WO2011034150A1 - 軟質ポリウレタンフォームの製造方法 - Google Patents

軟質ポリウレタンフォームの製造方法 Download PDF

Info

Publication number
WO2011034150A1
WO2011034150A1 PCT/JP2010/066090 JP2010066090W WO2011034150A1 WO 2011034150 A1 WO2011034150 A1 WO 2011034150A1 JP 2010066090 W JP2010066090 W JP 2010066090W WO 2011034150 A1 WO2011034150 A1 WO 2011034150A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyol
polyurethane foam
mass
flexible polyurethane
parts
Prior art date
Application number
PCT/JP2010/066090
Other languages
English (en)
French (fr)
Inventor
孝之 佐々木
賀来 大輔
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to EP10817263.6A priority Critical patent/EP2471830A4/en
Priority to CN2010800419392A priority patent/CN102574975A/zh
Priority to JP2011531974A priority patent/JP5720571B2/ja
Priority to AU2010296403A priority patent/AU2010296403A1/en
Publication of WO2011034150A1 publication Critical patent/WO2011034150A1/ja
Priority to US13/419,556 priority patent/US20120202908A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7621Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/283Compounds containing ether groups, e.g. oxyalkylated monohydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • C08G18/4812Mixtures of polyetherdiols with polyetherpolyols having at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2101/00Manufacture of cellular products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0008Foam properties flexible
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/005< 50kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/0058≥50 and <150kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0083Foam properties prepared using water as the sole blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2350/00Acoustic or vibration damping material

