WO2011036848A1 - 貫流ファン、送風機及び空気調和機 - Google Patents

貫流ファン、送風機及び空気調和機 Download PDF

Info

Publication number
WO2011036848A1
WO2011036848A1 PCT/JP2010/005476 JP2010005476W WO2011036848A1 WO 2011036848 A1 WO2011036848 A1 WO 2011036848A1 JP 2010005476 W JP2010005476 W JP 2010005476W WO 2011036848 A1 WO2011036848 A1 WO 2011036848A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
cross
fan
flow fan
air
Prior art date
Application number
PCT/JP2010/005476
Other languages
English (en)
French (fr)
Inventor
敬英 田所
尚史 池田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP10818529.9A priority Critical patent/EP2472118B1/en
Priority to ES10818529T priority patent/ES2729480T3/es
Priority to CN201080043124.8A priority patent/CN102686887B/zh
Priority to US13/497,287 priority patent/US9039347B2/en
Publication of WO2011036848A1 publication Critical patent/WO2011036848A1/ja
Priority to HK13102463.9A priority patent/HK1175516A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/02Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal
    • F04D17/04Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal of transverse-flow type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • F04D29/282Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis
    • F04D29/283Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis rotors of the squirrel-cage type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes

Definitions

  • the present invention relates to a once-through fan used for an indoor unit of an air conditioner, and a blower and an air conditioner using the same.
  • Recent blowers and air conditioners have been increasing in number of housings with a wide width (fan axial direction) in order to accommodate a large room. Along with this, the shaft of the once-through fan used in the air conditioner has also become longer, and the three-dimensional flow in the fan axial direction appears strongly, and the contribution to the fan performance such as the power consumption and generated noise of the fan has increased. ing.
  • Patent Documents As a conventional technique for reducing the input and noise of a blower using a cross-flow fan, for example, there is an example in which a rectifying plate is provided on the wall surface of the blower to uniform the blown air velocity distribution (for example, Patent Documents). 1).
  • the air conditioning is performed by changing the blade outer diameter of the cross-flow fan so that the blade outer diameter has the maximum value between the rings of the cross-flow fan.
  • Patent Document 2 there has been a crossflow fan in which the blade inlet angle on the side of the partition plate end side is smaller than the blade center portion for the purpose of suppressing noise caused by turbulent flow and reducing noise noise (for example, Patent Document 3).
  • Japanese Patent No. 2594063 page 3, FIG. 2
  • Japanese Patent No. 37777891 fifth page, FIG. 1
  • JP 2006-329099 A (7th page, FIG. 1)
  • once-through fans are composed of a wing and a ring at both ends that support the wing.
  • the outer diameter of the ring is larger than that of the wing.
  • a smaller gap is formed between the ring portion of the cross-flow fan and the air path. Therefore, among the air flowing in from the air passage inlet, the air passing through the ring portion passes through a narrower gap, and thus passes through the cross-flow fan as a high-speed flow.
  • FIG. 7 is a schematic diagram showing the flow of the blowout air path of the blower equipped with the cross-flow fan in the above-described prior art.
  • FIG. 7B is a diagram schematically showing the flow at this time. Since the gap is narrow in the ring part, a fast flow 19a is generated, and in the wing part, the gap is wide and a slow flow 19b is generated. When a speed difference occurs in the width direction in this way, a secondary flow in which the fast flow 19a and the slow flow 19b are mixed is generated and grows into a vortex 20 having an axis in the direction of the blowing air path. As shown in FIG. 7 (c), this vortex extends to the downstream of the air passage and becomes gradually larger, obstructing the air flow at the outlet, and the variation in the wind speed distribution 21 in the width direction at the outlet is remarkable. turn into.
  • FIG. 8 is a diagram showing a simulation result of the blowout air path wind speed of the blower in the prior art.
  • the upper diagram of FIG. 8 is a front view of the air conditioner, and shows numbers 1 to 20 representing observation points below the cross-flow fan composed of the ring 2 and the blade 3.
  • the lower diagram in FIG. 8 is a graph showing the average wind speed at each observation point. When viewed together with the upper diagram in FIG. 8, it can be seen that the average wind velocity has a maximum value near the ring 2.
  • this local high-speed flow collides with the blade for adjusting the wind direction at the outlet, the pressure loss that contributes to the square of the wind speed increases and the pressure fluctuation on the surface of the blade for adjusting the wind direction increases, resulting in a noise level. Also grows.
  • Patent Document 3 has a problem in that noise due to airflow separation may occur on the suction side of the cross-flow fan because the angle on the blade outer side is changed.
  • any of the above patent documents considers the wind speed generated by the cross-flow fan, but does not consider the wind speed difference of the airflow passing through the gap between the cross-flow fan and the wind path member.
  • the wind speed distribution in the fan axis direction in the fan becomes non-uniform, which increases the input and noise of the blower and air conditioner.
  • the present invention has been made to solve the above-described problems.
