WO2011036827A1 - 立体映像表示装置および立体映像表示方法 - Google Patents

立体映像表示装置および立体映像表示方法 Download PDF

Info

Publication number
WO2011036827A1
WO2011036827A1 PCT/JP2010/003141 JP2010003141W WO2011036827A1 WO 2011036827 A1 WO2011036827 A1 WO 2011036827A1 JP 2010003141 W JP2010003141 W JP 2010003141W WO 2011036827 A1 WO2011036827 A1 WO 2011036827A1
Authority
WO
WIPO (PCT)
Prior art keywords
video
stereoscopic
glasses
image
eye
Prior art date
Application number
PCT/JP2010/003141
Other languages
English (en)
French (fr)
Inventor
井上和紀
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/395,987 priority Critical patent/US20120169730A1/en
Publication of WO2011036827A1 publication Critical patent/WO2011036827A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0093Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for monitoring data relating to the user, e.g. head-tracking, eye-tracking
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/34Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/128Adjusting depth or disparity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/366Image reproducers using viewer tracking
    • H04N13/373Image reproducers using viewer tracking for tracking forward-backward translational head movements, i.e. longitudinal movements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/366Image reproducers using viewer tracking
    • H04N13/376Image reproducers using viewer tracking for tracking left-right translational head movements, i.e. lateral movements

