WO2011125951A1 - 軟質ポリウレタンフォームおよびその製造方法 - Google Patents
軟質ポリウレタンフォームおよびその製造方法 Download PDFInfo
- Publication number
- WO2011125951A1 WO2011125951A1 PCT/JP2011/058454 JP2011058454W WO2011125951A1 WO 2011125951 A1 WO2011125951 A1 WO 2011125951A1 JP 2011058454 W JP2011058454 W JP 2011058454W WO 2011125951 A1 WO2011125951 A1 WO 2011125951A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyol
- polyurethane foam
- flexible polyurethane
- mass
- parts
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/2805—Compounds having only one group containing active hydrogen
- C08G18/2815—Monohydroxy compounds
- C08G18/283—Compounds containing ether groups, e.g. oxyalkylated monohydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/16—Catalysts
- C08G18/22—Catalysts containing metal compounds
- C08G18/24—Catalysts containing metal compounds of tin
- C08G18/242—Catalysts containing metal compounds of tin organometallic compounds containing tin-carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4804—Two or more polyethers of different physical or chemical nature
- C08G18/4812—Mixtures of polyetherdiols with polyetherpolyols having at least three hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4825—Polyethers containing two hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4833—Polyethers containing oxyethylene units
- C08G18/4837—Polyethers containing oxyethylene units and other oxyalkylene units
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4866—Polyethers having a low unsaturation value
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/76—Polyisocyanates or polyisothiocyanates cyclic aromatic
- C08G18/7614—Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
- C08G18/7621—Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0008—Foam properties flexible
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0041—Foam properties having specified density
- C08G2110/005—< 50kg/m3
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0041—Foam properties having specified density
- C08G2110/0058—≥50 and <150kg/m3
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0083—Foam properties prepared using water as the sole blowing agent
Definitions
- the present invention relates to a flexible polyurethane foam and a method for producing the same.
- a flexible polyurethane foam having a low impact resilience that is, a low resilience
- a flexible polyurethane foam having particularly good load dispersibility has a good uniformity of body pressure distribution when used for a cushion material of a chair, a mattress, and the like, and reduces fatigue, slippage and the like.
- the Sag-Factor value which is an index of load dispersibility
- the body pressure distribution is excellent in uniformity, and the mattress It is known that it is excellent in sleeping comfort (for example, refer nonpatent literature 1).
- Patent Document 1 discloses a polyether polyol (A) having an average number of hydroxyl groups of 2 to 3 and a hydroxyl value of 10 to 90 mgKOH / g, an average number of hydroxyl groups of 2 to 3, and a hydroxyl value of 15 to 250 mgKOH / g.
- a method for producing a flexible polyurethane foam using a certain polyether polyol (B) and a polyether monool (D) having a hydroxyl value of 5 to 200 mg KOH / g is described.
- the polyether polyol (A) used in the examples of Patent Document 1 has a hydroxyl value of 14 to 28 mg KOH / g and a polyether having a number average molecular weight of about 4,000 to 8,000. Only polyols are used.
- tin 2-ethylhexanoate or dibutyltin dilaurate is used as a metal urethanization catalyst.
- the present invention has been made in view of the above circumstances, and it is possible to produce a flexible polyurethane foam capable of producing a flexible polyurethane foam having a long cream time, good moldability and good hardness and durability when producing a flexible polyurethane foam. It is an object of the present invention to provide a method and a flexible polyurethane foam obtained by the method. Furthermore, it aims at providing the manufacturing method of the flexible polyurethane foam which can manufacture the flexible polyurethane foam excellent also in load dispersibility, and the flexible polyurethane foam obtained by this method.
- the present invention is the following [1] to [12].
- the polyol mixture (X) comprises the following polyol
- the manufacturing method of the flexible polyurethane foam characterized by including (A), the following polyol (B), and the following monool (D).
- the polyol mixture (X) further contains the following polyol (C), and the polyol (C) is 0.1 to 10 parts by mass of 100 parts by mass of the polyol mixture (X).
- Process for producing flexible polyurethane foam [9] The method for producing a flexible polyurethane foam according to any one of the above [1] to [8], wherein the foaming agent is only water.
- the flexible polyurethane foam according to the above [10] which is used for a mattress.
- the flexible polyurethane foam according to the above [10] which is used for an interior member of an automobile.
- the present invention it is possible to obtain a flexible polyurethane foam having a long cream time which is an index of reactivity at the time of producing a flexible polyurethane foam, good moldability, and good hardness and durability. Further, the obtained flexible polyurethane foam has a good shape retention. Furthermore, it is excellent in load dispersibility and air permeability, and a flexible polyurethane foam suitable for mattress use or automotive interior member use is obtained.
- the number average molecular weight (Mn) is a molecular weight in terms of polystyrene obtained by measuring by gel permeation chromatography (GPC) using a calibration curve prepared using a standard polystyrene sample having a known molecular weight.
- the hydroxyl value is a value measured by a method based on JIS K1557-1.
- the average number of hydroxyl groups of a polyol means the average value of the number of active hydrogens of the initiator used for manufacture of this polyol.
- the total unsaturation of the polyol is a value measured according to JIS K1557 (2007 edition).
- the “polyol system liquid” is a liquid to be reacted with the polyisocyanate compound, and is a liquid containing a compounding agent as required, such as a foaming agent, a foam stabilizer, a catalyst, and a flame retardant, in addition to the polyol.
- the “foaming stock solution composition” is a liquid obtained by mixing a polyol system liquid, a polyisocyanate compound, and optionally the remaining components.
- the polyol mixture (X) and the polyisocyanate compound are reacted in the presence of a urethanization catalyst, a foaming agent and a foam stabilizer.
- a urethanization catalyst e.g., a urethanization catalyst
- a foaming agent e.g., a foaming agent
- a foam stabilizer e.g., a foam stabilizer
- the polyol mixture (X) in the present invention contains a polyol (A), a polyol (B), and a monool (D). Further, it preferably contains a polyol (C). In some cases, polyols other than polyols (A) to (C) (hereinafter referred to as polyol (E)) and monools other than monool (D) may be included.
- the polyol (A) in the present invention is a polyoxyalkylene polyol having an average number of hydroxyl groups of 2 to 3, a number average molecular weight of 8,500 to 30,000, and an oxyethylene group content of 0 to 30% by mass.
- This polyoxyalkylene polyol is obtained by ring-opening addition polymerization of alkylene oxide with an initiator in the presence of a polymerization catalyst.
- a polyol (A) may use only 1 type, or may use 2 or more types together.
- Examples of the polymerization catalyst used in the production of the polyol (A) include alkali metal compound catalysts (sodium catalyst, potassium catalyst, cesium catalyst, etc.), cationic polymerization catalyst, composite metal cyanide complex catalyst, phosphazene compound catalyst, and the like. It is done.
- Examples of the sodium-based catalyst or potassium-based catalyst include sodium metal, potassium metal, sodium alkoxide or potassium alkoxide (sodium methoxide, sodium ethoxide, sodium propoxide, potassium methoxide, potassium ethoxide, potassium propoxide, etc.), water. Examples include sodium oxide, potassium hydroxide, sodium carbonate, potassium carbonate and the like.
- Examples of the cesium catalyst include cesium metal, cesium alkoxide (cesium methoxide, cesium ethoxide, cesium propoxide, etc.), cesium hydroxide, cesium carbonate, and the like.
- Examples of the cationic polymerization catalyst include MoO 2 (diketonate) Cl, MoO 2 (diketonate) OSO 2 CF 3 , trifluoromethanesulfonic acid, boron trifluoride, boron trifluoride coordination compound (boron trifluoride diethyl etherate, three Boron fluoride dibutyl etherate, boron trifluoride dioxanate, boron trifluoride acetate anhydrate or boron trifluoride triethylamine complex)), or containing an aromatic hydrocarbon group containing fluorine atom or fluorine atom Aluminum or boron compounds having at least one aromatic hydrocarbon oxy group are preferred.
- aromatic hydrocarbon group containing a fluorine atom examples include pentafluorophenyl, tetrafluorophenyl, trifluorophenyl, 3,5-bis (trifluoromethyl) trifluorophenyl, and 3,5-bis (trifluoromethyl). And phenyl, ⁇ -perfluoronaphthyl, 2,2 ′, 2 ′′ -perfluorobiphenyl, and the like.
- the aromatic hydrocarbon oxy group containing a fluorine atom is preferably a hydrocarbon oxy group in which an oxygen atom is bonded to the aromatic hydrocarbon group containing a fluorine atom.