  • the wind speed distribution in the fan axial direction at the airway outlet is provided.
  • the purpose is to provide.
  • a cross-flow fan according to the present invention is rotatably arranged in a horizontally long air passage, and is provided with a plurality of annular rings provided substantially in parallel and a plurality of cross-sections provided radially between adjacent rings.
  • a cross-flow fan provided with arcuate blades, wherein the blade warpage angle is smaller on the ring side than the blade central portion in the longitudinal direction between the rings.
  • the wind speed distribution in the fan longitudinal direction at the wind path outlet can be made uniform, and the input can be reduced.
  • a cross-flow fan that achieves low noise, a blower or an air conditioner using this cross-flow fan can be obtained.
  • the cross-flow fan which concerns on Embodiment 1 is shown, (a) is a perspective view which shows an external appearance, (b) is a principal part front view, (c) is a longitudinal cross-sectional view. It is a longitudinal cross-sectional view of the cross-flow fan which concerns on Embodiment 1, (a) is a longitudinal cross-sectional view of a continuous end part, (b) is a longitudinal cross-sectional view of a continuous center part. It is a longitudinal cross-sectional view of the air conditioner using the cross-flow fan which concerns on Embodiment 1. FIG.
  • Embodiment 1 It is a principal part longitudinal cross-sectional view of the air conditioner using the cross-flow fan which concerns on Embodiment 1, (a) is a principal part longitudinal cross-sectional view of a ring part, (b) is a principal part longitudinal cross-sectional view of a wing
  • FIG. Fig.1 (a) is a perspective view which shows the external appearance of the once-through fan 1 which concerns on Embodiment 1 of this invention.
  • a plurality of blades 3 supported at both ends by the ring 2 are attached in the circumferential direction of the ring 2.
  • a single impeller 4 (hereinafter referred to as a series) composed of the ring 2 and the blades 3 is connected in the axial direction of the fan to constitute a cross-flow fan 1.
  • FIG. 1B is a front view of the main part of the impeller 4 alone. As shown in FIG. 1B, the outer diameter formed by the outer edge portion of the blade 3 is constant in the axial direction of the cross-flow fan 1.
  • FIG. 1B is a front view of the main part of the impeller 4 alone. As shown in FIG. 1B, the outer diameter formed by the outer edge portion of the blade 3 is constant in the axial direction of the cross-flow fan 1.
  • FIG. 1 (c) shows a longitudinal section of a series of impellers.
  • the ring outer diameter 5 is larger than the outer diameter of the wing 3, and the wing 3 is bonded and fixed to the ring 2 radially inside the outer circumference of the ring 2.
  • blade 3 is formed in circular arc shape.
  • FIG. 2 is a longitudinal sectional view of the cross-flow fan 1 according to the first embodiment.
  • a series of impeller rings and a blade 3 sandwiched between the rings are divided into three regions, and are formed with different blade cross-sectional shapes as (a), (b), and (a) from the left.
  • the division ratio of the region (a) is about 1/3 to less than 1/2 of one continuous length.
  • the region (a) on the ring 2 side of the blade is referred to as a continuous end portion
  • the region (b) in the central portion of the blade is referred to as a continuous center portion.
  • FIG. 2A is a vertical cross-sectional view of the continuous end portion
  • FIG. 2B is a vertical cross-sectional view of the continuous center portion.
  • the center of the blade thickness from the tip of the blade that forms the outer periphery of the blade 3 to the rear end that forms the inner periphery of the blade 3 is the blade centerline
  • the blade centerline of the continuous end is 6a
  • the blade centerline of the continuous center Is 6b.
  • the angles of the blade center lines 6a and 6b from the blade leading end to the trailing end are defined as warp angles 7a and 7b, respectively.
  • the warp angle 7b of the continuous center portion is formed larger than the warp angle 7a of the continuous end portion (7a ⁇ 7b).
  • the exit angle means an angle formed by the tangent of the blade center line 6a (or 6b) and the tangent of the arc 24 of the blade outer diameter at the intersection 25.
  • the blade center line 6b may be extended in the inner circumferential direction of the blade 3, or the chord length described later under the condition that the exit angle 26b is not changed. May be extended in the inner circumferential direction.
  • FIG. 3 is a longitudinal sectional view of an air conditioner using the cross-flow fan 1.
  • a heat exchanger 8 that performs heat exchange between the air and the refrigerant is disposed so as to surround the periphery of the once-through fan 1.
  • a suction port 30 is provided on the upper surface of the air conditioner, and an air cleaning device 9 and a filter 10 are disposed between the suction port 30 and the heat exchanger 8.
  • suction side and the blow-out side of the cross-flow fan 1 are partitioned by a stabilizer 12 attached to the tip of the nozzle 11 on the front side of the unit and a rear guide 13 on the back side, and reach from the suction port 30 to the blow-out port 17.
  • the air passage is divided into two parts.
  • the air outlet 17 is provided with a vane 16 for adjusting the wind direction.