Definitions

  • the present invention relates to a binocular stereoscopic image display apparatus and a stereoscopic image display method for displaying stereoscopic images by presenting different images to the right and left eyes of a viewer via auxiliary optical devices such as glasses. .
  • 3D (3D) video technology has attracted attention.
  • a human sees a three-dimensional object with the naked eye there is a subtle difference (parallax) between the image seen on the left eye and the image seen on the right eye due to the difference in the positions of the left and right eyeballs. That is, humans see slightly different images (object shapes) between the left and right eyes.
  • objects shapes objects shapes
  • Various stereoscopic devices have been proposed that use this property to display a stereoscopic video by displaying a video composed of a left-eye video and a right-eye video having a difference (hereinafter referred to as “parallax video”). .
  • stereoscopic glasses devices using spectacle-type auxiliary optical devices (hereinafter simply referred to as “stereoscopic glasses”) have been proposed.
  • This apparatus displays a parallax image on a display device and provides a left-eye image and a right-eye image to the left and right eyes of the viewer by using stereoscopic glasses.
  • a stereoscopic device is a device that displays parallax images of different colors such as red and blue and separates the parallax images with a color filter of stereoscopic glasses.
  • Another specific example of the stereoscopic device is a device that displays parallax images with different polarization states and separates the parallax images with a polarizing filter of stereoscopic glasses.
  • Still another specific example of the stereoscopic device is a device that displays parallax images in a time-sharing manner and separates the parallax images with a liquid crystal shutter of stereoscopic glasses synchronized with the image switching.
  • the parallax video itself displayed on the video display surface (hereinafter referred to as “screen”) of the display device is projected at a fixed position as in a normal television device. It is a statue. For this reason, the image actually provided to the viewer's left and right eyes varies depending on the position and orientation of the viewer.
  • FIG. 1A consider a case where the viewer 10 does not face the screen 20 and views the parallax image 30 from either the left or right oblique position.
  • FIG. 1B the viewer 10 sees the image 31 on the side close to the viewer 10 (for example, the video for the right eye) 31 large and the image 32 on the far side (for example, the video for the left eye) appears small.
  • the image 31 on the side close to the viewer 10 for example, the video for the right eye
  • the image 32 on the far side for example, the video for the left eye
  • FIG. 2A consider a case where the viewer 10 is tilting his / her face and the left / right direction of the face is greatly tilted from the left / right direction of the screen 20.
  • the right-eye video 31 and the left-eye video 32 appear to be shifted up and down for the viewer 10.
  • Patent Literature 1 As a technology that can reduce the oblique problem, for example, a device that sets a virtual screen directly facing the viewer and deforms the image output to the actual screen according to the set virtual screen is proposed.
  • this apparatus performs image conversion processing for changing a rectangle into a trapezoid for a parallax image.
  • the device described in Patent Literature 1 displays the original parallax image in the same state as when viewed from the front, when the actual screen that looks like a trapezoid from the viewer is converted into a rectangular virtual screen. be able to.
  • Patent Document 2 a device that detects the tilt of stereoscopic glasses and changes the generation of the parallax image according to the tilt in a parallax video generation device based on 3D computer graphics has been proposed (for example, see Patent Document 2).
  • this apparatus draws (renders) a left-eye image and a right-eye image of a stereoscopic figure in real time according to the position and orientation of the stereoscopic glasses.
  • the apparatus of patent document 2 can display a natural three-dimensional image.
  • Patent Document 1 has a problem of lack of comfort during viewing. The reason is as follows. When a human sees an object in a video, he recognizes the shape of the object based on a relative relationship with an object (for example, a display frame) around the screen. Therefore, in a state where the image of the frame of the diagonal display and the parallax image in a face-to-face state are visible, the viewer looks as if the object in the parallax image is distorted. In other words, the method of distorting the image into a trapezoidal shape when viewing from an oblique direction can maintain the geometric shape of the image, but is similar to the feeling when viewing a display that displays a conventional 2D image. A sense cannot be given to the viewer. Therefore, the parallax image displayed by the technique described in Patent Literature 1 may give viewers discomfort.
  • Patent Document 2 has a problem that it cannot be applied to a stereoscopic video stream composed of a left-eye video and a right-eye video that are created in advance.
  • movies and video contents composed of a stereoscopic video stream have become widespread, and a method for solving a tilt problem with respect to the video stream is required.
  • Patent Document 1 and Patent Document 2 have a problem that they are not suitable when there are a plurality of viewers.
  • FIG. 3 for example, when four viewers 10-1 to 10-4 are viewing the same screen 20, the position and the inclination of the face are usually different for each viewer 10. It is difficult to solve the oblique problem and the tilt problem for all the viewers 10-1 to 10-4.
  • the above-mentioned problem that occurs due to the difference in the position of the viewers and the inclination of the face is referred to as a “multiple problem”.
  • An object of the present invention is to provide a stereoscopic video display apparatus and a stereoscopic video display method that allow a viewer to more comfortably view a stereoscopic video using a stereoscopic video stream.
  • the stereoscopic video display device of the present invention is a stereoscopic video display device that displays a stereoscopic video using a screen and stereoscopic glasses from a stereoscopic video stream including a left-eye video and a right-eye video, the stereoscopic video display device
  • An appropriate viewing condition setting unit that sets an appropriate viewing condition in which a viewer wearing glasses can view a stereoscopic image, and glasses that acquire at least one of the position and inclination of the stereoscopic glasses with respect to the screen as glasses information
  • the information acquisition unit and the spectacle information do not satisfy the appropriate viewing condition, at least one of the size and the position is corrected for at least one of the left-eye image and the right-eye image, and the image is A video correction unit for outputting to the screen.
  • the stereoscopic video display device of the present invention is a stereoscopic video display device that displays a stereoscopic video using a screen and stereoscopic glasses from a stereoscopic video stream including a left-eye video and a right-eye video, the stereoscopic video display device
  • An appropriate viewing condition setting unit that sets an appropriate viewing condition in which a viewer wearing glasses can view a stereoscopic image, and glasses that acquire at least one of the position and inclination of the stereoscopic glasses with respect to the screen as glasses information
  • An information acquisition unit and a notification unit that performs predetermined notification to a viewer wearing the stereoscopic glasses when the spectacle information does not satisfy the appropriate viewing condition.
  • the stereoscopic video method of the present invention is a stereoscopic video display method for displaying a stereoscopic video using a screen and stereoscopic glasses from a stereoscopic video stream including a left-eye video and a right-eye video, and Acquiring at least one of the position and inclination of the stereoscopic glasses as glasses information; and whether the glasses information satisfies an appropriate viewing condition for allowing a viewer wearing the stereoscopic glasses to view a stereoscopic image And a step of notifying a viewer wearing the stereoscopic glasses when the glasses information does not satisfy the appropriate viewing condition.
  • a viewer can more comfortably view a stereoscopic video using a stereoscopic video stream.
  • FIG. 2 is a second diagram illustrating parameters in the first embodiment.
  • FIG. 3 is a third diagram for explaining parameters in the first embodiment 1 is a block diagram illustrating an example of a configuration of a stereoscopic video display device according to Embodiment 1.
  • FIG. 1 is an external view illustrating an example of a configuration of stereoscopic glasses in Embodiment 1.
  • FIG. The flowchart which shows an example of operation
  • FIG. 11 is a diagram illustrating an example of a parallax image of a video stream in the first embodiment The figure for demonstrating the process of the parallel movement in Embodiment 1
  • FIG. 7 is a diagram for explaining enlargement / reduction processing in the first embodiment
  • the block diagram which shows an example of a structure of the three-dimensional-video display apparatus which concerns on Embodiment 2 of this invention.
  • the flowchart which shows an example of operation
  • FIG. 3 The block diagram which shows an example of a structure of the three-dimensional-video display apparatus which concerns on Embodiment 3 of this invention.
  • FIG. 4 The block diagram which shows an example of a structure of the three-dimensional-video display apparatus which concerns on Embodiment 4 of this invention.
  • FIG. 4 is a system configuration diagram illustrating an example of a configuration of a stereoscopic video display system including the stereoscopic video display device according to Embodiment 1 of the present invention.
  • the present embodiment is an example in which the present invention is applied to a liquid crystal shutter type stereoscopic video system.
  • the stereoscopic video display system 100 includes a video playback device 200, a stereoscopic video display device 300, and stereoscopic glasses (hereinafter simply referred to as “glasses”) 500.
  • the video playback device 200 is a device having a video data playback function, for example, a Blu-ray Disc (registered trademark) player.
  • the video playback device 200 plays back a video stream of parallax video for stereoscopic video from a recording medium such as a Blu-ray Disc (registered trademark) or a received signal. Then, the video reproduction device 200 outputs the reproduced video stream to the stereoscopic video display device 300.
  • the video stream includes a left-eye video and a right-eye video (that is, parallax video).
  • the stereoscopic video display device 300 is a device having a liquid crystal shutter type stereoscopic video display function, for example, a television.
  • the stereoscopic video display device 300 displays parallax video on the screen 600 based on the video stream input from the video playback device 200. More specifically, the stereoscopic video display device 300 displays the left-eye video and the right-eye video on the same screen 600 while switching at a high speed, for example, in units of frames (images of one frame constituting a moving image). . Then, the video reproduction device 200 transmits a synchronization signal for controlling the light transmission state of the left and right lenses of the glasses 500 to the glasses 500.
  • the stereoscopic video display device 300 sets appropriate viewing conditions.
  • the appropriate viewing condition refers to the position and inclination range of the glasses 500 (hereinafter referred to as “appropriate viewing range”) in which a viewer wearing the glasses 500 (hereinafter simply referred to as “viewer”) can view a stereoscopic image. ). Details of the appropriate viewing condition will be described later.
  • the stereoscopic video display device 300 acquires the position and inclination (glasses information) of the glasses 500.
  • the stereoscopic image display apparatus 300 determines whether the acquired position and inclination of the glasses 500 satisfy the appropriate viewing condition.
  • the stereoscopic video display device 300 determines that the appropriate viewing condition is not satisfied, the stereoscopic video display device 300 corrects at least one of the size and position of at least one of the left-eye video and the right-eye video of the video stream and displays the corrected video on the screen 600. . That is, the stereoscopic video display apparatus 300 corrects the displayed parallax video so that the above-described oblique problem and tilt problem are reduced.
  • the appropriate viewing condition will be described later.
  • the glasses 500 are optical devices worn by viewers who view stereoscopic images, and are, for example, liquid crystal shutter glasses.
  • the glasses 500 switch the light transmission state of the left and right lenses at high speed according to the synchronization signal received from the stereoscopic video display device 300.
  • the glasses 500 perform this switching by driving control of the liquid crystal shutter.
  • the glasses 500 set the left lens in a light transmitting state and the right lens in a light blocking state.
  • the glasses 500 make the right lens light-transmitting and the left lens light-shielded. That is, the spectacles 500 can set only the left lens to the transmissive state at the moment when the left-eye image appears on the stereoscopic image display device 300.
  • the glasses 500 can set only the right lens to the transmissive state at the moment when the right-eye video appears on the stereoscopic video display device 300.
  • the viewer can see only the left-eye video with the left eye and only the right-eye video with the right eye. As a result, the viewer can view a stereoscopic image. In addition, the viewer can view a stereoscopic image in a state where the above-described oblique problem and inclination problem are reduced, and can view the stereoscopic image more comfortably.
  • FIG. 5 to 7 are diagrams illustrating parameters used by the stereoscopic video display system 100.
  • FIG. 5 to 7 are diagrams illustrating parameters used by the stereoscopic video display system 100.
  • the stereoscopic image display system 100 includes parameters of the actual display length W, screen resolution R, reference parallax d, glasses information, glasses base line length e, left viewing line distance Ll, and right viewing line distance Lr. Is used.
  • the eyeglass information includes the left lens position Pl (xl, yl, zl), the right lens position Pr (xr, yr, zr), the eyeglass position P (x, y, z), and the eyeglass tilt angle ⁇ .
  • a line connecting the left lens position Pl and the right lens position Pr is referred to as a “glasses base line”.
  • the direction of the glasses baseline is referred to as “glasses baseline direction”.
  • the actual display length W is the horizontal size of the screen 600 and is usually a fixed default value for each television model.
  • the screen resolution R is the number of pixels per unit length.
  • the screen resolution R can be obtained, for example, by dividing the number of horizontal pixels of the parallax image by the actual display length W.
  • the number of horizontal pixels of the parallax video is normally a known value determined for the video format of the parallax video. For example, in the case of a full HD (high definition) format with a width of 1920 pixels, it is obvious that the number of horizontal pixels of the parallax image is 1920 pixels.
  • the reference parallax d is a representative value of the parallax existing in the original parallax video, and is a parameter indicating the parallax as a reference for correcting the parallax video.
  • the reference parallax d includes a reference point P01 of a reference image for left-eye video (hereinafter referred to as “left-eye reference image”) 610l and a reference point P0r of a reference image for right-eye video (hereinafter referred to as “right-eye reference image”) 610r. Is the amount of deviation on the screen 600.
  • the reference image 610 and the reference point will be described later.
  • the midpoint between the reference point P01 of the left-eye reference image 610l and the reference point P0r of the right-eye reference image 610r is the origin O
  • the normal direction of the screen 600 is the z-axis
  • the vertical direction is The right direction toward the y-axis and the screen 600 is defined as the x-axis.
  • the left lens position Pl (xl, yl, zl) is a position of the glasses 500 corresponding to the viewer's left pupil.
  • the right lens position Pr (xr, yr, zr) is a position of the glasses 500 corresponding to the right pupil of the viewer.
  • the spectacle position P (x, y, z) is a representative position of the spectacles 500, and is the midpoint between the left lens position Pl and the right lens position Pr here.
  • the spectacle base length e is a distance between the left lens position Pl and the right lens position Pr of the spectacles 500.
  • the left visual line distance Ll is a distance from the left lens position Pl to the reference point P01 of the left-eye reference image 610l on the screen 600.
  • the right visual line distance Lr is a distance from the right lens position Pr to the reference point P0r of the right eye reference image 610r on the screen 600.
  • the spectacle inclination angle ⁇ is an angle between a line obtained by projecting a spectacle base line on the screen 600 and a horizontal plane, as shown in FIG.
  • the spectacle baseline direction is assumed to be parallel to the screen 600 unless otherwise specified.
  • the video for the left eye and the video for the right eye constituting the parallax video are images that respectively reproduce the image seen from the position of the left eye and the image seen from the position of the left eye when the viewer directly views the three-dimensional object.
  • the portion of the left-eye image that is on the right side of the right-eye image appears to be raised in front of the screen 600.
  • the left-side portion of the left-eye image appears to be deeper than the screen 600.
  • the greater the parallax the greater the distance from the screen 600 appears.
  • the part where the parallax is zero appears to be present at the same position as the screen 600. That is, the part where the parallax is zero looks the same as the 2D video.
  • the human eye is difficult to focus on multiple distances, multiple points or a wide range at a time, and usually pays attention to a very narrow depth and field of view at each point in time. This is the same when viewing parallax images on the screen 600.
  • the video portion intended by the video producer to be watched by the viewer is referred to as the “reference image” described above.
  • the stereoscopic video display apparatus 300 acquires the parallax of the reference point P0 of the reference image 610, that is, the distance from the reference point P01 to the reference point P0r as the reference parallax d. Then, the stereoscopic video display apparatus 300 holds the acquired reference parallax d in the corrected parallax video.
  • the reference parallax d When information indicating the reference parallax d at each time is attached to the video stream of the parallax video, the reference parallax d can be obtained from the video stream.
  • the reference parallax d When information indicating the number of pixels corresponding to the reference parallax d (hereinafter referred to as “parallax pixel number”) is attached to the video stream, the reference parallax d can be obtained from the number of parallax pixels. Further, depending on the content of the video stream, the reference parallax d can be determined from an empirical rule or fixed with an acquired value.
  • the reference parallax d when the information indicating the reference point at each time is attached to the video stream of the parallax video is the reference point P01 of the left-eye reference image 610l and the reference point of the right-eye reference image 610r on the screen 600. It can be obtained from the distance to P0r.
  • the reference parallax d can be sequentially calculated based on the position of the reference image 610. In this case, the reference parallax d can be obtained from the distance between the center point of the left eye reference image 610l and the center point of the right eye reference image 610r, for example.
  • the reference parallax d can be obtained by extracting the same graphic from the left-eye video and the right-eye video by image recognition and calculating the distance on the screen 600 of the positions of these graphics.
  • a stereoscopic video content includes many figures with different parallaxes. Therefore, the reference parallax d may be obtained by taking a maximum value or an average value of a plurality of parallaxes obtained for a plurality of figures.
  • image parallax the distance between the reference point P01 of the left-eye reference image 610l and the reference point P0r of the right-eye reference image 610r on the screen 600
  • image baseline direction the direction of the image baseline
  • the human brain has a certain degree of idiomaticity in terms of stereoscopic vision, and it is known that there is a certain tolerance in the position and inclination of the face where a stereoscopic image can be properly viewed. .
  • experiments show that many viewers recognize a reference image as a stereoscopic image with almost no problem if the image size difference is 15% or less and the image tilt angle is ⁇ 6 ° to + 6 °. It has been.
  • image size difference means a difference in the relative size of the right eye reference image with respect to the left eye reference image seen by the eyes.
  • image tilt angle refers to a relative tilt angle of the image baseline direction with respect to the left-right direction of the face (glasses baseline direction).
  • the position and inclination of the glasses 500 belong to a range in which a stereoscopic image can be properly viewed (a proper viewable range) is used as a proper viewing condition.
  • the appropriate viewable range is, for example, an eyeglass position where an image size difference is 15% or less and an image inclination angle is ⁇ 6 degrees to +6 degrees with respect to a predetermined reference image. And a set of eyeglass tilt angles.
  • FIG. 8 is a block diagram showing an example of the configuration of the stereoscopic video display device 300.
  • the stereoscopic video display device 300 includes a parallax video acquisition unit 310, glasses information acquisition unit 320, appropriate viewing condition setting unit 330, reference parallax setting unit 340, glasses base line length acquisition unit 350, display actual size length acquisition unit 360, An image correction unit 370, a display unit 380, and a glasses control unit 390 are included.
  • the stereoscopic video display device 300 is a television
  • the stereoscopic video display device 300 also includes other device units such as a power supply unit, an operation unit, a broadcast receiving unit, a video input / output unit, and an audio input / output unit. The illustration and description thereof are omitted.
  • the parallax video acquisition unit 310 inputs a video stream of parallax video from the video playback device 200. Then, the parallax video acquisition unit 310 sequentially outputs the input video stream to the reference parallax setting unit 340 and the video correction unit 370 in units of frames.
  • the spectacle information acquisition unit 320 sequentially acquires a radio signal from the spectacles 500. Then, the eyeglass information acquisition unit 320 calculates the eyeglass information from the acquired wireless signal and outputs the calculation result to the video correction unit 370.
  • the eyeglass information includes the eyeglass position P, the left lens position Pl, the right lens position Pr, and the eyeglass tilt angle ⁇ (see FIGS. 5 and 6).
  • the glasses information acquisition unit 320 performs wireless communication between a plurality of UWB (ultra-wideband) antennas attached to the stereoscopic video display device 300 and two UWB antennas attached to the glasses 500. .
  • the spectacle information acquisition unit 320 calculates the distance between the UWB antennas based on the round trip time of the radio signal, calculates the position of the UWB antenna of the spectacles 500 by the triangulation method, and calculates the above spectacles from the position of the UWB antenna of the spectacles 500. Calculate information.
  • the appropriate viewing condition setting unit 330 sets the appropriate viewing condition by adopting, for example, a preset range of the fixed spectacle position P and a range of the spectacle tilt angle ⁇ .
  • the appropriate viewing condition setting unit 330 stores, for example, a table in which a display model and an appropriate viewing condition are associated in advance, and the appropriate viewing condition corresponding to information indicating the model of the stereoscopic video display device 300 is stored in the table. Get from.
  • the proper viewing condition setting unit 330 sets a fixed proper viewing range (FIG. 7) as the proper viewing condition.
  • the reference parallax setting unit 340 sets the reference parallax d (see FIGS. 5 and 6) used for correcting the parallax image.
  • the video stream acquired by the parallax video acquisition unit 310 is accompanied by the number of horizontal pixels of the parallax video, the number of parallax pixels of the reference image at each time, and the reference point.
  • the reference parallax setting unit 340 sequentially determines the number of horizontal pixels, the number of parallax pixels, and a reference point (these information groups are hereinafter referred to as “video information”) from the video stream input from the parallax video acquisition unit 310.
  • the image is acquired and output to the video correction unit 370.
  • the spectacle base line length acquisition unit 350 acquires the spectacle base line length e (see FIGS. 5 and 6), and outputs the acquired spectacle base line length e to the video correction unit 370.
  • the spectacle base line length acquisition unit 350 receives a setting of the spectacle base line length e from the user.
  • the spectacle base line length acquisition unit 350 acquires, as the spectacle base line length e, a fixed value set in advance as a general value, such as an average interval between eyes of citizens of each country.
  • the spectacle base line length acquisition unit 350 acquires a fixed value as the spectacle base line length e.
  • the video correction unit 370 corrects the video stream input from the parallax video acquisition unit 310 when the spectacle information input from the spectacle information acquisition unit 320 satisfies the proper viewing condition input from the appropriate viewing condition setting unit 330. And output to the display unit 380. At this time, the video correction unit 370 outputs the left-eye video data and the right-eye video data to the display unit 380 while switching each frame.
  • the video correction unit 370 generates a synchronization signal for switching the light transmission state of the left and right lenses of the glasses 500 in accordance with the output switching timing of the left-eye video and the right-eye video to the display unit 380.
  • the synchronization signal is a signal for instructing the glasses 500 to make the left lens in a light-transmitting state and the right lens in a light-shielding state when a left-eye image is displayed on the display unit 380.
  • the synchronization signal is a signal for instructing the right lens to be in a light-transmitting state and the left lens to be in a light-shielding state when a right-eye image is displayed on the display unit 380.
  • the glasses 500 include a frame 510, a left communication unit 520l, a right communication unit 520r, a left lens 530l, and a right lens 530r.