Definitions

  • the present invention relates to a method for producing a low-resilience flexible polyurethane foam.
  • a soft polyurethane foam having a low impact resilience that is, a low resilience
  • a soft polyurethane foam having a low impact resilience that is, a low resilience
  • a sound absorber a sound absorber
  • a vibration absorber a vibration absorber and the like.
  • a low resilience polyurethane foam described in Patent Document 1 is known.
  • the present invention provides a method for producing a flexible polyurethane foam having excellent low resilience and low density without using dibutyltin dilaurate as a urethanization catalyst.
  • the present invention is the following [1] to [10].
  • [1] In a method for producing a flexible polyurethane foam by reacting a polyol mixture (X) with a polyisocyanate compound in the presence of a urethanization catalyst, a foaming agent and a foam stabilizer,
  • the polyol mixture (X) includes the following polyol (A), the following polyol (B), and the following monool (D),
  • the ratio of the total active hydrogen-containing compound and the polyisocyanate compound in the raw material is 90 or more in terms of isocyanate index
  • the ratio of the polyol (A) to the polyol (B) is 5 to 50 parts by mass of the polyol (A) in 100 parts by mass of the total of the polyol (A) and the polyol (B).
  • the ratio of the monool (D) is 1 to 30 parts by mass relative to 100 parts by mass of the total of the polyol (A) and the polyol (B). The manufacturing method of the flexible polyurethane foam as described.
  • the flexible polyurethane foam according to any one of [1] to [3], wherein the monool (D) is a polyoxypropylene monool obtained by ring-opening addition polymerization of only propylene oxide as an initiator. Production method.
  • the polyol mixture (X) further includes 2 to 10 parts by mass of 100 parts by mass of the whole polyol mixture, and the following polyol (C): [1] to [4] A method for producing a flexible polyurethane foam.
  • the present invention uses dioctyltin dilaurate as a urethanization catalyst, and can produce a flexible polyurethane foam having excellent low resilience and low density, without using a substance that may adversely affect the human body and the environment.
  • the “reactive mixture” in the present invention is a mixture of a polyol mixture, a polyisocyanate compound, a urethanization catalyst, a foaming agent and a foam stabilizer.
  • the flexible polyurethane foam obtained in the present invention is produced by reacting the polyol mixture (X) with a polyisocyanate compound in the presence of a urethanization catalyst, a foaming agent and a foam stabilizer.
  • the polyol mixture (X) used in the present invention contains a polyol (A), a polyol (B) and a monool (D) described later. Further, it preferably contains a polyol (C). In some cases, polyols other than polyol (A), polyol (B), and monool (D) (hereinafter referred to as polyol (E)) and monools other than monool (D) may be included. Hereinafter, each polyol will be described.
  • the polyol (A) in the present invention is a polyoxyalkylene polyol having an average number of hydroxyl groups of 2 to 3 and a hydroxyl value of 10 to 60 mgKOH / g.
  • This polyoxyalkylene polyol is obtained by ring-opening addition polymerization of alkylene oxide with an initiator in the presence of a polymerization catalyst.
  • Examples of the polymerization catalyst used for the production of the polyol (A) include alkali metal compound catalysts (sodium-based catalyst, potassium-based catalyst, cesium-based catalyst, etc.), cationic polymerization catalysts, complex metal cyanide complex catalysts, and phosphazenium compounds. . From the viewpoint of availability of the catalyst, an alkali metal catalyst and a double metal cyanide complex catalyst are preferred from the viewpoint of obtaining a low by-product polyol.
  • sodium-based catalyst and potassium-based catalyst examples include sodium metal, potassium metal, sodium alkoxide or potassium alkoxide (sodium methoxide, sodium ethoxide, sodium propoxide, potassium methoxide, potassium ethoxide, potassium propoxide, etc.), Examples thereof include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate and the like.
  • cesium catalyst examples include cesium metal, cesium alkoxide (cesium methoxide, cesium ethoxide, cesium propoxide, etc.), cesium hydroxide, cesium carbonate, and the like.
  • Examples of the cationic polymerization catalyst include MoO 2 (diketonate) Cl, MoO 2 (diketonate) OSO 2 CF 3 , trifluoromethanesulfonic acid, boron trifluoride, boron trifluoride coordination compound (boron trifluoride diethyl etherate, three Boron fluoride dibutyl etherate, boron trifluoride dioxanate, boron trifluoride acetate anhydrate or boron trifluoride triethylamine complex)), aromatic hydrocarbon group containing fluorine atom or fragrance containing fluorine atom An aluminum or boron compound having at least one group hydrocarbon oxy group is preferred.
  • aromatic hydrocarbon group containing a fluorine atom examples include pentafluorophenyl, tetrafluorophenyl, trifluorophenyl, 3,5-bis (trifluoromethyl) trifluorophenyl, and 3,5-bis (trifluoromethyl) phenyl. , ⁇ -perfluoronaphthyl, 2,2 ′, 2 ′′ -perfluorobiphenyl, and the like.
  • the aromatic hydrocarbon oxy group containing a fluorine atom is preferably a hydrocarbon oxy group in which an oxygen atom is bonded to the aromatic hydrocarbon group containing a fluorine atom.
  • the double metal cyanide complex catalyst (hereinafter also referred to as “DMC catalyst”) has an organic ligand.
  • Organic ligands include tert-butyl alcohol, n-butyl alcohol, iso-butyl alcohol, tert-pentyl alcohol, iso-pentyl alcohol, N, N-dimethylacetamide, ethylene glycol mono-tert-butyl ether, ethylene glycol dimethyl ether ( And diethylene glycol dimethyl ether (also referred to as diglyme), triethylene glycol dimethyl ether (also referred to as triglyme), iso-propyl alcohol, and dioxane.
  • the dioxane may be 1,4-dioxane or 1,3-dioxane, but 1,4-dioxane is preferred.
  • One type of organic ligand may be used, or two or more types may be used in combination.
  • tert-butyl alcohol as an organic ligand. Therefore, it is preferable to use a DMC catalyst having tert-butyl alcohol as at least a part of the organic ligand.
  • DMC catalysts are highly active and can produce polyols with low total unsaturation.
  • a compound having 2 or 3 active hydrogens (a hydrogen atom of a hydroxyl group or an amino group that can react with an alkylene oxide) in the molecule is used alone, Or use together.
  • hydroxyl group-containing compounds such as polyhydric alcohols and polyhydric phenols are preferable.
  • a small amount of a compound having 4 or more active hydrogens can also be used.
  • Specific examples of the compound having 2 active hydrogens include dihydric alcohols such as ethylene glycol, propylene glycol, 1,4-butanediol, diethylene glycol, and dipropylene glycol.
  • the compound having 3 active hydrogens include trihydric alcohols such as glycerin and trimethylolpropane.
  • a high hydroxyl group polyoxyalkylene polyol obtained by subjecting these compounds to ring-opening addition polymerization of alkylene oxide, preferably propylene oxide.
  • alkylene oxide preferably propylene oxide.
  • Polyol is preferably used.
  • alkylene oxide used for the production of the polyol (A) examples include ethylene oxide, propylene oxide, 1,2-epoxybutane, 2,3-epoxybutane, and the like. Of these, propylene oxide or a combination of propylene oxide and ethylene oxide is preferable, and only propylene oxide is particularly preferable. That is, as the polyol (A), polyoxypropylene polyol obtained by ring-opening addition polymerization of only propylene oxide as an initiator is preferable. It is preferable to use only propylene oxide because the durability of the resulting flexible polyurethane foam during humidification is improved.
  • any polymerization method of block polymerization and random polymerization may be used. Furthermore, it can also manufacture combining both block polymerization and random polymerization.
  • the order of ring-opening addition polymerization is preferably such that propylene oxide and ethylene oxide are added in this order, or ethylene oxide is added first, and propylene oxide and ethylene oxide are added in this order.
  • the terminal is preferably ethylene oxide.
  • the oxyethylene group content in the polyol (A) is preferably 30% by mass or less, particularly preferably 15% by mass or less.
  • the lower limit is 0% by mass. It is preferable for the oxyethylene group content to be 30% by mass or less because durability during humidification is improved.
  • the average number of hydroxyl groups of the polyol (A) is 2 to 3, more preferably 2 to 2.7.
  • the average number of hydroxyl groups in the present invention means the average value of the number of active hydrogens in the initiator.
  • the polyol (A) using 50 to 100 parts by mass of the polyoxyalkylene diol having 2 hydroxyl groups out of 100 parts by mass of the polyol (A) suppresses the temperature sensitivity of the resulting flexible polyurethane foam. It is preferable in terms of easy.
  • the polyol (A) is preferably a polyoxyalkylene diol having 2 hydroxyl groups.
  • the hydroxyl value of the polyol (A) in the present invention is 10 to 60 mgKOH / g.
  • the hydroxyl value of the polyol (A) in the present invention is 10 to 60 mgKOH / g.
  • the hydroxyl value of the polyol (A) is more preferably from 10 to 50 mgKOH / g, most preferably from 10 to 45 mgKOH / g.
  • the polyol (A) in the present invention may be a polymer-dispersed polyol.
  • the polyol being a polymer-dispersed polyol means a dispersion system in which polymer fine particles (dispersoid) are stably dispersed using the polyol as a base polyol (dispersion medium).
  • polymer fine polymer examples include addition polymerization polymers and condensation polymerization polymers.
  • the addition polymerization polymer can be obtained by homopolymerizing or copolymerizing monomers such as acrylonitrile, styrene, methacrylic acid ester, acrylic acid ester and the like.
  • polycondensation polymer examples include polyester, polyurea, polyurethane, and polymethylol melamine.
  • the content rate of the polymer fine particles in the polymer-dispersed polyol is not particularly limited, and is preferably 5 parts by mass or less with respect to 100 parts by mass of the polyol (A).
  • the various properties (unsaturation, hydroxyl value, etc.) of the polymer-dispersed polyol as a polyol are considered for the base polyol excluding the polymer fine particles.
  • the polyol (B) in the present invention is a polyoxyalkylene polyol having an average number of hydroxyl groups of 2 to 3 and a hydroxyl value of 100 to 250 mgKOH / g.
  • This polyoxyalkylene polyol can be obtained by ring-opening addition polymerization of an alkylene oxide in an initiator in the presence of a polymerization catalyst in the same manner as the polyol (A).
  • a phosphazene compound, a Lewis acid compound or an alkali metal compound catalyst, and a double metal cyanide complex catalyst are preferable, and among these, an alkali metal compound catalyst is particularly preferable.
  • the alkali metal compound catalyst include potassium compounds such as potassium hydroxide and potassium methoxide, alkali metal compounds such as cesium compounds such as cesium metal, cesium hydroxide, cesium carbonate, and cesium methoxide, or alkali metal hydroxides. It is done.
  • a compound having 2 or 3 active hydrogen atoms in the molecule is used alone or in combination.
  • a small amount of a compound having 4 or more active hydrogens can also be used.
  • Specific examples of the compound having 2 or 3 active hydrogens include polyhydric alcohols such as ethylene glycol, propylene glycol, 1,4-butanediol, diethylene glycol, dipropylene glycol, glycerin and trimethylolpropane; bisphenol A and the like
  • polyamines such as monoethanolamine, diethanolamine, triethanolamine, and piperazine. Of these, polyhydric alcohols are particularly preferred. Further, it is preferable to use a high hydroxyl group polyoxyalkylene polyol obtained by subjecting these compounds to ring-opening addition polymerization of alkylene oxide, preferably propylene oxide.
  • alkylene oxide used for producing the polyol (B) examples include ethylene oxide, propylene oxide, 1,2-epoxybutane, and 2,3-epoxybutane.
  • propylene oxide or a combination of propylene oxide and ethylene oxide is preferable, and only propylene oxide is particularly preferable.
  • the polyol (B) is preferably a polyol having a low oxyethylene group content, and the oxyethylene group content is preferably 0 to 20% by mass, more preferably 0 to 10% by mass. Particularly preferred is a polyoxyalkylene polyol having only an oxypropylene group as an oxyalkylene group. When such a polyol having a low oxyethylene group content is used, durability of the resulting flexible polyurethane foam at the time of humidification is improved.
  • the average number of hydroxyl groups of the polyol (B) in the present invention is 2 to 3.
  • physical properties such as compression residual strain of the obtained flexible polyurethane foam become appropriate, and the resulting flexible polyurethane foam has excellent elongation and appropriate hardness, resulting in properties such as tensile strength. Excellent.
  • the average number of hydroxyl groups in the polyol (B) is preferably 2 to 2.7, more preferably 2 to 2.6.
  • the polyol (B) preferably uses a polyoxyalkylene diol having an average number of hydroxyl groups of 2 and a polyoxyalkylene triol having an average number of hydroxyl groups of 3 in combination, and the average hydroxyl group contained in 100 parts by mass of the polyol (B).
  • the proportion of the polyoxyalkylene diol having 2 is preferably 40 parts by mass or more, and more preferably 45 parts by mass or more.
  • the hydroxyl value of the polyol (B) in the present invention is 100 to 250 mgKOH / g.
  • the hydroxyl value of the polyol (B) in the present invention is 100 to 250 mgKOH / g.
  • the hydroxyl value is 100 mgKOH / g or more, collapse or the like can be suppressed, and a flexible polyurethane foam can be stably produced.
  • flexibility of the flexible polyurethane foam manufactured can be impaired, and a resilience elastic modulus can be made low.
  • the polyol (B) it is preferable to use a polyol having a hydroxyl value of 100 to 200 mgKOH / g.
  • the polyol (B) in the present invention may be a polymer-dispersed polyol.
  • the polymer of the polymer fine particles include those described in the section of the polyol (A).
  • the content ratio of the polymer fine particles in the polymer-dispersed polyol is not particularly limited and is preferably 0 to 10% by mass with respect to 100 parts by mass of the polyol (B).
  • the polyol (C) in the present invention is a polyoxyalkylene polyol having an average number of hydroxyl groups of 2 to 6, a hydroxyl value of 10 to 60 mgKOH / g, and an oxyethylene group content of 50 to 100% by mass.
  • This polyoxyalkylene polyol can be obtained by ring-opening addition polymerization of alkylene oxide to an initiator in the presence of a polymerization catalyst in the same manner as polyol (A) and polyol (B).
  • the polyol (C) may be polyethylene glycol obtained by increasing the amount of ethylene oxide. When the polyol (C) is used, a foam breaking effect is recognized, and the addition of the polyol (C) is effective in improving air permeability.
  • an alkali metal compound catalyst is particularly preferable among the polymerization catalysts.
  • the initiator used for producing the polyol (C) polyhydric alcohols and amines are particularly preferable among the initiators.
  • polyhydric alcohols that are initiators include ethylene glycol, propylene glycol, 1,4-butanediol, dipropylene glycol, glycerin, diglycerin, pentaerythritol, and the like.
  • amines that are initiators include amines such as monoethanolamine, diethanolamine, triethanolamine, and piperazine.
  • alkylene oxide used for producing the polyol (C) examples include ethylene oxide, propylene oxide, 1,2-epoxybutane, and 2,3-epoxybutane.
  • the oxyethylene content in the oxyalkylene group of the polyol (C) is 50 to 100% by mass, and it is preferable to use ethylene oxide alone or a combination of propylene oxide and ethylene oxide.
  • the polyol (C) is preferably a polyol obtained by ring-opening addition polymerization of a mixture of propylene oxide and ethylene oxide.
  • the oxyethylene group content in the polyol (C) is 50 to 100% by mass, preferably 55 to 95% by mass, particularly preferably 60 to 90% by mass. By setting the oxyethylene group content in the polyol (C) to 50% by mass or more, high breathability can be secured when the polyol (C) is added.
  • the average number of hydroxyl groups of the polyol (C) is preferably 2 to 6, and more preferably 3 to 4.
  • the hydroxyl value of the polyol (C) is preferably 10 to 60 mgKOH / g, and more preferably 15 to 50 mgKOH / g.
  • the monool (D) in the present invention is a polyoxyalkylene monool having a hydroxyl value of 10 to 200 mgKOH / g.
  • This polyoxyalkylene monool uses an initiator having 1 active hydrogen and ring-opening addition polymerization of alkylene oxide in the presence of a polymerization catalyst in the same manner as polyol (A) or polyol (B). Can be obtained.
  • a DMC catalyst As the polymerization catalyst used for the production of monool (D), a DMC catalyst, a phosphazene compound, a Lewis acid compound or an alkali metal compound catalyst is preferable, and among these, a composite metal cyanide complex catalyst (DMC catalyst) is particularly preferable.
  • a composite metal cyanide complex catalyst As the double metal cyanide complex catalyst, the above double metal cyanide complex catalyst can be used.
  • the initiator used in the production of monool (D) a compound having only one active hydrogen atom is used.
  • Specific examples thereof include monohydric alcohols such as methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, tert-butyl alcohol; monohydric phenols such as phenol and nonylphenol; dimethylamine, diethylamine and the like. Secondary amines etc. are mentioned.
  • the high hydroxyl group polyoxyalkylene polyol for producing the polyol (A) and the like the high hydroxyl group polyoxyalkylene monool having a hydroxyl value higher than that of the target monool (D). Can also be used as an initiator.
  • Examples of the alkylene oxide used for the production of monool (D) include ethylene oxide, propylene oxide, 1,2-epoxybutane, 2,3-epoxybutane, and the like. Among these, propylene oxide or a combination of propylene oxide and ethylene oxide is preferable, and only propylene oxide is particularly preferable. That is, the monool (D) is preferably a polyoxypropylene monool obtained by subjecting only propylene oxide to ring-opening addition polymerization to an initiator. It is preferable to use only propylene oxide because the durability of the resulting flexible polyurethane foam during humidification is improved.
  • the average number of hydroxyl groups of monool (D) in the present invention is 1.
  • the hydroxyl value of monool (D) is 10 to 200 mgKOH / g, preferably 10 to 120 mgKOH / g.
  • the polyol mixture (X) in the present invention may contain a monool other than the monool (D) (for example, a polyoxypropylene monool having a hydroxyl value of more than 200 mgKOH / g). No monool other than (D) is contained. Even if the polyol mixture in the present invention contains a monool other than the monool (D), the proportion is preferably 5 parts by mass or less, more preferably 2 parts by mass or less, out of 100 parts by mass of the polyol mixture. .
  • a monool other than the monool (D) for example, a polyoxypropylene monool having a hydroxyl value of more than 200 mgKOH / g.
  • the polyol (E) in the present invention is a polyol other than the polyol (A), the polyol (B), and the polyol (C).
  • a polyol having a higher hydroxyl value than the polyol (B), the polyol (A), and the polyol examples thereof include polyols having an average number of hydroxyl groups larger than B) and higher oxyethylene content than polyol (C), and high molecular weight polyols other than polyoxyalkylene polyols.
  • the polyol (E) is preferably a polyol having an average number of hydroxyl groups of 2 to 6 and a hydroxyl value of 300 to 1830 mgKOH / g. More preferably, the polyol (E) has a mean hydroxyl number of 3 to 4 and a hydroxyl value of 300 to 600 mgKOH / g.
  • this polyol polyhydric alcohols, amines having 2 to 6 hydroxyl groups, and polyoxyalkylene polyols are preferable.
  • Such a polyol having a high hydroxyl value acts as a crosslinking agent, and mechanical properties such as hardness of the flexible polyurethane foam are improved. Particularly when a low density (light weight) flexible polyurethane foam is to be produced using a large amount of a foaming agent, the foaming stability is good.
  • polyhydric alcohols examples include ethylene glycol, propylene glycol, 1,4-butanediol, dipropylene glycol, glycerin, diglycerin, and pentaerythritol.
  • examples of amines having 2 to 6 hydroxyl groups include diethanolamine and triethanolamine.
  • Examples of the polyoxyalkylene polyol include polyoxyalkylene polyols obtained by subjecting an alkylene oxide to ring-opening addition polymerization to an initiator, like the polyol (B).
  • an initiator used for manufacture of polyol (E) which is a polyoxyalkylene polyol the initiator used for manufacture of the polyhydric alcohols which may be used as polyol (E), or polyol (B) can be illustrated.
  • Examples of the alkylene oxide used for the production of the polyol (E), which is a polyoxyalkylene polyol include ethylene oxide, propylene oxide, 1,2-epoxybutane, and 2,3-epoxybutane. Among these, propylene oxide or a combination of propylene oxide and ethylene oxide is preferable, and only propylene oxide is particularly preferable. That is, as the polyol (E) which is a polyoxyalkylene polyol, a polyoxypropylene polyol in which only propylene oxide is subjected to ring-opening addition polymerization as an initiator is preferable.
  • polyoxyalkylene polyol is preferable, and polyoxypropylene polyol is particularly preferable. It is preferable to use only propylene oxide because the durability of the resulting flexible polyurethane foam during humidification is improved.
  • polyol (E) only 1 type may be used or 2 or more types may be used together.
  • the polyol (E) may be a polyester polyol or a polycarbonate polyol, which is not limited to the above average number of hydroxyl groups or hydroxyl value. These polyols preferably have an average number of hydroxyl groups of 2 to 3, and a hydroxyl value of 20 to 300 mgKOH / g.
  • the polyol mixture in this invention contains the said polyol (A), polyol (B), and monool (D). Furthermore, the polyol mixture preferably contains the polyol (C).