- the double metal cyanide complex catalyst (hereinafter also referred to as “DMC catalyst”) has an organic ligand.
- Organic ligands include tert-butyl alcohol, n-butyl alcohol, iso-butyl alcohol, tert-pentyl alcohol, iso-pentyl alcohol, N, N-dimethylacetamide, ethylene glycol mono-tert-butyl ether, ethylene glycol dimethyl ether (Also referred to as glyme), diethylene glycol dimethyl ether (also referred to as diglyme), triethylene glycol dimethyl ether (also referred to as triglyme), iso-propyl alcohol, and dioxane.
- the dioxane may be 1,4-dioxane or 1,3-dioxane, but 1,4-dioxane is preferred.
- One type of organic ligand may be used, or two or more types may be used in combination. Among these, it is preferable to have tert-butyl alcohol as the organic ligand. Therefore, it is preferable to use a DMC catalyst having tert-butyl alcohol as at least a part of the organic ligand.
- Such DMC catalysts are highly active and can produce polyols with low total unsaturation.
- an alkali metal catalyst is preferable from the viewpoint of being inexpensive and easily available.
- a DMC catalyst is preferable from the viewpoint of obtaining a polyol having a low content of monool having an unsaturated bond as a by-product, that is, a low total unsaturation degree.
- the low monool content is considered to contribute to the improvement of physical properties of the flexible polyurethane foam such as durability, and at the same time is preferable in that a polyether polyol having a high number average molecular weight is easily obtained.
- the polyol (A) in the present invention is preferably a polyoxyalkylene polyol obtained by ring-opening addition polymerization of alkylene oxide with an initiator in the presence of a DMC catalyst.
- the total unsaturation degree of the polyol (A) is preferably 0.02 meq / g or less. Particularly preferably, if it is 0.015 meq / g or less, excellent durability performance can be obtained. More preferably, it is 0.010 meq / g or less.
- a compound having 2 or 3 active hydrogens (a hydrogen atom of a hydroxyl group or an amino group that can react with an alkylene oxide) in the molecule is used alone, Or use together.
- hydroxyl group-containing compounds such as polyhydric alcohols and polyhydric phenols are preferable.
- a small amount of a compound having 4 or more active hydrogens can also be used.
- Specific examples of the compound having 2 active hydrogens include dihydric alcohols such as ethylene glycol, propylene glycol, 1,4-butanediol, diethylene glycol, and dipropylene glycol.
- the compound having 3 active hydrogens include trihydric alcohols such as glycerin and trimethylolpropane.
- a high hydroxyl group polyoxyalkylene polyol obtained by subjecting these compounds to ring-opening addition polymerization of alkylene oxide, preferably propylene oxide.
- alkylene oxide preferably propylene oxide.
- Polyol is preferably used.
- Examples of the alkylene oxide used in the production of the polyol (A) include ethylene oxide, propylene oxide, 1,2-epoxybutane, 2,3-epoxybutane and the like. Among these, only propylene oxide or a combination of propylene oxide and ethylene oxide is preferable, and only propylene oxide is particularly preferable. That is, as the polyol (A), polyoxypropylene polyol obtained by ring-opening addition polymerization of only propylene oxide as an initiator is preferable. It is preferable to use only propylene oxide because the durability of the resulting flexible polyurethane foam during humidification is improved.
- the oxyethylene group content in the polyol (A) is preferably 30% by mass or less, and particularly preferably 15% by mass or less.
- the lower limit is 0% by mass. It is preferable for the oxyethylene group content to be 30% by mass or less because durability during humidification is improved.
- any polymerization method of block polymerization and random polymerization may be used. Furthermore, it can also manufacture combining both block polymerization and random polymerization.
- the order of ring-opening addition polymerization is preferably such that propylene oxide and ethylene oxide are added in this order, or ethylene oxide is added first, and propylene oxide and ethylene oxide are added in this order.
- the terminal is preferably ethylene oxide.
- the average number of hydroxyl groups of the polyol (A) in the present invention is 2 to 3.
- physical properties such as compression residual strain of the obtained flexible polyurethane foam are improved.
- the resulting flexible polyurethane foam has good elongation, moderate hardness, and good physical properties such as tensile strength.
- the polyol (A) using 50 to 100 parts by mass of the polyoxyalkylene diol having 2 hydroxyl groups out of 100 parts by mass of the polyol (A) suppresses the temperature sensitivity of the resulting flexible polyurethane foam. It is preferable in terms of easy.
- the polyol (A) is preferably a polyoxyalkylene diol having 2 hydroxyl groups.
- the number average molecular weight of the polyol (A) in the present invention is 8,500 to 30,000. Within this range, the cream time during the production of the flexible polyurethane foam is moderately long, and good moldability is obtained.
- the number average molecular weight of the polyol (A) is more preferably 9,500 to 25,000, and further preferably 10,000 to 20,000. When the molecular weight is within this range, it is possible to obtain a flexible polyurethane foam having an appropriately long cream time, certain physical properties, and no shrinkage.
- the hydroxyl value of the polyol (A) in the present invention is preferably 3 to 20 mgKOH / g. Within this range, the cream time during the production of the flexible polyurethane foam is moderately long, and good moldability is obtained.
- the polyol (A) in the present invention may be a polymer-dispersed polyol.
- the polyol (A) being a polymer-dispersed polyol means a dispersion system in which polymer fine particles (dispersoid) are stably dispersed using the polyol (A) as a base polyol (dispersion medium).
- Examples of the polymer of the polymer fine particles include addition polymerization polymers and condensation polymerization polymers.
- the addition polymerization type polymer is obtained, for example, by homopolymerizing or copolymerizing monomers such as acrylonitrile, styrene, methacrylic acid ester and acrylic acid ester.
- Examples of the polycondensation polymer include polyester, polyurea, polyurethane, polymethylol melamine and the like.
- the polymer fine particles By making the polymer fine particles exist in the polyol, the hydroxyl value of the polyol can be kept low, the hardness of the flexible polyurethane foam can be increased, and it is effective for improving mechanical properties such as tensile strength.
- the content ratio of the polymer fine particles in the polymer-dispersed polyol is not particularly limited.
- the polymer fine particles present in 100 parts by mass of the polyol mixture (X) are preferably 1 part by mass or more, more preferably 5 parts by mass or more, from the viewpoint that the effect of containing the polymer fine particles is sufficiently obtained.
- the upper limit is preferably 40 parts by mass or less from the viewpoint of maintaining the moldability of the flexible polyurethane foam and suppressing the viscosity of the polyol mixture (X) from becoming too high.
- the physical properties (number average molecular weight, hydroxyl value, total unsaturation, etc.) of the polymer-dispersed polyol as a polyol are considered for the base polyol excluding the polymer fine particles.
- the polyol (B) in the present invention is a polyoxyalkylene polyol having an average number of hydroxyl groups of 2 to 3, a hydroxyl value of 20 to 250 mgKOH / g, and an oxyethylene group content of 0 to 20% by mass.
- This polyoxyalkylene polyol can be obtained by ring-opening addition polymerization of an alkylene oxide in an initiator in the presence of a polymerization catalyst in the same manner as the polyol (A).
- a polyol (B) may use only 1 type or may use 2 or more types together.
- a polymerization catalyst used for manufacture of a polyol (B) As a polymerization catalyst used for manufacture of a polyol (B), a phosphazene compound catalyst, a Lewis acid compound catalyst, an alkali metal compound catalyst, a double metal cyanide complex catalyst, etc. are preferable, Among these, an alkali metal compound catalyst is particularly preferable.
- Preferred examples of the alkali metal compound catalyst include potassium compounds such as potassium hydroxide and potassium methoxide, alkali metal compounds such as cesium compounds such as cesium metal, cesium hydroxide, cesium carbonate, and cesium methoxide, or alkali metal hydroxides. It is done.
- a compound having 2 or 3 active hydrogen atoms in the molecule is used alone or in combination.
- a small amount of a compound having 4 or more active hydrogens can also be used.
- Specific examples of the compound having 2 or 3 active hydrogens include polyhydric alcohols such as ethylene glycol, propylene glycol, 1,4-butanediol, diethylene glycol, dipropylene glycol, glycerin and trimethylolpropane; bisphenol A and the like
- polyamines such as monoethanolamine, diethanolamine, triethanolamine, and piperazine. Of these, polyhydric alcohols are particularly preferred. Further, it is preferable to use a high hydroxyl group polyoxyalkylene polyol obtained by subjecting these compounds to ring-opening addition polymerization of alkylene oxide, preferably propylene oxide.