  • the left communication unit 520l, the right communication unit 520r, the left lens 530l, and the right lens 530r are all fixed to the frame 510 in a predetermined positional relationship. Therefore, the left lens position Pl and the right lens position Pr can be obtained from the position of the left communication unit 520l and the position of the right communication unit 520r and the spectacle base line length e (fixed value).
  • the right lens 530r is a lens disposed in front of the viewer's right eye, and includes a liquid crystal shutter.
  • the liquid crystal shutter switches the light transmission state at high speed according to the synchronization signal input from the right communication unit 520r.
  • the stereoscopic video display system 100 having such a configuration can display a stereoscopic video based on a video stream of parallax video.
  • the stereoscopic video display system 100 appropriately corrects and displays the video stream so that the viewer can view the stereoscopic video.
  • the viewer can view a stereoscopic image even when the spectacle position P and the spectacle inclination angle ⁇ do not satisfy the original proper viewing condition.
  • FIG. 10 is a flowchart showing an example of the operation of the stereoscopic video display device 300.
  • the appropriate viewing condition setting unit 330 outputs a fixed value stored in advance to the video correction unit 370 as the appropriate viewing condition.
  • the spectacle baseline length acquisition unit 350 outputs the fixed value stored in advance to the video correction unit 370 as the spectacle base length e.
  • the display actual size acquisition unit 360 outputs the fixed value stored in advance as the display actual size length W to the video correction unit 370.
  • the spectacle information may include the spectacle inclination angle ⁇ and any one of the spectacle position P, the left lens position Pl, and the right lens position Pr.
  • the video correction unit 370 acquires the reference parallax d from the actual display length W, the number of horizontal pixels and the number of parallax pixels of the video stream.
  • the video correction unit 370 can obtain the reference parallax d from the video stream.
  • the video correction unit 370 acquires, for example, the eyeglass information generated by the eyeglass information acquisition unit 320 sequentially, periodically, or as necessary (here, for each predetermined number of frames described above).
  • the spectacle information includes the spectacle position P, the left lens position Pl, the right lens position Pr, and the spectacle tilt angle ⁇ .
  • step S1300 of FIG. 10 the video correction unit 370 determines whether the spectacle information satisfies the proper viewing condition. That is, the video correction unit 370 determines whether or not the eyeglass position P and the eyeglass tilt angle ⁇ are within the proper viewing range (see FIG. 7). This determination is a determination as to whether or not the viewer can comfortably view the stereoscopic video without correcting the video stream.
  • the video correction unit 370 proceeds to step S1800 described later. If the glasses condition does not satisfy the appropriate value condition (S1300: NO), the video correction unit 370 proceeds to step S1400.
  • the video correction unit 370 calculates a translation amount M (xm, ym, zm) of the right-eye video.
  • the parallel movement amount M is the movement amount of the right-eye video image necessary for solving the tilt problem. That is, in the parallel movement amount M, the image parallax is the same as the reference parallax d, and the angle (hereinafter referred to as “image tilt angle”) ⁇ between the image baseline direction and the horizontal plane is the same as the glasses tilt angle ⁇ . This is the amount of displacement.
  • the video correction unit 370 acquires the glasses inclination angle ⁇ acquired in step S1200 as the image inclination angle ⁇ . Then, the video correction unit 370 uses, for example, the following equation (3) to (5) from the image tilt angle ⁇ and the spectacle position P (x, y, z), and translates M (xm, ym, zm) is calculated.
  • the image parallax h between the left-eye reference image 610l and the right-eye reference image 610r has the same value as the reference parallax d (see FIG. 6).
  • the image tilt angle ⁇ corresponding to the parallel movement amount M has the same value as the spectacle tilt angle ⁇ (see FIG. 6).
  • step S1500 the video correction unit 370 calculates the left visual line distance Ll and the right visual line distance Lr based on the spectacle base line length e, the reference parallax d, the left lens position Pl, the right lens position Pr, and the spectacle inclination angle ⁇ . Calculate (see FIG. 5 for both).
  • the video correction unit 370 calculates the left visual line distance Ll and the right visual line distance Lr using, for example, the following equations (8) and (9). May be.
  • step S1600 the video correction unit 370 calculates the enlargement / reduction ratio S of the right-eye video based on the left visual line distance Ll and the right visual line distance Lr.
  • the enlargement / reduction ratio S is the enlargement / reduction ratio of the right-eye video image necessary for solving the oblique problem. That is, the enlargement / reduction ratio S is an enlargement / reduction ratio at which the difference in image size after enlargement / reduction becomes substantially zero.
  • the video correction unit 370 calculates the enlargement / reduction ratio S using, for example, the following equation (10).
  • FIG. 13 is a diagram for explaining the enlargement / reduction processing, and corresponds to FIG.
  • the ratio of the size of the right eye reference image 610r to the actual left eye reference image 610l on the screen 600 is substantially the same as the calculated enlargement / reduction ratio S.
  • the size of the right eye reference image 610r visible to the viewer's right eye is substantially the same as the size of the left eye reference image 610l visible to the viewer's left eye. That is, the image size difference is almost zero. Accordingly, the viewer can view the reference image 610 with the same size for the right eye and the left eye even from a position oblique to the screen 600. Therefore, the viewer can obtain a natural overlap between the left eye reference image 610l and the right eye reference image 610r when recognizing stereoscopic vision.
  • step S1700 of FIG. 10 the video correction unit 370 moves the right-eye video in the input video stream by the parallel movement amount M relative to the left-eye video, and the enlargement / reduction ratio. Correction for enlargement / reduction is performed in S.
  • the video correction unit 370 performs enlargement / reduction using the reference point of the right-eye video (a point corresponding to the reference point of the left-eye video) P0r as a fixed point.
  • the video correction unit 370 may directly correct the relative position and the relative size of the right-eye video with respect to the frame of the screen 600.
  • the parallel movement process and the enlargement / reduction process may be a process of causing the display unit 380 to change the display position and display size of the right-eye video on the screen 600.
  • the video correction unit 370 corrects, for example, parameters related to the display position and the display size attached to the video stream.
  • step S1800 the video correction unit 370 outputs the video stream to the display unit 380 in units of frames, and displays the parallax video on the screen 600.
  • the left-eye video and the right-eye video are displayed on the display unit 380 while switching at high speed.
  • the video correction unit 370 corrects the right-eye video
  • the video correction unit 370 outputs the corrected right-eye video instead of the input right-eye video.
  • the glasses control unit 390 transmits the synchronization signal input from the video correction unit 370 to the glasses 500 to operate the glasses 500 in synchronization with the parallax image.
  • the stereoscopic image display apparatus 300 displays the parallax image corrected so that the viewer can view the stereoscopic image according to the position of the viewer and the inclination of the face.
  • the problem can be reduced.
  • the reference image can be stereoscopically displayed with a sense of depth intended by the video producer.
  • the stereoscopic video display system corrects the size and position of the parallax video so that the stereoscopic video can be viewed according to the position of the viewer and the inclination of the face. I do. Thereby, the viewer can view the stereoscopic video in a state where the oblique problem and the tilt problem are reduced.
  • the above-described correction is a simple process of parallel movement and enlargement / reduction with respect to the right-eye image.
  • the stereoscopic video display system according to the present embodiment can easily reduce the oblique problem and the tilt problem even in the video stream of 3D movie content.
  • the above correction does not distort the reference image with respect to the display frame.
  • the stereoscopic video display system according to the present embodiment can give the viewer a sensation similar to that when viewing a conventional display that displays 2D video.
  • the stereoscopic image display system may perform only one of the parallel movement and the enlargement / reduction process. Further, the stereoscopic image display system does not have to acquire the eyeglass position when the enlargement / reduction process is not performed, and does not need to acquire the eyeglass tilt angle when the parallel movement process is not performed.
  • the stereoscopic image display system always calculates the parallel movement amount and the enlargement / reduction ratio without determining whether or not the appropriate viewing condition is satisfied, and performs the parallel movement process and the enlargement / reduction process according to the calculation result. You may go.
  • the stereoscopic video display system does not necessarily require the image tilt angle to be zero, and the appropriate viewing condition is satisfied in the corrected video stream (that is, the image tilt angle satisfies the proper viewing condition). What is necessary is just to perform a parallel movement process.
  • the stereoscopic video display system may use, for example, a table in which the direction of parallel movement is associated with each level for each level of the spectacle tilt angle divided by a width smaller than the width of the appropriate viewing range. . Thereby, the parallel movement process can be speeded up because the calculation process of the parallel movement amount can be omitted.
  • the stereoscopic video display system does not necessarily require the image size difference to be zero, and the appropriate viewing condition is satisfied in the corrected video stream (that is, the image size difference satisfies the appropriate viewing condition).
  • Enlargement / reduction processing may be performed.
  • the stereoscopic video display system associates an enlargement / reduction ratio for each level, for example, for each level of the ratio of the left visual line distance to the right visual line distance divided by a width smaller than the width of the appropriate viewing range.
  • a table may be used.
  • the enlargement / reduction process can be performed at a higher speed because the process for calculating the enlargement / reduction ratio can be omitted.
  • the stereoscopic video display system may correct only the left-eye video based on the right-eye video, or may correct both the right-eye video and the left-eye video. When both are corrected, the reference image can be displayed in a size closer to the size intended by the video producer.
  • the appropriate viewing conditions, the glasses base line length, and the actual display length may be variable values.
  • the reference parallax may be a fixed value.
  • the stereoscopic image display system may have only one UWB antenna provided in the glasses 500 because it is not necessary to acquire the glasses tilt angle when the tilt problem is not considered.
  • the UWB antenna is fixed to the center of the glasses, the position of the glasses can be easily obtained.
  • FIG. 14 is a block diagram showing an example of the configuration of the stereoscopic video display apparatus according to the present embodiment, and corresponds to FIG. 8 of the first embodiment.
  • the same parts as those in FIG. 8 are denoted by the same reference numerals, and description thereof is omitted.
  • the stereoscopic image display device 300a does not have a reference parallax setting unit, an eyeglass baseline length acquisition unit, and a display actual size acquisition unit.
  • the stereoscopic video display apparatus 300a includes a video correction unit 370a that executes processing different from the video correction unit in FIG.
  • step S1100a the video correction unit 370a acquires the appropriate viewing condition from the appropriate viewing condition setting unit 330.
  • the video correction unit 370a proceeds to step S1800.
  • the video correction unit 370a outputs the video stream input from the parallax video acquisition unit 310 to the display unit 380 as it is. That is, the video correction unit 370a displays the parallax video on the screen 600 as usual.
  • Embodiment 3 of the present invention is an example in which notification is made when the appropriate viewing condition is not satisfied, or when the eyeglass information is likely to deviate from the appropriate viewing condition.
  • FIG. 16 is a block diagram showing an example of the configuration of the stereoscopic video display apparatus according to the present embodiment, and corresponds to FIG. 14 of the second embodiment.
  • the same parts as those in FIG. 14 are denoted by the same reference numerals, and description thereof will be omitted.
  • the notification unit 400b proceeds to step S1800.
  • the notification unit 400b outputs the video stream input from the parallax video acquisition unit 310 to the display unit 380 as it is. That is, the notification unit 400b displays the parallax image on the screen 600 as usual.
  • step S1820b the notification unit 400b performs a predetermined notification indicating that the spectacle information does not satisfy the proper viewing condition, that is, the oblique problem or the tilt problem occurs, and then the process proceeds to step S1800.
  • the predetermined notification is, for example, voice output from a speaker or character display on the screen 600.
  • the notification has a content that tells the viewer how to avoid the oblique problem and the tilt problem. For example, it may be possible to output sentences such as “Please move to the front of the screen a little more” and “Please straighten your face a little more”.
  • the viewer can adjust the position and the inclination of the face appropriately so that the stereoscopic video can be viewed, and can continuously view the stereoscopic video.
  • the stereoscopic video display system according to the present embodiment can avoid the diagonal problem and the tilt problem without correcting the video and switching to the 2D display. Therefore, the stereoscopic video display system according to the present embodiment can reduce the processing load and simplify the apparatus configuration as compared with the first and second embodiments.
  • the stereoscopic video display system according to the present embodiment can more reliably avoid the diagonal problem and the tilt problem by notifying when the spectacle information is likely to deviate from the proper viewing condition. .
  • the stereoscopic image display system according to the present embodiment is combined with the first embodiment, and when the spectacle information does not satisfy the proper viewing condition after a certain period after the notification that the spectacle information does not satisfy the proper viewing condition.
  • the correction process may be performed.
  • Embodiment 4 of the present invention is an example in which switching to 2D video display is performed in units of viewers in order to reduce the multiple-person problem.
  • the multiple glasses image correcting unit 370c comprehensively handles the glasses information of the plurality of glasses 500 and corrects the right eye image.
  • the multiple glasses image correction unit 370c determines whether or not an appropriate viewing condition is satisfied for each pair of glasses 500. Then, the multiple glasses image correction unit 370c generates a synchronization signal so that a viewer who satisfies the proper viewing condition can see a normal parallax image, and a viewer who does not satisfy the proper viewing condition can see only the left-eye image. . More specifically, the multiple glasses image correction unit 370c switches the light transmission state according to the parallax image for the glasses 500 that satisfy the appropriate viewing conditions. In addition, the multiple glasses image correction unit 370c generates a synchronization signal that transmits only the left-eye image for the glasses 500 that do not satisfy the proper viewing condition.
  • the multiple glasses controller 390c transmits a synchronization signal to each of the multiple glasses 500.
  • the plurality of glasses correction unit 370c calculates the representative glasses position Pr and the representative glasses tilt angle ⁇ r in step S1210a.
  • the spectacle information includes the spectacle position Pi, the left lens position Pli, the right lens position Pri, and the spectacle tilt angle ⁇ i.
  • the representative eyeglass position Pr is an eyeglass position that represents the eyeglass positions Pi of the plurality of eyeglasses 500, and is, for example, a combination of average values for each coordinate axis of the eyeglass positions Pi.
  • the representative spectacle tilt angle ⁇ r is a spectacle tilt angle representing the spectacle tilt angle ⁇ i of the plurality of spectacles 500, and is, for example, an average value of the spectacle tilt angles ⁇ i. That is, the representative spectacle position Pr and the representative spectacle angle ⁇ r are the spectacle position and the tilt angle of the virtual spectacles 500 representing the plurality of spectacles 500.
  • step S1710c the multiple glasses image correction unit 370c selects one glasses 500 from among the plurality of glasses 500 using the identification information included in the glasses information.
  • step S1720c the multiple glasses image correcting unit 370c determines whether or not the glasses information of the selected glasses 500 satisfies the proper viewing condition in the actually displayed parallax image.
  • the actually displayed parallax image is a parallax image that is output from the multiple glasses image correcting unit 370c to the display unit 380 and actually displayed on the display unit 380 as a result of steps S1300 to S1700.
  • Whether or not the proper viewing condition is satisfied in the displayed parallax image is determined by, for example, converting the appropriate proper viewing range (see FIG. 7) according to the displayed parallax image, and the glasses information in the converted proper viewing range. This can be done by determining whether or not it belongs.
  • the conversion in this case is, for example, conversion in which the normal direction and the horizontal direction of the screen 600 are the direction of the representative glasses position Pr with respect to the screen 600 and the image base line direction.
  • whether or not the appropriate viewing condition is satisfied in the displayed parallax image can be determined by determining whether or not the following expressions (11) and (12) are satisfied, for example.
  • the multiple glasses image correcting unit 370c proceeds to step S1730c.
  • the multiple glasses image correction unit 370c proceeds to step S1740c.
  • step S1730c the multiple glasses image correcting unit 370c sets the selected glasses 500 as glasses to be displayed as parallax images (hereinafter referred to as “target glasses”), and the process proceeds to step S1750c.
  • step S1740c the multiple glasses image correcting unit 370c sets the selected glasses 500 as glasses that are not to be displayed as parallax images (hereinafter referred to as “non-target glasses”), and proceeds to step S1750c.
  • step S1750c the multiple glasses image correction unit 370c determines whether there is glasses 500 that are not set as target glasses or non-target glasses. If there are glasses 500 that have not been set (S1750c: YES), the multiple glasses image correction unit 370c returns to step S1710c. Then, the multiple glasses image correction unit 370c selects the unset glasses 500 and repeats the process. In addition, when any of the target glasses and the non-target glasses is set for all the glasses 500 (S1750c: NO), the multiple glasses image correcting unit 370c proceeds to step S1830c.
  • step S1830c the multiple glasses image correction unit 370c controls each glasses 500 based on whether the glasses are target glasses or non-target glasses via the multiple glasses control unit 390c.
  • the glasses 500 set as the target glasses are controlled so that the parallax image is displayed.
  • the glasses 500 set as the non-target glasses are controlled so that only the left-eye video is displayed.
  • the multi-glasses video correction unit 370c outputs the video stream to the display unit 380 and outputs the synchronization signal to the multi-glasses control unit 390c, as in the first embodiment.
  • the multiple glasses image correction unit 370c outputs the identification information of the glasses 500 to the multiple glasses control unit 390c as the non-target information.
  • the multiple glasses controller 390c transmits non-target information to each glasses 500 together with the synchronization signal.
  • the left lens 530l and the right lens 530r of each eyeglass 500 change the light transmission state so that only the image for the left eye is transmitted when the received synchronization signal includes the identification information of itself as out-of-target information. Switch.
  • FIG. 20 is a diagram illustrating an example of a state of control of the glasses 500 in the present embodiment.
  • the vertical axis indicates the time
  • the left column indicates the state of the display video of the stereoscopic video display device 300c.
  • the middle column shows the state of the image reaching the left and right eyes of the viewer wearing the glasses 500 set as the target glasses
  • the right column shows the viewers wearing the glasses 500 set as the non-target glasses. The state of the image that reaches the left and right eyes is shown.
  • the left-eye video and the right-eye video are alternately displayed on the stereoscopic video display device 300c.
  • the glasses 500 set as the target glasses allow only the left lens 530l to pass through while the left-eye video is displayed in accordance with the synchronization signal. Further, the glasses 500 set as the target glasses transmit only the right lens 530r while the right-eye video is displayed in accordance with the synchronization signal. Thus, the viewer wearing the glasses 500 set as the target glasses sees only the left-eye video with the left eye and only the right-eye video with the right eye.
  • the eyeglasses 500 set as the target eyeglasses are eyeglasses 500 that satisfy an appropriate viewing condition in the displayed parallax image. Therefore, the viewer of the glasses 500 can view the video stream as 3D video.
  • the glasses 500 set as the non-target glasses transmit both the left lens 530l and the right lens 530r while the left-eye video is displayed.
  • the glasses 500 set as the non-target glasses shield both the left lens 530l and the right lens 530r while the right-eye video is displayed.
  • the viewer wearing the glasses 500 set as the non-target glasses sees only the left-eye video with both eyes.
  • the glasses 500 set as non-target glasses are glasses 500 that do not satisfy the proper viewing condition in the displayed parallax image. Therefore, even if the viewer of the glasses 500 set as the non-target glasses sees only the left-eye video with the left eye and sees only the right-eye video with the right eye, the viewer cannot see the stereoscopic video due to an oblique problem or an inclination problem. . Therefore, the video stream of 2D video is more comfortable for such a viewer. Therefore, in this embodiment, a video stream is displayed as 2D video for such a viewer.
  • the stereoscopic image display system uses the representative glasses position and the representative glasses tilt angle, it is possible to easily perform image correction considering a plurality of viewers.
  • the stereoscopic video display system according to the present embodiment it is difficult to satisfy the proper viewing condition in all of the plurality of glasses.
  • the 3D video is displayed as much as possible by switching to 2D video display individually as appropriate.
  • the stereoscopic video display system according to the present embodiment can avoid the oblique problem and the tilt problem, and can reduce the multiple-person problem.
  • the stereoscopic video display system according to the present embodiment individually controls the operation on the spectacles side, display control for each spectacle can be easily performed.
  • the method for determining the representative eyeglass position and the representative eyeglass tilt angle is not limited to the method described above, and it is desirable to adopt a method suitable for the use environment.
  • the stereoscopic image display system excludes glasses having a large distance from other glasses from the target of average value calculation. It is desirable.
  • glasses that have a large difference in glasses tilt angle with other glasses are subject to average calculation. It is desirable to exclude from.
  • the stereoscopic video display system switches to 2D video display in the same manner as in the second embodiment when there are a certain number or more or a certain ratio of glasses that do not satisfy the proper viewing condition in the actually displayed parallax image. Also good. In this case, it is not necessary to individually control the operation on the eyeglass side, and the processing load can be reduced and the apparatus configuration can be simplified.
  • the stereoscopic image display system is similar to the third embodiment when there is at least one pair of glasses that do not satisfy the proper viewing condition in the parallax image that is actually displayed, and when there is a certain number or more or a certain percentage or more.
  • a predetermined notification may be performed.
  • the stereoscopic image display system may operate, for example, a vibrator, a speaker, a light emitting element, or the like provided in the glasses in order to clarify which glasses the notification is for.
  • the stereoscopic video device may be arranged in the video reproduction device 200 or another device.
  • the stereoscopic video apparatus needs to acquire the position of the reference point of the left-eye reference image and the position of the reference point of the right-eye reference image displayed on the television together with the eyeglass information.
  • the present invention is applied to a liquid crystal shutter type stereoscopic image display system.
  • the present invention can be applied to a color filter type stereoscopic video display system, a polarization filter type stereoscopic video display system, or other various stereoscopic video display systems.
  • the stereoscopic video display device and the stereoscopic video display method according to the present invention are useful as a stereoscopic video display device and a stereoscopic video display method that allow a viewer to more comfortably view a stereoscopic video using a stereoscopic video stream. is there. More specifically, the present invention is useful, for example, for video equipment that obtains stereoscopic video using glasses among video equipment such as home televisions and Blu-ray Disc (registered trademark) playback devices. The present invention is also useful, for example, for video equipment used in public video providing facilities (mini-theatre, sports video providing facilities, etc.) that similarly provide stereoscopic video to customers.
  • mini-theatre mini-theatre, sports video providing facilities, etc.
  • DESCRIPTION OF SYMBOLS 100 3D image display system 200 Image