  • the ratio of the polyol (A) and the polyol (B) is that of the polyol (A) in 100 parts by mass of the total of the polyol (A) and the polyol (B).
  • the ratio is preferably 5 to 50 parts by mass, and more preferably 10 to 30 parts by mass.
  • 70 mass parts or more are preferable, as for the ratio of the sum total of a polyol (A) and a polyol (B) among 100 mass parts of polyol mixture (X), 75 mass parts or more are more preferable, and 90 mass parts or more are especially preferable. preferable.
  • the upper limit is 99 parts by mass.
  • the proportion of monool (D) is preferably 1 to 30 parts by weight, more preferably 1 to 25 parts by weight, based on 100 parts by weight of the total of polyol (A) and polyol (B). It is particularly preferably 1 to 10 parts by mass.
  • the proportion of the polyol (C) in 100 parts by mass of the polyol mixture (X) is preferably 10 parts by mass or less, preferably 1 to 10 parts by mass. More preferred is 1 to 8 parts by mass.
  • the polyol mixture (X) needs little to contain a polyol (E), when using a polyol (E), the ratio of a polyol (E) is 100 mass parts of a polyol mixture (X). It is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and particularly preferably 2 parts by mass or less.
  • a preferable composition of the polyol mixture (X) (100 parts by mass) include 10 to 30 parts by mass of the polyol (A), 50 to 80 parts by mass of the polyol (B), and 0 for the polyol (C). To 10 parts by mass, 1 to 24 parts by mass of monool (D), and 0 to 5 parts by mass of polyol (E).
  • a more preferable composition of the polyol mixture (X) is 15 to 30 parts by mass of the polyol (A), 60 to 75 parts by mass of the polyol (B), 1 to 8 parts by mass of the polyol (C), and monool (D). 1 to 10 parts by mass and 0 to 2 parts by mass of the polyol (E).
  • a particularly preferred composition of the polyol mixture (X) is 20 to 25 parts by mass of the polyol (A), 60 to 70 parts by mass of the polyol (B), 1 to 7 parts by mass of the polyol (C), and monool (D). 1 to 7 parts by mass and 0 part by mass of the polyol (E).
  • the total amount of Zn and Co as catalyst residues contained in the polyol mixture (X) is 0.1 to 200 ppm, preferably 0.5 to 100 ppm, particularly preferably 1 to 50 ppm.
  • Zn and Co in a total amount of 0.1 to 200 ppm, foaming stability at the time of producing a flexible polyurethane foam is improved, and cell roughness and foam shrinkage can be suppressed.
  • the flame retardance of the flexible polyurethane foam obtained improves.
  • the total amount of Zn and Co contained in the polyol mixture (X) is determined by the following method. (Measuring method of total amount of Zn and Co) 20 g of the polyol mixture is weighed in a platinum dish, burned and incinerated using a gas burner, and then completely incinerated in an electric furnace at 600 ° C. The ashing residue is dissolved in 2 mL of 6N hydrochloric acid, and is dissolved in 100 mL with distilled water, and the amounts of Zn and Co contained in the ashing residue are measured with an atomic absorption photometer. The quantitative determination of Zn and Co is obtained from a calibration curve prepared with a metal standard solution.
  • the polyol mixture (X) As a method of including Zn and Co in the polyol mixture (X), (i) a method using an unpurified polyol (A), that is, a polyol (A) in which a DMC catalyst remains, (ii) using a DMC catalyst And other unpurified polyols produced in the above manner.
  • the polyol mixture (X) only needs to contain a total of 0.1 to 200 ppm of Zn and Co, and the method is not particularly limited.
  • zinc hexacyanocobaltate-t- is used because it has a high effect of suppressing cell roughness and foam shrinkage of the resulting flexible polyurethane foam.
  • a butyl alcohol complex catalyst and a zinc hexacyanocobaltate-ethylene glycol dimethyl ether complex catalyst are preferred.
  • the polyisocyanate compound used in the present invention is not particularly limited, and is a polyisocyanate having two or more isocyanate groups, such as aromatic, alicyclic, and aliphatic groups; a mixture of two or more of the above polyisocyanates; And modified polyisocyanates obtained by modifying.
  • polyisocyanate compound examples include tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), polymethylene polyphenyl polyisocyanate (common name: crude MDI), xylylene diisocyanate (XDI), isophorone diisocyanate (IPDI), hexamethylene. And diisocyanate (HMDI).
  • modified polyisocyanate include prepolymer-modified products, nurate-modified products, urea-modified products, and carbodiimide-modified products of the above polyisocyanates. Among these, TDI, MDI, crude MDI, or modified products thereof are preferable.
  • TDI TDI
  • crude MDI or a modified product thereof (especially a prepolymer modified product)
  • a polyisocyanate compound having a relatively low reactivity among TDI, crude MDI, or a modified product thereof because air permeability is improved.
  • a TDI mixture having a high proportion of 2,6-TDI (30% by mass or more is particularly preferable) is preferable.
  • the amount of the polyisocyanate compound used is preferably such that the ratio of the total active hydrogen-containing compound to the polyisocyanate compound in the raw material is 90 or more in terms of isocyanate index.
  • a raw material means a polyol mixture (X), a polyisocyanate compound, a urethanization catalyst, a foaming agent, and a foaming agent.
  • the active hydrogen-containing compound refers to the polyol mixture (X), water that can be used as a blowing agent, and the like.
  • the isocyanate index is represented by 100 times the value obtained by dividing the equivalent of the isocyanate group of the polyisocyanate compound by the equivalent of the total of all active hydrogens in all active hydrogen-containing compounds in the raw materials such as polyol, monool, and water. Is done.
  • the ratio of the total active hydrogen-containing compound and the polyisocyanate compound in the raw material is 90 or more in terms of isocyanate index.
  • the ratio is 90 or more in terms of the isocyanate index, polyols and monools are suitably used, the influence as a plasticizer is small, and washing durability is good, which is preferable.
  • a urethanization catalyst is hard to disperse
  • the above ratio is preferably 90 to 130, more preferably 95 to 110 in terms of isocyanate index.
  • urethanization catalyst for reacting the polyol mixture (X) with the polyisocyanate compound among the catalysts for accelerating the urethanization reaction, Certi which restricts the use of a flexible polyurethane foam material that may adversely affect the human body and the environment. Only catalysts that do not fall under PUR can be used. 1 type may be used independently and 2 or more types may be used together.
  • carboxylic acid metal salts such as potassium acetate and potassium 2-ethylhexanoate
  • organometallic compounds such as stannous octoate and dioctyltin dilaurate
  • triethylenediamine bis (2-dimethylaminoethyl) ether, N, N, N And tertiary amines such as', N'-tetramethylhexamethylenediamine.
  • the amount of the urethanization catalyst used is preferably 0.001 to 5 parts by mass, more preferably 0.01 to 3 parts by mass with respect to 100 parts by mass of the polyol mixture (X).
  • the foaming reaction is easily controlled if it is below the upper limit of the above range, and it is preferable if it is above the lower limit of the above range since the curing of the flexible polyurethane foam is good.
  • dioctyltin dilaurate As the organometallic compound, it is preferable to use dioctyltin dilaurate.
  • dioctyltin dilaurate When dioctyltin dilaurate is used, it is preferably 0.01 to 3 parts by weight, more preferably 0.03 to 2 parts by weight, and more preferably 0.05 to 1 part per 100 parts by weight of the polyol mixture (X). Part by mass is more preferable, and 0.07 to 0.5 part by mass is most preferable. If it is below the upper limit of the above range, shrinkage of the flexible polyurethane foam is suppressed, and if it is above the lower limit of the above range, settling of the flexible polyurethane foam is suppressed, and a flexible polyurethane foam having a good appearance can be produced. This is preferable.
  • the urethanization catalyst preferably uses a tertiary amine in combination with an organometallic compound.
  • the compatibility between the foaming agent and the polyisocyanate compound is improved, and small homogeneous foams are generated at the time of foaming, which is preferable.
  • the tertiary amines triethylenediamine is preferable from the viewpoint of easy control of the foaming behavior and economy.
  • the amount is preferably 0.01 to 3 parts by weight, more preferably 0.05 to 2 parts by weight, with respect to 100 parts by weight of the polyol mixture (X). 1 part by mass is more preferable, and 0.2 to 0.5 part by mass is most preferable.
  • the foaming reaction is easily controlled to be below the upper limit of the above range, and it is preferable to be above the lower limit of the above range because the curability is good.
  • foam stabilizer examples include silicone foam stabilizers and fluorine foam stabilizers. Of these, silicone-based foam stabilizers are preferred. Of the silicone foam stabilizers, silicone foam stabilizers based on polyoxyalkylene / dimethylpolysiloxane copolymers are preferred.
  • the foam stabilizer may be a polyoxyalkylene / dimethylpolysiloxane copolymer alone or a mixture containing other combined components. Examples of other combined components include polyalkylmethylsiloxane, glycols, polyoxyalkylene compounds and the like.
  • a foam stabilizer mixture containing a polyoxyalkylene / dimethylpolysiloxane copolymer, a polyalkylmethylsiloxane and a polyoxyalkylene compound is particularly preferred from the viewpoint of excellent stability of the flexible polyurethane foam.
  • the foam stabilizer mixture include SZ-1127, L-580, L-582, L-520, SZ-1919, L-5740S, L-5740M, SZ-1111, SZ- manufactured by Toray Dow Corning.
  • F-114, F-121 manufactured by Shin-Etsu Chemical Co., Ltd. F-122, F-348, F-341, F-502, F-506, F-607, F-606, etc., GE Toshiba Silicones Y-10366, L-5309, TFA-4200, TFA- 4202 and the like, and B-8110, B-8017, B-4113, B-8727LF, B-8715LF, B-8404, B-8462 and the like manufactured by Goldschmidt.
  • Two or more types of foam stabilizers may be used in combination, or a foam stabilizer other than the specific foam stabilizer may be used in combination.
  • the amount of the foam stabilizer used is preferably 0.01 to 2 parts by mass and more preferably 0.1 to 0.5 parts by mass with respect to 100 parts by mass of the polyol mixture (X).
  • Foaming agent known foaming agents such as fluorinated hydrocarbons can be used, and at least one selected from the group consisting of water and an inert gas is preferable.
  • the inert gas include air, nitrogen, carbon dioxide gas, and the like. Among these, water is the most preferable in consideration of the environment.
  • the amount of the foaming agent used is preferably 10 parts by mass or less, more preferably 0.1 to 4 parts by mass with respect to 100 parts by mass of the polyol mixture (X) when water is used.
  • additives can be used in addition to the urethanization catalyst, the foaming agent and the foam stabilizer described above.
  • Additives include fillers such as potassium carbonate and barium sulfate; surfactants such as emulsifiers; anti-aging agents such as antioxidants and ultraviolet absorbers; flame retardants, plasticizers, colorants, anti-fungal agents, and foam breaking Agents, dispersants, discoloration inhibitors and the like.
  • the antioxidant used in the present invention is not particularly limited, and a commercially available antioxidant may be arbitrarily selected and used. Specific examples include dibutylhydroxytoluene (BHT), octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate (trade name, IRGANOX 1076, manufactured by BASF Japan Ltd.), pentaerythris Lityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (trade name, IRGANOX 1010, manufactured by BASF Japan), 4,4′-bis ( ⁇ , ⁇ -dimethylbenzyl) ) Diphenylamine (trade name, non-flex DCD, manufactured by Seiko Chemical Co., Ltd.) and the like can be exemplified, but are not limited thereto.
  • BHT dibutylhydroxytoluene
  • IRGANOX 1076 octadecyl
  • the types of antioxidants used may be used alone or in combination of two or more.
  • the addition concentration of the antioxidant is preferably 50 to 20,000 ppm, more preferably 100 to 10,000 ppm, still more preferably 500 to 8,000 ppm, and more preferably 1,000 to 6,6 in the polyol mixture (X). 000 ppm is particularly preferred.
  • the antioxidant in the polyol mixture (X) in the above-mentioned lower limit value or more in the above range, it is possible to suppress foam scorch due to heat generation during foaming, and by setting it to the upper limit value or less in the above-mentioned range. , Collapse and the like are suppressed, and good foaming stability can be secured.
  • a method for forming the flexible polyurethane foam obtained by the present invention a method of foaming the reactive mixture in an open system (slab method), even a method of injecting the reactive mixture into a closed mold and foam molding (mold method)
  • the slab method is preferable. Specifically, it can be performed by a known method such as a one-shot method, a semi-prepolymer method, or a prepolymer method.
  • a commonly used production apparatus can be used for production of the flexible polyurethane foam.
  • the reactivity of the reactive mixture is preferably moderate. If the reactivity is too high, a flexible polyurethane foam with poor appearance will be formed. If the reactivity is too low, the productivity is poor.
  • the flexible polyurethane foam obtained by the present invention is characterized by low resilience, and its core rebound resilience is preferably 20% or less, more preferably 18% or less, particularly preferably 15% or less, and 12% or less. Most preferred. By setting the core rebound resilience to 20% or less, sufficient low resilience is exhibited. Usually, the lower limit is 0%.
  • the core impact resilience is measured by a method based on JIS K6400 (1997 edition). Further, the “core” in the present invention is a portion obtained by removing the skin portion from the central portion of the flexible polyurethane foam.
  • the flexible polyurethane foam obtained by the present invention has good durability.
  • the durability index is expressed by compressive residual strain and wet heat compressive residual strain.
  • the compressibility was measured at 50% and 90%.
  • the flexible polyurethane foam obtained by the present invention has a small wet heat compression residual strain, which is an index of durability particularly in a steamed state.
  • the measurement of the compressive residual strain and the wet heat compressive residual strain is performed by a method based on JIS K6400 (1997 edition).
  • the compression residual strain with a compression rate of 50% is preferably 10% or less, more preferably 6% or less, particularly preferably 5% or less, and most preferably 4% or less.
  • the compressive residual strain at a compression rate of 90% is preferably 20% or less, more preferably 15% or less, particularly preferably 12% or less, and most preferably 10% or less.
  • the wet heat compression residual strain at a compression rate of 50% is preferably 15% or less, more preferably 10% or less, particularly preferably 5% or less, and most preferably 4% or less.
  • the wet heat compression residual strain at a compression rate of 90% is preferably 20% or less, more preferably 15% or less, particularly preferably 12% or less, and most preferably 10% or less.
  • Core density of the flexible polyurethane foam obtained by the present invention is preferably 10 ⁇ 110kg / m 3, more preferably from 10 ⁇ 80kg / m 3, particularly preferably 10 ⁇ 50kg / m 3.
  • the flexible polyurethane foam obtained by the present invention is characterized in that it foams stably even at a low density, is easy to produce, and has excellent durability.
  • Polyol A1 In the presence of a potassium hydroxide catalyst, propylene oxide was subjected to ring-opening polymerization to a number average molecular weight of 1,000 using dipropylene glycol as an initiator, and then purified with magnesium silicate to produce an initiator (a1). Next, an average number of hydroxyl groups of 2 and a hydroxyl value of 14 mgKOH / g obtained by ring-opening addition polymerization of propylene oxide to the initiator (a1) in the presence of a zinc hexacyanocobaltate-tert-butyl alcohol complex catalyst as a DMC catalyst. Polyoxypropylene polyol.
  • Polyol B1 A polyoxypropylene polyol having an average number of hydroxyl groups of 2 and a hydroxyl value of 160 mgKOH / g, obtained by ring-opening addition polymerization of propylene oxide using potassium hydroxide catalyst and dipropylene glycol as an initiator.
  • Polyol B2 A polyoxypropylene polyol having an average number of hydroxyl groups of 3 and a hydroxyl value of 168 mgKOH / g, obtained by ring-opening addition polymerization of propylene oxide using glycerol as an initiator using a potassium hydroxide catalyst.
  • Polyol C1 obtained by ring-opening addition polymerization of a mixture of propylene oxide and ethylene oxide using glycerin as an initiator using a potassium hydroxide catalyst, the average number of hydroxyl groups is 3, the hydroxyl value is 48 mgKOH / g, all oxyethylene groups are contained A polyoxypropylene oxyethylene polyol having an amount of 80% by mass.
  • Monool D1 The average number of hydroxyl groups obtained by ring-opening addition polymerization of propylene oxide using a zinc hexacyanocobaltate-tert-butyl alcohol complex catalyst with n-butyl alcohol as an initiator and a hydroxyl value of 16. 7 mg KOH / g polyoxypropylene monool.
  • Foaming agent water.
  • Catalyst A Dioctyltin dilaurate (manufactured by Nitto Kasei Co., Ltd., trade name: Neostan U-810)
  • Catalyst B Dibutyltin dilaurate (manufactured by Nitto Kasei Co., Ltd., trade name: Neostan U-100).
  • Catalyst C Tin 2-ethylhexanoate (manufactured by Air Products and Chemicals, trade name: DABCO T-9).
  • Catalyst D Dipropylene glycol solution of triethylenediamine. (Product name: TEDA-L33, manufactured by Tosoh Corporation).
  • Foam stabilizer A Silicone foam stabilizer (manufactured by Toray Dow Corning, trade name: SRX-298).
  • Foam stabilizer B Silicone foam stabilizer (manufactured by Toray Dow Corning, trade name: SZ-1327).
  • Examples 1 to 7 Among the raw materials and compounding agents shown in Table 1 and Table 2, the liquid temperature of the mixture of all raw materials other than the polyisocyanate compound (sometimes referred to as “polyol system liquid”) is adjusted to 23 ° C. ⁇ 1 ° C. The compound was adjusted to a liquid temperature of 23 ° C. ⁇ 1 ° C. A predetermined amount of polyisocyanate compound is added to the polyol system liquid, and mixed for 5 seconds with a mixer (3000 revolutions per minute).
  • a mixer 3000 revolutions per minute
  • the upper part is open 600 mm in length, 600 mm in width, and height was poured into a wooden box covered with a 400 mm vinyl sheet to produce a flexible polyurethane foam (slab foam).
  • the produced flexible polyurethane foam was taken out and allowed to stand for 24 hours or more in a room adjusted to room temperature (23 ° C.) and humidity 50% RH, and various physical properties were measured.
  • the measurement results are shown in Tables 1 and 2. Examples 1 to 5 are examples, and examples 6 to 7 are comparative examples.
  • the core density and core rebound resilience were measured by a method based on JIS K6400 (1997 edition).
  • the flexible polyurethane foam was cut into a size of 250 mm in length and width, and 50 mm in height, excluding the skin portion from the center portion, and used for the measurement.
  • Certi-PUR environmental test The environmental test of Certi-PUR was performed as follows. 1 g (about 5 mm square) of the produced flexible polyurethane foam was immersed in 50 g of an artificial sweat solution and subjected to ultrasonic waves at 40 ° C. for 1 hour. The obtained artificial sweat solution was used as a measurement solution, and the measurement solution was quantitatively analyzed by gas chromatography mass spectrometry by an analysis method according to German standard DIN 38407-13.
  • the evaluation result is confirmed that the speci-PUR spec value of tributyltin is 50 ppb, dibutyltin is 100 ppb, monobutyltin is 100 ppb or more x (bad), tributyltin is 50 ppb, dibutyltin is 100 ppb, monobutyltin is less than 100 ppb If it was, it was rated as “Good”.
  • the artificial sweat solution is an aqueous solution prepared by adjusting the following three components to pH 5.5 with a 0.1 mol / L sodium hydroxide aqueous solution in accordance with ISO 105-E104 (1994).
  • ⁇ L-histidine onohydrochloride monohydrate 0.5g / L ⁇ Sodium dihydrogen phosphate dihydrate 2.2g / L ⁇ Salt 5g / L
  • the flexible polyurethane foams of Examples 1-5 produced using the specific polyols (A), (B) and monool (D) and using dioctyltin dilaurate not corresponding to Certi-PUR as the urethanization catalyst are shown in Table 1.
  • Table 1 As shown in Fig. 2, even if the urethanization catalyst is dioctyltin dilaurate, it is excellent in mechanical properties such as low resilience and elongation, which are optimal for mattresses, etc., and 50% compression residual strain and 50% wet heat compression residue are indicators of durability.
  • the strain is as small as 10% or less, the 90% compression residual strain and the 90% compression residual strain are as small as 20% or less, and the durability is good.
  • Example 6 This is equivalent to Example 6 produced using dibutyltin dilaurate which meets the requirements of Certi-PUR.
  • a low-density flexible polyurethane foam could be stably obtained.
  • the reactive mixture had a relatively long cream time, had a favorable reactivity, and was excellent in workability.
  • the flexible polyurethane foam of Example 6 manufactured using dibutyltin dilaurate which meets the regulations of Certi-PUR as a urethanization catalyst is excellent in low resilience, mechanical properties, etc., but the cream time of the reactive mixture is short, Since the reactivity was too high, the appearance was poor.
  • Example 7 using tin 2-ethylhexanoate as the urethanization catalyst, a flexible polyurethane foam having a core density of 34 kg / m 3 could not be produced.
  • the flexible polyurethane foam obtained by the present invention has low resilience and is suitable as a shock absorber, a sound absorber, and a vibration absorber, and bedding, mats, cushions, seat cushions for automobiles, back materials, and frame lamination. It is also suitable as a skin wadding material. It is particularly suitable for bedding (mattress, pillow, etc.).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