  • FIG. 4 is a longitudinal sectional view of a main part of the air conditioner using the cross-flow fan according to the first embodiment. Since the gap between the ring 2 and the rear guide 13 is narrower than the gap between the blade 3 and the rear guide 13, the airflow 19a that passes through the vicinity of the ring becomes faster than the airflow 19b that passes through the vicinity of the blade. However, since the warp angle of the blade 3 is larger in the continuous central portion than in the continuous end portion, the work amount that the blade 3 gives to the airflow is larger in the continuous central portion. For this reason, the air flow 22b blown out from the continuous center portion is faster than the air flow 22a blown out from the continuous end portion.
  • the fast airflow 19a passing through the gap near the ring is accelerated by the slow airflow 22a
  • the slow airflow 19b passing near the wing is accelerated by the fast airflow 22b. Since the speed is increased by the faster airflow 22b, the difference in wind speed between the airflow 19a and the airflow 19b downstream of the fan can be reduced.
  • the difference in wind speed downstream of the fan between the continuous end portion and the continuous central portion is reduced.
  • Vortex generation due to the wind speed difference can be suppressed, and the wind speed distribution downstream of the fan is made uniform.
  • the airflow having a uniform wind speed distribution downstream of the fan is discharged from the blowout port 17 to the outside according to the direction defined by the vane 16 for airflow control.
  • Table 1 shows the results of a comparison experiment between an air conditioner using a conventional once-through fan and the air conditioner according to the first embodiment.
  • Table 1 shows the difference in fan power and the difference in noise. As shown in Table 1, it can be seen that by using the cross-flow fan according to Embodiment 1, both power and noise are reduced and improved.
  • the outer diameter of the blade 3 is made constant, and the velocity distribution due to the gap difference between the once-through fan 1 and the rear guide 13 generated in the blower or the air conditioner is canceled out by the blow-out wind speed distribution of the once-through fan. Therefore, the vortex that becomes the resistance of the airflow disappears, and the wind speed distribution at the exit of the air passage can be made uniform. Further, by making the exit angles the same, it is possible to realize a cross-flow fan that eliminates the possibility of impeding the passage of airflow between the blades and the possibility of separation.
  • the wind speed distribution at the outlet of the air passage is made uniform, so that there is no local high-speed flow, the wind speed passing through the vane 16 for air flow control is made uniform, pressure loss is reduced, and fan input is reduced. There is an effect. In addition, the pressure fluctuation on the vane 16 and the air passage surface is reduced, and the noise is also reduced.
  • Embodiment 2 FIG. In the first embodiment, the increase / decrease in the blown air volume is changed by the warp of the blade, but the air volume may be changed by the chord length of the blade.
  • FIG. 5 is a longitudinal sectional view of the cross-flow fan 1 according to the second embodiment.
  • the cross section of a series of impellers is divided into a continuous end portion (a) and a continuous central portion (b). Focusing on the blade cross section, the chord length 23b in the central portion of the straight line connecting the blade tip and the blade trailing end (the chord length 23) is longer than the chord length 23a in the continuous end portion. (23a ⁇ 23b).
  • the airflow velocity after passing between the wings increases.
  • the airflow velocity after passing between the blades is slower than the former because the amount of work that the blades give to the airflow is small at the portion where the chord length is short. Therefore, as in the first embodiment, the wind speed distribution due to the gap difference in the air path is reduced, and the vortex in the air path disappears. As a result, it is possible to realize a blower or an air conditioner in which the wind speed distribution at the outlet of the air passage is made uniform, the pressure loss in the vane is reduced, the input is reduced, and the noise is also reduced.
  • the outer diameter of the blade 3 is made constant, and the speed distribution due to the gap difference between the fan and the air path generated in the blower or the air conditioner is determined as the blowout wind speed of the cross-flow fan. Since the distribution cancels out, the vortex that becomes the resistance of the airflow disappears, and there is an effect that the wind speed distribution at the outlet of the air passage can be made uniform.
  • the blade shape parameters are changed one by one.
  • the blade shape may be a combination of the chord length and warpage parameters.
  • Embodiment 3 The form shown so far was an example in which the blade shape was different in the width direction between a series of impellers.
  • the blade shape is changed in the width direction, if the blade shape is changed suddenly, a step may be formed on the blade surface, which may increase vortex generation and pressure fluctuation on the surface and worsen the noise.
  • FIG. 6 (A) is a front view of the cross-flow fan according to Embodiment 3
  • FIG. 6 (B) is a perspective view of the cross-flow fan in the region (ab) in FIG. 6 (A).
  • Embodiment 3 by providing the area
  • the third embodiment since there is no level difference on the blade surface, there is an effect that no vortex is generated on the surface and no sound is generated due to pressure fluctuation.
  • this once-through fan is installed in a blower or air conditioner, the air velocity distribution downstream of the fan is made uniform and low input while suppressing the effects of blade shape changes, and noise and noise are reduced. There is an effect that can realize the machine.

