第1実施形態では、前記蒸気供給路1における前記蒸気エゼクタ4の下流側の蒸気の圧力に応じて前記減圧弁3の弁開度を調整する構成を例に示したが、前記再蒸発タンク2内の再蒸発蒸気FSの圧力に応じて前記減圧弁3の弁開度を調整する構成にしてもよい。
 本実施形態では、図5に示すように、再蒸発タンク2内の再蒸発蒸気FSの圧力を検出する圧力センサ32を再蒸発タンク2に設けるとともに、この圧力センサ32と前記減圧弁3とを電気的に接続し、圧力センサ32の検出値に応じて再蒸発タンク2内の再蒸発蒸気FSの圧力が所定値になるように減圧弁3の弁開度を調整する構成にしてある。
 尚、その他の構成は、第1実施形態で説明した構成と同一であるから、同一の構成箇所には、第1実施形態と同一の番号を付記してそれの説明は省略する。
 [第3実施形態]
 前述の第1実施形態では、前記蒸気供給路1における前記蒸気エゼクタ4の下流側の蒸気の圧力に応じて前記減圧弁3の弁開度を調整する構成を例に示したが、前記減圧弁の通過蒸気S´の圧力に応じて前記減圧弁3の弁開度を調整する構成にしてもよい。
 本実施形態では、図6に示すように、蒸気供給路1における減圧弁3と蒸気エゼクタ2の間の箇所に減圧弁3の通過蒸気S´の圧力を検出する圧力センサ33を設けるとともに、この圧力センサ33と前記減圧弁3とを電気的に接続し、圧力センサ33の検出値に応じて再蒸発タンク2内の再蒸発蒸気FSの圧力が所定値になるように減圧弁3の弁開度を調整する構成にしてある。
 尚、その他の構成は、第1実施形態で説明した構成と同一であるから、同一の構成箇所には、第1実施形態と同一の番号を付記してそれの説明は省略する。
 [別実施形態]
 前述の各実施形態では、圧力センサ11、32、33の検出値に応じて前記減圧弁3の弁開度を調整する構成を例に示したが、例えば、図7に示すように、パイロット管34を通じてのパイロット圧に応じて前記減圧弁3の弁開度を機械的に調整する構成にしてもよい。
 前述の各実施形態では、圧力センサ11、32、33の検出値に応じて前記減圧弁3の弁開度を調整する構成を例に示したが、飽和蒸気の圧力と温度は一定の関係を示すことから、圧力センサに代えて温度センサを設け、この温度センサの検出値に応じて前記減圧弁3の弁開度を調整する構成にしてもよい。
 前述の各実施形態では、前記逆止弁10を、それの弁開度dの増大に伴う流量rの増大率が前記大開度域よりも前記小開度域で小さくなる固有流量特性(図2の(c)に示す固有流量特性)を有する構造にする場合を例に示したが、前記逆止弁10を、弁開度dの増大に伴う流量rの増大率が弁開度dの小さな小開度域と弁開度dの大きな大開度域とで同等となる固有流量特性(図2の(b)に示す固有流量特性)を有する構造にしてもよい。
 前記流量制御用突出部30の形状等の具体的構成は、前述の半球状又は略半球状に限らず、円錐状、円錐台状、角錐状、角錐台状等、所望の固有流量特性を有するように適宜に変更すればよい。
 前述の各実施形態では、逆止弁10の付勢手段が圧縮コイルスプリング25から構成されている場合を例に示したが、ゴム等の弾性体や重力を付勢力とする弁構造等から構成されていてもよい。
 前述の各実施形態では、弁体24が弁座23に近づく側に移動して弁蓋部29が弁座23に着座するまでの移動過程において流量制御用突出部30が弁口22の内周面及び弁座23及び流入路19の内周面のいずれにも接触しないように構成するのに、流量制御用突出部30の弁蓋部29側端の外径R1を流入路19の内径R2と同一に構成し、弁口22の内縁部を面取りして弁口22の内径R3を流量制御用突出部30の弁蓋部29側端の外径R1よりも僅かに大に構成する場合を例に示したが、例えば、流量制御用突出部30の弁蓋部29側端の外径R1を流入路19の内径R2及び弁口22の内径R3よりも小に構成してもよい。
 本発明は、蒸気使用機器を備える種々の設備に好適に利用することができる。
1   蒸気供給路
2   再蒸発タンク
3   減圧弁
4   蒸気エゼクタ
4a  吸引部
9   吸引路
10  逆止弁
22  弁口
23  弁座
24  弁体
25  付勢手段
26  弁軸
30  流量制御用突出部
S   蒸気
S´  減圧弁の通過蒸気
FS  再蒸発蒸気
MS  混合蒸気
d   弁開度
r   流量
A1  隙間
A2  隙間