 ウレタン化触媒としてジブチルスズジラウレートを用いずに、低反発性に優れ、かつ低密度の軟質ポリウレタンフォームの製造方法を提供する。 開始剤にアルキレンオキシドを開環付加重合させて得られた、平均水酸基数が2~3、水酸基価が10~60mgKOH/g、オキシエチレン基含有量が0~30質量%であるポリオキシアルキレンポリオールであるポリオール(A)と、平均水酸基数が2~3、水酸基価が100~250mgKOH/gであるポリオキシアルキレンポリオールであるポリオール(B)と、水酸基価が10~200mgKOH/gであるポリオキシアルキレンモノオールであるモノオール(D)を含むポリオール混合物(X)とポリイソシアネート化合物とを、ウレタン化触媒としてジオクチルスズジラウレート、発泡剤等の存在下、イソシアネート指数90以上で反応させる軟質ポリウレタンフォームの製造方法。

Description

軟質ポリウレタンフォームの製造方法
 本発明は、低反発性の軟質ポリウレタンフォームの製造方法に関する。
 従来、反発弾性率の低い、すなわち低反発性の軟質ポリウレタンフォームは、衝撃吸収体、吸音体、振動吸収体などとして用いられている。また、椅子のクッション材、マットレス等に用いた時に、体圧分布がより均一になり、疲労感、床ずれ等が軽減されることが知られている。その例としては、特許文献1に記載された低反発性ポリウレタンフォームが知られている。
 一方、ヨーロッパにおいては、軟質ポリウレタンフォームの事業者団体であるEUROPURが人体および環境へ悪影響を及ぼす懸念のある物質の使用を制限する目的で定めた自主規制であるCerti-PURがあり、トリブチルスズ、ジブチルスズ、およびモノブチルスズが該当する。特許文献1に記載のようにジブチルスズジラウレートをウレタン化触媒として使用すると、ジブチルスズが軟質ポリウレタンフォームの表面に溶出する可能性があるため、ジブチルスズジラウレートに替わる触媒を使用することが求められている。
国際公開第2008/050841号
 本発明は、ウレタン化触媒としてジブチルスズジラウレートを用いずに、低反発性に優れかつ低密度の軟質ポリウレタンフォームの製造方法を提供する。
 本発明は、下記[1]~[10]の発明である。
[1]ポリオール混合物(X)とポリイソシアネート化合物とを、ウレタン化触媒、発泡剤および整泡剤の存在下で反応させて軟質ポリウレタンフォームを製造する方法において、
 ポリオール混合物(X)が、下記ポリオール(A)、下記ポリオール(B)および下記モノオール(D)を含み、
 原料中の全活性水素含有化合物とポリイソシアネート化合物との割合がイソシアネート指数で90以上であって、
 ウレタン化触媒が、ジオクチルスズジラウレートを含むことを特徴とする軟質ポリウレタンフォームの製造方法。
ポリオール(A):平均水酸基数が2~3、水酸基価が10~60mgKOH/g、オキシエチレン基含有量が0~30質量%であるポリオキシアルキレンポリオール、
ポリオール(B):平均水酸基数が2~3、水酸基価が100~250mgKOH/gであるポリオキシアルキレンポリオール、
モノオール(D):水酸基価が10~200mgKOH/gであるポリオキシアルキレンモノオール。
[2]前記ポリオール(A)と前記ポリオール(B)との割合が、ポリオール(A)とポリオール(B)との合計の100質量部のうち、ポリオール(A)の割合が5~50質量部である[1]に記載の軟質ポリウレタンフォームの製造方法。
[3]前記モノオール(D)の割合が、前記ポリオール(A)と前記ポリオール(B)との合計の100質量部に対して、1~30質量部である[1]または[2]に記載の軟質ポリウレタンフォームの製造方法。
[4]前記モノオール(D)が、開始剤にプロピレンオキシドのみを開環付加重合させたポリオキシプロピレンモノオールである[1]~[3]のいずれか一項に記載の軟質ポリウレタンフォームの製造方法。
[5]前記ポリオール混合物(X)が、さらに下記ポリオール(C)を、ポリオール混合物全体の100質量部のうち2~10質量部含む、[1]~[4]のいずれか一項に記載の軟質ポリウレタンフォームの製造方法。
  ポリオール(C):平均水酸基数が2~6、水酸基価が10~60mgKOH/g、オキシエチレン基含有量が50~100質量%あるポリオキシアルキレンポリオール。
[6]前記ウレタン化触媒が、ポリオール混合物(X)の100質量部中に0.01~3.0質量部含まれる[1]~[5]のいずれか一項に記載の軟質ポリウレタンフォームの製造方法。
[7]前記発泡剤が水である[1]~[6]のいずれか一項に記載の軟質ポリウレタンフォームの製造方法。
[8]イソシアネート指数が90~130である[1]~[7]のいずれか一項に記載の軟質ポリウレタンフォームの製造方法。
[9]開放系で発泡させる方法(スラブ法)である[1]~[8]のいずれか一項に記載の軟質ポリウレタンフォームの製造方法。
[10][1]~[9]のいずれか一項に記載の方法で製造された軟質ポリウレタンフォームを用いたことを特徴とするマットレス。
 本発明は、ウレタン化触媒としてジオクチルスズジラウレートを使用し、人体および環境へ悪影響を及ぼす懸念のある物質を用いずに、低反発性に優れ、かつ低密度の軟質ポリウレタンフォームを製造できる。
 本発明における「反応性混合物」とは、ポリオール混合物、ポリイソシアネート化合物、ウレタン化触媒、発泡剤および整泡剤等の混合物である。
 本発明で得られる軟質ポリウレタンフォームは、ポリオール混合物(X)とポリイソシアネート化合物とを、ウレタン化触媒、発泡剤および整泡剤の存在下で反応させて製造する。以下、各原料について説明する。
 <ポリオール混合物(X)>
 本発明において用いるポリオール混合物(X)は、後述するポリオール(A)、ポリオール(B)およびモノオール(D)を含む。さらにポリオール(C)を含むことが好ましい。また、場合により、ポリオール(A)、ポリオール(B)、モノオール(D)以外のポリオール(以下、ポリオール(E)という)やモノオール(D)以外のモノオールを含んでもよい。以下、各ポリオールについて説明する。
 (ポリオール(A))
 本発明におけるポリオール(A)は、平均水酸基数が2~3、水酸基価が10~60mgKOH/gのポリオキシアルキレンポリオールである。このポリオキシアルキレンポリオールは、重合触媒存在下で開始剤にアルキレンオキシドを開環付加重合させて得られる。
 ポリオール(A)の製造に用いる重合触媒としては、アルカリ金属化合物触媒(ナトリウム系触媒、カリウム系触媒、セシウム系触媒等。)、カチオン重合触媒、複合金属シアン化物錯体触媒、ホスファゼニウム化合物等が挙げられる。触媒が入手安価の点からアルカリ金属触媒、低副生成物のポリオールが得られる点から複合金属シアン化錯体触媒が好ましい。
 ナトリウム系触媒、およびカリウム系触媒としては、ナトリウム金属、カリウム金属、ナトリウムアルコキシドまたはカリウムアルコキシド(ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムプロポキシド、カリウムメトキシド、カリウムエトキシド、カリウムプロポキシド等。)、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム等が挙げられる。
 セシウム系触媒としては、セシウム金属、セシウムアルコキシド(セシウムメトキシド、セシウムエトキシド、セシウムプロポキシド等。)、水酸化セシウム、炭酸セシウム等が挙げられる。
 カチオン重合触媒としては、MoO(diketonate)Cl、MoO(diketonate)OSOCF、トリフルオロメタンスルホン酸、三フッ化ホウ素、三フッ化ホウ素配位化合物(三フッ化ホウ素ジエチルエーテラート、三フッ化ホウ素ジブチルエーテラート、三フッ化ホウ素ジオキサネート、三フッ化ホウ素アセチックアンハイドレートまたは三フッ化ホウ素トリエチルアミン錯化合物。)、フッ素原子を含有する芳香族炭化水素基もしくはフッ素原子を含有する芳香族炭化水素オキシ基を少なくとも1個有するアルミニウムまたはホウ素化合物等が好ましい。
 フッ素原子を含有する芳香族炭化水素基としては、ペンタフルオロフェニル、テトラフルオロフェニル、トリフルオロフェニル、3,5-ビス(トリフルオロメチル)トリフルオロフェニル、3,5-ビス(トリフルオロメチル)フェニル、β-ペルフルオロナフチル、2,2’,2’’-ペルフルオロビフェニル等が挙げられる。
 フッ素原子を含有する芳香族炭化水素オキシ基としては、前記フッ素原子を含有する芳香族炭化水素基に酸素原子が結合した炭化水素オキシ基が好ましい。
 複合金属シアン化物錯体触媒(以下、「DMC触媒」とも記す。)は有機配位子を有する。有機配位子としてはtert-ブチルアルコール、n-ブチルアルコール、iso-ブチルアルコール、tert-ペンチルアルコール、iso-ペンチルアルコール、N,N-ジメチルアセトアミド、エチレングリコールモノ-tert-ブチルエーテル、エチレングリコールジメチルエーテル(グライムともいう。)、ジエチレングリコールジメチルエーテル(ジグライムともいう。)、トリエチレングリコールジメチルエーテル(トリグライムともいう。)、iso-プロピルアルコール、およびジオキサンが挙げられる。ジオキサンは、1,4-ジオキサンでも1,3-ジオキサンでもよいが、1,4-ジオキサンが好ましい。有機配位子は1種でもよく2種以上を組み合わせて用いてもよい。
 これらのうちでも、有機配位子としてtert-ブチルアルコ-ルを有することが好ましい。したがって、有機配位子の少なくとも一部としてtert-ブチルアルコ-ルを有するDMC触媒を用いることが好ましい。このようなDMC触媒は高活性であり、総不飽和度の低いポリオールを製造することができる。
 ポリオール(A)の製造に用いる開始剤としては、分子中の活性水素(アルキレンオキシドが反応しうる、水酸基やアミノ基の水素原子)の数が2または3である化合物を、単独で用いるか、または併用する。開始剤としては、多価アルコール類、多価フェノール類などの水酸基含有化合物が好ましい。活性水素の数が4以上である化合物を少量併用することもできる。活性水素数が2である化合物の具体例としては、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、ジエチレングリコール、ジプロピレングリコールなどの2価アルコールが挙げられる。また活性水素数が3である化合物の具体例としては、グリセリン、トリメチロールプロパンなどの3価アルコールが挙げられる。また、これらの化合物にアルキレンオキシド、好ましくはプロピレンオキシドを開環付加重合させて得られた高水酸基価ポリオキシアルキレンポリオールを用いることが好ましい。具体的には、水酸基数が2または3であって、水酸基1個当たりの分子量が200~500程度、すなわち水酸基価が110~280mgKOH/gの高水酸基価ポリオキシアルキレンポリオール(好ましくはポリオキシプロピレンポリオール)を用いることが好ましい。
 ポリオール(A)の製造に用いるアルキレンオキシドとしては、エチレンオキシド、プロピレンオキシド、1,2-エポキシブタン、2,3-エポキシブタン等が挙げられる。これらのうち、プロピレンオキシド、またはプロピレンオキシドとエチレンオキシドとの併用が好ましく、プロピレンオキシドのみが特に好ましい。すなわちポリオール(A)としては、開始剤にプロピレンオキシドのみを開環付加重合させたポリオキシプロピレンポリオールが好ましい。プロピレンオキシドのみを用いると、得られる軟質ポリウレタンフォームの加湿時の耐久性が向上するため好ましい。
 プロピレンオキシドとエチレンオキシドとを併用する場合、ブロック重合およびランダム重合のいずれの重合法を用いてもよい。さらにブロック重合とランダム重合の両者を組み合わせて製造することもできる。ブロック重合の場合、開環付加重合させる順序は、プロピレンオキシド、エチレンオキシドの順で付加するか、先にエチレンオキシドを付加し、プロピレンオキシド、エチレンオキシドの順に付加することが好ましい。この順番で開環付加重合することで、ポリオキシアルキレンポリオール(A)の水酸基の多くは一級水酸基となり、ポリオール(A)とポリイソシアネート化合物との反応性が高くなる。その結果、得られる軟質ポリウレタンフォームの成形性が良好になりやすく好ましい。末端はエチレンオキシドであることが好ましい。
 ポリオール(A)におけるオキシエチレン基含有量は30質量%以下が好ましく、15質量%以下が特に好ましい。また下限値は0質量%である。オキシエチレン基含有量を30質量%以下とすることで、加湿時における耐久性が良好となるため好ましい。
 本発明におけるポリオール(A)の平均水酸基数は2~3であり、より好ましくは2~2.7である。本発明における平均水酸基数とは、開始剤の活性水素数の平均値を意味する。平均水酸基数を2~3とすることにより、得られる軟質ポリウレタンフォームの圧縮残留歪み等の物性が良好となる。また、得られる軟質ポリウレタンフォームの伸びが良好となり、硬度が高くならず適度となり引張強度等の物性が良好となる。ポリオール(A)としては、水酸基数が2であるポリオキシアルキレンジオールを、ポリオール(A)の100質量部のうち50~100質量部用いることが、得られる軟質ポリウレタンフォームの感温性を抑制しやすい点で好ましい。特にポリオール(A)は、水酸基数が2であるポリオキシアルキレンジオールであることが好ましい。
 本発明におけるポリオール(A)の水酸基価は10~60mgKOH/gである。水酸基価を10mgKOH/g以上とすることで、コラップス(collapse)等を抑制し、軟質ポリウレタンフォームを安定して製造することができる。また水酸基価を60mgKOH/g以下とすることで、製造される軟質ポリウレタンフォームの柔軟性を損なわず、かつ、反発弾性率を低く抑えられる。ポリオール(A)の水酸基価は、10~50mgKOH/gがより好ましく、10~45mgKOH/gが最も好ましい。
 本発明におけるポリオール(A)は、ポリマー分散ポリオールであってもよい。
 本発明において、ポリオールがポリマー分散ポリオールであるとは、ポリオールをベースポリオール(分散媒)として、ポリマー微粒子(分散質)が安定に分散している分散系であることを意味する。
 ポリマー微粒子のポリマーとしては、付加重合系ポリマーまたは縮重合系ポリマーが挙げられる。付加重合系ポリマーは、たとえば、アクリロニトリル、スチレン、メタクリル酸エステル、アクリル酸エステル等のモノマーを単独重合または共重合して得られる。また、縮重合系ポリマーとしては、たとえば、ポリエステル、ポリウレア、ポリウレタン、ポリメチロールメラミン等が挙げられる。ポリオール中にポリマー微粒子を存在させることにより、ポリオールの水酸基価が低く抑えられ、軟質ポリウレタンフォームの硬度を高くすることができ、引張強度等の機械的物性向上に有効である。またポリマー分散ポリオール中のポリマー微粒子の含有割合は、特に制限なく、ポリオール(A)の100質量部に対して5質量部以下が好ましい。なお、ポリマー分散ポリオールのポリオールとしての諸物性(不飽和度、水酸基価等)は、ポリマー微粒子を除いたベースポリオールについて考えるものとする。
 (ポリオール(B))
 本発明におけるポリオール(B)は、平均水酸基数が2~3、水酸基価が100~250mgKOH/gであるポリオキシアルキレンポリオールである。このポリオキシアルキレンポリオールは、ポリオール(A)と同様に、重合触媒存在下で開始剤にアルキレンオキシドを開環付加重合させて得られる。
 ポリオール(B)の製造に用いる重合触媒としては、フォスファゼン化合物、ルイス酸化合物またはアルカリ金属化合物触媒、複合金属シアン化物錯体触媒が好ましく、このうちアルカリ金属化合物触媒が特に好ましい。アルカリ金属化合物触媒としては、水酸化カリウム、カリウムメトキシド等のカリウム化合物、セシウム金属、水酸化セシウム、炭酸セシウム、セシウムメトキシド等のセシウム化合物などのアルカリ金属化合物またはアルカリ金属水酸化物が好ましく挙げられる。
 ポリオール(B)の製造に用いる開始剤としては、分子中の活性水素数が2または3である化合物を、単独で用いるか、または併用する。活性水素の数が4以上である化合物を少量併用することもできる。活性水素数が2または3である化合物の具体例としては、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、ジエチレングリコール、ジプロピレングリコール、グリセリン、トリメチロールプロパン等の多価アルコール類;ビスフェノールA等の多価フェノール類;モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ピペラジン等のアミン類が挙げられる。このうち多価アルコール類が特に好ましい。また、これらの化合物にアルキレンオキシド、好ましくはプロピレンオキシドを開環付加重合させて得られた高水酸基価ポリオキシアルキレンポリオールを用いることが好ましい。
 ポリオール(B)の製造に用いるアルキレンオキシドとしては、エチレンオキシド、プロピレンオキシド、1,2-エポキシブタン、2,3-エポキシブタン等が挙げられる。このうち、プロピレンオキシド、またはプロピレンオキシドとエチレンオキシドとの併用が好ましく、プロピレンオキシドのみが特に好ましい。
 ポリオール(B)としては、オキシエチレン基含有量の低いポリオールが好ましく、そのオキシエチレン基含有量は0~20質量%が好ましく、0~10質量%がより好ましい。特にオキシアルキレン基としてオキシプロピレン基のみを有するポリオキシアルキレンポリオールが好ましい。このようなオキシエチレン基含有量の低いポリオールを用いると、得られる軟質ポリウレタンフォームの加湿時の耐久性が向上する。