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

 視聴者が立体視用の映像ストリームを利用した立体映像をより快適に見ることができる立体映像表示方法。この立体映像表示方法は、左目用映像および右目用映像を含む立体視用の映像ストリームから、画面および立体視眼鏡を用いて立体映像を表示する立体映像表示装置で用いられる方法であって、画面に対する立体視眼鏡の位置および傾きの少なくとも1つを、眼鏡情報として取得するステップ(S1200)と、眼鏡情報が、立体視眼鏡を装着した視聴者が立体映像を見ることができる適正視条件を満たすか否かを判断するステップ(S1300)と、眼鏡情報が適正視条件を満たさないとき(S1300:NO)、左目用映像および右目用映像の少なくとも1つに対して大きさおよび位置の少なくとも1つの補正を行うステップ(S1400~S1700)と、映像を画面に出力するステップ(S1800)とを有する。

Description

立体映像表示装置および立体映像表示方法
 本発明は、眼鏡などの補助光学機器を介して、視聴者の右目および左目にそれぞれ異なる映像を提示することにより、立体映像を表示する、二眼式の立体映像表示装置および立体映像表示方法に関する。
 近年、立体(3 dimension:3D)映像技術が注目を集めている。人間が肉眼で立体物を見る際、左目に映る像と右目に映る像とは、左右の眼球の位置の違いにより、微妙な差異(視差)を有する。すなわち、人間は、左右の目で微妙に異なる像(物体形状)を見ている。人間には、これと同じような異なる形状の像を左右の目で見た際に、実際には立体物ではない対象であっても、あたかも立体物を見ているように感じる性質がある。この性質を利用し、差異を有する左目用映像および右目用映像から構成される映像(以下「視差映像」という)を表示することにより立体映像を表示する、様々な立体視装置が提案されている。
 立体視装置の一分類として、眼鏡型の補助光学機器(以下単に「立体視眼鏡」という)を用いる装置が提案されている。この装置は、ディスプレイ装置に視差映像を表示し、立体視眼鏡を用いることにより、視聴者の左右それぞれの目に左目用映像と右目用映像とを提供する。
 立体視装置の1つの具体例は、赤と青など異なる色の視差映像を表示して、立体視眼鏡のカラーフィルタで視差映像を分離する装置である。また、立体視装置の他の具体例は、異なる偏光状態の視差映像を表示して、立体視眼鏡の偏光フィルタで視差映像を分離する装置である。立体視装置の更に他の具体例は、時分割で視差映像を表示して、映像切り替えに同期した立体視眼鏡の液晶シャッターで視差映像を分離する装置である。
 立体視眼鏡を用いた立体映像表示装置の場合、ディスプレイ装置の映像表示面(以下「画面」という)に表示される視差映像そのものは、通常のテレビジョン装置と同様に、定位置に投影された像である。このため、視聴者の位置や姿勢に応じて、実際に視聴者に左右の目に提供される像は変化する。
 具体的には以下の通りである。例えば、図1Aに示すように、視聴者10が画面20に正対せず、左右どちらかの斜め位置から視差映像30を見る場合を考える。この場合、図1Bに示すように、視聴者10には、視聴者10に近い側の像(例えば右目用映像)31は大きく、遠い側の像(例えば左目用映像)32は小さく見える。これは、立体映像表示装置の場合、視聴者10の目が通常の立体物を見る場合とは異なり、人工的に生成された映像が左右それぞれの目に強制的に与えられるからである。
 また、例えば、図2Aに示すように、視聴者10が顔を傾けており、顔の左右方向が画面20の左右方向から大きく傾いている場合を考える。この場合、図2Bに示すように、視聴者10には、右目用映像31と左目用映像32とが上下にずれて見える。
 平面状の物体である通常の2D映像の場合、図1Bおよび図2Bに示す現象が発生しても、人間が両目で通常の平面物体を見る場合と全く同じ状況である。したがって、この場合、視覚上および認知上の問題は生じない。ところが、視差映像の場合には、視覚上および認知上の問題が生じる。物体の像は本来左右の目に同じ大きさおよび同じ高さで提供されることから、人間は、左右の目に異なる大きさあるいは異なる高さで提供される像を、同一物体の像であると認識し難いためである。
 したがって、視聴者10が、画面20の斜め位置から視差映像30を見る場合、あるいは画面20に対して顔を傾けて視差映像30を見る場合には、現実に立体物を見ている状況と大きく矛盾する状況が、視聴者10の目と脳にもたらされる。そして、想定された立体映像として見えないという問題や、長時間視聴する際に違和感や疲労感が蓄積するという問題が生じ得る。以下、画面20の斜め位置から視差映像30を見ることによって生じる上述の問題は、「斜め問題」という。また、画面20に対して顔を傾けて視差映像30を見ることによって生じる上述の問題は、「傾き問題」という。
 斜め問題を低減することが可能な技術として、例えば、視聴者に正対する仮想的な画面を設定し、設定した仮想的な画面に合わせて、実際の画面に出力する像を変形させる装置が提案されている(例えば特許文献1参照)。この装置は、具体的には、視差映像に対し、矩形を台形へと変化させる画像変換処理を行う。これにより、特許文献1記載の装置は、視聴者から台形に見える実際の画面を矩形の仮想的な画面に変換したときに、元の視差映像を正面から見たときと同様の状態で表示することができる。
 また、傾き問題を低減する技術として、例えば、3Dコンピュータグラフィックにより視差映像の生成装置において、立体視眼鏡の傾きを検出し、傾きに応じて視差映像の生成を変化させる装置が提案されている(例えば特許文献2参照)。この装置は、具体的には、立体視眼鏡の位置および姿勢に応じて、立体図形の左目用映像および右目用映像をリアルタイムで描画(レンダリング)する。これにより、特許文献2記載の装置は、自然な立体映像を表示することができる。
特開2006-333400号公報 特開2006-84963号公報
 ところが、特許文献1記載の技術は、視聴の際の快適性に欠けるという課題を有する。理由は以下の通りである。人間は、映像の中の対象物を見る際に、画面の周辺にある物体(例えばディスプレイの枠)との相対的な関係に基づいて、対象物の形状を認識する。したがって、斜めのディスプレイの枠の像と、正対した状態の視差映像とが見える状態では、視聴者には、視差映像の中の物体が歪んでいるように見えてしまう。すなわち、斜めからの視聴の際に映像を台形状に歪ませる手法は、映像の幾何学形状を維持することはできても、従来の2D映像を表示するディスプレイを視聴するときの感覚と同様の感覚を視聴者に与えることができない。したがって、特許文献1記載の技術によって表示された視差映像は、かえって視聴者に不快感を与えることがある。
 また、特許文献2記載の技術は、予め作り込まれた左目用映像および右目用映像から成る立体視用の映像ストリームには、適用することができないという課題を有する。近年、立体視用の映像ストリームから成る映画や映像コンテンツの普及が広がっており、映像ストリームに対する傾き問題の解決手法が求められる。
 更に、特許文献1および特許文献2記載の技術は、視聴者が複数人である場合には適さないという問題がある。図3に示すように、例えば4人の視聴者10-1~10-4が同一の画面20を視聴しているとき、通常、視聴者10毎に位置や顔の傾きは異なる。全ての視聴者10-1~10-4に対して、斜め問題および傾き問題を解決することは困難である。以下、複数の視聴者の位置や顔の傾きが異なることによって生じる上述の問題を「複数人問題」という。
 本発明の目的は、視聴者が立体視用の映像ストリームを利用した立体映像を、より快適に見ることができる立体映像表示装置および立体映像表示方法を提供することである。
 本発明の立体映像表示装置は、左目用映像および右目用映像を含む立体視用の映像ストリームから、画面および立体視眼鏡を用いて立体映像を表示する立体映像表示装置であって、前記立体視眼鏡を装着した視聴者が立体映像を見ることができる適正視条件を設定する適正視条件設定部と、前記画面に対する前記立体視眼鏡の位置および傾きの少なくとも1つを、眼鏡情報として取得する眼鏡情報取得部と、前記眼鏡情報が前記適正視条件を満たさないとき、前記左目用映像および前記右目用映像の少なくとも1つに対して大きさおよび位置の少なくとも1つの補正を行って、前記映像を前記画面に出力する映像補正部とを有する。
 本発明の立体映像表示装置は、左目用映像および右目用映像を含む立体視用の映像ストリームから、画面および立体視眼鏡を用いて立体映像を表示する立体映像表示装置であって、前記立体視眼鏡を装着した視聴者が立体映像を見ることができる適正視条件を設定する適正視条件設定部と、前記画面に対する前記立体視眼鏡の位置および傾きの少なくとも1つを、眼鏡情報として取得する眼鏡情報取得部と、前記眼鏡情報が前記適正視条件を満たさないとき、前記立体視眼鏡を装着した視聴者に対して所定の通知を行う通知部とを有する。
 本発明の立体映像方法は、左目用映像および右目用映像を含む立体視用の映像ストリームから、画面および立体視眼鏡を用いて立体映像を表示する立体映像表示方法であって、前記画面に対する前記立体視眼鏡の位置および傾きの少なくとも1つを、眼鏡情報として取得するステップと、前記眼鏡情報が、前記立体視眼鏡を装着した視聴者が立体映像を見ることができる適正視条件を満たすか否かを判断するステップと、前記眼鏡情報が前記適正視条件を満たさないとき、前記立体視眼鏡を装着した視聴者に対して所定の通知を行うステップとを有する。
 本発明によれば、視聴者は、立体視用の映像ストリームを利用した立体映像をより快適に見ることができる。
従来の立体映像表示装置における斜め問題を説明するための図 従来の立体映像表示装置における傾き問題を説明するための図 従来の立体映像表示装置における複数人問題を説明するための図 本発明の実施の形態1に係る立体映像表示装置を含む立体映像表示システムの構成の一例を示すシステム構成図 実施の形態1におけるパラメータについて説明する第1の図 実施の形態1におけるパラメータについて説明する第2の図 実施の形態1におけるパラメータについて説明する第3の図 実施の形態1に係る立体映像表示装置の構成の一例を示すブロック図 実施の形態1における立体視眼鏡の構成の一例を示す外観図 実施の形態1に係る立体映像表示装置の動作の一例を示すフローチャート 実施の形態1における映像ストリームの視差映像の一例を示す図 実施の形態1における平行移動の処理を説明するための図 実施の形態1における拡大縮小の処理を説明するための図 本発明の実施の形態2に係る立体映像表示装置の構成の一例を示すブロック図 実施の形態2に係る立体映像表示装置の動作の一例を示すフローチャート 本発明の実施の形態3に係る立体映像表示装置の構成の一例を示すブロック図 実施の形態3に係る立体映像表示装置の動作の一例を示すフローチャート 本発明の実施の形態4に係る立体映像表示装置の構成の一例を示すブロック図 実施の形態4に係る立体映像表示装置の動作の一例を示すフローチャート 実施の形態4における眼鏡の制御の様子の一例を示す図
 以下、本発明の各実施の形態について、図面を参照して詳細に説明する。
 (実施の形態1)
 図4は、本発明の実施の形態1に係る立体映像表示装置を含む立体映像表示システムの構成の一例を示すシステム構成図である。本実施の形態は、本発明を液晶シャッター式立体映像システムに適用した例である。
 図4において、立体映像表示システム100は、映像再生装置200、立体映像表示装置300、および立体視眼鏡(以下単に「眼鏡」という)500を有する。
 映像再生装置200は、映像データ再生機能を備えた機器であり、例えばブルーレイディスク(登録商標)プレーヤである。映像再生装置200は、ブルーレイディスク(登録商標)等の記録媒体または受信信号等から、立体映像用の視差映像の映像ストリームを再生する。そして、映像再生装置200は、再生した映像ストリームを、立体映像表示装置300へ出力する。映像ストリームは、左目用映像および右目用映像(つまり視差映像)を含む。
 立体映像表示装置300は、液晶シャッター式の立体映像表示機能を備えた機器であり、例えばテレビジョンである。立体映像表示装置300は、映像再生装置200から入力された映像ストリームに基づいて、画面600に視差映像を表示する。より具体的には、立体映像表示装置300は、左目用映像と右目用映像とを、同じ画面600に、例えばフレーム(動画を構成する1コマ1コマの画像)単位で高速に切り替えながら表示する。そして、映像再生装置200は、眼鏡500の左右レンズの光透過状態を制御するための同期信号を、眼鏡500へ送信する。
 また、立体映像表示装置300は、適正視条件を設定している。ここで、適正視条件とは、眼鏡500を装着した視聴者(以下単に「視聴者」という)が、立体映像を見ることができる眼鏡500の位置および傾きの範囲(以下「適正視聴範囲」という)である。適正視条件の詳細については後述する。そして、立体映像表示装置300は、眼鏡500の位置および傾き(眼鏡情報)を取得する。立体映像表示装置300は、取得した眼鏡500の位置および傾きが適正視聴条件を満たすか否かを判断する。立体映像表示装置300は、適正視聴条件を満たさないと判断したとき、映像ストリームの左目用映像および右目用映像の少なくとも1つの、大きさおよび位置の少なくとも1つを補正して画面600に表示する。すなわち、立体映像表示装置300は、上述の斜め問題および傾き問題が軽減されるように、表示される視差映像を補正する。適正視条件については後述する。
 眼鏡500は、立体映像を見る視聴者が装着する光学機器であり、例えば液晶シャッター式眼鏡である。眼鏡500は、立体映像表示装置300から受信する同期信号に従って、左右のレンズの光の透過状態を高速に切り替える。液晶シャッター式眼鏡の場合、眼鏡500は、液晶シャッターの駆動制御によってこの切り替えを行う。
 この結果、眼鏡500は、例えば、立体映像表示装置300に左目用映像が表示されているとき、左レンズを光透過状態にして右レンズを遮光状態にする。そして、眼鏡500は、立体映像表示装置300に右目用映像が表示されているとき、右レンズを光透過状態にして左レンズを遮光状態にする。すなわち、眼鏡500は、立体映像表示装置300に左目用映像が現れている瞬間には左レンズのみを透過状態とすることができる。また、眼鏡500は、立体映像表示装置300に右目用映像が現れている瞬間には右レンズのみを透過状態とすることができる。
 このような立体映像表示システム100を用いることにより、視聴者は、左目で左目用映像のみを見、右目で右目用映像のみを見ることができる。この結果、視聴者は、立体映像を見ることができる。また、視聴者は、上述の斜め問題および傾き問題が軽減された状態で立体映像を見ることができ、より快適に立体映像を見ることができる。
 ここで、立体映像表示システム100が用いる各種パラメータについて説明する。
 図5~図7は、立体映像表示システム100が用いるパラメータについて説明する図である。
 図5および図6に示すように、立体映像表示システム100は、表示実寸長W、画面解像度R、基準視差d、眼鏡情報、眼鏡基線長e、左目視線距離Ll、および右目視線距離Lrのパラメータを用いる。なお、眼鏡情報は、左レンズ位置Pl(xl,yl,zl)、右レンズ位置Pr(xr,yr,zr)、眼鏡位置P(x,y,z)、および眼鏡傾き角θを含む。また、以下、左レンズ位置Plと右レンズ位置Prとを結ぶ線は、「眼鏡基線」という。そして、眼鏡基線の方向は、「眼鏡基線方向」という。
 表示実寸長Wは、画面600の横サイズであり、通常はテレビジョンの機種ごとに固定既定値となっている値である。
 画面解像度Rは、単位長さ当たりの画素数である。画面解像度Rは、例えば、視差映像の横ピクセル数を表示実寸長Wで除することによって得ることができる。視差映像の横ピクセル数は、通常、視差映像の映像フォーマットに定められた既知の値である。例えば、幅1920ピクセルのフルHD(ハイディフィニション)フォーマットであれば、視差映像の横ピクセル数が1920ピクセルであることは自明である。
 基準視差dは、元の視差映像に存在する視差の代表値であり、視差映像の補正の基準となる視差を示すパラメータである。例えば、基準視差dは、左目用映像の基準画像(以下「左目基準画像」という)610lの基準点P0lと、右目用映像の基準画像(以下「右目基準画像」という)610rの基準点P0rとの間の、画面600上でのずれ量である。基準画像610および基準点については後述する。
 ここで、ここで使用する座標系は、左目基準画像610lの基準点P0lと右目基準画像610rの基準点P0rとの中点を原点Oとし、画面600の法線方向をz軸、垂直方向をy軸、画面600に向かって右方向をx軸と定義する。
 左レンズ位置Pl(xl,yl,zl)は、眼鏡500の、視聴者の左の瞳に対応する位置である。
 右レンズ位置Pr(xr,yr,zr)は、眼鏡500の、視聴者の右の瞳に対応する位置である。
 眼鏡位置P(x,y,z)は、眼鏡500の代表位置であり、ここでは、左レンズ位置Plと右レンズ位置Prとの中点とする。
 眼鏡基線長eは、眼鏡500の左レンズ位置Plと右レンズ位置Prとの間の距離である。
 左目視線距離Llは、左レンズ位置Plから画面600上の左目基準画像610lの基準点P0lまでの距離である。
 右目視線距離Lrは、右レンズ位置Prから画面600上の右目基準画像610rの基準点P0rまでの距離である。
 眼鏡傾き角θは、図6に示すように、眼鏡基線を画面600に投影した線と水平面との間の角度である。なお、以下、特に説明が無い限り、眼鏡基線方向が画面600に対して平行であるものとして説明を行う。
 視差映像を構成する左目用映像および右目用映像は、通常、視聴者が直接に立体物を見た際に、左目の位置から見える像および左目の位置から見える像をそれぞれ再現した映像である。視差映像のうち、左目用映像において右目用映像よりも右側となっている部分は、画面600よりも手前に浮き出て見える。逆に、視差映像のうち、左目用映像において右目用映像よりも左側となっている部分は、画面600よりも奥に奥まって見える。また、視差が大きいほど、画面600からの距離が大きく見える。そして、視差がゼロの部分は、画面600と同じ位置に存在するように見える。すなわち、視差がゼロの部分は、2D映像と同じように見える。
 人間の目は、一度に複数の距離や複数の点または広い範囲に焦点を合せることは困難であり、通常、各時点においてある非常に狭い奥行きおよび視野に注目する。これは、画面600の視差映像を見る場合も同様である。ここでは、視聴者が注目することを映像製作者が意図した映像部分を、上述の「基準画像」というものとする。
 また、基準画像を見る場合も、同様に、人間の目は、通常、各時点において基準画像の中の1つのポイントに焦点を合わせる。ここでは、基準画像において、視聴者が目の焦点を合わせることを映像製作者が意図したポイントを、上述の「基準点」というものとする。
 人間が基準画像に対して感じる奥行き感は、通常、基準点の視差によって定まる。したがって、立体映像表示装置300は、基準画像610の基準点P0の視差、つまり、基準点P0lから基準点P0rまでの距離を、基準視差dとして取得する。そして、立体映像表示装置300は、取得した基準視差dを、補正後の視差映像においても保持する。
 映画に代表される各種制作コンテンツの多くのシーンにおいて、このような基準画像および基準点は存在する。基準画像は、例えば、登場人物の顔画像部分や木等の目立つ物体の画像部分である。基準点は、例えば、登場人物の瞳や物体の中心点である。ここでは、視差映像には、各時刻において、基準画像610および基準視差dが存在するものとして説明を行う。
 視差映像の映像ストリームに、各時刻の基準視差dを示す情報が付随している場合には、映像ストリームから基準視差dを得ることが可能である。また、映像ストリームに基準視差dに相当する画素数(以下「視差画素数」という)を示す情報が付随している場合には、この視差画素数から基準視差dを得ることも可能である。更に、映像ストリームの内容によって、基準視差dは、経験則から決定したり、取得済みの値で固定することもできる。
 また、視差映像の映像ストリームに、各時刻の基準点を示す情報が付随している場合の基準視差dは、画面600上における左目基準画像610lの基準点P0lと、右目基準画像610rの基準点P0rとの距離から得ることができる。また、視差映像の映像ストリームに、各時刻の基準画像610を示す情報が付随している場合には、基準視差dは、基準画像610の位置に基づいて逐次算出することも可能である。この場合、基準視差dは、例えば、左目基準画像610lの中心点と右目基準画像610rの中心点との距離から得ることができる。
 また、基準視差dは、左目用映像および右目用映像から同一の図形を画像認識により抽出し、これらの図形の位置の画面600上での距離を計算することによって得ることができる。一方で、一般に、立体映像のコンテンツには、視差が異なる図形が多数含まれている。したがって、基準視差dは、複数の図形に対して得られる複数の視差の最大値または平均値を取ることによって、得るようにしてもよい。
 なお、以下、画面600上における左目基準画像610lの基準点P0lと右目基準画像610rの基準点P0rとの距離を「画像視差」といい、これら基準点P0l、P0rを通る線を「画像基線」という。また、画像基線の方向は、「画像基線方向」(視差方向)という。
 次に、適正視条件について説明する。
 上述の通り、視聴者の位置が画面の正面方向の位置から著しく離れている場合、または、視聴者の顔の左右方向が水平方向から著しく傾いている場合、斜め問題および傾き問題が発生する可能性がある。
 一方で、人間の脳は立体視に関してある程度の慣用性を有しており、立体映像を適正に見ることが可能な顔の位置および傾きには、ある程度の許容幅があることが知られている。例えば、画像サイズ差が15%以下であり、かつ画像傾き角が-6度~+6度であれば、多くの視聴者がほぼ問題なく基準画像を立体映像として認識することが、実験等により知られている。