Abstract

 風路出口におけるファン軸方向の風速分布を均一とするとともに、ファンの吸い込み側における剥離を低減した貫流ファンを提供し、これにより、低入力化及び低騒音化を実現した貫流ファンや、この貫流ファンを用いた送風機や空気調和機を提供すること。 横長の風路内に回転自在に配設され、略平行に設けられた複数の環状のリングと、これらリングの隣接するリング間に放射状に設けられた複数の断面円弧状の翼とを備えた貫流ファンであって、前記翼の反り角は、前記リング間の長手方向の翼中央部よりも前記リング側が小さくしたものである。

Description

貫流ファン、送風機及び空気調和機
 この発明は空気調和機の室内機に使われる貫流ファン及び、それを用いた送風機や空気調和機に関するものである。
 近年の送風機や空気調和機は、広い部屋に対応するために幅(ファン軸方向)が広い筐体の機種が増えてきている。これに伴い、空気調和機に使われる貫流ファンの軸も長くなっており、ファン軸方向の3次元流れが強く現れて、ファンの消費電力や発生騒音などの送風性能への寄与が大きくなってきている。
 貫流ファンを用いた送風機の低入力化や低騒音化を図った従来技術としては、例えば、送風機の壁面上に整流板を設けて吹出し風速分布を均一化する例があった(例えば、特許文献1)。また、羽根音の発生を抑制しつつ風量の増加を図ることを目的として、貫流ファンの羽根外径を変化させて、貫流ファンのリング間において羽根外径が最大値を持つようにした空気調和機があった(例えば、特許文献2)。また、乱流による騒音を抑えてノイズ音を低減することを目的として、羽根中央部よりも仕切板端部側の羽根入口角を小さくしたクロスフローファンがあった(例えば、特許文献3)。
特許第2594063号公報(第3頁、第2図) 特許第3777891号公報(第5頁、図1) 特開2006-329099号公報(第7頁、図1)
 一般に、貫流ファンは翼と翼を支える両端のリングで構成されており、強度を保つため、リング部の方が翼部に比べて外径が大きくなっている。当然、貫流ファンと風路を構成する部材との距離は、リング部の方が小さくなるので、貫流ファンのリング部と風路との間には、より小さな隙間が形成されることになる。従って、風路入口から流入した空気のうち、リング部を通過する空気の方が、より狭い隙間を通過することになるため、高速流となって貫流ファンを通過することになる。
 図7は、上述した従来技術における貫流ファンを具備した送風機の吹出し風路の流れを示す模式図であり、図7(a)の矢印で示すように、空気調和機上方から、貫流ファン1と風路を構成する部材であるリアガイド13との間に形成される隙間を観察する。図7(b)が、このときの流れを模式的に示した図である。リング部では隙間が狭いので速い流れ19aが生じ、翼部では隙間が広いので遅い流れ19bが生ずる。このように幅方向に速度差が生じると、速い流れ19aと遅い流れ19bが混合する2次流れが発生して、吹出し風路方向の軸をもつ渦20に成長する。この渦は、図7(c)に示すように風路の下流まで延びて次第に大きくなって、吹出し口における空気の流れを妨げることとなり、吹出し口における幅方向の風速分布21のばらつきが顕著になってしまう。
 図8は、従来技術における送風機の吹出し風路風速のシミュレーション結果を示す図である。図8の上図は、空気調和機の正面図であり、リング2と翼3とで構成された貫流ファンの下方に、観測点を表す1から20までの数字を示している。図8の下図は、各観測点における平均風速を示したグラフであり、図8の上図と合わせて見ると、リング2付近で平均風速が極大値を示していることが分かる。この局所的な高速流が、吹出し口にある風向調整用の羽根に衝突すると、風速の2乗に寄与する圧力損失が大きくなるとともに風向調整用の羽根の表面にかかる圧力変動が大きくなり騒音値も大きくなる。
 これに対して、特許文献1のように、風路上に整流板を設けると、整流板と翼との間の狭い隙間に、新たな高速域が発生するため、渦発生を抑制することが困難で、風路出口におけるファン軸方向の風速分布は均一になりにくいという問題点がある。
 また、特許文献2に開示された技術では、翼弦長が長くファン外径が大きい領域では翼と風路部材との隙間が狭くなり、かつ、吹出し流れが高速になるため、風路部材で生ずる異常音が大きくなるという問題点がある。また、製造誤差等により翼と風路部材とが接触する可能性もある。
 また、特許文献3に開示された技術では、羽根外側の角度を変化させているため、貫流ファンの吸い込み側において、気流の剥離の発生による騒音が発生する可能性があるという問題点がある。
 また、上記いずれの特許文献も、貫流ファンにより発生する風速については考慮しているが、貫流ファンと風路部材との隙間を通過する気流の風速差については考慮しておらず、風路出口におけるファン軸方向の風速分布が不均一となってしまい、これにより、送風機や空気調和機の入力や騒音が増大してしまうという問題点がある。
 この発明は、上記のような課題を解決するためになされたもので、貫流ファンと風路部材との隙間を通過する気流の風速差について考慮して、風路出口におけるファン軸方向の風速分布を均一とするとともに、ファンの吸い込み側における剥離を低減した貫流ファンを提供し、これにより、低入力化及び低騒音化を実現した貫流ファンや、この貫流ファンを用いた送風機や空気調和機を提供することを目的とする。
 この発明に係る貫流ファンは、横長の風路内に回転自在に配設され、略平行に設けられた複数の環状のリングと、これらリングの隣接するリング間に放射状に設けられた複数の断面円弧状の翼とを備えた貫流ファンであって、前記翼の反り角は、リング間の長手方向の翼中央部よりも前記リング側が小さくしたものである。