 本発明におけるポリオール(B)の平均水酸基数は2~3である。平均水酸基数を2~3とすることにより、得られる軟質ポリウレタンフォームの圧縮残留歪み等の物性が適度となり、また、得られる軟質ポリウレタンフォームの伸びに優れ、硬度が適度となり引張強度等の物性に優れる。
 ポリオール(B)の平均水酸基数は、好ましくは2~2.7であり、2~2.6がより好ましい。ポリオール(B)の平均水酸基数を上記範囲とすることで反発弾性率を低くでき、かつ硬さ変化が小さい(感温性が低い)軟質ポリウレタンフォームが得られる。
 また、ポリオール(B)は平均水酸基数が2のポリオキシアルキレンジオールと、平均水酸基数が3のポリオキシアルキレントリオールを併用することが好ましく、ポリオール(B)の100質量部中に含まれる平均水酸基数が2のポリオキシアルキレンジオールの割合は、40質量部以上が好ましく、45質量部以上がより好ましい。
 本発明におけるポリオール(B)の水酸基価は100~250mgKOH/gである。水酸基価を100mgKOH/g以上とすることで、コラップス等を抑制し、軟質ポリウレタンフォームを安定して製造することができる。また水酸基価を250mgKOH/g以下とすることで、製造される軟質ポリウレタンフォームの柔軟性を損なわず、かつ、反発弾性率を低くできる。ポリオール(B)としては、水酸基価が100~200mgKOH/gであるポリオールを用いることが好ましい。
 本発明におけるポリオール(B)は、ポリマー分散ポリオールであってもよい。ポリマー微粒子のポリマーとしては、ポリオール(A)の項で説明したものと同様のものが例示できる。またポリマー分散ポリオール中のポリマー微粒子の含有割合は、特に制限なく、ポリオール(B)の100質量部に対して、0~10質量%が好ましい。
 (ポリオール(C))
 本発明におけるポリオール(C)は、平均水酸基数が2~6、水酸基価が10~60mgKOH/g、オキシエチレン基含有量が50~100質量%であるポリオキシアルキレンポリオールである。このポリオキシアルキレンポリオールは、ポリオール(A)やポリオール(B)と同様に、重合触媒存在下で開始剤にアルキレンオキシドを開環付加重合させて得られる。また、ポリオール(C)は、エチレンオキシドの多量化で得られるポリエチレングリコールであってもよい。ポリオール(C)を用いると、破泡効果が認められ、ポリオール(C)の添加は通気性の向上に効果がある。
 ポリオール(C)の製造に用いる重合触媒としては、前記重合触媒のうちでも特にアルカリ金属化合物触媒が好ましい。ポリオール(C)の製造に用いる開始剤としては、前記開始剤のうちでも特に多価アルコール類やアミン類が好ましい。
 開始剤である多価アルコール類としては、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、ジプロピレングリコール、グリセリン、ジグリセリン、ペンタエリスリトール等が挙げられる。開始剤であるアミン類としては、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ピペラジン等のアミン類が挙げられる。
 ポリオール(C)の製造に用いられるアルキレンオキシドとしては、エチレンオキシド、プロピレンオキシド、1,2-エポキシブタン、2,3-エポキシブタン等が挙げられる。また、ポリオール(C)のオキシアルキレン基におけるオキシエチレン含有量は50~100質量%であり、エチレンオキシドの単独使用、またはプロピレンオキシドとエチレンオキシドとの併用が好ましい。特に、ポリオール(C)としては、プロピレンオキシドおよびエチレンオキシドの混合物を開環付加重合させて得られるポリオールが好ましい。
 ポリオール(C)におけるオキシエチレン基含有量は50~100質量%であり、好ましくは55~95質量%であり、特に好ましくは60~90質量%である。ポリオール(C)におけるオキシエチレン基含有量を50質量%以上とすることで、ポリオール(C)を添加した際に高い通気性を確保できる。
 本発明においてポリオール(C)の平均水酸基数は2~6が好ましく、3~4がより好ましい。また、ポリオール(C)の水酸基価は10~60mgKOH/gが好ましく、15~50mgKOH/gがより好ましい。
 (モノオール(D))
 本発明におけるモノオール(D)は、水酸基価が10~200mgKOH/gであるポリオキシアルキレンモノオールである。このポリオキシアルキレンモノオールは、活性水素の数が1である開始剤を使用し、この開始剤にポリオール(A)やポリオール(B)と同様に重合触媒存在下でアルキレンオキシドを開環付加重合させて得られる。
 モノオール(D)の製造に用いる重合触媒としては、DMC触媒、フォスファゼン化合物、ルイス酸化合物またはアルカリ金属化合物触媒が好ましく、このうち複合金属シアン化物錯体触媒(DMC触媒)が特に好ましい。複合金属シアン化物錯体触媒としては、前記の複合金属シアン化物錯体触媒を使用できる。
 モノオール(D)の製造に用いる開始剤としては、活性水素原子を1個のみ有する化合物を用いる。その具体例としては、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、tert-ブチルアルコール等の1価アルコール類;フェノール、ノニルフェノール等の1価フェノール類;ジメチルアミン、ジエチルアミン等の2級アミン類等が挙げられる。また、前記ポリオール(A)等を製造するための高水酸基価ポリオキシアルキレンポリオールと同様に、目的とするモノオール(D)の水酸基価よりも高い水酸基価を有する高水酸基価ポリオキシアルキレンモノオールを開始剤として使用することもできる。
 モノオール(D)の製造に用いるアルキレンオキシドとしては、エチレンオキシド、プロピレンオキシド、1,2-エポキシブタン、2,3-エポキシブタン等が挙げられる。このうち、プロピレンオキシド、またはプロピレンオキシドとエチレンオキシドとの併用が好ましく、プロピレンオキシドのみが特に好ましい。すなわちモノオール(D)としては、開始剤にプロピレンオキシドのみを開環付加重合させたポリオキシプロピレンモノオールが好ましい。プロピレンオキシドのみを用いることは、得られる軟質ポリウレタンフォームの加湿時の耐久性が向上するため好ましい。
 本発明におけるモノオール(D)の平均水酸基数は1である。またモノオール(D)の水酸基価は10~200mgKOH/gであり、10~120mgKOH/gが好ましい。
 なお、本発明におけるポリオール混合物(X)は、モノオール(D)以外のモノオール(例えば水酸基価が200mgKOH/gを超えるポリオキシプロピレンモノオール)を含有していてもよいが、通常はモノオール(D)以外のモノオールは含有しない。本発明におけるポリオール混合物がモノオール(D)以外のモノオールを含有する場合であっても、ポリオール混合物の100質量部のうち、その割合は5質量部以下が好ましく、2質量部以下がより好ましい。
 (ポリオール(E))
 本発明におけるポリオール(E)は、ポリオール(A)、ポリオール(B)、ポリオール(C)以外のポリオールであり、例えば、ポリオール(B)よりも高水酸基価のポリオール、ポリオール(A)およびポリオール(B)よりも平均水酸基数が大きく、かつポリオール(C)よりもオキシエチレン含有量が高いポリオール、ポリオキシアルキレンポリオール以外の高分子量ポリオールなどが挙げられる。
 ポリオール(E)としては、平均水酸基数が2~6であり、水酸基価が300~1830mgKOH/gであるポリオールが好ましい。より好ましくは、ポリオール(E)の平均水酸基数が3~4、水酸基価が300~600mgKOH/gのポリオールである。このポリオールとしては、多価アルコール類、水酸基を2~6個有するアミン類、ポリオキシアルキレンポリオールが好ましい。このような高水酸基価のポリオールは、架橋剤として作用し、軟質ポリウレタンフォームの硬度等の機械的物性が向上する。特に発泡剤を多く使用して低密度(軽量)の軟質ポリウレタンフォームを製造しようとする場合にも、発泡安定性が良好となる。
 ポリオール(E)として使用できる多価アルコール類としては、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、ジプロピレングリコール、グリセリン、ジグリセリン、ペンタエリスリトール等が挙げられる。水酸基を2~6個有するアミン類としてはジエタノールアミン、トリエタノールアミン等が挙げられる。ポリオキシアルキレンポリオールとしては、ポリオール(B)などと同様に、開始剤にアルキレンオキシドを開環付加重合させて得られたポリオキシアルキレンポリオールが挙げられる。ポリオキシアルキレンポリオールであるポリオール(E)の製造に用いられる開始剤としては、ポリオール(E)として用いてもよい多価アルコール類、またはポリオール(B)の製造に用いられる開始剤が例示できる。
 ポリオキシアルキレンポリオールであるポリオール(E)の製造に用いられるアルキレンオキシドとしては、エチレンオキシド、プロピレンオキシド、1,2-エポキシブタン、2,3-エポキシブタン等が挙げられる。このうち、プロピレンオキシド、またはプロピレンオキシドとエチレンオキシドとの併用が好ましく、プロピレンオキシドのみが特に好ましい。すなわちポリオキシアルキレンポリオールであるポリオール(E)としては、開始剤にプロピレンオキシドのみを開環付加重合させたポリオキシプロピレンポリオールが好ましい。ポリオール(E)としては、上記のうちポリオキシアルキレンポリオールが好ましく、ポリオキシプロピレンポリオールが特に好ましい。プロピレンオキシドのみを用いることは、得られる軟質ポリウレタンフォームの加湿時の耐久性が向上するため好ましい。ポリオール(E)としては、1種のみを用いても2種以上を併用してもよい。
 本発明においてポリオール(E)としては、上記平均水酸基数や水酸基価に限定されない、ポリエステルポリオールやポリカーボネートポリオールであってもよい。これらポリオールの平均水酸基数は2~3が好ましく、水酸基価は20~300mgKOH/gが好ましい。
 (ポリオール混合物(X)の配合比)
 本発明におけるポリオール混合物は、前記ポリオール(A)、ポリオール(B)およびモノオール(D)を含む。さらにこのポリオール混合物は前記ポリオール(C)を含むことが好ましい。
 本発明におけるポリオール混合物(X)において、前記ポリオール(A)と前記ポリオール(B)との割合は、ポリオール(A)とポリオール(B)との合計の100質量部のうち、ポリオール(A)の割合が、5~50質量部が好ましく、10~30質量部がより好ましい。ポリオール混合物(X)中のポリオール(A)の割合を上記の範囲とすることで、低反発で、温度変化に対する反発弾性率および硬さの変化が小さい(感温性の低い)軟質ポリウレタンフォームが得られる。
 またポリオール混合物(X)の100質量部のうち、ポリオール(A)とポリオール(B)との合計の割合は、70質量部以上が好ましく、75質量部以上がより好ましく、90質量部以上が特に好ましい。上限値は99質量部である。ポリオール混合物(X)中のポリオール(A)とポリオール(B)との合計の割合を上記の範囲とすることで、低反発性に優れ、耐久性に優れ、かつ、通気性の良好な軟質ポリウレタンフォームが得られる。
 またモノオール(D)の割合が、ポリオール(A)とポリオール(B)との合計の100質量部に対して、1~30質量部であることが好ましく、1~25質量部がより好ましく、1~10質量部であることが特に好ましい。モノオール(D)の割合を上記の範囲とすることで、低反発性に優れ、耐久性に優れ、かつ、通気性の良好な軟質ポリウレタンフォームが得られる。
 また、ポリオール混合物(X)がポリオール(C)を含有する場合、ポリオール混合物(X)の100質量部のうち、ポリオール(C)の割合は、10質量部以下が好ましく、1~10質量部がより好ましく、1~8質量部が特に好ましい。ポリオール(C)を使用し、かつポリオール(C)の割合を上記の範囲とすることで、得られる軟質ポリウレタンフォームの通気性を向上させることができる。
 また、ポリオール混合物(X)はポリオール(E)を含有する必要性は少ないが、ポリオール(E)を使用する場合は、ポリオール混合物(X)の100質量部のうち、ポリオール(E)の割合は、10質量部以下が好ましく、5質量部以下がより好ましく、2質量部以下が特に好ましい。
 本発明において、ポリオール混合物(X)(100質量部)の好ましい組成の具体例は、ポリオール(A)を10~30質量部、ポリオール(B)を50~80質量部、ポリオール(C)を0~10質量部、モノオール(D)を1~24質量部、ポリオール(E)を0~5質量部である。さらに好ましいポリオール混合物(X)の組成は、ポリオール(A)を15~30質量部、ポリオール(B)を60~75質量部、ポリオール(C)を1~8質量部、モノオール(D)を1~10質量部、ポリオール(E)を0~2質量部である。特に好ましいポリオール混合物(X)の組成は、ポリオール(A)を20~25質量部、ポリオール(B)を60~70質量部、ポリオール(C)を1~7質量部、モノオール(D)を1~7質量部、ポリオール(E)を0質量部である。
 ポリオール混合物(X)に含まれる触媒残渣としてのZnおよびCoの合計量は、0.1~200ppmであり、0.5~100ppmが好ましく、1~50ppmが特に好ましい。ZnおよびCoを合計量で0.1~200ppm含むことにより、軟質ポリウレタンフォームの製造時の発泡安定性が向上し、セル荒れおよびフォームの収縮を抑えることができる。また、得られる軟質ポリウレタンフォームの難燃性が向上する。
 ポリオール混合物(X)中に含まれるZnおよびCoの合計量は、下記の方法より求める。
(ZnおよびCoの合計量の測定方法)
 ポリオール混合物の20gを白金皿に秤量し、ガスバーナーを用いて燃焼、灰化させた後、さらに600℃の電気炉にて完全に灰化させる。灰化残渣を6N塩酸の2mLに溶解させ、蒸留水にて100mLに定溶し、灰化残渣に含まれるZnおよびCoの量を原子吸光光度計にて測定する。ZnおよびCoの定量は、金属標準液で作成した検量線から求める。
 ポリオール混合物(X)にZnおよびCoを含ませる方法としては、(i)未精製のポリオール(A)、すなわちDMC触媒が残存しているポリオール(A)を用いる方法、(ii)DMC触媒を用いて製造された、未精製の他のポリオール等が挙げられる。なお、ポリオール混合物(X)中にZnおよびCoが合計で0.1~200ppmが含まれていればよく、特に方法は問わない。
 ポリオール混合物(X)中にZnおよびCoを含有させるために使用されるDMC触媒としては、得られる軟質ポリウレタンフォームのセル荒れおよびフォームの収縮を抑える効果が高いことから、亜鉛ヘキサシアノコバルテート-t-ブチルアルコール錯体触媒、亜鉛ヘキサシアノコバルテート-エチレングリコールジメチルエーテル錯体触媒が好ましい。
 <ポリイソシアネート化合物>
 本発明において用いられるポリイソシアネート化合物としては、特に制限はなく、イソシアネート基を2以上有する芳香族系、脂環族系、脂肪族系等のポリイソシアネート;前記ポリイソシアネートの2種類以上の混合物;これらを変性して得られる変性ポリイソシアネート等が挙げられる。
 ポリイソシアネート化合物の具体例としては、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ポリメチレンポリフェニルポリイソシアネート(通称:クルードMDI)、キシリレンジイソシアネート(XDI)、イソホロンジイソシアネート(IPDI)、ヘキサメチレンジイソシアネート(HMDI)等が挙げられる。また変性ポリイソシアネートの具体例としては、上記各ポリイソシアネートのプレポリマー型変性体、ヌレート変性体、ウレア変性体、カルボジイミド変性体等が挙げられる。これらのうちでも、TDI、MDI、クルードMDI、またはこれらの変性体が好ましい。さらにこれらのうち、TDI、クルードMDIまたはその変性体(特にプレポリマー型変性体が好ましい。)を用いると発泡安定性が向上し、耐久性が向上する等の点で好ましい。特にTDI、クルードMDIまたはその変性体のうち、反応性が比較的低いポリイソシアネート化合物を用いると通気性が向上し好ましい。具体的には2,6-TDIの割合の多い(30質量%以上が特に好適である。)TDI混合物が好ましい。
 ポリイソシアネート化合物の使用量は、原料中の全活性水素含有化合物とポリイソシアネート化合物の割合がイソシアネート指数で90以上となる量が好ましい。原料とは、ポリオール混合物(X)、ポリイソシアネート化合物、ウレタン化触媒、発泡剤および製泡剤をいう。活性水素含有化合物とは、ポリオール混合物(X)、および発泡剤として使用しうる水等をいう。イソシアネート指数とは、ポリイソシアネート化合物のイソシアネート基の当量を、ポリオール、モノオール、水等の原料中の全活性水素含有化合物中の全ての活性水素の合計の当量で除した数値の100倍で表される。
 本発明の軟質ポリウレタンフォームの製造方法においては、原料中の全活性水素含有化合物とポリイソシアネート化合物との割合を、イソシアネート指数で90以上とする。上記割合がイソシアネート指数で90以上であると、ポリオール、モノオールが適度に用いられ、可塑剤としての影響が小さく、洗濯耐久性が良好となり好ましい。またウレタン化触媒が放散しにくく、製造された軟質ポリウレタンフォームが変色しにくい等の点でも好ましい。上記割合はイソシアネート指数で90~130が好ましく、95~110がより好ましい。
 <ウレタン化触媒>
 ポリオール混合物(X)とポリイソシアネート化合物とを反応させるウレタン化触媒としては、ウレタン化反応を促進させる触媒のうち、軟質ポリウレタンフォームの人体および環境へ悪影響を及ぼす懸念のある物質の使用を制限するCerti-PURに該当しない触媒のみを使用することができる。1種を単独で用いてもよく、2種以上を併用してもよい。