- Examples of the alkylene oxide used for the production of the polyol (B) include ethylene oxide, propylene oxide, 1,2-epoxybutane, 2,3-epoxybutane and the like. Among these, only propylene oxide or a combination of propylene oxide and ethylene oxide is preferable, and only propylene oxide is particularly preferable.
- the polyol (B) is preferably a polyol having a low oxyethylene group content, and the oxyethylene group content in the polyol (B) is 0 to 20% by mass, preferably 0 to 10% by mass.
- a polyoxypropylene polyol having only an oxypropylene group as an oxyalkylene group is preferable. When such a polyol having a low oxyethylene group content is used, durability of the resulting flexible polyurethane foam at the time of humidification is improved.
- the average number of hydroxyl groups of the polyol (B) in the present invention is 2 to 3.
- physical properties such as compression residual strain of the obtained flexible polyurethane foam become appropriate, the rebound resilience of the obtained flexible polyurethane foam can be lowered, the elongation is excellent, and the hardness is moderate.
- the change in hardness is small (low temperature sensitivity) and excellent physical properties such as tensile strength.
- the average number of hydroxyl groups after mixing them is preferably 2 to 2.8.
- the average number of hydroxyl groups is within the above range, it is easy to prevent the bent portion from being split, particularly when a local pressure is applied to the flexible polyurethane foam, for example, when the flexible polyurethane foam is bent.
- the polyol (B) is preferably used in combination with a polyoxyalkylene diol having an average number of hydroxyl groups of 2 and a polyoxyalkylene triol having an average number of hydroxyl groups of 3. 30 mass parts or more are preferable and, as for the ratio of the polyoxyalkylene diol contained in 100 mass parts of the whole polyol (B), 40 mass parts or more are more preferable.
- the upper limit is 90 parts by mass.
- the hydroxyl value of the polyol (B) in the present invention is 20 to 250 mgKOH / g.
- the hydroxyl value of the polyol (B) in the present invention is 20 to 250 mgKOH / g.
- the hydroxyl value of the polyol (B) is more preferably 20 to 200 mgKOH / g, further preferably 50 to 180 mgKOH / g.
- the polyol (B) in the present invention may be a polymer-dispersed polyol.
- Examples of the polymer of the polymer fine particles include those described in the section of the polyol (A).
- the polyol (C) in the present invention is a polyoxyalkylene polyol having an average number of hydroxyl groups of 2 to 6, a hydroxyl value of 10 to 60 mgKOH / g, and an oxyethylene group content of 50% by mass or more.
- a polyol (C) may use only 1 type, or may use 2 or more types together.
- the polyol (C) is obtained by subjecting an alkylene oxide to ring-opening addition polymerization in the presence of a polymerization catalyst in the same manner as the polyol (A) and polyol (B).
- the polyol (C) may have a structure in which ethylene oxide and propylene oxide are subjected to random ring-opening addition polymerization, or a structure in which ethylene oxide is subjected to ring-opening addition polymerization as a block immediately after the terminal or initiator. Further, only ethylene oxide may be polyethylene glycol obtained by ring-opening addition polymerization immediately after the initiator.
- a foam breaking effect is recognized, and the addition of the polyol (C) is effective in improving air permeability.
- the same ones as the polyol (B) can be used.
- the polymerization catalysts alkali metal compound catalysts are particularly preferable, and among the initiators, polyhydric alcohols or amines are particularly preferable.
- polyhydric alcohols that are initiators include ethylene glycol, propylene glycol, 1,4-butanediol, dipropylene glycol, glycerin, diglycerin, pentaerythritol, and the like.
- examples of amines that are initiators include amines such as monoethanolamine, diethanolamine, triethanolamine, and piperazine.
- alkylene oxide used for producing the polyol (C) examples include ethylene oxide, propylene oxide, 1,2-epoxybutane, 2,3-epoxybutane and the like. At least ethylene oxide is preferably used. More preferred is ethylene oxide alone or a combination of propylene oxide and ethylene oxide.
- the oxyethylene content in the polyol (C) is 50% by mass or more, and preferably 60% by mass or more. By setting the oxyethylene group content in the polyol (C) to 50% by mass or more, high breathability can be secured when the polyol (C) is added.
- the polyol (C) is preferably a polyol obtained by ring-opening addition polymerization of a mixture of propylene oxide and ethylene oxide.
- the oxyethylene content in the polyol (C) is preferably 50 to 95% by mass, more preferably 60 to 90% by mass.
- the resulting flexible polyurethane foam has appropriate physical properties such as compression residual strain.
- the average number of hydroxyl groups is preferably 2-4.
- the hydroxyl value of the polyol (C) is from 10 to 60 mgKOH / g, the resulting flexible polyurethane foam is excellent in elongation, moderate hardness and excellent physical properties such as tensile strength.
- the hydroxyl value is more preferably 15 to 50 mgKOH / g.
- the monool (D) in the present invention is a polyoxyalkylene monool having a hydroxyl value of 10 to 200 mgKOH / g.
- This polyoxyalkylene monool uses an initiator having 1 active hydrogen, and, like the polyol (A) or polyol (B), this initiator opens an alkylene oxide in the presence of a polymerization catalyst. Obtained by addition polymerization.
- Monool (D) may use only 1 type, or may use 2 or more types together.
- a composite metal cyanide complex catalyst As the polymerization catalyst used for the production of monool (D), a composite metal cyanide complex catalyst, a phosphazene compound catalyst, a Lewis acid compound catalyst or an alkali metal compound catalyst is preferable, and among these, a composite metal cyanide complex catalyst is particularly preferable.
- the double metal cyanide complex catalyst the above double metal cyanide complex catalyst can be used.
- the initiator used for the production of monool (D) is a compound having only one active hydrogen atom.
- Specific examples thereof include monohydric alcohols such as methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, tert-butyl alcohol; monohydric phenols such as phenol and nonylphenol; dimethylamine, diethylamine and the like. Secondary amines etc. are mentioned.
- the high hydroxyl group polyoxyalkylene polyol for producing the polyol (A) and the like the high hydroxyl group polyoxyalkylene monool having a hydroxyl value higher than that of the target monool (D). Can also be used as an initiator.
- Examples of the alkylene oxide used for the production of the monool (D) include ethylene oxide, propylene oxide, 1,2-epoxybutane, and 2,3-epoxybutane. Among these, only propylene oxide or a combination of propylene oxide and ethylene oxide is preferable, and it is particularly preferable to use only propylene oxide. That is, the monool (D) is preferably a polyoxypropylene monool obtained by subjecting only propylene oxide to ring-opening addition polymerization to an initiator. It is preferable to use only propylene oxide because the durability of the resulting flexible polyurethane foam during humidification is improved. The average number of hydroxyl groups of monool (D) in the present invention is 1.
- the hydroxyl value of the monool (D) is 10 to 200 mg KOH / g, the viscosity of the polyol system solution does not become too high and handling is easy. Moreover, the obtained flexible polyurethane foam can have excellent air permeability without impairing physical properties.
- the hydroxyl value is preferably 10 to 120 mgKOH / g.
- the polyol mixture (X) in the present invention may contain a monool other than the monool (D) (for example, a polyoxypropylene monool having a hydroxyl value of more than 200 mgKOH / g). It is preferable not to contain any monool other than (D). Even when the polyol mixture (X) in the present invention contains a monool other than the monool (D), the content thereof is preferably 5 parts by mass or less, out of 100 parts by mass of the polyol mixture (X), 2 parts by mass or less is more preferable.
- a monool other than the monool (D) for example, a polyoxypropylene monool having a hydroxyl value of more than 200 mgKOH / g. It is preferable not to contain any monool other than (D). Even when the polyol mixture (X) in the present invention contains a monool other than the monool (D), the content thereof is preferably 5 parts by mass or less, out of 100
- the polyol (E) in the present invention is a polyol that does not fall under any of the polyols (A), (B), and (C).
- the polyol (A) has a higher hydroxyl value than the polyol (B).
- the polyol (E) is preferably a polyol having an average number of hydroxyl groups of 2 to 6 and a hydroxyl value of 300 to 1,830 mgKOH / g. More preferred is a polyol having an average number of hydroxyl groups of 3 to 4 and a hydroxyl value of 300 to 600 mgKOH / g.
- this polyol polyhydric alcohols, amines having 2 to 6 hydroxyl groups, polyoxyalkylene polyols and the like are preferable.
- Such a polyol having a high hydroxyl value acts as a crosslinking agent, and mechanical properties such as hardness are improved. Particularly when a low density (light weight) flexible polyurethane foam is to be produced using a large amount of a foaming agent, the foaming stability is good.