 ここで、「画像サイズ差」とは、目に映る左目基準画像に対する右目基準画像の相対的な大きさの差をいうものとする。また、「画像傾き角」とは、顔の左右方向(眼鏡基線方向)に対する画像基線方向の相対的な傾き角をいうものとする。
 そこで、本実施の形態では、図7に示すように、立体映像を適正に見ることが可能な範囲(適正視可能範囲)に眼鏡500の位置および傾きが属することを、適正視条件として用いる。具体的には、適正視可能範囲は、例えば、予め定めた基準画像に対して、画像サイズ差が15%以下となり、かつ、画像傾き角が-6度~+6度となるような、眼鏡位置と眼鏡傾き角との組み合わせの集合である。
 適正視条件は、例えば、以下の式(1)、(2)で定義することもできる。ここで、θthは、傾き問題を回避するための画像傾き角の最大許容値の絶対値であり、例えば6度である。Dは、画像サイズ差である。Dthは、斜め問題を回避するための画像サイズ差の最大許容値であり、例えば0.85(15パーセントの差)である。画像サイズ差Dが右目視線距離Lrに対する左目視線距離Llの比に等しいのは、目に結像する像の大きさが目から対象物までの距離に反比例するためである。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 次に、各装置の構成について説明する。
 図8は、立体映像表示装置300の構成の一例を示すブロック図である。
 図8において、立体映像表示装置300は、視差映像取得部310、眼鏡情報取得部320、適正視条件設定部330、基準視差設定部340、眼鏡基線長取得部350、表示実寸長取得部360、映像補正部370、表示部380、および眼鏡制御部390を有する。なお、立体映像表示装置300は、テレビジョンである場合には、電源部、操作部、放送受信部、映像入出力部、および音声入出力部等の上記以外の装置部も備えるが、ここではその図示および説明を省略する。
 視差映像取得部310は、映像再生装置200から視差映像の映像ストリームを入力する。そして、視差映像取得部310は、入力した映像ストリームを、フレーム単位で、基準視差設定部340および映像補正部370へ順次出力する。
 眼鏡情報取得部320は、眼鏡500からの無線信号を逐次取得する。そして、眼鏡情報取得部320は、取得した無線信号から眼鏡情報を算出し、算出結果を、映像補正部370へ出力する。なお、眼鏡情報は、眼鏡位置P、左レンズ位置Pl、右レンズ位置Pr、および眼鏡傾き角θ(図5および図6参照)を含む。
 ここでは、眼鏡情報取得部320は、立体映像表示装置300に取り付けられた複数のUWB(ultra wideband)アンテナと、眼鏡500に取り付けられた2つのUWBアンテナとの間で無線通信を行うものとする。眼鏡情報取得部320は、無線信号の往復時間に基づいてUWBアンテナ間の距離を算出し、三角測量法により眼鏡500のUWBアンテナの位置を算出し、眼鏡500のUWBアンテナの位置から上述の眼鏡情報を算出する。
 適正視条件設定部330は、視聴者が立体映像を見ることができる眼鏡位置Pの範囲および眼鏡傾き角θの範囲を、適正視条件として設定する。そして、適正視条件設定部330は、設定した適正視条件を、映像補正部370へ出力する。
 適正視条件設定部330は、例えば、予め設定された固定の眼鏡位置Pの範囲および眼鏡傾き角θの範囲を採用することにより、適正視条件を設定する。または、適正視条件設定部330は、例えば、ディスプレイの機種と適正視条件とを対応付けたテーブルを予め格納しておき、立体映像表示装置300の機種を示す情報に対応する適正視条件をテーブルから取得する。ここでは、適正視条件設定部330は、固定の適性視範囲(図7)を、適正視条件として設定するものとする。
 基準視差設定部340は、視差映像の補正に用いられる基準視差d(図5および図6参照)を設定する。ここでは、視差映像取得部310が取得する映像ストリームに、視差映像の横ピクセル数と、各時刻における基準画像の視差画素数および基準点とが付随しているものとする。基準視差設定部340は、視差映像取得部310から入力される映像ストリームから、視差映像の横ピクセル数、視差画素数、および基準点(これらの情報群を、以下「映像情報」という)を逐次取得し、映像補正部370へ出力する。
 眼鏡基線長取得部350は、眼鏡基線長e(図5および図6参照)を取得し、取得した眼鏡基線長eを、映像補正部370へ出力する。眼鏡基線長取得部350は、例えば、ユーザから眼鏡基線長eの設定を受け付ける。または、眼鏡基線長取得部350は、例えば、各国の国民の平均的な両目間隔等、一般値として予め定められた固定値を、眼鏡基線長eとして取得する。ここでは、眼鏡基線長取得部350は、固定値を眼鏡基線長eとして取得するものとする。
 表示実寸長取得部360は、表示実寸長W(図5参照)を取得し、取得した表示実寸長Wを、映像補正部370へ出力する。表示実寸長取得部360は、例えば、予め設定された固定値を、表示実寸長Wとして取得する。または、表示実寸長取得部360は、例えば、ディスプレイの機種と表示実寸長とを対応付けたテーブルを予め格納し、立体映像表示装置300の機種を示す情報からテーブルを用いて、対応する表示実寸長Wを取得する。ここでは、表示実寸長取得部360は、固定値を表示実寸長Wとして取得するものとする。
 映像補正部370は、眼鏡情報取得部320から入力される眼鏡情報が、適正視条件設定部330から入力される適正視条件を満たすとき、視差映像取得部310から入力される映像ストリームを、補正を行わずに、表示部380へ出力する。このとき、映像補正部370は、左目用映像のデータと右目用映像のデータとを、フレーム毎に切り替えながら表示部380へ出力する。
 一方、眼鏡情報が適正視条件を満たさないときは、映像補正部370は、視聴者が立体映像を見ることができるように、映像ストリームを補正して出力する。ここでは、映像補正部370は、右目用映像のみに対して、大きさおよび位置の補正を行うものとする。具体的な補正の内容については後述する。
 また、映像補正部370は、表示部380への左目用映像と右目用映像との出力切り替えのタイミングに合わせて、眼鏡500の左右レンズの光透過状態を切り替えるための同期信号を生成し、眼鏡制御部390へ出力する。同期信号は、眼鏡500に対し、表示部380に左目用映像が表示されているとき、左レンズを光透過状態にして右レンズを遮光状態にすることを指示する信号である。一方、同期信号は、表示部380に右目用映像が表示されているとき、右レンズを光透過状態にして左レンズを遮光状態にすることを指示する信号である。
 表示部380は、映像補正部370から入力される映像ストリームの左目用映像および右目用映像を、画面600(図4~図6参照)に表示する。
 眼鏡制御部390は、映像補正部370から入力される同期信号を、UWB通信によって眼鏡500へ送信する。
 立体映像表示装置300は、図示しないが、CPU(central processing unit)、制御プログラムを格納したROM(read only memory)等の記憶媒体、RAM(random access memory)などの作業用メモリ、および通信回路等によって実現することができる。この場合、上記した各部の機能は、CPUが制御プログラムを実行することによって実現される。
 図9は、立体視眼鏡500の構成の一例を示す外観図である。
 図9において、眼鏡500は、フレーム510、左通信部520l、右通信部520r、左レンズ530l、および右レンズ530rを有する。左通信部520l、右通信部520r、左レンズ530l、および右レンズ530rは、いずれも、予め定められた位置関係でフレーム510に固定されている。したがって、左レンズ位置Plおよび右レンズ位置Prは、左通信部520lの位置および右通信部520rの位置と、眼鏡基線長e(固定値)とから求めることが可能となっている。
 左通信部520lは、立体映像表示装置300との間でUWB通信を行う。左通信部520lは、眼鏡情報の算出のために必要な応答処理を行う。また、左通信部520lは、立体映像表示装置300から受信した同期信号を、左レンズ530lへ出力する。
 右通信部520rは、立体映像表示装置300との間でUWB通信を行う。右通信部520rは、眼鏡情報の算出のために必要な応答処理を行う。また、右通信部520rは、立体映像表示装置300から受信した同期信号を、右レンズ530rへ出力する。
 左レンズ530lは、視聴者の左目の前に配置されるレンズであり、液晶シャッターを備えている。液晶シャッターは、左通信部520lから入力される同期信号に従って、光の透過状態を高速に切り替える。
 右レンズ530rは、視聴者の右目の前に配置されるレンズであり、液晶シャッターを備えている。液晶シャッターは、右通信部520rから入力される同期信号に従って、光の透過状態を高速に切り替える。
 このような構成の立体映像表示システム100は、視差映像の映像ストリームに基づいて、立体映像を表示することができる。また、立体映像表示システム100は、視聴者が立体映像を見ることができるように、映像ストリームを適宜補正して表示する。これにより、視聴者は、眼鏡位置Pおよび眼鏡傾き角θが本来の適正視条件を満たさないときでも、立体映像を見ることができる。
 次に、立体映像表示装置300の動作について説明する。
 図10は、立体映像表示装置300の動作の一例を示すフローチャートである。
 まず、ステップS1100において、映像補正部370は、適正視条件設定部330、眼鏡基線長取得部350、および表示実寸長取得部360から、適正視条件、眼鏡基線長e、および表示実寸長Wをそれぞれ取得する。
 より具体的には、適正視条件設定部330は、予め記憶した固定値を、適正視条件として、映像補正部370へ出力する。眼鏡基線長取得部350は、予め記憶した固定値を、眼鏡基線長eとして、映像補正部370へ出力する。表示実寸長取得部360は、予め記憶した固定値を、表示実寸長Wとして、映像補正部370へ出力する。
 ステップS1200において、映像補正部370は、視差映像取得部310、基準視差設定部340、および眼鏡情報取得部320から、所定数(例えば1)のフレーム分の映像ストリーム、映像情報、および眼鏡情報をそれぞれ取得する。なお、映像情報は、横ピクセル数、視差画素数、および基準点を含む。また、眼鏡情報は、眼鏡位置P、左レンズ位置Pl、右レンズ位置Pr、および眼鏡傾き角θを含む。
 但し、眼鏡基線長eおよび眼鏡傾き角θと、眼鏡位置P、左レンズ位置Pl、および右レンズ位置Prのいずれか1つとから、眼鏡位置P、左レンズ位置Pl、および右レンズ位置Prの全てを特定することが可能である。したがって、眼鏡情報は、眼鏡傾き角θと、眼鏡位置P、左レンズ位置Pl、および右レンズ位置Prのいずれか1つとを含むようにしてもよい。
 なお、ここでは、映像補正部370は、表示実寸長Wと映像ストリームの横ピクセル数および視差画素数とから、基準視差dを取得する例について説明する。また、ここでは、上述の通り、映像補正部370は、映像ストリームから基準視差dを得ることが可能なものとする。
 より具体的には、視差映像取得部310および基準視差設定部340は、フレーム単位で、映像ストリームと映像情報とを、それぞれ映像補正部370へ出力する。そして、映像補正部370は、視差画素数を画面解像度Rで除することにより、基準視差dを算出する。または、映像補正部370は、表示実寸長Wを映像ストリームの横ピクセル数で除した値に視差画素数を乗じることにより、基準視差dを算出する。
 また、映像補正部370は、例えば、眼鏡情報取得部320が生成した眼鏡情報を、逐次的に、定期的に、あるいは必要に応じて(ここでは上述の所定数のフレーム毎に)取得する。なお、眼鏡情報は、眼鏡位置P、左レンズ位置Pl、右レンズ位置Pr、および眼鏡傾き角θを含むものとする。
 図11は、入力される映像ストリームの視差映像の一例を示す図である。図11Aは、左目用映像を示し、図11Bは、右目用映像を示す。
 映像ストリームが補正されない場合、左目基準画像610lと右目基準画像610rとは、画面600において、画面600の左右方向(水平方向)にずれて表示される。このずれ量が、視差映像の基準視差dである。
 そして、図10のステップS1300において、映像補正部370は、眼鏡情報が適正視条件を満たすか否かを判断する。すなわち、映像補正部370は、眼鏡位置Pと眼鏡傾き角θとが適正視範囲内にあるか否か(図7参照)を判断する。この判断は、映像ストリームの補正を行わなくても視聴者が立体映像を快適に見ることができるか否かの判断である。映像補正部370は、眼鏡情報が適正視条件を満たす場合は(S1300:YES)、後述のステップS1800へ進む。また、映像補正部370は、眼鏡条件が適正値条件を満たさない場合は(S1300:NO)、ステップS1400へ進む。
 ステップS1400において、映像補正部370は、右目用映像の平行移動量M(xm,ym,zm)を算出する。平行移動量Mとは、傾き問題を解決するのに必要な右目用映像の移動量である。すなわち、平行移動量Mは、画像視差が基準視差dと同じであり、かつ、画像基線方向と水平面との間の角度(以下「画像傾き角」という)φが眼鏡傾き角θと同じとなるような、変位量である。
 より具体的には、映像補正部370は、ステップS1200で取得した眼鏡傾き角θを、画像傾き角φとして取得する。そして、映像補正部370は、例えば、画像傾き角φおよび眼鏡位置P(x,y,z)から、以下の式(3)~(5)を用いて、平行移動量M(xm,ym,zm)を算出する。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 図12は、平行移動の処理を説明するための図であり、図11と対応するものである。
 図12に示すように、左目基準画像610lと右目基準画像610rとの画像視差hは、基準視差d(図6参照)と同じ値となる。そして、平行移動量Mに相当する画像傾き角φは、眼鏡傾き角θ(図6参照)と同じ値となる。これにより、視聴者は、画面600に対して顔を傾けた姿勢でも、眼鏡基線方向と画像基線方向とが一致した状態で基準画像610を見ることができる。したがって、視聴者は、立体視を認知する際に、左目基準画像610lと右目基準画像610rとの自然な重なり合いを得ることができる。
 そして、ステップS1500において、映像補正部370は、眼鏡基線長e、基準視差d、左レンズ位置Pl、右レンズ位置Pr、および眼鏡傾き角θに基づいて、左目視線距離Llおよび右目視線距離Lrを算出する(いずれも図5参照)。
 より具体的には、映像補正部370は、例えば、以下の式(6)、(7)を用いて、左目視線距離Llおよび右目視線距離Lrを算出する。ここでは、処理の簡素化のため、y軸方向の変位については無視する。また、ここでは、基の視差映像において、左目基準画像610lの基準点P0lのxz座標は、(xdl,zdl)と表現する。また、基の視差映像において、右目基準画像610rの基準点P0rのxz座標は、(xdr,zdr)と表現する。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 なお、眼鏡基線方向が画面600に平行ではない場合には、映像補正部370は、例えば、以下の式(8)、(9)を用いて、左目視線距離Llおよび右目視線距離Lrを算出してもよい。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 そして、ステップS1600において、映像補正部370は、左目視線距離Llおよび右目視線距離Lrに基づいて、右目用映像の拡大縮小率Sを算出する。拡大縮小率Sとは、斜め問題を解決するのに必要な右目用映像の拡大縮小率である。すなわち、拡大縮小率Sは、拡大縮小後の画像サイズ差がほぼゼロとなるような拡大縮小率である。
 より具体的には、映像補正部370は、例えば、以下の式(10)を用いて、拡大縮小率Sを算出する。
Figure JPOXMLDOC01-appb-M000010
 図13は、拡大縮小の処理を説明するための図であり、図11と対応するものである。
 図13に示すように、画面600上での実際の左目基準画像610lに対する右目基準画像610rの大きさの比率は、算出された拡大縮小率Sとほぼ同一となる。そして、視聴者の右目に見える右目基準画像610rの大きさは、視聴者の左目に見える左目基準画像610lとほぼ同じ大きさとなる。すなわち、画像サイズ差は、ほぼゼロとなる。これにより、視聴者は、画面600に対して斜めの位置からでも、右目と左目で同じ大きさで基準画像610を見ることができる。したがって、視聴者は、立体視を認知する際に、左目基準画像610lと右目基準画像610rとの自然な重なり合いを得ることができる。
 そして、図10のステップS1700において、映像補正部370は、入力された映像ストリームのうち右目用映像を、左目用映像に対して相対的に、平行移動量Mで移動させ、かつ、拡大縮小率Sで拡大縮小させる補正を行う。映像補正部370は、例えば、右目用映像の基準点(左目用映像の基準点に対応する点)P0rを固定点として、拡大縮小を行う。
 なお、平行移動の処理および拡大縮小の処理は、映像補正部370が直接に右目用映像に対して画面600の枠に対する相対位置や相対サイズを補正してもよい。また、平行移動の処理および拡大縮小の処理は、表示部380に対して、画面600における右目用映像の表示位置や表示サイズを変更させる処理であってもよい。表示部380に対して表示位置や表示サイズを変更させる場合には、映像補正部370は、例えば、映像ストリームに付随された、表示位置および表示サイズに関するパラメータを補正する。
 そして、ステップS1800において、映像補正部370は、映像ストリームをフレーム単位で表示部380へ出力し、視差映像を画面600に表示させる。この結果、表示部380には、左目用映像と右目用映像とが、高速に切り替わりながら表示される。このとき、映像補正部370は、右目用映像の補正を行った場合には、入力された右目用映像に置き換えて補正後の右目用映像を出力する。また、このとき、眼鏡制御部390は、上述の通り、映像補正部370から入力される同期信号を眼鏡500に送信することにより、眼鏡500を視差映像に同期して動作させる。
 そして、ステップS1900において、映像補正部370は、視差映像の表示の処理を継続するか否かを判断する。映像補正部370は、例えば、映像ストリームの入力が継続している間は処理を継続すると判断し、映像ストリームの入力が終了したときに処理を継続しないと判断する。映像補正部370は、処理を継続する場合には(S1900:YES)、ステップS1200へ戻り、処理を継続しない場合には(S1900:NO)、一連の処理を終了する。
 このような動作により、立体映像表示装置300は、視聴者の位置や顔の傾きに合わせて、視聴者が立体映像を見ることができるように補正した視差映像を表示するので、斜め問題や傾き問題を低減することができる。また、基準視差と同じ画像視差を保持した状態で補正を行うので、映像製作者が意図した奥行き感で基準画像を立体表示することができる。
 以上説明したように、本実施の形態に係る立体映像表示システムは、視聴者の位置および顔の傾きに合わせて、立体映像を見ることができるように視差映像に対して大きさおよび位置の補正を行う。これにより、視聴者は、斜め問題および傾き問題が低減された状態で、立体映像を視聴することができる。
 また、上述の補正は、右目用映像に対する平行移動と拡大縮小という簡単な処理で済む。これにより、本実施の形態に係る立体映像表示システムは、3D映画コンテンツの映像ストリームであっても、容易に斜め問題および傾き問題を低減することができる。
 また、上述の補正は、ディスプレイの枠に対して基準画像を歪ませない。これにより、本実施の形態に係る立体映像表示システムは、従来の2D映像を表示するディスプレイを視聴するときの感覚と同様の感覚を、視聴者に与えることができる。
 すなわち、視聴者は、本実施の形態に係る立体映像表示システムを用いることにより、予め作り込まれた立体視用の映像ストリームを利用した立体映像を、より快適に視聴することができる。
 なお、立体映像表示システムは、平行移動と拡大縮小のうちいずれか一方の処理のみを行うようにしてもよい。また、立体映像表示システムは、拡大縮小処理を行わない場合には眼鏡位置を取得しなくてもよいし、平行移動処理を行わない場合には、眼鏡傾き角を取得しなくてもよい。
 また、立体映像表示システムは、適正視条件を満たすか否かの判断を行わずに、常に、平行移動量および拡大縮小率の算出を行い、算出結果に応じた平行移動処理および拡大縮小処理を行ってもよい。
 また、立体映像表示システムは、必ずしも画像傾き角をゼロにする必要はなく、補正後の映像ストリームにおいて、適正視条件が満たされるような(つまり、画像傾き角が適正視条件を満たすような)平行移動処理を行えばよい。この場合には、立体映像表示システムは、例えば、適正視範囲の幅よりも小さい幅で区分された眼鏡傾き角の各レベルについて、レベル毎に平行移動の方向を対応付けたテーブルを用いればよい。これにより、平行移動処理は、平行移動量の算出処理を省くことができるため、高速化することができる。
 また、立体映像表示システムは、必ずしも画像サイズ差をゼロにする必要はなく、補正後の映像ストリームにおいて、適正視条件が満たされるような(つまり、画像サイズ差が適正視条件を満たすような)拡大縮小処理を行えばよい。この場合には、立体映像表示システムは、例えば、適正視範囲の幅よりも小さい幅で区分された右目視線距離に対する左目視線距離の比の各レベルについて、レベル毎に拡大縮小率を対応付けたテーブルを用いればよい。これにより、拡大縮小処理は、拡大縮小率の算出処理を省くことができるため、高速化することができる。
 また、立体映像表示システムは、右目用映像を基準として左目用映像のみを補正、または、右目用映像と左目用映像の両方を補正してもよい。両方を補正する場合には、映像製作者が意図した大きさにより近い大きさで、基準画像を表示することができる。