 たとえば、酢酸カリウム、2-エチルヘキサン酸カリウム等のカルボン酸金属塩;スタナスオクトエート、ジオクチルスズジラウレート等の有機金属化合物;トリエチレンジアミン、ビス(2-ジメチルアミノエチル)エーテル、N,N,N’,N’-テトラメチルヘキサメチレンジアミン等の3級アミン類が挙げられる。
 ウレタン化触媒の使用量は、ポリオール混合物(X)の100質量部に対して、0.001~5質量部が好ましく、0.01~3質量部がより好ましい。上記範囲の上限値以下であると発泡反応の制御が容易であり、上記範囲の下限値以上であると軟質ポリウレタンフォームのキュアー(curing)が良好であるので好ましい。
 有機金属化合物としては、ジオクチルスズジラウレートを使用するのが好ましい。ジオクチルスズジラウレートを使用する場合、ポリオール混合物(X)の100質量部に対して、0.01~3質量部であるのが好ましく、0.03~2質量部がより好ましく、0.05~1質量部がさらに好ましく、0.07~0.5質量部が最も好ましい。上記範囲の上限値以下であると軟質ポリウレタンフォームの収縮が抑制され、上記範囲の下限値以上であると軟質ポリウレタンフォームのセトリング(settling)が抑制され、良好な外観の軟質ポリウレタンフォームが製造可能であるので好ましい。
 ウレタン化触媒は、有機金属化合物に3級アミン類を併用するのが好ましい。発泡剤とポリイソシアネート化合物の相溶性がよくなり、発泡時に小さな均質な泡が生成するので、好ましい。3級アミン類としては、発泡挙動の制御が容易であり、かつ経済的な点から、トリエチレンジアミンが好ましい。3級アミン類を併用する場合、ポリオール混合物(X)の100質量部に対して、0.01~3質量部であるのが好ましく、0.05~2質量部がより好ましく、0.1~1質量部がさらに好ましく、0.2~0.5質量部が最も好ましい。上記範囲の上限値以下であると発泡反応の制御が容易であり、上記範囲の下限値以上であると硬化性が良好であるので好ましい。
 <整泡剤>
 整泡剤としては、シリコーン系整泡剤、フッ素系整泡剤等が挙げられる。これらのうち、シリコーン系整泡剤が好ましい。シリコーン系整泡剤のうち、ポリオキシアルキレン・ジメチルポリシロキサンコポリマーを主成分とするシリコーン系整泡剤が好ましい。整泡剤は、ポリオキシアルキレン・ジメチルポリシロキサンコポリマー単独であっても、これに他の併用成分を含んだ混合物であってもよい。他の併用成分としては、ポリアルキルメチルシロキサン、グリコール類、ポリオキシアルキレン化合物等が挙げられる。整泡剤としては、ポリオキシアルキレン・ジメチルポリシロキサンコポリマー、ポリアルキルメチルシロキサンおよびポリオキシアルキレン化合物を含む整泡剤混合物が、軟質ポリウレタンフォームの安定性に優れる点から特に好ましい。該整泡剤混合物としては、たとえば、東レダウコーニング社製のSZ-1127、L-580、L-582、L-520、SZ-1919、L-5740S、L-5740M、SZ-1111、SZ-1127、SZ-1162、SZ-1105、SZ-1328、SZ-1325、SZ-1330、SZ-1306、SZ-1327、SZ-1336、SZ-1339、L-3601、SZ-1302、SH-192、SF-2909、SH-194、SH-190、SRX-280A、SRX-298、SF-2908、SF-2904、SRX-294A、SF-2965、SF-2962、SF-2961、SRX-274C、SF-2964、SF-2969、PRX-607、SZ-1711、SZ-1666、SZ-1627、SZ-1710、L-5420、L-5421、SZ-1669、SZ-1649、SZ-1654、SZ-1642、SZ-1720、SH-193等、信越化学工業社製のF-114、F-121、F-122、F-348、F-341、F-502、F-506、F-607、F-606等、GE東芝シリコーン社製のY-10366、L-5309、TFA-4200、TFA-4202等、ゴールドシュミット社製のB-8110、B-8017、B-4113、B-8727LF,B-8715LF、B-8404、B-8462等が挙げられる。整泡剤は、2種類以上併用してもよく、また前記特定の整泡剤以外の整泡剤を併用してもよい。
 整泡剤の使用量は、ポリオール混合物(X)の100質量部に対して、0.01~2質量部が好ましく、0.1~0.5質量部がより好ましい。
 <発泡剤>
 発泡剤としては、フッ素化炭化水素等の公知の発泡剤が使用でき、水および不活性ガスからなる群から選ばれた少なくとも1種が好ましい。不活性ガスとしては、具体的には、空気、窒素、炭酸ガス等が好ましく挙げられる。これらのうちでも、環境への配慮から水がもっとも好ましい。
 発泡剤の使用量は、水を使用する場合、ポリオール混合物(X)の100質量部に対して、10質量部以下が好ましく、0.1~4質量部がより好ましい。低密度の軟質ポリウレタンフォームを製造する場合、ポリオール混合物の100質量部に対して、0.5~5質量部の水を使用するのが好ましい。
 <その他の助剤>
 本発明において軟質ポリウレタンフォームを製造する際には、上述したウレタン化触媒、発泡剤、整泡剤以外に所望の添加物も使用できる。添加剤としては、炭酸カリウム、硫酸バリウム等の充填剤;乳化剤等の界面活性剤;酸化防止剤、紫外線吸収剤等の老化防止剤;難燃剤、可塑剤、着色剤、抗カビ剤、破泡剤、分散剤、変色防止剤等が挙げられる。
 本発明に用いる酸化防止剤としては、特に制限はなく、市販されている酸化防止剤を任意に選択して使用すれば良い。具体的な例としては、ジブチルヒドロキシトルエン(BHT)、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート(商品名、IRGANOX 1076、BASFジャパン社製)、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕(商品名、IRGANOX 1010、BASFジャパン社製)、4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン(商品名、ノンフレックスDCD、精工化学社製)等が例示できるが、これらに限定されるものではない。
 使用する酸化防止剤の種類は、単独でも、また2種類以上を組み合わせて使用しても良い。酸化防止剤の添加濃度は、ポリオール混合物(X)中に50~20,000ppmであることが好ましく、100~10,000ppmがより好ましく、500~8,000ppmがさらに好ましく、1,000~6,000ppmが特に好ましい。酸化防止剤をポリオール混合物中(X)中に上記範囲の下限値以上含むことにより、発泡時の発熱によるフォームの焼け(スコーチ)を抑制することができ、上記範囲の上限値以下とすることにより、コラップス等が抑制され良好な発泡安定性が確保できる。
 <発泡方法>
 本発明で得られる軟質ポリウレタンフォームの形成法としては、密閉された金型内に反応性混合物を注入し発泡成形する方法(モールド法)でも、開放系で反応性混合物を発泡させる方法(スラブ法)でもよく、スラブ法が好ましい。具体的には、ワンショット法、セミプレポリマー法、プレポリマー法等の公知の方法により行うことができる。軟質ポリウレタンフォームの製造には、通常用いられる製造装置を用いることができる。
 本発明で得られる軟質ポリウレタンフォームの形成は、反応性混合物の反応性が適度であることが好ましい。反応性が高すぎると、外観不良の軟質ポリウレタンフォームが形成されてしまう。反応性が低すぎると、生産性が悪い。
 <軟質ポリウレタンフォーム>
 本発明で得られる軟質ポリウレタンフォームは、低反発であることを特徴とし、そのコア反発弾性率は、20%以下が好ましく、18%以下がより好ましく、15%以下がとりわけ好ましく、12%以下が最も好ましい。コア反発弾性率を20%以下とすることで、充分な低反発性が発揮される。通常下限は0%である。コア反発弾性率の測定は、JIS K6400(1997年版)に準拠した方法で行う。また、本発明における「コア」とは、軟質ポリウレタンフォームの中央部から表皮部を除いた部分である。
 本発明で得られる軟質ポリウレタンフォームは耐久性が良好である。耐久性の指標は圧縮残留歪みおよび湿熱圧縮残留歪みで表され、本発明では圧縮率を50%と90%で測定した。本発明で得られる軟質ポリウレタンフォームは、特に蒸れた状態における耐久性の指標である湿熱圧縮残留歪みが小さい。なお圧縮残留歪みおよび湿熱圧縮残留歪みの測定はいずれもJIS K6400(1997年版)に準拠した方法で行う。
 本発明で得られる軟質ポリウレタンフォームにおいて、圧縮率50%の圧縮残留歪みは10%以下が好ましく、6%以下がより好ましく、5%以下がとりわけ好ましく、4%以下が最も好ましい。圧縮率90%での圧縮残留歪みは20%以下が好ましく、15%以下がより好ましく、12%以下がとりわけ好ましく、10%以下が最も好ましい。
 また本発明で得られる軟質ポリウレタンフォームにおいて、圧縮率50%での湿熱圧縮残留歪みは15%以下が好ましく、10%以下がより好ましく、5%以下が特に好ましく、4%以下が最も好ましい。圧縮率90%での湿熱圧縮残留歪みは20%以下が好ましく、15%以下がより好ましく、12%以下がとりわけ好ましく、10%以下が最も好ましい。
 本発明で得られる軟質ポリウレタンフォームのコア密度は、10~110kg/mが好ましく、10~80kg/mがより好ましく、10~50kg/mが特に好ましい。特に本発明で得られる軟質ポリウレタンフォームは、低密度においても安定して発泡し、製造が容易であり、かつ、耐久性に優れるという特徴を有する。
 以下、本発明を実施例により具体的に説明するが、本発明は下記例によって何ら限定されない。なお、実施例および比較例中の数値は質量部を示す。また、不飽和度の測定は、JIS K 1557(1970年版)に準拠した方法で実施した。
 (原料)
 ポリオールA1:水酸化カリウム触媒の存在下、ジプロピレングリコールを開始剤として数平均分子量1,000までプロピレンオキシドを開環重合させた後、珪酸マグネシウムで精製し、開始剤(a1)を製造した。次いで、DMC触媒である亜鉛ヘキサシアノコバルテート-tert-ブチルアルコール錯体触媒の存在下、前記開始剤(a1)にプロピレンオキシドを開環付加重合させて得られる、平均水酸基数2、水酸基価14mgKOH/gのポリオキシプロピレンポリオール。
  ポリオールB1:水酸化カリウム触媒を用いてジプロピレングリコールを開始剤として、プロピレンオキシドを開環付加重合させて得られる平均水酸基数が2、水酸基価が160mgKOH/gのポリオキシプロピレンポリオール。
  ポリオールB2:水酸化カリウム触媒を用いてグリセリンを開始剤として、プロピレンオキシドを開環付加重合させて得られる平均水酸基数が3、水酸基価が168mgKOH/gのポリオキシプロピレンポリオール。
  ポリオールC1:水酸化カリウム触媒を用いてグリセリンを開始剤として、プロピレンオキシドおよびエチレンオキシドの混合物を開環付加重合させて得られる、平均水酸基数が3、水酸基価が48mgKOH/g、全オキシエチレン基含有量が80質量%であるポリオキシプロピレンオキシエチレンポリオール。
  モノオールD1:n-ブチルアルコールを開始剤として、亜鉛ヘキサシアノコバルテート-tert-ブチルアルコール錯体触媒を用いて、プロピレンオキシドを開環付加重合させて得られる平均水酸基数が1、水酸基価が16.7mgKOH/gのポリオキシプロピレンモノオール。
 発泡剤:水。
  触媒A:ジオクチルスズジラウレート(日東化成社製、商品名:ネオスタンU-810)
  触媒B:ジブチルスズジラウレート(日東化成社製、商品名:ネオスタンU-100)。
  触媒C:2-エチルヘキサン酸スズ(エアプロダクツ アンド ケミカルズ社製、商品名:ダブコT-9)。
  触媒D:トリエチレンジアミンのジプロピレングリコール溶液。(東ソー社製、商品名:TEDA-L33)。
  整泡剤A:シリコーン系整泡剤(東レダウコーニング社製、商品名:SRX-298)。
  整泡剤B:シリコーン系整泡剤(東レダウコーニング社製、商品名:SZ-1327)。
 ポリイソシアネート化合物a:TDI-80(2,4-TDI/2,6-TDI=80/20質量%の混合物)、イソシアネート基含有量48.3質量%(日本ポリウレタン工業社製、商品名:コロネートT-80)。
 [例1~7]
 表1および表2に示した原料および配合剤のうち、ポリイソシアネート化合物以外の全原料の混合物(「ポリオールシステム液」ということもある)の液温を23℃±1℃に調整し、ポリイソシアネート化合物を液温23℃±1℃に調整した。ポリオールシステム液にポリイソシアネート化合物を所定量加えて、ミキサー(毎分3000回転)で5秒間混合し、室温(23℃)状態で上部が開放になっている縦が600mm、横が600mm、高さが400mmのビニールシートを敷きつめた木箱に注入し、軟質ポリウレタンフォーム(スラブフォーム)を製造した。製造された軟質ポリウレタンフォームを取り出して、室温(23℃)、湿度50%RHに調節された室内に24時間以上放置してから、各種物性の測定を行った。その測定結果を表1および表2に示す。なお例1~5は実施例、例6~7は比較例である。
 [評価方法]
 (クリームタイム、ライズタイム)
 ポリオールシステム液とポリイソシアネート化合物の混合を開始した時間を0sとし、0sから発泡反応の開始が目視で確認出来た時間をクリームタイム、0sから発泡が終了して軟質ポリウレタンフォーム上部からガス抜け(所謂ヘルシーバブル)が観測された時間をライズタイムとして、ストップウオッチで測定した。
 (コア密度、コア反発弾性率)
 コア密度、コア反発弾性率は、JIS K6400(1997年版)に準拠した方法で測定した。軟質ポリウレタンフォームの中央部から表皮部を除いて縦横各250mm、高さ50mmの大きさに切り出したものを測定に用いた。
 (25%硬さ、50%硬さ、65%硬さ、通気性、引張強度、伸び、引裂強度、ヒステリシスロス率、50%圧縮残留歪み、50%湿熱圧縮残留歪み、90%圧縮残留歪み、90%湿熱圧縮残留歪み)
 25%硬さ(ILD)、50%硬さ(ILD)、65%硬さ(ILD)、引張強度、伸び、引裂強度、ヒステリシスロス率、50%圧縮残留歪み、50%湿熱圧縮残留歪み、90%圧縮残留歪み、および90%湿熱圧縮残留歪みは、JIS K6400(1997年版)に準拠した方法で測定した。通気性はJIS K6400(1997年版)のB法に準拠した方法で測定した。
 (Certi-PUR環境試験)
 Certi-PURの環境試験は、次のように行った。製造した軟質ポリウレタンフォームの1g(約5mm角)を人工汗溶液50gに浸漬させ、40℃で1時間、超音波にかけた。得られた人工汗溶液を測定溶液とし、該測定溶液をドイツ規格DIN 38407-13に準ずる分析方法により、ガスクロマトグラフ質量分析にて定量分析した。評価結果は、Certi-PURのスペック値であるトリブチルスズが50ppb、ジブチルスズが100ppb、モノブチルスズが100ppb以上確認された場合は×(不良)、トリブチルスズが50ppb、ジブチルスズが100ppb、モノブチルスズが100ppb未満で確認された場合は○(良好)とした。
 なお、人工汗溶液とは、ISO 105-E104(1994)に準拠して、下記3成分を0.1mol/Lの水酸化ナトリウム水溶液により、pH5.5に調整した水溶液である。
・L-ヒスチジンオノ塩酸塩第一水和物 0.5g/L
・リン酸二水素ナトリウム二水和物 2.2g/L
・食塩 5g/L
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 特定のポリオール(A)、(B)およびモノオール(D)を用い、ウレタン化触媒としてCerti-PURに該当しないジオクチルスズジラウレートを使用して製造した例1~5の軟質ポリウレタンフォームは、表1に示すように、ウレタン化触媒をジオクチルスズジラウレートにしても、マットレス等に最適な低反発性、伸び等の機械特性に優れ、耐久性の指標である50%圧縮残留歪みおよび50%湿熱圧縮残留歪みが10%以下と小さく、90%圧縮残留歪みおよび90%圧縮残留歪みが20%以下と小さく、耐久性が良好である。これはCerti-PURの規制に該当するジブチルスズジラウレートを使用して製造した例6と同等である。
 また、例1~5では、驚くべきことに、低密度の軟質ポリウレタンフォームを安定的に得ることが出来た。加えて、反応性混合物のクリームタイムが比較的長く、好ましい反応性を有し、作業性に優れる反応性混合物であることが確認できた。
 一方、ウレタン化触媒としてCerti-PURの規制に該当するジブチルスズジラウレートを使用して製造した例6の軟質ポリウレタンフォームは、低反発性、機械特性等に優れるが、反応性混合物のクリームタイムが短く、反応性が高すぎるため、外観不良であった。
 ウレタン化触媒として2-エチルヘキサン酸スズを使用した例7は、コア密度34kg/mの軟質ポリウレタンフォームを製造することができなかった。
 本発明で得られる軟質ポリウレタンフォームは、低反発性であり、衝撃吸収体、吸音体、振動吸収体として好適であり、また、寝具、マット、クッション、自動車用座席シートクッション、バック材、フレームラミネーションによる表皮ワディング(wadding)材としても好適である。特に寝具(マットレス、枕等)に好適である。
 なお、2009年9月18日に出願された日本特許出願2009-217211号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (10)