- polyhydric alcohols examples include ethylene glycol, propylene glycol, 1,4-butanediol, dipropylene glycol, glycerin, diglycerin, and pentaerythritol.
- examples of amines having 2 to 6 hydroxyl groups include diethanolamine and triethanolamine.
- Examples of the polyoxyalkylene polyol include polyoxyalkylene polyols obtained by subjecting an alkylene oxide to ring-opening addition polymerization to an initiator, like the polyol (B).
- an initiator used for manufacture of polyol (E) which is a polyoxyalkylene polyol the initiator used for manufacture of the polyhydric alcohols which may be used as polyol (E), or polyol (B) can be illustrated.
- Examples of the alkylene oxide used for producing the polyoxyalkylene polyol as the polyol (E) include ethylene oxide, propylene oxide, 1,2-epoxybutane, and 2,3-epoxybutane. Among these, only propylene oxide or a combination of propylene oxide and ethylene oxide is preferable, and it is particularly preferable to use only propylene oxide. That is, the polyoxyalkylene polyol as the polyol (E) is preferably a polyoxypropylene polyol obtained by ring-opening addition polymerization of only propylene oxide as an initiator.
- polyoxyalkylene polyol is preferable, and polyoxypropylene polyol polyol is particularly preferable. It is preferable to use only propylene oxide because the durability of the resulting flexible polyurethane foam during humidification is improved.
- a polyol (E) may use only 1 type, or may use 2 or more types together.
- the polyol (E) in the present invention may be a polyester polyol or a polycarbonate polyol, which is not limited to the above average number of hydroxyl groups or hydroxyl value. These polyols preferably have an average number of hydroxyl groups of 2 to 3, and a hydroxyl value of 20 to 300 mgKOH / g.
- the polyol (A) is preferably 5 to 80 parts by mass, more preferably 10 to 50 parts by mass, out of 100 parts by mass of the total of the polyol (A) and the polyol (B). .
- the proportion of the polyol (A) in the polyol mixture (X) is 5 parts by mass or more, a flexible polyurethane foam having low rebound and small change in resilience modulus and hardness with respect to temperature change (low temperature sensitivity) is obtained. Easy to obtain. Further, it is possible to stably produce a flexible polyurethane foam by suppressing collaps etc. On the other hand, when it is 80 parts by mass or less, good hardness of the flexible polyurethane foam is easily obtained.
- the polymer fine particles in the polymer-dispersed polyol are not included in the polyol content.
- the total of the polyol (A) and the polyol (B) is preferably 70 parts by mass or more, more preferably 75 parts by mass or more, and particularly preferably 80 parts by mass or more.
- the upper limit is 99 parts by mass.
- the proportion of monool (D) in 100 parts by mass of the polyol mixture (X) is preferably 1 to 25 parts by mass, more preferably 1 to 20 parts by mass, and 1 to 14 parts by mass. Is particularly preferred. By setting the proportion of monool (D) within the above range, a flexible polyurethane foam having excellent low resilience, excellent durability, and good breathability can be obtained.
- the polyol (C) is preferably 0.1 to 10 parts by mass out of 100 parts by mass of the polyol mixture (X). Part by mass is more preferable.
- the polyol mixture (X) is less required to contain the polyol (E), but when the polyol (E) is used, the polyol (E) is 10 mass out of 100 mass parts of the polyol mixture (X). Is preferably 5 parts by mass or less, more preferably 2 parts by mass or less. It is preferable to contain 0.5 parts by mass or more from the viewpoint that the effect of containing the polyol (E) is sufficiently obtained.
- a suitable composition of the polyol mixture (X) (100 parts by mass) include 10 to 30 parts by mass of the polyol (A), 50 to 80 parts by mass of the polyol (B), C) is 0 to 8 parts by mass, monool (D) is 1 to 24 parts by mass, and polyol (E) is 0 to 5 parts by mass.
- the polyisocyanate compound used in the present invention is not particularly limited, and is a polyisocyanate having two or more isocyanate groups, such as aromatic, alicyclic, and aliphatic groups; a mixture of two or more of the above polyisocyanates; And modified polyisocyanates obtained by modifying.
- polyisocyanate compound examples include tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), polymethylene polyphenyl polyisocyanate (common name: crude MDI), xylylene diisocyanate (XDI), isophorone diisocyanate (IPDI), hexamethylene. And diisocyanate (HMDI).
- modified polyisocyanate include prepolymer-modified products, nurate-modified products, urea-modified products, and carbodiimide-modified products of the above polyisocyanates. Among these, TDI, MDI, crude MDI, or modified products thereof are preferable.
- TDI TDI
- crude MDI or a modified product thereof (especially a prepolymer modified product)
- a polyisocyanate compound having a relatively low reactivity among TDI, crude MDI, or a modified product thereof because air permeability is improved.
- a TDI mixture having a large proportion of 2,6-TDI (20% by mass or more is particularly preferable) is preferable.
- the amount of the polyisocyanate compound used is preferably such that the ratio of the total active hydrogen-containing compound to the polyisocyanate compound in the foaming stock solution composition is 80 to 130, more preferably 90 to 130, most preferably 95 to 120. preferable.
- the active hydrogen-containing compound refers to the polyol mixture (X), water that can be used as a blowing agent, and the like.
- the isocyanate index is represented by 100 times the value obtained by dividing the equivalent of the isocyanate group of the polyisocyanate compound by the total equivalent of all the active hydrogens in the total active hydrogen-containing compound in the foaming stock solution composition. When the isocyanate index is 80 or more, it is preferable in that the obtained flexible polyurethane foam is easily cut when used for industrial use.
- the polyol and monool react with the polyisocyanate compound moderately, the influence as a plasticizer is small, and the washing durability is good, which is preferable.
- a urethanization catalyst is hard to disperse
- the isocyanate index is 130 or less, the foaming characteristics are stabilized, and a flexible polyurethane foam having a good appearance can be obtained.
- a known catalyst can be appropriately used as a catalyst for promoting the urethanization reaction.
- an amine compound, an organometallic compound, a carboxylic acid metal salt, etc. are mentioned. 1 type may be used independently and 2 or more types may be combined.
- the amine compound include tertiary amines such as triethylenediamine, bis (2-dimethylaminoethyl) ether, N, N, N ′, N′-tetramethylhexamethylenediamine.
- organometallic compounds include dibutyltin oxides such as dibutyltin oxide, dibutyltin dilaurate, dibutyltin, and dibutyltin diacetate; dioctyltins such as dioctyltin oxide, dioctyltin dilaurate, and dioctyltin diacetate; stannous octoate, tin neodecanoate And bismuth octylate.
- the carboxylic acid metal salt include potassium acetate and potassium 2-ethylhexanoate.
- the total amount of the urethanization catalyst is preferably 0.001 to 5.0 parts by mass, more preferably 0.01 to 3.0 parts by mass, with respect to 100 parts by mass of the polyol mixture (X). preferable.
- the amount is 5.0 parts by mass or less, the foaming reaction is easily controlled.
- the amount is 3.0 parts by mass or less, the shrinkage of the flexible polyurethane foam is suppressed. (Cure) is preferable because it is good.
- the urethanization catalyst preferably contains an organometallic compound, and when an organometallic compound and a tertiary amine are used in combination, the compatibility between the foaming agent and the polyisocyanate compound is improved, and small homogeneous bubbles are generated during foaming. More preferable.
- the organometallic compound dioctyltins are preferable in terms of easy reactivity control. That is, it is preferable that dioctyltin is included in the urethanization catalyst. When dioctyltins are used, it becomes easy to control the initial reactivity, the cream time of the foaming stock solution composition becomes longer, appearance hardly occurs, and the yield is improved.
- dioctyltins are not too high in activity compared to metal urethane catalysts such as tin 2-ethylhexanoate or dibutyltin dilaurate, a good cream when producing flexible polyurethane foam in combination with polyol (A) having a high molecular weight This is particularly preferable for securing time.
- the amount of dioctyltin catalyzer used is preferably 0.01 to 3.0 parts by weight, more preferably 0.03 to 2.0 parts by weight with respect to 100 parts by weight of the polyol mixture (X). 0.05 to 1.0 part by mass is more preferable, and 0.07 to 0.5 part by mass is most preferable.
- the amount is 3.0 parts by mass or less, the shrinkage of the flexible polyurethane foam is suppressed, and if it is 0.01 parts by mass or more, the settling of the flexible polyurethane foam is suppressed, and a flexible polyurethane foam having a good appearance can be produced. This is preferable. Further, it is preferable to use dioctyltins in combination with a polyol (A) having a high molecular weight because the resulting flexible polyurethane foam has good air permeability.