Claims (6)

  1.  蒸気使用機器に蒸気を供給する蒸気供給路に減圧弁を介装し、前記蒸気供給路における減圧弁の下流側に蒸気エゼクタを介装するとともに、前記蒸気エゼクタの吸引部と復水を再蒸発させる再蒸発タンクとを吸引路で接続し、
     前記減圧弁の通過蒸気を蒸気エゼクタの駆動蒸気とする形態で再蒸発タンク内の再蒸発蒸気を蒸気エゼクタで吸引して前記通過蒸気と混合する構成にするとともに、
     前記再蒸発タンクへの蒸気の逆流を抑止する逆止弁を前記吸引路に介装してある蒸気供給システムであって、
     前記蒸気供給路における前記蒸気エゼクタの下流側の蒸気の温度又は圧力に応じて前記減圧弁の弁開度を調整する構成にするとともに、
     前記逆止弁を、それの弁開度の増大に伴う流量の増大率が弁開度の小さな小開度域と弁開度の大きな大開度域とで同等となる固有流量特性又は前記増大率が前記大開度域よりも前記小開度域で小さくなる固有流量特性を有する構造にしてある蒸気供給システム。
  2.  蒸気使用機器に蒸気を供給する蒸気供給路に減圧弁を介装し、前記蒸気供給路における減圧弁の下流側に蒸気エゼクタを介装するとともに、前記蒸気エゼクタの吸引部と復水を再蒸発させる再蒸発タンクとを吸引路で接続し、
     前記減圧弁の通過蒸気を蒸気エゼクタの駆動蒸気とする形態で再蒸発タンク内の再蒸発蒸気を蒸気エゼクタで吸引して前記通過蒸気と混合する構成にするとともに、
     前記再蒸発タンクへの蒸気の逆流を抑止する逆止弁を前記吸引路に介装してある蒸気供給システムであって、
     前記減圧弁の通過蒸気の温度又は圧力に応じて前記減圧弁の弁開度を調整する構成にするとともに、
     前記逆止弁を、それの弁開度の増大に伴う流量の増大率が弁開度の小さな小開度域と弁開度の大きな大開度域とで同等となる固有流量特性又は前記増大率が前記大開度域よりも前記小開度域で小さくなる固有流量特性を有する構造にしてある蒸気供給システム。
  3.  蒸気使用機器に蒸気を供給する蒸気供給路に減圧弁を介装し、前記蒸気供給路における減圧弁の下流側に蒸気エゼクタを介装するとともに、前記蒸気エゼクタの吸引部と復水を再蒸発させる再蒸発タンクとを吸引路で接続し、
     前記減圧弁の通過蒸気を蒸気エゼクタの駆動蒸気とする形態で再蒸発タンク内の再蒸発蒸気を蒸気エゼクタで吸引して前記通過蒸気と混合する構成にするとともに、
     前記再蒸発タンクへの蒸気の逆流を抑止する逆止弁を前記吸引路に介装してある蒸気供給システムであって、
     前記再蒸発タンク内の再蒸発蒸気の温度又は圧力に応じて前記減圧弁の弁開度を調整する構成にするとともに、
     前記逆止弁を、それの弁開度の増大に伴う流量の増大率が弁開度の小さな小開度域と弁開度の大きな大開度域とで同等となる固有流量特性又は前記増大率が前記大開度域よりも前記小開度域で小さくなる固有流量特性を有する構造にしてある蒸気供給システム。
  4.  請求項1~3のいずれか1項に記載の蒸気供給システムに用いる逆止弁であって、
     弁口の外周縁部に設けた環状の弁座の全周に面当接する状態で弁座に着座して弁口を閉弁する弁体を設け、付勢手段の付勢力によって前記弁体を閉弁側に付勢し、且つ、前記弁口からの流体流入圧によって前記付勢手段の付勢力に抗して弁体が弁座から離れる側に移動して弁口を開弁する構造にするとともに、
     前記弁体が前記弁座から離れる側に移動するときに弁体の弁座当接部と弁座との間に形成される隙間の面積よりも弁口の内面との間に形成される隙間の面積を小さく保つ形態で流体の通過流量を制御する流量制御用の突出部を弁体の弁口側に設け、
     前記固有流量特性を有するように前記流量制御用突出部の外郭形状を構成してある逆止弁。
  5.  前記弁体を前記弁口の開口面に直交する方向に沿って移動案内する弁軸を設けるとともに、
     前記流量制御用突出部を、前記弁口の開口面の中心軸芯周りで対称性又は略対称性を有する形状に構成してある請求項4記載の逆止弁。
  6.  前記流量制御用突出部を、前記弁体が前記弁座に近づく側に移動して弁座に着座するまでの移動過程において前記弁口の内周面又は弁座に接触しない外郭形状に構成してある請求項4又は5記載の逆止弁。
PCT/JP2010/063383 2009-09-28 2010-08-06 蒸気供給システム及びそれに用いる逆止弁 WO2011036956A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2010299261A AU2010299261B2 (en) 2009-09-28 2010-08-06 Steam supply system and check valve for use therein
US13/497,437 US8881761B2 (en) 2009-09-28 2010-08-06 Steam supply system and check valve for use therein
KR1020127006777A KR101780679B1 (ko) 2009-09-28 2010-08-06 증기 공급 시스템 및 거기에 사용하는 체크 밸브
CN201080044694.9A CN102725537B (zh) 2009-09-28 2010-08-06 蒸气供给系统和用于蒸气供给系统的止回阀
SG2012014171A SG178917A1 (en) 2009-09-28 2010-08-06 Steam supply system and check valve for use therein
EP10818632.1A EP2484918B1 (en) 2009-09-28 2010-08-06 Steam supply system and check valve used for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009223196A JP4665045B1 (ja) 2009-09-28 2009-09-28 蒸気供給システム及びそれに用いる逆止弁
JP2009-223196 2009-09-28