 本発明によれば、貫流ファンと風路部材との隙間を通過する気流の風速差について考慮して、風路出口におけるファン長手方向の風速分布を均一化とすることができ、低入力化及び低騒音化を実現した貫流ファンや、この貫流ファンを用いた送風機や空気調和機を得ることができる。
実施の形態1に係る貫流ファンを示し、(a)は外観を示す斜視図、(b)は要部正面図、(c)は縦断面図である。 実施の形態1に係る貫流ファンの縦断面図であり、(a)は連端部の縦断面図、(b)は連中央部の縦断面図である。 実施の形態1に係る貫流ファンを用いた空気調和機の縦断面図である。 実施の形態1に係る貫流ファンを用いた空気調和機の要部縦断面図であり、(a)はリング部分の要部縦断面図、(b)は翼部分の要部縦断面図である。 実施の形態2に係る貫流ファンの縦断面図であり、(a)は連端部の縦断面図、(b)は連中央部の縦断面図である。 実施の形態3に係る貫流ファンを示す図であり、(A)は正面図、(B)は斜視図である。 従来技術を説明する模式図であり、(a)は観察する視線を示す図、(b)は風路上の流れを示す図、(c)は渦の成長を示す模式図、である。 従来技術における送風機の吹出し風路風速のシミュレーション結果を示す図である。
1 貫流ファン
2 リング
3 翼
4 羽根車単体
5 リング外径
6 翼中心線
7 反り角
8 熱交換器
9 空気清浄用機器
10 フィルター
11 ノズル 
12 スタビライザー
13 リアガイド
14 貫流ファンの回転方向
15 空気調和機を通過する気流
16 ベーン
17 吹出し口
19 気流
20 渦
21 吹出し口の風速分布
22 ファン通過直後の気流
23 翼弦長
24 翼外径の円弧
25 交点
26 出口角
30 吸込み口
 実施の形態1.
 図1(a)はこの発明の実施の形態1に係る貫流ファン1の外観を示す斜視図である。リング2によって両端を支持された翼3が、リング2の円周方向に複数取り付けられている。このリング2と翼3によって構成される羽根車単体4(以下、一連という)がファンの軸方向にいくつか連結されて、貫流ファン1を構成している。図1(b)は、羽根車単体4の要部正面図である。図1(b)で示すように、翼3の外縁部からなる外径は貫流ファン1の軸方向で一定となっている。図1(c)は一連分の羽根車の縦断面を示したものである。リング外径5は翼3の外径よりも大きくなっており、翼3はリング2の外円周よりも内側に、放射状にリング2に接着固定されている。また、翼3の断面形状は円弧状に形成されている。
図2は、実施の形態1に係る貫流ファン1の縦断面図である。ここで、羽根車一連のリングとリングにはさまれた翼3を3つの領域に分け、左から(a)、(b)、(a)として翼断面形状を相違させて形成する。この領域(a)の分割割合は1連長さの約1/3から1/2未満程度とする。以下、翼のうちリング2側の領域(a)を連端部と呼び、翼中央部の領域(b)を連中央部と呼ぶ。
図2(a)は連端部の縦断面図、図2(b)は連中央部の縦断面図である。翼3の外周部をなす翼先端から、翼3の内周部をなす後端までの翼厚みの中心を翼中心線とし、連端部の翼中心線を6a、連中央部の翼中心線を6bとする。これら翼中心線6a及び6bの翼先端から後端までの角度をそれぞれ反り角7a、7bとする。このとき、連中央部の反り角7bは、連端部の反り角7aよりも大きく形成されている(7a<7b)。
 また、羽根断面で、翼中心線6a(又は6b)と翼外径の円弧24とが交わる交点25における出口角26a(又は26b)が、連中央部と連端部とで等しくなるようにしている(26a=26b)。ここで、出口角とは、交点25において、翼中心線6a(又は6b)の接線と翼外径の円弧24の接線とがなす角を意味している。
 なお、連中央部の反り角7bを大きく形成するには、翼中心線6bを翼3の内周方向に延長してもよいし、出口角26bを変えない条件の下、後述する翼弦長を内周方向に延長してもよい。
 図3は、この貫流ファン1を用いた空気調和機の縦断面図である。貫流ファン1の周囲を取り囲むように空気と冷媒の熱交換をする熱交換器8が配置されている。空気調和機の上面には吸込み口30が設けられており、吸込み口30と熱交換器8との間には、空気清浄用機器9やフィルター10が配設されている。
 また、貫流ファン1の吸込み側と吹出し側とはユニット正面側のノズル11先端に取り付けられたスタビライザー12、及び背面側のリアガイド13とで仕切られており、吸込み口30から吹出し口17に至る風路を2分した構成となっている。吹出し口17には、風向調整用のベーン16が設けられている。
次に動作について説明する。
図3において、貫流ファン1が14で示す方向に回転すると、送風機の吸込み口30から流入した気流15は貫流ファン1を通過して吹出し口17から吹出す。
 図4は、実施の形態1に係る貫流ファンを用いた空気調和機の要部縦断面図である。リング2とリアガイド13との隙間は、翼3とリアガイド13との隙間に比べて狭いので、リング付近を通過した気流19aは、翼付近を通過した気流19bに比べて速くなる。しかし、翼3の反り角は、連中央部の方が連端部よりも大きいので、翼3が気流に与える仕事量は、連中央部の方が大きい。このため、連中央部から吹出す気流22bの方が、連端部から吹出す気流22aに比べて速くなる。
 従って、リング付近の隙間を通過した速い気流19aは遅い気流22aによって、翼付近を通過した遅い気流19bは速い気流22bによって、それぞれ増速されることになるが、翼付近を通過した遅い気流19bの方が、より速い気流22bによって増速されるので、ファン下流における気流19aと気流19bとの風速差を縮小することができる。