- a combination consisting of a tertiary amine as an amine and a dioctyltin as an organometallic compound is preferable because cream time, air permeability, and the like are improved.
- tertiary amines triethylenediamine is preferred from the viewpoint of easy control of foaming behavior and economy.
- the amount of tertiary amines used is preferably 0.01 to 3.0 parts by weight, more preferably 0.05 to 2.0 parts by weight with respect to 100 parts by weight of the polyol mixture (X).
- the amount is more preferably 0.1 to 1.0 part by weight, and most preferably 0.2 to 0.5 part by weight.
- the amount is 3.0 parts by mass or less, the foaming reaction can be easily controlled, and when the amount is 0.01 parts by mass or more, the curability is favorable.
- foam stabilizer examples include silicone foam stabilizers and fluorine foam stabilizers. Of these, silicone-based foam stabilizers are preferred. Of the silicone foam stabilizers, silicone foam stabilizers based on polyoxyalkylene / dimethylpolysiloxane copolymers are preferred.
- the foam stabilizer may be a polyoxyalkylene / dimethylpolysiloxane copolymer alone or a mixture containing other combined components. Examples of other combined components include polyalkylmethylsiloxane, glycols, polyoxyalkylene compounds and the like.
- the use of a foam stabilizer mixture containing a polyoxyalkylene / dimethylpolysiloxane copolymer, polyalkylmethylsiloxane and a polyoxyalkylene compound is particularly preferred from the viewpoint of excellent stability of the resulting flexible polyurethane foam.
- foam stabilizer mixture examples include trade names of Toray Dow Corning: SZ-1127, L-580, L-582, L-520, SZ-1919, L-5740S, L-5740M, SZ-1111. , SZ-1127, SZ-1162, SZ-1105, SZ-1328, SZ-1325, SZ-1330, SZ-1306, SZ-1327, SZ-1336, SZ-1339, L-3601, SZ-1302, SH -192, SF-2909, SH-194, SH-190, SRX-280A, SRX-298, SF-2908, SF-2904, SRX-294A, SF-2965, SF-2962, SF-2961, SRX-274C SF-2964, SF-2969, PRX-607, SZ-1711, SZ-1666, SZ- 627, SZ-1710, L-5420, L-5421, SZ-1669, SZ-1649, SZ-1654, SZ-1642,
- the amount of the foam stabilizer used is preferably 0.01 to 3.0 parts by mass and more preferably 0.1 to 2.5 parts by mass with respect to 100 parts by mass of the polyol mixture (X). Collaps etc. can be suppressed when it is 0.01 mass part or more, and a flexible polyurethane foam can be manufactured stably, and shrinkage of a flexible polyurethane foam can be suppressed as it is 3.0 mass parts or less.
- the foaming agent known foaming agents such as fluorinated hydrocarbons can be used. Further, the foaming agent is preferably at least one selected from the group consisting of water and an inert gas. Specific examples of the inert gas include air, nitrogen, carbon dioxide gas, and the like. Among these, water is more preferable in consideration of the environment, and it is most preferable to use only water as a foaming agent.
- the amount of the blowing agent is preferably 10 parts by mass or less, more preferably 0.1 to 4.0 parts by mass with respect to 100 parts by mass of the polyol mixture (X). When producing a low-density flexible polyurethane foam, it is preferable to use 0.5 to 5.0 parts by weight of water with respect to 100 parts by weight of the polyol mixture.
- the flexible polyurethane foam of the present invention may contain a flame retardant.
- the flame retardant include organic compounds such as halogen-containing compounds, phosphate ester compounds, and halogen-containing phosphate ester compounds, and resin flame retardants such as melamine.
- inorganic compounds such as aluminum hydroxide, zinc oxide, and expandable graphite can be used. These flame retardants may be used alone or in combination of two or more.
- the halogen-containing compound include CR-504L manufactured by Daihachi Chemical Co., Ltd., melamine powder manufactured by Nissan Chemical Industries, Ltd., and pyrrole PCF manufactured by ICL-IP Japan.
- a flexible polyurethane foam used as a mattress may be required to have flame retardancy according to its use, and the flame retardant can be used according to the use.
- the content of the flame retardant is preferably 3 to 60 parts by mass and more preferably 5 to 50 parts by mass with respect to 100 parts by mass of the polyol mixture (X).
- additives can be used in addition to the urethanization catalyst, foaming agent, foam stabilizer, flame retardant and the like described above.
- Additives include fillers such as potassium carbonate and barium sulfate; surfactants such as emulsifiers; antioxidants such as antioxidants and UV absorbers; melamine, urea and their derivatives, plasticizers, colorants, Examples include mold agents, foam breakers, dispersants, discoloration inhibitors and the like.
- the polyol mixture (X) is the polyol (A).
- the number of hydroxyl groups is 2 and the hydroxyl value is 11 mgKOH / g.
- Polypropylene glycol, polyol (B) has an average number of hydroxyl groups of 2, and the hydroxyl value is 160.
- Tertiary amines and dioctyltin It is a catalyst.
- suitable ratios of the polyol mixture (X) include 10 to 30 parts by mass, 50 to 50 parts by weight of the polyol (A), the polyol (B), the polyol (C), and the monool (D), respectively. 80 parts by mass, 1 to 8 parts by mass, and 1 to 24 parts by mass.
- the tertiary amine is 0.01 to 3 parts by mass and the dioctyltin catalyst is 0.01 to 3 parts by mass with respect to 100 parts by mass of the polyol mixture (X).
- a method of forming the flexible polyurethane foam obtained in the present invention a method of injecting a foamed stock solution composition into a closed mold and foaming it (molding method) or a method of foaming the foamed stock solution composition in an open system ( Slab method), and the slab method is preferable. Specifically, it can be performed by a known method such as a one-shot method, a semi-prepolymer method, or a prepolymer method. For production of the flexible polyurethane foam, a commonly used production apparatus can be used.
- the use of the polyol (A) having a high molecular weight increases the cream time of the foamed stock solution composition and provides good reactivity. Therefore, poor appearance hardly occurs and the yield is improved.
- the cream time is preferably 10 seconds or more, more preferably 15 seconds or more, in that good moldability is easily obtained. In terms of productivity, 50 seconds or less is preferable, and 40 seconds or less is more preferable.
- the flexible polyurethane foam obtained by the present invention can obtain good hardness despite using the polyol (A) having a high molecular weight. Also, good load dispersibility can be obtained. This is because the polyol (A) having a high molecular weight moderately forms a urethane network with the polyol (B) through the polyisocyanate, so that the value of Sag-Factor is in the range of 2.05 to 2.25. This is considered to be because a flexible polyurethane foam having excellent body pressure dispersibility is formed.
- the 25% hardness (ILD) of the flexible polyurethane foam is preferably 40 N / 314 cm 2 or more, and more preferably 50 N / 314 cm 2 or more.
- the 50% hardness (ILD) is preferably 60 N / 314 cm 2 or more, and more preferably 75 N / 314 cm 2 or more.
- the 65% hardness (ILD) is preferably 80 N / 314 cm 2 or more, and more preferably 100 N / 314 cm 2 or more.
- the flexible polyurethane foam obtained by the present invention has good durability despite the use of the polyol (A) having a high molecular weight.
- compression residual strain and wet heat compression residual strain at compression rates of 50% and 90% are used as an index of durability. The smaller these values, the better the durability.
- the flexible polyurethane foam obtained by the present invention is particularly excellent in durability under dry heat conditions, and can achieve a compression residual strain value of 10% or less at 90%.
- the 50% compression residual strain of the flexible polyurethane foam is preferably 10% or less, more preferably 6% or less, further preferably 5% or less, and most preferably 4% or less.
- the 90% compression residual strain is preferably 20% or less, more preferably 15% or less, further preferably 12% or less, and most preferably 10% or less.
- the 50% wet heat compression residual strain is preferably 15% or less, more preferably 10% or less, further preferably 5% or less, and most preferably 4% or less.
- the 90% wet heat compression residual strain is preferably 20% or less, more preferably 15% or less, further preferably 12% or less, and most preferably 10% or less.
- the Sag-Factor value represented by “65% hardness (ILD) / 25% hardness (ILD)” is particularly preferable as the physical property of the mattress.
- a flexible polyurethane foam in the range of .05 to 2.25 is obtained.
- the core rebound resilience of the flexible polyurethane foam obtained in the present invention is preferably 20% or less, more preferably 18% or less, further preferably 15% or less, and most preferably 12% or less. By setting the core rebound resilience to 20% or less, sufficient low resilience is exhibited. Usually, the lower limit is 0%.