  1.  ポリオール混合物(X)とポリイソシアネート化合物とを、ウレタン化触媒、発泡剤および整泡剤の存在下で反応させて軟質ポリウレタンフォームを製造する方法において、
     ポリオール混合物(X)が、下記ポリオール(A)、下記ポリオール(B)および下記モノオール(D)を含み、
     原料中の全活性水素含有化合物とポリイソシアネート化合物との割合がイソシアネート指数で90以上であって、
     ウレタン化触媒が、ジオクチルスズジラウレートを含むことを特徴とする軟質ポリウレタンフォームの製造方法。
     ポリオール(A):平均水酸基数が2~3、水酸基価が10~60mgKOH/g、オキシエチレン基含有量が0~30質量%であるポリオキシアルキレンポリオール、
     ポリオール(B):平均水酸基数が2~3、水酸基価が100~250mgKOH/gであるポリオキシアルキレンポリオール、
     モノオール(D):水酸基価が10~200mgKOH/gであるポリオキシアルキレンモノオール。
  2.  前記ポリオール(A)と前記ポリオール(B)との割合が、ポリオール(A)とポリオール(B)との合計の100質量部のうち、ポリオール(A)の割合が5~50質量部である請求項1に記載の軟質ポリウレタンフォームの製造方法。
  3.  前記モノオール(D)の割合が、前記ポリオール(A)と前記ポリオール(B)との合計の100質量部に対して、1~30質量部である請求項1または2に記載の軟質ポリウレタンフォームの製造方法。
  4.  前記モノオール(D)が、開始剤にプロピレンオキシドのみを開環付加重合させたポリオキシプロピレンモノオールである請求項1~3のいずれか一項に記載の軟質ポリウレタンフォームの製造方法。
  5.  前記ポリオール混合物(X)が、さらに下記ポリオール(C)を、ポリオール混合物全体の100質量部のうち2~10質量部含む、請求項1~4のいずれか一項に記載の軟質ポリウレタンフォームの製造方法。
     ポリオール(C):平均水酸基数が2~6、水酸基価が10~60mgKOH/g、オキシエチレン基含有量が50~100質量%あるポリオキシアルキレンポリオール。
  6.  前記ウレタン化触媒が、ポリオール混合物(X)の100質量部中に0.01~3.0質量部含まれる請求項1~5のいずれか一項に記載の軟質ポリウレタンフォームの製造方法。
  7.  前記発泡剤が水である請求項1~6のいずれか一項に記載の軟質ポリウレタンフォームの製造方法。
  8.  イソシアネート指数が90~130である請求項1~7のいずれか一項に記載の軟質ポリウレタンフォームの製造方法。
  9.  開放系で発泡させる方法(スラブ法)である請求項1~8のいずれか一項に記載の軟質ポリウレタンフォームの製造方法。
  10.  請求項1~9のいずれか一項に記載の方法で製造された軟質ポリウレタンフォームを用いたマットレス。
PCT/JP2010/066090 2009-09-18 2010-09-16 軟質ポリウレタンフォームの製造方法 WO2011034150A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10817263.6A EP2471830A4 (en) 2009-09-18 2010-09-16 PROCESS FOR THE PRODUCTION OF SOFT POLYURETHANE FOAM
CN2010800419392A CN102574975A (zh) 2009-09-18 2010-09-16 软质聚氨酯泡沫塑料的制造方法
JP2011531974A JP5720571B2 (ja) 2009-09-18 2010-09-16 軟質ポリウレタンフォームの製造方法
AU2010296403A AU2010296403A1 (en) 2009-09-18 2010-09-16 Process for production of flexible polyurethane foam
US13/419,556 US20120202908A1 (en) 2009-09-18 2012-03-14 Process for producing flexible polyurethane foam