 また、立体映像表示システムは、適正視条件、眼鏡基線長、および表示実寸長を、可変値としてもよい。また、立体映像表示システムは、基準視差を、固定値としてもよい。
 また、立体映像表示システムは、傾き問題を考慮しない場合には、眼鏡傾き角を取得する必要が無いため、眼鏡500に設けるUWBアンテナを1つとしてもよい。UWBアンテナを眼鏡の中央に固定した場合には、眼鏡位置の取得が容易となる。
 また、立体映像表示システムは、眼鏡500の制御および眼鏡情報の取得を、UWB通信ではなく、赤外線通信等の他の手段を用いて行うようにしてもよい。
 (実施の形態2)
 本発明の実施の形態2は、適正視条件が満たされないときに、2D映像表示への切り替えを行う例である。
 図14は、本実施の形態に係る立体映像表示装置の構成の一例を示すブロック図であり、実施の形態1の図8に対応するものである。図8と同一部分には同一符号を付し、これについての説明を省略する。
 図14において、立体映像表示装置300aは、図8とは異なり、基準視差設定部、眼鏡基線長取得部、および表示実寸長取得部を有していない。また、立体映像表示装置300aは、図8の映像補正部とは異なる処理を実行する映像補正部370aを有している。
 映像補正部370aは、眼鏡情報が適正視条件を満たさないとき、右目用映像の表示を停止し、右目用映像のデータを、同じフレームの左目用映像のデータで差し替える。すなわち、映像補正部370aは、斜め問題や傾き問題が生じ得るときは、例えば、左目用映像のみを連続して表示し、2D映像表示に切り替える。
 図15は、立体映像表示装置300aの動作の一例を示すフローチャートであり、実施の形態1の図10に対応するものである。図10と同一部分には同一ステップ番号を付し、これについての説明を省略する。
 まず、ステップS1100aにおいて、映像補正部370aは、適正視条件設定部330から適正視条件を取得する。
 そして、ステップS1200aにおいて、映像補正部370aは、視差映像取得部310および眼鏡情報取得部320から、映像ストリームと眼鏡情報とをそれぞれ取得する。なお、眼鏡情報は、上述の通り、眼鏡位置P、左レンズ位置Pl、右レンズ位置Pr、および眼鏡傾き角θを含む。
 そして、眼鏡情報が適正視条件を満たす場合には(S1300:YES)、映像補正部370aは、ステップS1800へ進む。この結果、映像補正部370aは、視差映像取得部310から入力された映像ストリームを、そのまま表示部380へ出力する。すなわち、映像補正部370aは、通常通り、視差映像を画面600に表示させる。
 一方、眼鏡情報が適正視条件を満たさない場合には(S1300:NO)、映像補正部370aは、ステップS1810aへ進む。
 ステップS1810aにおいて、映像補正部370aは、右目用映像のデータを同じフレームの左目用映像のデータで差し替える。これにより、映像補正部370aは、左目用映像のみの映像ストリームを表示部380へ出力し、左目用映像のみを表示させる。この結果、画面600に表示されるのは、2D映像となり、3D映像に特有の斜め問題および傾き問題は発生し得ない状態となる。そして、映像補正部370aは、ステップS1900へ進む。
 このように、本実施の形態に係る立体映像表示システムは、映像に対する平行移動や拡大縮小処理を行うことなく、できるだけ3D映像を表示しつつ、斜め問題および傾き問題を回避することができる。したがって、本実施の形態に係る立体映像表示システムは、実施の形態1に比べて、処理負荷を軽減し装置構成を簡素化することができる。
 また、単に右目用映像の表示を停止するものではないので、映像の輝度を維持した状態で、2D映像表示に切り替えることができ、視聴者に与える切り替え時の違和感を軽減することができる。
 なお、本実施の形態の立体映像表示システムは、実施の形態1と組み合わせ、映像に対する補正と2D映像表示とを必要に応じて切り替えるようにしてもよい。例えば、画面に近すぎる等して、基準画像以外の画像部分の画像の大きさがマッチしなくなる場合や右目用画像の欠落が大きくなる場合には、2D映像表示に切り替えることが望ましい。
 (実施の形態3)
 本発明の実施の形態3は、適正視条件が満たされないとき、あるいは眼鏡情報が適正視条件を逸脱しそうな状態になったとき、その旨の通知を行う例である。
 図16は、本実施の形態に係る立体映像表示装置の構成の一例を示すブロック図であり、実施の形態2の図14に対応するものである。図14と同一部分には同一符号を付し、これについての説明を省略する。
 図16において、立体映像表示装置300bは、映像補正部に変えて、通知部400bを有している。
 通知部400bは、映像に対する補正は行わず、眼鏡情報が適正視条件を満たさないとき、あるいは眼鏡情報が適正視条件を逸脱しそうな状態になったとき、その旨を示す所定の通知を行う。眼鏡情報が適正視条件を逸脱しそうな状態とは、例えば、眼鏡500が、眼鏡適正視範囲のうち適正視範囲外との間の境界の位置に近い位置に居る状態である。また、眼鏡情報が適正視条件を逸脱しそうな状態とは、例えば、眼鏡適正視範囲のうち適正視範囲外との間の境界の角度に傾けられた状態である。本実施の形態において、以下、眼鏡情報が適正視条件を逸脱しそうな状態を、眼鏡情報が適正視条件を満たさない状態に含めるものとする。
 図17は、立体映像表示装置300bの動作の一例を示すフローチャートであり、実施の形態2の図15に対応するものである。図15と同一部分には同一ステップ番号を付し、これについての説明を省略する。また、実施の形態2の映像補正部が実行する処理のうち本実施の形態においても実行される処理は、通知部400bが実行するものとする。
 通知部400bは、眼鏡情報が適正視条件を満たす場合には(S1300:YES)、ステップS1800へ進む。この結果、通知部400bは、視差映像取得部310から入力された映像ストリームを、そのまま表示部380へ出力する。すなわち、通知部400bは、通常通り、視差映像を画面600に表示させる。
 一方、眼鏡情報が適正視条件を満たさない場合には(S1300:NO)、通知部400bは、ステップS1820bへ進む。
 ステップS1820bにおいて、通知部400bは、眼鏡情報が適正視条件を満たさない旨、つまり、斜め問題や傾き問題が発生する旨を示す所定の通知を行ってから、ステップS1800へ進む。所定の通知は、例えば、スピーカからの音声出力や、画面600における文字表示である。
 単純な通知のみでは、どのようにすれば立体映像を見ることが可能になるかをすぐに判断することができない視聴者もいる。したがって、通知は、どのようにすれば斜め問題や傾き問題を回避することができるかを、視聴者に伝えられる内容であることが望ましい。例えば、「もう少し画面の正面に移動して下さい」、「もう少し顔をまっすぐにして下さい」等の文章を出力することが考えられる。視聴者は、所定の通知を受けて、立体映像を見ることができるように自ら位置や顔の傾きを的確に調整し、立体映像を継続して見ることができる。
 このように、本実施の形態に係る立体映像表示システムは、映像に対する補正も2D表示への切り替えも行うことなく、斜め問題および傾き問題を回避することができる。したがって、本実施の形態に係る立体映像表示システムは、実施の形態1および実施の形態2に比べて、処理負荷を軽減し装置構成を簡素化することができる。
 また、本実施の形態に係る立体映像表示システムは、眼鏡情報が適正視条件を逸脱しそうな状態となったときに通知を行うことにより、斜め問題および傾き問題をより確実に回避することができる。
 なお、本実施の形態の立体映像表示システムは、実施の形態1と組み合わせ、画面に近すぎる等して、基準画像以外の画像の大きさがマッチしなくなる場合や右目用画像の欠落が大きくなる場合に、その旨を通知するようにしてもよい。
 また、本実施の形態の立体映像表示システムは、実施の形態1と組み合せ、眼鏡情報が適正視条件を満たさない旨の通知後、一定期間後に、なお眼鏡情報が適正視条件を満たさない場合は、補正処理を施すようにしてもよい。
 (実施の形態4)
 本発明の実施の形態4は、複数人問題の低減のために、2D映像表示への切り替えを視聴者単位で行う例である。
 図18は、本実施の形態に係る立体映像表示装置の構成の一例を示すブロック図であり、実施の形態1の図8に対応するものである。図8と同一部分には同一符号を付し、これについての説明を省略する。また、本実施の形態では、複数人の視聴者がそれぞれ眼鏡500を装着して立体映像表示装置300cを視聴しているものとする。また、各眼鏡500には予め識別情報が割り当てられており、各眼鏡500と立体映像表示装置300cとの間では、識別情報を用いて個別に無線通信が可能となっているものとする。
 図18において、立体映像表示装置300cは、図8の眼鏡情報取得部、映像補正部、および眼鏡制御部に変えて、複数眼鏡情報取得部320c、複数眼鏡映像補正部370c、および複数眼鏡制御部390cを有している。
 複数眼鏡情報取得部320cは、複数の眼鏡500から個別に眼鏡情報を逐次取得し、取得した眼鏡情報を複数眼鏡映像補正部370cへ出力する。但し、本実施の形態では、眼鏡情報は、対応する眼鏡500の識別情報を含む。
 複数眼鏡映像補正部370cは、複数の眼鏡500の眼鏡情報を総合的に取り扱って右目用映像に対する補正を行う。また、複数眼鏡映像補正部370cは、眼鏡500毎に、適正視条件を満たすか否かの判断を行う。そして、複数眼鏡映像補正部370cは、適正視条件を満たす視聴者には通常の視差映像が見え、適正視条件を満たさない視聴者には左目用映像のみが見えるように、同期信号を生成する。より具体的には、複数眼鏡映像補正部370cは、適正視条件を満たす眼鏡500に対しては視差映像に合わせて光透過状態を切り替えさせる。また、複数眼鏡映像補正部370cは、適正視条件を満たさない眼鏡500に対しては左目用映像のみを透過させる同期信号を生成する。
 複数眼鏡制御部390cは、複数の眼鏡500のそれぞれに、同期信号を送信する。
 眼鏡500毎に上述の異なる動作を実現させる手法としては、例えば、異なる動作に対応する2つの信号を生成して眼鏡500毎に対応する信号のみを送信する手法がある。また、他の手法としては、共通の信号に左目用映像のみを透過する眼鏡500を指定する情報を付加する手法等が挙げられる。本実施の形態では、後者を適用して説明を行う。
 図19は、立体映像表示装置300cの動作の一例を示すフローチャートであり、実施の形態1の図10に対応するものである。図10と同一部分には同一ステップ番号を付し、これについての説明を省略する。また、実施の形態1の映像補正部が実行する処理のうち本実施の形態においても実行される処理は、複数眼鏡映像補正部370cが実行するものとする。また、記号iは、眼鏡500毎に個別に取得されるパラメータであることを示す。
 複数眼鏡映像補正部370cは、複数の眼鏡500の眼鏡情報をそれぞれ取得すると、ステップS1210aにおいて、代表眼鏡位置Prおよび代表眼鏡傾き角θrを算出する。なお、眼鏡情報は、上述の通り、眼鏡位置Pi、左レンズ位置Pli、右レンズ位置Pri、および眼鏡傾き角θiを含む。代表眼鏡位置Prは、複数の眼鏡500の眼鏡位置Piを代表する眼鏡位置であり、例えば眼鏡位置Piの座標軸毎の平均値の組み合わせである。代表眼鏡傾き角θrは、複数の眼鏡500の眼鏡傾き角θiを代表する眼鏡傾き角であり、例えば眼鏡傾き角θiの平均値である。すなわち、代表眼鏡位置Prおよび代表眼鏡傾き角θrは、複数の眼鏡500を代表する仮想的な眼鏡500の眼鏡位置および傾き角である。
 そして、複数眼鏡映像補正部370cは、代表眼鏡位置Prおよび代表眼鏡傾き角θrに基づいて、図10のステップS1300~S1700の処理を実行する。これにより、代表眼鏡位置Prおよび代表眼鏡傾き角θrが適正視条件を満たさない場合には、実施の形態1と同様に、右目用映像に対する補正が行われる。すなわち、複数眼鏡映像補正部370cは、上述の仮想的な眼鏡500に合わせて、右目用映像を補正する。
 そして、ステップS1710cにおいて、複数眼鏡映像補正部370cは、眼鏡情報に含まれる識別情報を用いて、複数の眼鏡500の中から眼鏡500を1つ選択する。
 そして、ステップS1720cにおいて、複数眼鏡映像補正部370cは、選択した眼鏡500の眼鏡情報が、実際に表示される視差映像において適正視条件を満たすか否かを判断する。実際に表示される視差映像とは、ステップS1300~S1700の結果として、複数眼鏡映像補正部370cが表示部380に出力し、表示部380に実際に表示される、視差映像である。
 表示される視差映像において適正視条件を満たすか否かは、例えば、表示される視差映像に合わせて基の適正視範囲(図7参照)を変換し、変換後の適正視範囲に眼鏡情報が属するか否かを判断することによって、行うことができる。この場合の変換は、例えば、画面600の法線方向および水平方向が、画面600に対する代表眼鏡位置Prの方向および画像基線方向となるような、変換である。
 または、表示される視差映像において適正視条件を満たすか否かは、例えば、以下の式(11)、(12)を満たすか否かを判断することによって行うことができる。
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
 複数眼鏡映像補正部370cは、眼鏡情報が適正視条件を満たす場合には(S1720c:YES)、ステップS1730cへ進む。また、複数眼鏡映像補正部370cは、眼鏡情報が適正視条件を満たさない場合には(S1720c:NO)、ステップS1740cへ進む。
 ステップS1730cにおいて、複数眼鏡映像補正部370cは、選択中の眼鏡500を、視差映像の表示の対象となる眼鏡(以下「対象眼鏡」という)に設定し、ステップS1750cへ進む。
 一方、ステップS1740cでは、複数眼鏡映像補正部370cは、選択中の眼鏡500を、視差映像の表示の対象とならない眼鏡(以下「対象外眼鏡」という)に設定し、ステップS1750cへ進む。
 そして、ステップS1750cにおいて、複数眼鏡映像補正部370cは、対象眼鏡にも対象外眼鏡にも設定していない眼鏡500が存在するか否かを判断する。複数眼鏡映像補正部370cは、未設定の眼鏡500が存在する場合には(S1750c:YES),ステップS1710cへ戻る。そして、複数眼鏡映像補正部370cは、未設定の眼鏡500を選択して処理を繰り返す。また、複数眼鏡映像補正部370cは、全ての眼鏡500に対して対象眼鏡と対象外眼鏡とのいずれかを設定した場合には(S1750c:NO)、ステップS1830cへ進む。
 ステップS1830cにおいて、複数眼鏡映像補正部370cは、複数眼鏡制御部390cを介して、対象眼鏡または対象外眼鏡のいずれであるかに基づいて、各眼鏡500を制御する。この結果、対象眼鏡に設定された眼鏡500は、視差映像が表示されるように制御される。また、対象外眼鏡に設定された眼鏡500は、左目用映像のみが表示されるように制御される。
 より具体的には、複数眼鏡映像補正部370cは、実施の形態1と同様に、映像ストリームを表示部380へ出力し、同期信号を複数眼鏡制御部390cへ出力する。但し、このとき、複数眼鏡映像補正部370cは、対象外眼鏡に設定した眼鏡500が存在するときは、その眼鏡500の識別情報を、対象外情報として複数眼鏡制御部390cへ出力する。
 複数眼鏡制御部390cは、同期信号と共に、対象外情報を各眼鏡500に対して送信する。
 各眼鏡500の左レンズ530lおよび右レンズ530rは、受信した同期信号に、自己の識別情報が対象外情報として含まれているとき、左目用映像のみが透過されるように、光の透過状態を切り替える。
 図20は、本実施の形態における眼鏡500の制御の様子の一例を示す図である。図20において、縦軸は時刻を示し、左の欄は立体映像表示装置300cの表示映像の状態を示す。そして、真中の欄は対象眼鏡に設定された眼鏡500を装着した視聴者の左右の目に到達する像の状態を示し、右の欄は対象外眼鏡に設定された眼鏡500を装着した視聴者の左右の目に到達する像の状態を示す。
 図20に示すように、立体映像表示装置300cには、左目用映像と右目用映像とが、交互に表示される。対象眼鏡に設定された眼鏡500は、同期信号に合わせて、左目用映像が表示されている間は、左レンズ530lのみを透過させる。また、対象眼鏡に設定された眼鏡500は、同期信号に合わせて、右目用映像が表示されている間は、右レンズ530rのみを透過させる。これにより、対象眼鏡に設定された眼鏡500を装着した視聴者は、左目で左目用映像のみを、右目で右目用映像のみを見ることになる。
 対象眼鏡に設定された眼鏡500は、表示される視差映像において適正視条件を満たす眼鏡500である。したがって、この眼鏡500の視聴者は、映像ストリームを3D映像として見ることができる。
 一方、対象外眼鏡に設定された眼鏡500は、左目用映像が表示されている間は、左レンズ530lと右レンズ530rの両方を透過させる。また、対象外眼鏡に設定された眼鏡500は、右目用映像が表示されている間は、左レンズ530lと右レンズ530rの両方を遮光させる。これにより、対象外眼鏡に設定された眼鏡500を装着した視聴者は、両目で左目用映像のみを見ることになる。
 対象外眼鏡に設定された眼鏡500は、表示される視差映像において適正視条件を満たさない眼鏡500である。したがって、対象外眼鏡に設定された眼鏡500の視聴者は、左目で左目用映像のみを見、右目で右目用映像のみを見ても、斜め問題や傾き問題により、立体映像を見ることができない。したがって、このような視聴者にとっては、むしろ2D映像の映像ストリームのほうが快適である。そこで、本実施の形態では、このような視聴者に対しては2D映像として映像ストリームを表示する。
 このように、本実施の形態に係る立体映像表示システムは、代表眼鏡位置および代表眼鏡傾き角を用いるので、複数の視聴者を考慮した映像補正を簡単に行うことができる。
 また、本実施の形態に係る立体映像表示システムは、複数の眼鏡の全てにおいて適正視条件を満たすことは困難であるところ、適宜、個別に2D映像への表示に切り替え、できるだけ3D映像を表示するようにする。これにより、本実施の形態に係る立体映像表示システムは、斜め問題および傾き問題を回避することができ、複数人問題を低減することができる。
 また、本実施の形態に係る立体映像表示システムは、眼鏡側の動作を個別に制御するので、眼鏡毎の表示制御を簡単に行うことができる。
 なお、複数の視聴者を考慮した映像補正の妥当性は、使用環境によって異なる。したがって、代表眼鏡位置および代表眼鏡傾き角の決定手法は、上述の手法に限定されるものではなく、使用環境に適した手法が採用されることが望ましい。例えば、視聴者の多くが固まって位置することが想定されているような場合には、立体映像表示システムは、他の眼鏡との間の距離が大きい眼鏡を、平均値算出の対象から除外することが望ましい。また、視聴者の多くが似たような角度で顔を傾けることが想定されているような場合には、他の眼鏡との間の眼鏡傾き角の差が大きい眼鏡を、平均値算出の対象から除外することが望ましい。
 また、立体映像表示システムは、実際に表示される視差映像において適正視条件を満たさない眼鏡が一定数以上または一定割合以上存在する場合に、実施の形態2と同様に、2D映像表示に切り替えてもよい。この場合、眼鏡側の動作を個別に制御する必要が無くなり、処理負荷を軽減し装置構成を簡素化することができる。
 また、立体映像表示システムは、実際に表示される視差映像において適正視条件を満たさない眼鏡が少なくとも1つ存在する場合、一定数以上または一定割合以上存在する場合に、実施の形態3と同様に、所定の通知を行うようにしてもよい。この場合、立体映像表示システムは、どの眼鏡に対する通知であるかを明確にするため、例えば、眼鏡に設けたバイブレータ、スピーカ、発光素子等を動作させてもよい。
 また、本実施の形態では、立体映像装置をテレビジョンに配置した例について説明したが、立体映像装置を映像再生装置200や他の装置に配置してもよい。この場合、立体映像装置は、眼鏡情報と併せて、テレビジョンに表示される左目基準画像の基準点の位置と右目基準画像の基準点の位置とを取得する必要がある。
 また、本実施の形態では、液晶シャッター式の立体映像表示システムに本発明を適用した例について説明した。この他に本発明は、カラーフィルタ式の立体映像表示システム、偏光フィルタ式の立体映像表示システム、または、他の各種立体映像表示システムに適用することができる。
 2009年9月28日出願の特願2009-223029の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本発明に係る立体映像表示装置および立体映像表示方法は、視聴者が立体視用の映像ストリームを利用した立体映像を、より快適に見ることができる立体映像表示装置および立体映像表示方法として有用である。より具体的には、本発明は、例えば、家庭用テレビジョンやブルーレイディスク(登録商標)再生装置等の映像機器のうち、眼鏡を用いて立体映像を得る様態の映像機器に有用である。また、本発明は、例えば、公共の映像提供施設(ミニシアター、スポーツ映像提供施設等)のうち、同様に立体映像を顧客に提供する施設に用いられる映像機器に有用である。
 100 立体映像表示システム
 200 映像再生装置
 300、300a、300b、300c 立体映像表示装置
 310 視差映像取得部
 320 眼鏡情報取得部
 320c 複数眼鏡情報取得部
 330 適正視条件設定部
 340 基準視差設定部
 350 眼鏡基線長取得部
 360 表示実寸長取得部
 370、370a 映像補正部
 370c 複数眼鏡映像補正部
 380 表示部
 390 眼鏡制御部
 390c 複数眼鏡制御部
 400b 通知部
 500 眼鏡
 510 フレーム
 520l 左通信部
 520r 右通信部
 530l 左レンズ
 530r 右レンズ
 600 画面
 