- Core density of the flexible polyurethane foam obtained by the present invention is preferably 10 ⁇ 110kg / m 3, more preferably from 10 ⁇ 80kg / m 3, more preferably 20 ⁇ 50kg / m 3.
- the flexible polyurethane foam obtained by the present invention uses a polyol (A) having a high molecular weight, it was predicted that the physical properties of the low-density flexible polyurethane foam would be greatly deteriorated. Even at a low density of 50 kg / m 3 or less, the foaming can be stably performed and the production can be performed, and good physical properties can be obtained.
- the air permeability of the flexible polyurethane foam obtained in the present invention is 1 L / min or more, preferably 18 to 100 L / min. When the air permeability is 1 L / min or more, the shape retention is good.
- the number average molecular weight (Mn) was measured by the following method. GPC of several types of monodispersed polystyrene polymers with different degrees of polymerization, which are commercially available as standard samples for molecular weight measurement, were measured using a GPC measuring apparatus (manufactured by Tosoh Corporation, apparatus name: HLC-8220 GPC), and polystyrene A calibration curve was created based on the relationship between the molecular weight and retention time.
- the sample was diluted to 0.5 mass% with tetrahydrofuran and passed through a 0.5 ⁇ m filter, and then the GPC of the sample was measured using the GPC measurement apparatus.
- the number average molecular weight (Mn) of the sample was determined by computer analysis of the GPC spectrum of the sample using the calibration curve.
- Polyol A1 Polyoxypropylene polyol obtained in Production Example 1 below.
- Polyol A2 Polyoxypropylene polyol obtained in Production Example 2 below.
- Polyol A3 Polyoxypropylene polyol obtained in Production Example 3 below.
- Polyol B1 The average number of hydroxyl groups obtained by ring-opening addition polymerization of propylene oxide (hereinafter also referred to as “PO”) with dipropylene glycol as an initiator using a potassium hydroxide catalyst is 2, and the hydroxyl value is 160 mgKOH / g of polyoxypropylene polyol.
- Polyol B2 A polyoxypropylene polyol having an average number of hydroxyl groups of 3 and a hydroxyl value of 168 mgKOH / g, obtained by ring-opening addition polymerization of PO with glycerol as an initiator using a potassium hydroxide catalyst.
- Polyol B3 A polyoxypropylene polyol having an average number of hydroxyl groups of 2 and a hydroxyl value of 56 mgKOH / g obtained by ring-opening addition polymerization of PO using dipropylene glycol as an initiator using a potassium hydroxide catalyst.
- Polyol C1 The average number of hydroxyl groups obtained by ring-opening addition polymerization of a mixture of PO and ethylene oxide (hereinafter also referred to as “EO”) using potassium hydroxide catalyst and glycerin as an initiator is 3, and the hydroxyl value is 48 mgKOH. / G and a polyoxypropylene oxyethylene polyol having a total oxyethylene group content of 80% by mass.
- EO ethylene oxide
- Monool D1 The average number of hydroxyl groups obtained by ring-opening addition polymerization of PO using a zinc hexacyanocobaltate-tert-butyl alcohol complex catalyst with n-butyl alcohol as an initiator and a hydroxyl value of 16. 7 mg KOH / g polyoxypropylene monool.
- Polyols A1 to A3, polyols B1 to B3, polyol C1 and monool D1 have octadecyl-3- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate as an antioxidant. ] (BASF Japan, product name: IRGANOX 1076) is added to each polyol or monool in an amount of 1,500 ppm.
- Foaming agent water.
- Foam stabilizer a Silicone foam stabilizer (manufactured by Toray Dow Corning Co., Ltd., trade name: SRX-298).
- Foam stabilizer b Silicone foam stabilizer (manufactured by Toray Dow Corning, trade name: SZ-1327).
- Urethane catalyst a Dipropylene glycol solution of triethylenediamine. (Product name: TEDA-L33, manufactured by Tosoh Corporation).
- Urethane catalyst b Dioctyltin dilaurate (manufactured by Nitto Kasei Co., Ltd., trade name: Neostan U-810).
- Urethane-forming catalyst c Dioctyltin diacetate (manufactured by Nitto Kasei Co., Ltd., trade name: Neostan U-820).
- Urethane catalyst d tin neodecanoate (manufactured by Nitto Kasei Co., Ltd., trade name: Neostan U-50).
- Flame retardant a halogen-containing condensed phosphate ester (manufactured by Daihachi Chemical Industry Co., Ltd., trade name: CR-504L) Flame retardant b: Tris ⁇ -chloropropyl phosphate (ICL-IP Japan, trade name: Pyrol PCF) Flame retardant c: Melamine powder (Nissan Chemical Industries, average particle size 43 ⁇ m)
- the initiator (a1) was subjected to ring-opening addition polymerization of PO to obtain an average number of hydroxyl groups of 2, a number average molecular weight (Mn) of 10, Polyol (A1) which is a polyoxypropylene polyol having 000 and a hydroxyl value of 11 mgKOH / g was obtained.
- the total degree of unsaturation was 0.007 meq / g.
- Examples 1 to 26 Using the raw materials having the blending ratios shown in Tables 1 to 4, flexible polyurethane foams were produced, and the properties of the obtained flexible polyurethane foams were evaluated. The evaluation results are shown in Tables 1 to 4. Examples 1 to 19 and Examples 21 to 24 are examples, and example 20 is a comparative example. Examples 25 to 26 are examples in which a flame retardant was added. That is, among the raw materials shown in Tables 1 to 4, all raw materials other than the polyisocyanate compound were mixed to prepare a polyol system liquid having a liquid temperature of 23 ° C. ⁇ 1 ° C. A polyisocyanate compound was prepared at a liquid temperature of 23 ° C. ⁇ 1 ° C.
- a predetermined amount of a polyisocyanate compound was added to the polyol system liquid, and mixed for 5 seconds with a mixer (2,000 revolutions per minute) to obtain a foaming stock solution composition. Immediately after mixing, this was poured into a wooden box having an open top and foamed at room temperature (23 ° C.) to obtain a flexible polyurethane foam (slab foam).
- a wooden box having a size of 300 mm in length, 300 mm in width, and 300 mm in height and having a vinyl sheet laid on the inner surface was used.
- the obtained flexible polyurethane foam was taken out of the wooden box, left in a room at room temperature (23 ° C.) and humidity 50% RH for 24 hours, and then evaluated by the following method.
- the core density and the core rebound resilience were measured by methods according to JIS K6400 (1997 edition).
- the flexible polyurethane foam was cut into a size of 250 mm in length and width, and 50 mm in height, excluding the skin portion from the center portion, and used for the measurement.
- the acceptance criteria are a maximum combustion distance of 196 mm or less, an average combustion distance of 147 mm or less, a maximum combustion time within 10 seconds, and an average combustion time within 5 seconds.
- Section D Part II of California Industrial Standard (CAL) No. 117 is specimen size: 203 mm ⁇ 184 mm ⁇ 51 mm, and 203 mm ⁇ 102 mm ⁇ 51 mm.
- the test method is to set the sample and cloth together in a wooden crate, and then place the lit cigarette in the center and cover it with cloth. When the combustion is completed, the remaining rate of the sample is measured.
- the acceptance criterion is that the test is performed three times, and the remaining rate of each test piece is 80% or more.
- the test method is to cover the sample with a cloth as specified, assemble it into a chair shape, set an ignition wooden frame prepared as specified at the center of the backrest, and soak the bottom lint cloth with 1.4 ml of isopropyl alcohol and ignite.
- the acceptance criteria are passed if the residual flame time and the residual dust time are within 10 minutes and the weight loss is within 60 g in two tests.
- Examples 1 to 19 and Examples 21 to 26 according to the present invention have a relatively long cream time of the foamed stock solution composition, moderate reactivity, and good moldability. In addition, it is excellent in workability.
- Example 20 in which the polyol (A) was not used stability during foaming was low, and collapse occurred.
- the flexible polyurethane foams obtained in Examples 1 to 19 and Examples 21 to 24 have good hardness and durability, and the value of Sag-Factor is in the range of 2.05 to 2.25. When used as a mattress, it is possible to obtain performance that is excellent in durability and comfortable in sleeping.