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009217211 2009-09-18
JP2009-217211 2009-09-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/419,556 Continuation US20120202908A1 (en) 2009-09-18 2012-03-14 Process for producing flexible polyurethane foam

Publications (1)

Publication Number Publication Date
WO2011034150A1 true WO2011034150A1 (ja) 2011-03-24

Family

ID=43758750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066090 WO2011034150A1 (ja) 2009-09-18 2010-09-16 軟質ポリウレタンフォームの製造方法

Country Status (8)

Country Link
US (1) US20120202908A1 (ja)
EP (1) EP2471830A4 (ja)
JP (1) JP5720571B2 (ja)
KR (1) KR20120082407A (ja)
CN (1) CN102574975A (ja)
AU (1) AU2010296403A1 (ja)
TW (1) TW201116548A (ja)
WO (1) WO2011034150A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013021871A1 (ja) * 2011-08-05 2013-02-14 旭硝子株式会社 軟質ポリウレタンフォームの製造方法
WO2013043645A1 (en) * 2011-09-23 2013-03-28 Bayer Materialscience Llc A process for the production of high air flow polyether foams and the foams produced by this process
KR101319684B1 (ko) * 2011-06-07 2013-10-17 금호미쓰이화학 주식회사 내열성 변성 이소시아네이트 조성물 및 이를 포함하는 내열성을 갖는 파이프 단열용 폴리우레탄 발포체 조성물 및 그 발포방법
JP2020534390A (ja) * 2017-09-14 2020-11-26 ノースウェスタン ユニバーシティ ポリオールの製造プロセス

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2827211C (en) * 2011-02-14 2019-05-21 Dow Global Technologies Llc Low density polyurethane foams
MX2014011496A (es) * 2012-03-29 2015-01-12 Bridgestone Corp Espuma de poliuretano para almohadilla de asiento.
WO2014056080A2 (en) * 2012-10-10 2014-04-17 Proprietect L.P. Process for producing a low density free-rise polyurethane foam
CN103570905A (zh) * 2013-10-21 2014-02-12 虞海盈 一种软质聚氨酯泡沫塑料的制造方法
US9951174B2 (en) 2015-05-20 2018-04-24 Covestro Llc Polyol compositions, a process for the production of these polyol compositions, and their use in the production of open celled polyurethane foams having high airflow
JP7162609B2 (ja) 2017-03-15 2022-10-28 コベストロ・エルエルシー 温度感度が低減した改良粘弾性フォーム用ポリオール
CN106916276A (zh) * 2017-03-31 2017-07-04 福建大方睡眠科技股份有限公司 一种可水洗的聚氨酯枕头及其制备方法
JP7350721B2 (ja) * 2017-09-14 2023-09-26 ダウ グローバル テクノロジーズ エルエルシー 界面活性剤および潤滑剤の製造プロセス
US10766998B2 (en) 2017-11-21 2020-09-08 Covestro Llc Flexible polyurethane foams
US10793692B2 (en) 2018-10-24 2020-10-06 Covestro Llc Viscoelastic flexible foams comprising hydroxyl-terminated prepolymers
KR102219723B1 (ko) * 2020-05-15 2021-02-24 주식회사 글로벌 내구성이 향상된 스프링을 포함하는 의자 좌판 및 그 제조 방법
US11572433B2 (en) 2021-03-12 2023-02-07 Covestro Llc In-situ formed polyols, a process for their preparation, foams prepared from these in-situ formed polyols and a process for their preparation
US11718705B2 (en) 2021-07-28 2023-08-08 Covestro Llc In-situ formed polyether polyols, a process for their preparation, and a process for the preparation of polyurethane foams

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57168912A (en) * 1981-04-10 1982-10-18 Mitsubishi Chem Ind Ltd Urethane prepolymer composition
JP2004175973A (ja) * 2002-11-28 2004-06-24 Dainippon Ink & Chem Inc ポリオール組成物、硬質ポリウレタンフォーム用組成物及び硬質ポリウレタンフォームの製造方法
JP2005264015A (ja) * 2004-03-19 2005-09-29 Jsr Corp 液状硬化性樹脂組成物
WO2006115169A1 (ja) * 2005-04-21 2006-11-02 Asahi Glass Company, Limited 低反発性軟質ポリウレタンフォームおよびその製造方法
WO2008050841A1 (fr) 2006-10-25 2008-05-02 Asahi Glass Company, Limited Procédé de production d'une mousse de polyuréthane souple
WO2009041535A1 (ja) * 2007-09-28 2009-04-02 Asahi Glass Company, Limited 軟質ポリウレタンフォームおよび熱プレス成形品の製造方法ならびに熱プレス成形品
JP2009217211A (ja) 2008-03-13 2009-09-24 Epson Imaging Devices Corp 液晶表示装置及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4332927A (en) * 1980-11-14 1982-06-01 Caschem, Inc. Catalyst-containing stable polyurethane forming compositions which are non-cytotoxic when cured and separatory devices employing same
GB9117913D0 (en) * 1991-08-20 1991-10-09 Smith & Nephew Polyurethane foams
US20070197760A1 (en) * 1999-09-20 2007-08-23 Tosoh Corporation Catalyst for production of polyurethane

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57168912A (en) * 1981-04-10 1982-10-18 Mitsubishi Chem Ind Ltd Urethane prepolymer composition
JP2004175973A (ja) * 2002-11-28 2004-06-24 Dainippon Ink & Chem Inc ポリオール組成物、硬質ポリウレタンフォーム用組成物及び硬質ポリウレタンフォームの製造方法
JP2005264015A (ja) * 2004-03-19 2005-09-29 Jsr Corp 液状硬化性樹脂組成物
WO2006115169A1 (ja) * 2005-04-21 2006-11-02 Asahi Glass Company, Limited 低反発性軟質ポリウレタンフォームおよびその製造方法
WO2008050841A1 (fr) 2006-10-25 2008-05-02 Asahi Glass Company, Limited Procédé de production d'une mousse de polyuréthane souple
WO2009041535A1 (ja) * 2007-09-28 2009-04-02 Asahi Glass Company, Limited 軟質ポリウレタンフォームおよび熱プレス成形品の製造方法ならびに熱プレス成形品
JP2009217211A (ja) 2008-03-13 2009-09-24 Epson Imaging Devices Corp 液晶表示装置及びその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101319684B1 (ko) * 2011-06-07 2013-10-17 금호미쓰이화학 주식회사 내열성 변성 이소시아네이트 조성물 및 이를 포함하는 내열성을 갖는 파이프 단열용 폴리우레탄 발포체 조성물 및 그 발포방법
WO2013021871A1 (ja) * 2011-08-05 2013-02-14 旭硝子株式会社 軟質ポリウレタンフォームの製造方法
WO2013043645A1 (en) * 2011-09-23 2013-03-28 Bayer Materialscience Llc A process for the production of high air flow polyether foams and the foams produced by this process
JP2020534390A (ja) * 2017-09-14 2020-11-26 ノースウェスタン ユニバーシティ ポリオールの製造プロセス
JP7263323B2 (ja) 2017-09-14 2023-04-24 ノースウェスタン ユニバーシティ ポリオールの製造プロセス

Also Published As

Publication number Publication date
TW201116548A (en) 2011-05-16
CN102574975A (zh) 2012-07-11
AU2010296403A1 (en) 2012-04-05
EP2471830A4 (en) 2014-05-07
KR20120082407A (ko) 2012-07-23
JP5720571B2 (ja) 2015-05-20
JPWO2011034150A1 (ja) 2013-02-14
US20120202908A1 (en) 2012-08-09
EP2471830A1 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
JP5720571B2 (ja) 軟質ポリウレタンフォームの製造方法
JP5228914B2 (ja) 軟質ポリウレタンフォームの製造方法
JP5266756B2 (ja) 低反発性軟質ポリウレタンフォームおよびその製造方法
JP5359269B2 (ja) 軟質ポリウレタンフォームおよびその製造方法
JP3909598B2 (ja) 低反発軟質ポリウレタンフォームの製造方法
WO2011125951A1 (ja) 軟質ポリウレタンフォームおよびその製造方法
JP5303885B2 (ja) 軟質ポリウレタンフォームの製造方法および軟質ポリウレタンフォーム
WO2011125952A1 (ja) 熱プレス成形用軟質ポリウレタンフォームおよびその製造方法、ならびに熱プレス成形品およびその製造方法
WO2013021871A1 (ja) 軟質ポリウレタンフォームの製造方法
JP2003221427A (ja) 軟質ポリウレタンフォーム
JP2008031241A (ja) 軟質ポリウレタンフォームの製造方法
JP4412116B2 (ja) 低反発性軟質ポリウレタンフォームおよびその製造方法
WO2012115113A1 (ja) 低反発性軟質ポリウレタンフォームおよびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080041939.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10817263

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011531974

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010296403

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2010817263

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127006382

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2010296403

Country of ref document: AU

Date of ref document: 20100916

Kind code of ref document: A