 このように、貫流ファン1とリアガイド13との間を通過した気流に対して、翼が与える仕事量を変えることにより、連端部と連中央部とのファン下流における風速差が小さくなり、風速差に起因する渦発生を抑制することができ、ファン下流における風速分布が均一化される。ファン下流において風速分布が均一化された気流は、気流制御用のベーン16で定められた方向に従って、吹出し口17から機外に排出される。
 一方、図2で示したように、出口角26a(又は26b)は、連中央部と連端部とで等しくなるようにしている(26a=26b)。出口角が異なると、幅方向のいずれかの個所の翼で、気流の剥離が発生して騒音を増加させるおそれがあるが、実施の形態1では出口角26を揃えて、翼先端への流入状態を同じにしている。その結果、流入翼列で剥離による騒音を悪化させずに吹出し風路の風速分布を均一化させることができる。
 表1は、従来の貫流ファンを用いた空気調和機と、実施の形態1に係る空気調和機との比較実験結果を示すものである。表1には、ファン電力の差分及び騒音の差分を示す。表1に示すように、実施の形態1に係る貫流ファンを用いることにより、電力、騒音ともに減少しており、改善されていることが分かる。
Figure JPOXMLDOC01-appb-T000001
 実施の形態1によれば、翼3の外径を一定とするとともに、送風機や空気調和機で発生する貫流ファン1とリアガイド13との隙間差による速度分布を貫流ファンの吹出し風速分布で打ち消しているので、気流の抵抗となる渦は消滅し、風路出口での風速分布を均一化することができる。また、出口角を同一にすることにより、翼間の気流通過を阻害するおそれと剥離の発生のおそれをなくした貫流ファンを実現できる。
 これにより、風路出口の風速分布は均一化されるので、局所的な高速流はなくなり、気流制御用のベーン16を通過する風速も均一化して圧力損失が低減し、ファンの入力が低減される効果がある。また、ベーン16や風路表面の圧力変動が低減されて騒音も低減されるという効果もある。
 実施の形態2.
 実施の形態1では、吹出し風量の増減を翼の反りで変化させたが、次に翼の弦長により風量を変化させてもよい。
 図5は、実施の形態2に係る貫流ファン1の縦断面図である。実施の形態1と同様に、一連分の羽根車断面を連端部(a)と連中央部(b)に分けて示したものである。翼断面に着目すると、翼先端と翼後端を結ぶ直線(翼弦長23)に関して、連中央部の翼弦長23bは連端部の翼弦長23aよりも長くなっていることを特徴としている(23a<23b)。
 また、実施の形態1と同様に、羽根断面で、翼中心線6a(又は6b)と翼外径の円弧24とが交わる交点25における出口角26a(又は26b)が、連中央部とリング付近とで等しくなるようにしている(26a=26b)。
 翼弦長が長くなると翼が気流に与える仕事量が増えるため、翼間通過後の気流速度は上昇する。一方、翼弦長が短い箇所では翼が気流に与える仕事量が小さいため翼間通過後の気流速度は前者よりも遅い。このため実施の形態1と同様に、風路の隙間差による風速分布が縮小されて風路内の渦は消滅する。その結果、風路出口の風速分布が均一化されてベーンでの圧力損失が低減されて、低入力化するとともに、騒音も低減される送風機や空気調和機を実現できる。
 実施の形態2によれば、実施の形態1と同様、翼3の外径が一定とするとともに、送風機や空気調和機で発生するファンと風路の隙間差による速度分布を貫流ファンの吹出し風速分布で打ち消しているので、気流の抵抗となる渦は消滅し、風路出口での風速分布を均一化することができる効果がある。
 また、吸い込み側の気流方向に対して、翼外周端の方向を同一にすることにより、翼間の気流通過を阻害するおそれと剥離の発生のおそれをなくした貫流ファンを実現できる効果があり、ファン吹出し後の風速差が大きい送風機や空気調和機でも風路出口の風速分布が均一化され、ベーンでの圧力損失は低減されて低入力化するとともに、騒音も低減されるようになる効果がある。
 なお、実施の形態1及び実施の形態2では、翼の形状パラメータを1種類ずつ変化させたものであったが、風路に生じる風速差が大きい場合はファン吹出し風速分布を強くしなければならない。そのようなときは、翼弦長、反りのパラメータを組み合わせた翼形状にしてもよい。
 複数のパラメータを組み合わせることで、1つのパラメータで調整するよりも大きな風速差を作ることができるので、風路出口での風速分布が強い従来の送風機や空気調和機であっても、風路出口の風速分布が均一化されて低入力化し、騒音が低減される送風機や空気調和機を実現できる効果がある。
 実施の形態3.
 これまで示した形態は羽根車一連間で翼形状が幅方向に異なる事例であった。幅方向に翼形状を変える際、急激に変化させると翼面上に段差を作り表面での渦発生や圧力変動を大きくして騒音を悪化させるおそれがある。
 図6(A)は、実施の形態3に係る貫流ファンの正面図であり、図6(B)は、図6(A)における領域(ab)部分の貫流ファンの斜視図である。実施の形態3では、羽根車の領域(a)と領域(b)の間に連続的な傾斜面を形成する領域(ab)を設けることにより、領域(a)と領域(b)との間で翼面上に段差が生じないように滑らかに変化させている。
 実施の形態3によれば、翼表面の段差がなくなるため表面での渦発生や圧力変動による音発生がなくなる効果がある。また、この貫流ファンを送風機や空気調和機に登載すれば、翼形状の変化の影響を抑制しながら、ファン下流の風速分布は均一化されて低入力化し、騒音が低減される送風機や空気調和機を実現できる効果がある。
 本発明は、空気清浄機や除湿機など貫流ファンを用いた他の機器に対して適用しても同様の効果が得られる。