- the flexible polyurethane foams obtained in Examples 25 to 26 have good flame retardancy and Sag-Factor values in the range of 2.05 to 2.25, which are difficult to use when used for mattresses. The performance that it is excellent in flammability and sleep comfort is obtained. Further, comparing Example 1 and Example 2, compared with Example 1, Example 2 using a polyol (A2) having a large number average molecular weight (Mn) and a small hydroxyl value was further improved in durability. Similarly, when Example 3 and Example 4 were compared, Example 4 using a polyol (A2) having a large number average molecular weight (Mn) and a small hydroxyl value was further improved in durability. The same applies when Example 5 and Example 6 are compared.
- Examples 1, 3, 5, and 11 to 13 have good hardness and durability, Sag-Factor values in the range of 2.05 to 2.25, and air permeability. Since it is in the range of 18 to 100 L / min, when used as a mattress, it is excellent in durability and sleeping comfort, and has good ventilation so that heat does not accumulate.
- the soft polyurethane foam obtained in Example 24 was measured for hardness in an atmosphere of 20 ° C. or ⁇ 5 ° C., and the temperature dependency of the hardness was evaluated.
- the glass transition point was also measured. That is, using a CPU gauge MODEL-9500 (product name, push-pull gauge) manufactured by Aiko Engineering Co., Ltd., a semicircular steel ball having a diameter of 20 mm was pushed into a flexible polyurethane foam by 15 mm at a speed of 50 mm / min. The time value was measured and taken as the hardness by a push-pull gauge.
- the glass transition point was determined by measuring dynamic viscoelasticity by a method based on JIS K7244.
- the apparatus was a DMS 6100 (product name) manufactured by Seiko Instruments Inc., and the storage elastic modulus (E ′) was measured at a frequency of 10 Hz while raising the temperature at 3 ° C./min in a nitrogen atmosphere. The temperature of the top peak of the storage elastic modulus (E ′) was measured and used as the glass transition temperature.
- the hardness of the flexible polyurethane foam obtained in Example 24 by a push-pull gauge in an atmosphere at 20 ° C. was 3.9 N, and it was 6.4 N at ⁇ 5 ° C. That is, the hardness hardly increased even when the temperature decreased.
- the glass transition temperature was ⁇ 54.5 ° C. From these results, it was confirmed that there was almost no change in hardness due to temperature decrease.
- the flexible polyurethane foam obtained by the present invention has a low resilience and is suitable as an impact absorber, sound absorber, vibration absorber and the like.
- mattress use furniture use such as sofas and furniture seats; automotive interior parts such as automobile seat pads and members placed between the skin, headrest urethane pads, headless urethane pads and skins It is also suitable for applications. It is particularly suitable for a mattress.
- the entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2010-086125 filed on April 2, 2010 are incorporated herein as the disclosure of the specification of the present invention. Is.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
Description
また、特に荷重分散性が良い軟質ポリウレタンフォームは、椅子のクッション材、マットレス等に用いた時に、体圧分布の均一性が良く、疲労感、床ずれ等が軽減される。具体的には、マットレスに用いられる軟質ポリウレタンフォームにおいて、荷重分散性の指標であるSag-Factorの値が2.05~2.25の範囲であると、体圧分布の均一性に優れ、マットレスの寝心地に優れることが知られている(例えば、非特許文献1参照)。
しかしながら、特許文献1の実施例で使用されているポリエーテルポリオール(A)は、水酸基価が14~28mgKOH/gであり、数平均分子量に換算すると約4,000~8,000であるポリエーテルポリオールしか使用されていない。特許文献1の実施例では金属ウレタン化触媒として2-エチルヘキサン酸スズまたはジブチルスズジラウレートが用いられている。
したがって、従来は、数平均分子量が約8,000より大きいポリオールを用いて、物性が良好な軟質ポリウレタンフォームを製造するのは難しいと考えられており、実際にそのような高分子量のポリオールを使用した例はなかった。
特にマットレスに用いられる軟質ポリウレタンフォームにあっては、上記Sag-Factorが硬度に依存するため、分子量が大きいポリオールを用いて、荷重分散性に優れた軟質ポリウレタンフォームを製造するのは難しいと考えられていた。すなわち、高分子量のポリオールを用いた軟質ポリウレタンフォームは、低硬度となるため、Sag-Factorが好適な範囲でかつ軟質ポリウレタンフォームとしての物性を備えた軟質ポリウレタンフォームを得ることは困難と考えられていた。
さらに、荷重分散性にも優れた軟質ポリウレタンフォームを製造できる軟質ポリウレタンフォームの製造方法、および該方法で得られる軟質ポリウレタンフォームを提供することを目的とする。
[1]ポリオール混合物(X)とポリイソシアネート化合物とを、ウレタン化触媒、発泡剤および整泡剤の存在下で反応させて軟質ポリウレタンフォームを製造する方法において、ポリオール混合物(X)が、下記ポリオール(A)、下記ポリオール(B)および下記モノオール(D)を含むことを特徴とする軟質ポリウレタンフォームの製造方法。
ポリオール(A):平均水酸基数が2~3、数平均分子量が8,500~30,000、およびオキシエチレン基含有量が0~30質量%であるポリオキシアルキレンポリオール。
ポリオール(B):平均水酸基数が2~3、水酸基価が20~250mgKOH/g、およびオキシエチレン基含有量が0~20質量%であるポリオキシアルキレンポリオール。
モノオール(D):水酸基価が10~200mgKOH/gであるポリオキシアルキレンモノオール。
[3]軟質ポリウレタンフォームのコア密度が10~110kg/m3である、上記[1]または[2]に記載の軟質ポリウレタンフォームの製造方法。
[4]前記ポリオール(A)とポリオール(B)との合計の100質量部のうち、ポリオール(A)が5~80質量部である、上記[1]~[3]のいずれかに記載の軟質ポリウレタンフォームの製造方法。
[5]前記ポリオール混合物(X)の100質量部のうち、前記モノオール(D)が、1~25質量部である、上記[1]~[4]のいずれかに記載の軟質ポリウレタンフォームの製造方法。
[7]前記ポリオール混合物(X)が、さらに下記ポリオール(C)を含み、ポリオール混合物(X)の100質量部のうち、該ポリオール(C)が0.1~10質量部である、上記[1]~[6]のいずれかに記載の軟質ポリウレタンフォームの製造方法。
ポリオール(C):平均水酸基数が2~6、水酸基価が10~60mgKOH/g、およびオキシエチレン基含有量が50質量%以上であるポリオキシアルキレンポリオール。