Publications (1)

Publication Number Publication Date
WO2011036956A1 true WO2011036956A1 (ja) 2011-03-31

Family

ID=43795717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063383 WO2011036956A1 (ja) 2009-09-28 2010-08-06 蒸気供給システム及びそれに用いる逆止弁

Country Status (8)

Country Link
US (1) US8881761B2 (ja)
EP (1) EP2484918B1 (ja)
JP (1) JP4665045B1 (ja)
KR (1) KR101780679B1 (ja)
CN (1) CN102725537B (ja)
AU (1) AU2010299261B2 (ja)
SG (1) SG178917A1 (ja)
WO (1) WO2011036956A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5406417B1 (ja) * 2012-07-02 2014-02-05 株式会社テイエルブイ 流量計機能付き調節弁
CN104534441A (zh) * 2014-12-29 2015-04-22 昆山鸣朋纸业有限公司 一种节能减排回水系统
WO2016129044A1 (ja) 2015-02-09 2016-08-18 富士通株式会社 冷却装置及び電子機器
JP6549804B2 (ja) * 2016-02-04 2019-07-24 アイ ピー メッド,インコーポレイテッド 薬剤送出装置および方法
JP6340145B2 (ja) * 2016-04-12 2018-06-06 株式会社テイエルブイ 蒸気供給システム
PL426295A1 (pl) * 2018-07-10 2020-01-13 Prosperitos Spółka Z Ograniczoną Odpowiedzialnością Sposób zasilania parą wodną o parametrach ultra-nadkrytycznych tłokowych silników parowych i zawór do zasilania parą wodną o parametrach ultra-nadkrytycznych tłokowych silników parowych
US11331636B2 (en) * 2020-07-29 2022-05-17 Saudi Arabian Oil Company Multi-opening chemical injection device
AU2022201570A1 (en) * 2021-03-24 2022-10-13 AirSpayce Pty Ltd A fluid-damped valve
JP2022158044A (ja) * 2021-04-01 2022-10-14 株式会社東芝 蒸気弁および蒸気タービン
CN114776851B (zh) * 2022-04-17 2023-04-07 西安航空学院 用于液储系统的自封闭式泄压阀
CN114962355B (zh) * 2022-06-07 2023-11-28 沈海防爆科技有限公司 控制包括真空发生器装置的真空系统
CN115823562B (zh) * 2023-02-14 2023-05-12 苏州晟德亿节能环保科技有限公司 无疏水阀蒸汽冷凝水余热回收装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01157286U (ja) * 1988-04-21 1989-10-30
WO2007046379A1 (ja) * 2005-10-18 2007-04-26 Yamatake Corporation ケージ弁
JP2007332859A (ja) 2006-06-15 2007-12-27 Tlv Co Ltd 蒸気エゼクタ
JP2007333302A (ja) * 2006-06-15 2007-12-27 Tlv Co Ltd 蒸気エゼクタ装置
JP2009144609A (ja) * 2007-12-14 2009-07-02 Tlv Co Ltd 蒸気エゼクタ
JP2009174719A (ja) * 2001-02-26 2009-08-06 Kitz Corp バタフライバルブ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1471229A (en) * 1921-02-04 1923-10-16 Manning Maxwell & Moore Inc Check valve
FR2560648B1 (fr) * 1984-03-01 1986-09-19 Centre Techn Ind Mecanique Procede pour stabiliser l'ecoulement de fluides lors de detente accompagnee de degradation d'energie cinetique, soupape et detendeur mettant en oeuvre ce procede
US4757974A (en) * 1987-04-13 1988-07-19 Ward Erin C Check valve
JPH01157286A (ja) * 1987-12-11 1989-06-20 Mitsubishi Electric Corp 直流電動機の駆動装置
US6346166B1 (en) * 1999-06-14 2002-02-12 Andritz-Ahlstrom Inc. Flash tank steam economy improvement
US6739288B1 (en) * 2000-01-14 2004-05-25 Tvl Co., Ltd. Steam heating device
WO2002036999A2 (en) * 2000-11-01 2002-05-10 Elliott Turbomachinery Co., Inc. High-stability valve arrangement for a governor valve
JP4185029B2 (ja) * 2004-08-30 2008-11-19 株式会社東芝 蒸気弁装置
US20070271938A1 (en) * 2006-05-26 2007-11-29 Johnson Controls Technology Company Automated inlet steam supply valve controls for a steam turbine powered chiller unit
JP2007333304A (ja) 2006-06-15 2007-12-27 Valeo Thermal Systems Japan Corp 熱交換器
DE102008062301A1 (de) * 2007-12-20 2009-06-25 Robert Buck Rückflussverhinderer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01157286U (ja) * 1988-04-21 1989-10-30
JP2009174719A (ja) * 2001-02-26 2009-08-06 Kitz Corp バタフライバルブ
WO2007046379A1 (ja) * 2005-10-18 2007-04-26 Yamatake Corporation ケージ弁
JP2007332859A (ja) 2006-06-15 2007-12-27 Tlv Co Ltd 蒸気エゼクタ
JP2007333302A (ja) * 2006-06-15 2007-12-27 Tlv Co Ltd 蒸気エゼクタ装置
JP2009144609A (ja) * 2007-12-14 2009-07-02 Tlv Co Ltd 蒸気エゼクタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2484918A4