Claims (4)

  1. 横長の風路内に回転自在に配設され、略平行に設けられた複数の環状のリングと、これらリングの隣接するリング間に放射状に設けられた複数の断面円弧状の翼とを備えた貫流ファンであって、
    前記翼の反り角は、前記リング間の長手方向の翼中央部よりも前記リング側が小さいことを特徴とする貫流ファン。
  2. 横長の風路内に回転自在に配設され、略平行に設けられた複数の環状のリングと、これらリングの隣接するリング間に放射状に設けられた複数の断面円弧状の翼とを備えた貫流ファンであって、
    前記翼の弦長は、前記リング間の長手方向の翼中央部よりも前記リング側が小さいことを特徴とする貫流ファン。
  3. 前記翼の表面を連続的な傾斜面から形成した請求項1又は請求項2に記載の貫流ファン。
  4. 請求項1乃至3のいずれかに記載の貫流ファンを用いた送風機又は空気調和機。
PCT/JP2010/005476 2009-09-28 2010-09-07 貫流ファン、送風機及び空気調和機 WO2011036848A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10818529.9A EP2472118B1 (en) 2009-09-28 2010-09-07 Cross flow fan and air conditioner
ES10818529T ES2729480T3 (es) 2009-09-28 2010-09-07 Ventilador de flujo cruzado y acondicionador de aire
CN201080043124.8A CN102686887B (zh) 2009-09-28 2010-09-07 贯流风扇、送风机以及空气调节器
US13/497,287 US9039347B2 (en) 2009-09-28 2010-09-07 Cross flow fan, air blower and air conditioner
HK13102463.9A HK1175516A1 (zh) 2009-09-28 2013-02-27 貫流風扇、送風機以及空氣調節器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009222563A JP4998530B2 (ja) 2009-09-28 2009-09-28 貫流ファン、送風機及び空気調和機
JP2009-222563 2009-09-28

Publications (1)

Publication Number Publication Date
WO2011036848A1 true WO2011036848A1 (ja) 2011-03-31

Family

ID=43795618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005476 WO2011036848A1 (ja) 2009-09-28 2010-09-07 貫流ファン、送風機及び空気調和機

Country Status (7)

Country Link
US (1) US9039347B2 (ja)
EP (1) EP2472118B1 (ja)
JP (1) JP4998530B2 (ja)
CN (1) CN102686887B (ja)
ES (1) ES2729480T3 (ja)
HK (1) HK1175516A1 (ja)
WO (1) WO2011036848A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086147A1 (ja) * 2010-12-24 2012-06-28 三菱電機株式会社 貫流ファン及び空気調和機の室内機