Claims (9)

  1.  左目用映像および右目用映像を含む立体視用の映像ストリームから、画面および立体視眼鏡を用いて立体映像を表示する立体映像表示装置であって、
     前記立体視眼鏡を装着した視聴者が立体映像を見ることができる適正視条件を設定する適正視条件設定部と、
     前記画面に対する前記立体視眼鏡の位置および傾きの少なくとも1つを、眼鏡情報として取得する眼鏡情報取得部と、
     前記眼鏡情報が前記適正視条件を満たさないとき、前記左目用映像および前記右目用映像の少なくとも1つに対して大きさおよび位置の少なくとも1つの補正を行って、前記映像を前記画面に出力する映像補正部と、
     を有する立体映像表示装置。
  2.  前記映像補正部は、
     前記画面における前記左目用映像と前記右目用映像との視差方向が、前記立体視眼鏡の傾き方向に一致する位置に、前記左目用映像および前記右目用映像の少なくとも1つを平行移動させる補正を行う、
     請求項1記載の立体映像表示装置。
  3.  前記映像補正部は、
     前記画面における前記左目用映像の画像と前記右目用映像の画像との視差が保持される位置に、前記左目用映像および前記右目用映像の少なくとも1つを平行移動させる補正を行う、
     請求項2記載の立体映像表示装置。
  4.  前記映像補正部は、
     前記画面における前記左目用映像の画像に対する前記右目用映像の画像の大きさの比が、前記立体視眼鏡の右レンズから前記右目用映像の画像までの距離に対する前記立体視眼鏡の左レンズから前記左目用映像の画像までの距離の比に一致する拡大縮小率で、前記左目用映像および前記右目用映像の少なくとも1つを拡大縮小させる補正を行う、
     請求項1記載の立体映像表示装置。
  5.  前記映像補正部は、
     前記立体視眼鏡が複数存在するとき、前記複数の立体視眼鏡の位置を代表する代表位置と前記複数の立体視眼鏡の傾きを代表する代表傾きとの少なくとも1つが前記適正視条件を満たさないとき、前記補正を行う、
     請求項1記載の立体映像表示装置。
  6.  前記代表位置は、前記複数の立体視眼鏡の位置の平均値であり、前記代表傾きは、前記複数の立体視眼鏡の傾きの平均値である、
     請求項5記載の立体映像表示装置。
  7.  前記映像補正部が補正を行った映像において、前記眼鏡情報が前記適正視条件を満たさない前記立体視眼鏡が存在するとき、少なくとも当該立体視眼鏡を装着した視聴者が左目用映像および右目用映像の1つのみを見ることができるように、前記映像ストリームの前記画面における表示状態または立体視眼鏡の光透過状態を制御する表示制御部、を更に有する、
     請求項1記載の立体映像表示装置。
  8.  左目用映像および右目用映像を含む立体視用の映像ストリームから、画面および立体視眼鏡を用いて立体映像を表示する立体映像表示装置であって、
     前記立体視眼鏡を装着した視聴者が立体映像を見ることができる適正視条件を設定する適正視条件設定部と、
     前記画面に対する前記立体視眼鏡の位置および傾きの少なくとも1つを、眼鏡情報として取得する眼鏡情報取得部と、
     前記眼鏡情報が前記適正視条件を満たさないとき、前記立体視眼鏡を装着した視聴者に対して所定の通知を行う通知部と、
     を有する立体映像表示装置。
  9.  左目用映像および右目用映像を含む立体視用の映像ストリームから、画面および立体視眼鏡を用いて立体映像を表示する立体映像表示方法であって、
     前記画面に対する前記立体視眼鏡の位置および傾きの少なくとも1つを、眼鏡情報として取得するステップと、
     前記眼鏡情報が、前記立体視眼鏡を装着した視聴者が立体映像を見ることができる適正視条件を満たすか否かを判断するステップと、
     前記眼鏡情報が前記適正視条件を満たさないとき、前記立体視眼鏡を装着した視聴者に対して所定の通知を行うステップと、
     を有する立体映像表示方法。
     