Also Published As

Publication number Publication date
CN102725537A (zh) 2012-10-10
JP4665045B1 (ja) 2011-04-06
EP2484918A4 (en) 2016-04-13
KR101780679B1 (ko) 2017-09-21
EP2484918B1 (en) 2020-01-22
SG178917A1 (en) 2012-04-27
AU2010299261B2 (en) 2015-07-16
EP2484918A1 (en) 2012-08-08
US8881761B2 (en) 2014-11-11
KR20120079832A (ko) 2012-07-13
AU2010299261A1 (en) 2012-03-15
CN102725537B (zh) 2015-04-15
US20120234420A1 (en) 2012-09-20
JP2011069335A (ja) 2011-04-07

Similar Documents

Publication Publication Date Title
WO2011036956A1 (ja) 蒸気供給システム及びそれに用いる逆止弁
JP4039561B2 (ja) ガバナーバルブのための高安定性バルブ装置
US10738894B2 (en) Valve mechanism for removing foreign matter at valve port
JP5925876B2 (ja) ポペット弁
WO2019152263A1 (en) Balanced trim regulator
US8925577B2 (en) Throttling structure for use in a fluid pressure device
JP2011069479A (ja) 逆止弁及びそれを用いた蒸気供給システム
WO2013028472A1 (en) Fluid regulator with bleed valve
KR101363343B1 (ko) 펌프제어밸브용 수충격 방지장치
US20240060567A1 (en) Electric valve
US11578814B2 (en) Discharge valve unit and fluid device
JP7464985B2 (ja) 排気弁
JP2009144607A (ja) 蒸気エゼクタ
JP5269407B2 (ja) 蒸気エゼクタ
JP2007332859A (ja) 蒸気エゼクタ
JP7368826B2 (ja) 弁装置
CN218000551U (zh) 一种马桶稳压阀
JP2006057819A (ja) 電磁比例弁
JP6017196B2 (ja) バキュームブレーカ
JP2009144608A (ja) 蒸気エゼクタ
JP2008111473A (ja) 感温弁
JP2023157166A (ja) 調圧弁
JP2006017168A (ja) 液圧制御弁

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080044694.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10818632

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010299261

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2010818632

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2010299261

Country of ref document: AU

Date of ref document: 20100806

Kind code of ref document: A

Ref document number: 20127006777

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13497437

Country of ref document: US