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124021A1 (ja) * 2011-03-11 2012-09-20 三菱電機株式会社 貫流ファン及び送風機及び空気調和機
JP5143317B1 (ja) * 2012-04-06 2013-02-13 三菱電機株式会社 空気調和装置の室内機
JP5533969B2 (ja) * 2012-09-28 2014-06-25 ダイキン工業株式会社 空気調和機
JP5991898B2 (ja) * 2012-10-30 2016-09-14 三菱電機株式会社 クロスフローファン
KR102143389B1 (ko) * 2013-03-20 2020-08-28 삼성전자주식회사 원심팬 및 이를 포함하는 공기조화기
DE102014013755B4 (de) * 2014-09-22 2021-07-01 Dinghan SMART Railway Technology GmbH Lüfteranordnung und leistungselektronische Schaltung
CN106321473B (zh) * 2016-09-05 2019-02-05 青岛海尔空调器有限总公司 用于空调器的贯流风机
CN108708876A (zh) * 2018-05-16 2018-10-26 广东美的环境电器制造有限公司 叶片调节机构和空气循环器
CN209761851U (zh) * 2018-05-18 2019-12-10 广东美的制冷设备有限公司 风轮及其叶片
GB2578617B (en) * 2018-11-01 2021-02-24 Dyson Technology Ltd A nozzle for a fan assembly
KR20210108250A (ko) * 2020-02-25 2021-09-02 엘지전자 주식회사 횡류팬
CN214660989U (zh) * 2021-04-30 2021-11-09 中强光电股份有限公司 风扇结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2594063B2 (ja) 1987-10-09 1997-03-26 三洋電機株式会社 送風装置
JP3137897B2 (ja) * 1996-03-12 2001-02-26 株式会社日立製作所 貫流ファン
JP3777891B2 (ja) 1999-08-03 2006-05-24 株式会社日立製作所 空気調和機
JP2006329099A (ja) 2005-05-27 2006-12-07 Daikin Ind Ltd クロスフローファン

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2591615Y2 (ja) * 1993-12-31 1999-03-10 日本高分子株式会社 円筒形羽根車
JP3260544B2 (ja) * 1994-04-06 2002-02-25 松下精工株式会社 多翼ファン
JPH081320A (ja) * 1994-06-20 1996-01-09 Hitachi Ltd ろう付け曲面積層パネルおよびその製作方法
JP3918207B2 (ja) * 1995-08-02 2007-05-23 株式会社日立製作所 空気調和機
JP2001280288A (ja) * 2000-03-31 2001-10-10 Daikin Ind Ltd 多翼送風機の羽根車構造
JP2006152886A (ja) * 2004-11-26 2006-06-15 Toshiba Kyaria Kk 横流ファン、空気調和機の室内機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2594063B2 (ja) 1987-10-09 1997-03-26 三洋電機株式会社 送風装置
JP3137897B2 (ja) * 1996-03-12 2001-02-26 株式会社日立製作所 貫流ファン
JP3777891B2 (ja) 1999-08-03 2006-05-24 株式会社日立製作所 空気調和機
JP2006329099A (ja) 2005-05-27 2006-12-07 Daikin Ind Ltd クロスフローファン

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2472118A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086147A1 (ja) * 2010-12-24 2012-06-28 三菱電機株式会社 貫流ファン及び空気調和機の室内機
US9759220B2 (en) 2010-12-24 2017-09-12 Mitsubishi Electric Corporation Cross flow fan and indoor unit of air-conditioning apparatus
EP2657530A4 (en) * 2010-12-24 2017-11-01 Mitsubishi Electric Corporation Through-flow fan, and indoor unit for air conditioner

Also Published As

Publication number Publication date
ES2729480T3 (es) 2019-11-04
US9039347B2 (en) 2015-05-26
EP2472118B1 (en) 2019-05-08
CN102686887B (zh) 2015-11-25
US20120263573A1 (en) 2012-10-18
HK1175516A1 (zh) 2013-07-05
EP2472118A4 (en) 2017-07-05
EP2472118A1 (en) 2012-07-04
JP4998530B2 (ja) 2012-08-15
CN102686887A (zh) 2012-09-19
JP2011069320A (ja) 2011-04-07

Similar Documents

Publication Publication Date Title
JP4998530B2 (ja) 貫流ファン、送風機及び空気調和機
JP2011069320A5 (ja)
JP5178816B2 (ja) 空気調和機
JP5213953B2 (ja) 送風機およびこの送風機を用いたヒートポンプ装置
WO2009139422A1 (ja) 遠心送風機
WO2017026150A1 (ja) 送風機およびこの送風機を搭載した空気調和装置
US9759220B2 (en) Cross flow fan and indoor unit of air-conditioning apparatus
JP2007292053A (ja) 多翼ファン
WO2013031046A1 (ja) 空気調和機
JP4687675B2 (ja) 貫流送風機および空気調和機
JP4989705B2 (ja) 貫流ファン及び送風機及び空気調和機
WO2017098693A1 (ja) 空気調和機
JP6398086B2 (ja) 送風機およびこれを用いた空気調和機
WO2015098657A1 (ja) 空調室内機
WO2012124021A1 (ja) 貫流ファン及び送風機及び空気調和機
JP2013117234A (ja) 空気調和機
JP5460749B2 (ja) 貫流ファン及び送風機及び空気調和機
JP5494209B2 (ja) 空気調和機
JP2016145661A (ja) 空気調和機
JP6330738B2 (ja) 遠心送風機及びこれを用いた空気調和機
JP2014081147A (ja) 空気調和機の室外ユニット
JP7103465B1 (ja) 送風機および室内機
JP6692456B2 (ja) プロペラファン及び空気調和装置の室外機
JP7275257B2 (ja) 空気調和装置
CN116997725A (zh) 涡壳、具备该涡壳的送风装置以及空调装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080043124.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10818529

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13497287

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010818529

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201001352

Country of ref document: TH