PCT/JP2010/003141 2009-09-28 2010-05-07 立体映像表示装置および立体映像表示方法 WO2011036827A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/395,987 US20120169730A1 (en) 2009-09-28 2010-05-07 3d image display device and 3d image display method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009223029A JP2011071898A (ja) 2009-09-28 2009-09-28 立体映像表示装置および立体映像表示方法
JP2009-223029 2009-09-28

Publications (1)

Publication Number Publication Date
WO2011036827A1 true WO2011036827A1 (ja) 2011-03-31

Family

ID=43795597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003141 WO2011036827A1 (ja) 2009-09-28 2010-05-07 立体映像表示装置および立体映像表示方法

Country Status (3)

Country Link
US (1) US20120169730A1 (ja)
JP (1) JP2011071898A (ja)
WO (1) WO2011036827A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111349A1 (ja) * 2010-03-10 2011-09-15 パナソニック株式会社 立体映像表示装置および視差調整方法
JP2012222427A (ja) * 2011-04-05 2012-11-12 Sumitomo Electric Ind Ltd 映像再生装置
CN102892023A (zh) * 2011-07-19 2013-01-23 三星电子株式会社 具有3d结构的显示设备及其控制方法
CN103096104A (zh) * 2011-11-02 2013-05-08 索尼公司 信息处理装置、显示控制方法和程序
WO2013102774A1 (en) * 2012-01-06 2013-07-11 Leonar3Do International Zrt. Three-dimensional display system and method
CN103518372A (zh) * 2011-05-19 2014-01-15 索尼公司 图像处理装置、图像处理方法和程序
WO2021010123A1 (ja) * 2019-07-17 2021-01-21 株式会社Jvcケンウッド ヘッドアップディスプレイ装置

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011141381A (ja) * 2010-01-06 2011-07-21 Ricoh Co Ltd 立体画像表示装置及び立体画像表示方法
WO2011087470A1 (en) * 2010-01-13 2011-07-21 Thomson Licensing System and method for combining 3d text with 3d content
US9030536B2 (en) 2010-06-04 2015-05-12 At&T Intellectual Property I, Lp Apparatus and method for presenting media content
US8593574B2 (en) * 2010-06-30 2013-11-26 At&T Intellectual Property I, L.P. Apparatus and method for providing dimensional media content based on detected display capability
US9787974B2 (en) 2010-06-30 2017-10-10 At&T Intellectual Property I, L.P. Method and apparatus for delivering media content
US8640182B2 (en) 2010-06-30 2014-01-28 At&T Intellectual Property I, L.P. Method for detecting a viewing apparatus
US8918831B2 (en) 2010-07-06 2014-12-23 At&T Intellectual Property I, Lp Method and apparatus for managing a presentation of media content
US9049426B2 (en) 2010-07-07 2015-06-02 At&T Intellectual Property I, Lp Apparatus and method for distributing three dimensional media content
US9560406B2 (en) 2010-07-20 2017-01-31 At&T Intellectual Property I, L.P. Method and apparatus for adapting a presentation of media content
US9032470B2 (en) 2010-07-20 2015-05-12 At&T Intellectual Property I, Lp Apparatus for adapting a presentation of media content according to a position of a viewing apparatus
US9232274B2 (en) 2010-07-20 2016-01-05 At&T Intellectual Property I, L.P. Apparatus for adapting a presentation of media content to a requesting device
US8994716B2 (en) 2010-08-02 2015-03-31 At&T Intellectual Property I, Lp Apparatus and method for providing media content
US8438502B2 (en) 2010-08-25 2013-05-07 At&T Intellectual Property I, L.P. Apparatus for controlling three-dimensional images
JP2012080288A (ja) * 2010-09-30 2012-04-19 Toshiba Corp 表示装置及び表示方法
US8947511B2 (en) 2010-10-01 2015-02-03 At&T Intellectual Property I, L.P. Apparatus and method for presenting three-dimensional media content
JP5025823B2 (ja) 2011-01-07 2012-09-12 シャープ株式会社 立体画像表示装置及び立体視用眼鏡
WO2012140841A1 (ja) * 2011-04-11 2012-10-18 ルネサスエレクトロニクス株式会社 画像表示方法、制御装置、眼鏡、画像システム及び合成装置
JP2012222698A (ja) * 2011-04-12 2012-11-12 Sharp Corp 視認切替用メガネ、表示制御装置、制御プログラムおよびコンピュータ読み取り可能な記録媒体
CN102736254B (zh) * 2011-04-12 2014-10-08 夏普株式会社 视认切换用眼镜及显示控制装置
JP2012222699A (ja) * 2011-04-12 2012-11-12 Sharp Corp 表示制御システム、姿勢検出用メガネ、制御プログラムおよび記録媒体
JP5669141B2 (ja) * 2011-04-25 2015-02-12 アルパイン株式会社 3d画像表示システム
JP2012235348A (ja) * 2011-05-02 2012-11-29 Funai Electric Co Ltd 立体画像鑑賞システム
US20130100123A1 (en) * 2011-05-11 2013-04-25 Kotaro Hakoda Image processing apparatus, image processing method, program and integrated circuit
EP2658270A3 (en) * 2011-05-13 2014-02-26 Lg Electronics Inc. Apparatus and method for processing 3-dimensional image
JP5037713B1 (ja) * 2011-06-07 2012-10-03 シャープ株式会社 立体画像表示装置および立体画像表示方法
US8947497B2 (en) 2011-06-24 2015-02-03 At&T Intellectual Property I, Lp Apparatus and method for managing telepresence sessions
US9445046B2 (en) 2011-06-24 2016-09-13 At&T Intellectual Property I, L.P. Apparatus and method for presenting media content with telepresence
US9030522B2 (en) 2011-06-24 2015-05-12 At&T Intellectual Property I, Lp Apparatus and method for providing media content
US9602766B2 (en) 2011-06-24 2017-03-21 At&T Intellectual Property I, L.P. Apparatus and method for presenting three dimensional objects with telepresence
US8587635B2 (en) 2011-07-15 2013-11-19 At&T Intellectual Property I, L.P. Apparatus and method for providing media services with telepresence
US20130155207A1 (en) * 2011-12-15 2013-06-20 Joseph M. Freund System and method for automatically controlling a video presentation
US20130202190A1 (en) * 2012-02-02 2013-08-08 Sheng-Chun Niu Image processing apparatus and image processing method
EP2831752A4 (en) * 2012-03-30 2015-08-26 Intel Corp METHOD OF QUALITY CONTROL IN MEDIA
JP5395934B1 (ja) * 2012-08-31 2014-01-22 株式会社東芝 映像処理装置および映像処理方法
CN103353667B (zh) * 2013-06-28 2015-10-21 北京智谷睿拓技术服务有限公司 成像调整设备及方法
CN103353663B (zh) * 2013-06-28 2016-08-10 北京智谷睿拓技术服务有限公司 成像调整装置及方法
CN103353677B (zh) 2013-06-28 2015-03-11 北京智谷睿拓技术服务有限公司 成像装置及方法
CN103431840B (zh) 2013-07-31 2016-01-20 北京智谷睿拓技术服务有限公司 眼睛光学参数检测系统及方法
CN103424891B (zh) 2013-07-31 2014-12-17 北京智谷睿拓技术服务有限公司 成像装置及方法
CN103431980A (zh) 2013-08-22 2013-12-11 北京智谷睿拓技术服务有限公司 视力保护成像系统及方法
CN103439801B (zh) 2013-08-22 2016-10-26 北京智谷睿拓技术服务有限公司 视力保护成像装置及方法
CN103500331B (zh) 2013-08-30 2017-11-10 北京智谷睿拓技术服务有限公司 提醒方法及装置
CN103605208B (zh) 2013-08-30 2016-09-28 北京智谷睿拓技术服务有限公司 内容投射系统及方法
CN103558909B (zh) 2013-10-10 2017-03-29 北京智谷睿拓技术服务有限公司 交互投射显示方法及交互投射显示系统
US9965030B2 (en) * 2014-07-31 2018-05-08 Samsung Electronics Co., Ltd. Wearable glasses and method of displaying image via the wearable glasses
EP3668438A4 (en) * 2017-08-16 2021-08-18 Covidien LP OPTIMIZATION OF PERCEPTION OF STEREOSCOPIC VISUAL CONTENT
CN113711111B (zh) * 2019-04-15 2023-10-17 镭亚股份有限公司 具有对角视差的静态多视图显示器和方法
CN112188181B (zh) * 2019-07-02 2023-07-04 中强光电股份有限公司 图像显示设备、立体图像处理电路及其同步信号校正方法
US11500226B1 (en) * 2019-09-26 2022-11-15 Scott Phillip Muske Viewing area management for smart glasses
CN110706268B (zh) * 2019-11-14 2022-12-27 维沃移动通信有限公司 一种距离调整方法及电子设备
JP7475191B2 (ja) * 2020-04-28 2024-04-26 京セラ株式会社 眼間距離測定方法および較正方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62266588A (ja) * 1986-05-14 1987-11-19 日本電気株式会社 立体視方式
JPS63310086A (ja) * 1987-06-12 1988-12-19 Nec Home Electronics Ltd 3次元像表示方法
JPH10271536A (ja) * 1997-03-24 1998-10-09 Sanyo Electric Co Ltd 立体映像表示装置
JPH1184313A (ja) * 1997-09-02 1999-03-26 Minolta Co Ltd 映像観察装置
JP2000078612A (ja) * 1998-08-31 2000-03-14 Toshiba Corp 立体映像表示装置
JP2006084963A (ja) * 2004-09-17 2006-03-30 Seiko Epson Corp 立体画像表示装置
JP2006133665A (ja) * 2004-11-09 2006-05-25 Seiko Epson Corp 立体画像表示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62266588A (ja) * 1986-05-14 1987-11-19 日本電気株式会社 立体視方式
JPS63310086A (ja) * 1987-06-12 1988-12-19 Nec Home Electronics Ltd 3次元像表示方法
JPH10271536A (ja) * 1997-03-24 1998-10-09 Sanyo Electric Co Ltd 立体映像表示装置
JPH1184313A (ja) * 1997-09-02 1999-03-26 Minolta Co Ltd 映像観察装置
JP2000078612A (ja) * 1998-08-31 2000-03-14 Toshiba Corp 立体映像表示装置
JP2006084963A (ja) * 2004-09-17 2006-03-30 Seiko Epson Corp 立体画像表示装置
JP2006133665A (ja) * 2004-11-09 2006-05-25 Seiko Epson Corp 立体画像表示装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111349A1 (ja) * 2010-03-10 2011-09-15 パナソニック株式会社 立体映像表示装置および視差調整方法
JP2012222427A (ja) * 2011-04-05 2012-11-12 Sumitomo Electric Ind Ltd 映像再生装置
CN103518372A (zh) * 2011-05-19 2014-01-15 索尼公司 图像处理装置、图像处理方法和程序
CN103518372B (zh) * 2011-05-19 2015-12-02 索尼公司 图像处理装置、图像处理方法和程序
CN102892023A (zh) * 2011-07-19 2013-01-23 三星电子株式会社 具有3d结构的显示设备及其控制方法
EP2549767A3 (en) * 2011-07-19 2014-04-30 Samsung Electronics Co., Ltd. Display apparatus with 3D structure and control method thereof
CN103096104A (zh) * 2011-11-02 2013-05-08 索尼公司 信息处理装置、显示控制方法和程序
WO2013102774A1 (en) * 2012-01-06 2013-07-11 Leonar3Do International Zrt. Three-dimensional display system and method
WO2021010123A1 (ja) * 2019-07-17 2021-01-21 株式会社Jvcケンウッド ヘッドアップディスプレイ装置

Also Published As

Publication number Publication date
US20120169730A1 (en) 2012-07-05
JP2011071898A (ja) 2011-04-07

Similar Documents

Publication Publication Date Title
WO2011036827A1 (ja) 立体映像表示装置および立体映像表示方法
US9398290B2 (en) Stereoscopic image display device, image processing device, and stereoscopic image processing method
EP2395759B1 (en) Autostereoscopic display device and method for operating an autostereoscopic display device
US20120162764A1 (en) Head-mounted display
TWI523488B (zh) 處理包含在信號中的視差資訊之方法
US20160366392A1 (en) Image encoding and display
US20160337630A1 (en) Image encoding and display
EP2472304A2 (en) Head-mounted display
US20110193945A1 (en) Image display device, image display viewing system and image display method
JP2012065066A (ja) 立体画像生成装置、立体画像表示装置、立体画像調整方法、立体画像調整方法をコンピュータに実行させるためのプログラム、及びそのプログラムを記録した記録媒体
US20110248989A1 (en) 3d display apparatus, method for setting display mode, and 3d display system
JP2014121097A (ja) マルチビュー無眼鏡立体映像表示装置とその最適視聴距離の制御方法
WO2011162037A1 (ja) 立体画像再生装置、立体画像再生システム及び立体画像再生方法
US20010010508A1 (en) Apparatus and method for displaying stereoscopic images
CN106293561B (zh) 显示控制方法和装置、显示设备
JP2010171628A (ja) 画像処理装置、プログラム、画像処理方法、記録方法および記録媒体
US9407897B2 (en) Video processing apparatus and video processing method
KR100751290B1 (ko) 헤드 마운티드 디스플레이용 영상 시스템
TW201733351A (zh) 3d自動對焦顯示方法及其系統
JP5036088B2 (ja) 立体画像処理装置、立体画像処理方法およびプログラム
JP2001218231A (ja) 立体画像を表示する装置および方法
JP2011223126A (ja) 立体映像表示装置および立体映像表示方法
US9154766B2 (en) Method for outputting three-dimensional (3D) image at increased output frequency and display apparatus thereof
JP2018504014A (ja) 三次元の外観を有する画像の再生方法
US20130021324A1 (en) Method for improving three-dimensional display quality

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10818509

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13395987

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10818509

Country of ref document: EP

Kind code of ref document: A1