[8]前記ウレタン化触媒の使用量が、ポリオール混合物(X)の100質量部に対して、0.01~5.0質量部である、上記[1]~[7]のいずれかに記載の軟質ポリウレタンフォームの製造方法。
[9]前記発泡剤が水のみである、上記[1]~[8]のいずれかに記載の軟質ポリウレタンフォームの製造方法。
[11]マットレス用である、上記[10]に記載の軟質ポリウレタンフォーム。
[12]自動車の内装部材用途である、上記[10]に記載の軟質ポリウレタンフォーム。
さらに荷重分散性と通気性にも優れ、マットレス用途、または自動車の内装部材用途に好適な軟質ポリウレタンフォームが得られる。
水酸基価は、JIS K 1557-1に準拠した方法で測定した値である。
ポリオールの平均水酸基数は、該ポリオールの製造に用いた開始剤の活性水素数の平均値を意味する。
ポリオールの総不飽和度は、JIS K1557(2007年版)に準拠して測定した値である。
「ポリオールシステム液」とは、ポリイソシアネート化合物と反応させる相手の液であり、ポリオールのほかに発泡剤、整泡剤、触媒、難燃剤等、必要に応じた配合剤を含む液である。
「発泡原液組成物」とは、ポリオールシステム液と、ポリイソシアネート化合物と、任意に残りの成分とを混合した液である。
<ポリオール混合物(X)>
本発明におけるポリオール混合物(X)は、ポリオール(A)、ポリオール(B)およびモノオール(D)を含む。さらにポリオール(C)を含むことが好ましい。また、場合により、ポリオール(A)~(C)以外のポリオール(以下、ポリオール(E)という)やモノオール(D)以外のモノオールを含んでもよい。
本発明におけるポリオール(A)は、平均水酸基数が2~3、数平均分子量が8,500~30,000、およびオキシエチレン基含有量が0~30質量%のポリオキシアルキレンポリオールである。このポリオキシアルキレンポリオールは、重合触媒存在下で開始剤にアルキレンオキシドを開環付加重合させて得られる。ポリオール(A)は、1種のみを用いても2種以上を併用してもよい。
ナトリウム系触媒またはカリウム系触媒としては、ナトリウム金属、カリウム金属、ナトリウムアルコキシドまたはカリウムアルコキシド(ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムプロポキシド、カリウムメトキシド、カリウムエトキシド、カリウムプロポキシド等。)、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム等が挙げられる。
セシウム系触媒としては、セシウム金属、セシウムアルコキシド(セシウムメトキシド、セシウムエトキシド、セシウムプロポキシド等。)、水酸化セシウム、炭酸セシウム等が挙げられる。
上記フッ素原子を含有する芳香族炭化水素基としては、ペンタフルオロフェニル、テトラフルオロフェニル、トリフルオロフェニル、3,5-ビス(トリフルオロメチル)トリフルオロフェニル、3,5-ビス(トリフルオロメチル)フェニル、β-ペルフルオロナフチル、2,2’,2’’-ペルフルオロビフェニル等が挙げられる。
上記フッ素原子を含有する芳香族炭化水素オキシ基としては、前記フッ素原子を含有する芳香族炭化水素基に酸素原子が結合した炭化水素オキシ基が好ましい。
これらのうちでも、有機配位子としてtert-ブチルアルコ-ルを有することが好ましい。したがって、有機配位子の少なくとも一部としてtert-ブチルアルコ-ルを有するDMC触媒を用いることが好ましい。このようなDMC触媒は高活性であり、総不飽和度の低いポリオールを製造することができる。
本発明におけるポリオール(A)は、DMC触媒の存在下で、開始剤にアルキレンオキシドを開環付加重合させて得られるポリオキシアルキレンポリオールであることが好ましい。
ポリオール(A)の総不飽和度は、0.02meq/g以下が好ましい。特に好ましくは、0.015meq/g以下であれば、優れた耐久性能を得ることができる。さらに好ましくは、0.010meq/g以下である。
活性水素数が2である化合物の具体例としては、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、ジエチレングリコール、ジプロピレングリコールなどの2価アルコールが挙げられる。また活性水素数が3である化合物の具体例としては、グリセリン、トリメチロールプロパンなどの3価アルコールが挙げられる。またこれらの化合物にアルキレンオキシド、好ましくはプロピレンオキシドを開環付加重合させて得られた高水酸基価ポリオキシアルキレンポリオールを用いることが好ましい。具体的には、水酸基数が2または3であって、水酸基1個当たりの分子量が200~500程度、すなわち水酸基価が110~285mgKOH/gの高水酸基価ポリオキシアルキレンポリオール(好ましくはポリオキシプロピレンポリオール)を用いることが好ましい。
ポリオール(A)におけるオキシエチレン基含有量は30質量%以下が好ましく、15質量%以下が特に好ましい。また下限値は0質量%である。オキシエチレン基含有量を30質量%以下とすることで、加湿時における耐久性が良好となるため好ましい。
分子量がこの範囲であると、クリームタイムが適度に長く、かつ一定の物性を有し、収縮がない軟質ポリウレタンフォームを得ることができる。
本発明におけるポリオール(A)の水酸基価は3~20mgKOH/gが好ましい。この範囲であると、軟質ポリウレタンフォーム製造時のクリームタイムが適度に長くなって、良好な成形性が得られる。5~17mgKOH/gがより好ましく、3mgKOH/g以上、10mgKOH/g未満がさらに好ましい。
水酸基価がこの範囲であると、クリームタイムが適度に長く、かつ一定の物性を有し、収縮がない軟質ポリウレタンフォームを得ることができる。
また水酸基価が8~12mgKOH/gの範囲であると、Sag-Factor(SAg-Factorについては、実施例中で説明する。)および形状保持性が良好で、かつ通気性が良好な軟質ポリウレタンフォームを得ることができる。
ポリマー微粒子のポリマーとしては、付加重合系ポリマーまたは縮重合系ポリマーが挙げられる。付加重合系ポリマーは、例えば、アクリロニトリル、スチレン、メタクリル酸エステル、アクリル酸エステル等のモノマーを単独重合または共重合して得られる。縮重合系ポリマーとしては、例えば、ポリエステル、ポリウレア、ポリウレタン、ポリメチロールメラミン等が挙げられる。ポリオール中にポリマー微粒子を存在させることにより、ポリオールの水酸基価が低く抑えられ、軟質ポリウレタンフォームの硬度を高くすることができ、引張強度等の機械的物性向上に有効である。
ポリマー分散ポリオール中のポリマー微粒子の含有割合は、特に制限されない。ポリマー微粒子を含有させることによる効果が充分に得られる点で、ポリオール混合物(X)の100質量部中に存在するポリマー微粒子が1質量部以上であることが好ましく、5質量部以上がより好ましい。上限値は軟質ポリウレタンフォームの成形性を維持するため、またポリオール混合物(X)の粘度が高くなりすぎることを抑制する点から、40質量部以下が好ましい。
なお、ポリマー分散ポリオールのポリオールとしての諸物性(数平均分子量、水酸基価、総不飽和度等)は、ポリマー微粒子を除いたベースポリオールについて考えるものとする。
本発明におけるポリオール(B)は、平均水酸基数が2~3、水酸基価が20~250mgKOH/g、およびオキシエチレン基含有量が0~20質量%であるポリオキシアルキレンポリオールである。このポリオキシアルキレンポリオールは、ポリオール(A)と同様に、重合触媒存在下で開始剤にアルキレンオキシドを開環付加重合させて得られる。
ポリオール(B)は、1種のみを用いても2種以上を併用してもよい。
アルカリ金属化合物触媒としては、水酸化カリウム、カリウムメトキシド等のカリウム化合物、セシウム金属、水酸化セシウム、炭酸セシウム、セシウムメトキシド等のセシウム化合物などのアルカリ金属化合物またはアルカリ金属水酸化物が好ましく挙げられる。
活性水素数が2または3である化合物の具体例としては、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、ジエチレングリコール、ジプロピレングリコール、グリセリン、トリメチロールプロパン等の多価アルコール類;ビスフェノールA等の多価フェノール類;モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ピペラジン等のアミン類が挙げられる。このうち多価アルコール類が特に好ましい。またこれらの化合物にアルキレンオキシド、好ましくはプロピレンオキシドを開環付加重合させて得られた高水酸基価ポリオキシアルキレンポリオールを用いることが好ましい。
ポリオール(B)としては、オキシエチレン基含有量の低いポリオールが好ましく、ポリオール(B)におけるオキシエチレン基含有量は0~20質量%、好ましくは0~10質量%である。
特に、オキシアルキレン基としてオキシプロピレン基のみを有するポリオキシプロピレンポリオールが好ましい。このようなオキシエチレン基含有量の低いポリオールを用いると、得られる軟質ポリウレタンフォームの加湿時の耐久性が向上する。
ポリオール(B)を2種以上併用する場合、それらの混合後における平均水酸基数が2~2.8であることが好ましい。平均水酸基数が上記範囲であると、特に軟質ポリウレタンフォームに局部的な圧力を加えた際、例えば軟質ポリウレタンフォームを折り曲げた際に屈曲部に裂けが生じるのが防止されやすい。
水酸基価を20mgKOH/g以上とすることで、コラップス(Collapse)等を抑制し、軟質ポリウレタンフォームを安定して製造することができる。また水酸基価を250mgKOH/g以下とすることで、製造される軟質ポリウレタンフォームの柔軟性を損なわず、かつ、反発弾性率を低くできる。ポリオール(B)の水酸基価は20~200mgKOH/gがより好ましく、50~180mgKOH/gがさらに好ましい。
本発明におけるポリオール(C)は、平均水酸基数が2~6、水酸基価が10~60mgKOH/g、およびオキシエチレン基含有量が50質量%以上であるポリオキシアルキレンポリオールである。
ポリオール(C)は、1種のみを用いても2種以上を併用してもよい。
特に、ポリオール(C)としては、プロピレンオキシドとエチレンオキシドとの混合物を開環付加重合させて得られるポリオールが好ましい。この場合、ポリオール(C)におけるオキシエチレン含有量は50~95質量%が好ましく、60~90質量%がより好ましい。
ポリオール(C)の水酸基価が10~60mgKOH/gであると、得られる軟質ポリウレタンフォームは、伸びに優れ、硬度が適度となり引張強度等の物性に優れる。該水酸基価は15~50mgKOH/gがより好ましい。
本発明におけるモノオール(D)は、水酸基価が10~200mgKOH/gであるポリオキシアルキレンモノオールである。このポリオキシアルキレンモノオールは、活性水素の数が1である開始剤を使用し、この開始剤に、ポリオール(A)またはポリオール(B)と同様に、重合触媒存在下でアルキレンオキシドを開環付加重合させて得られる。
モノオール(D)は、1種のみを用いても2種以上を併用してもよい。
すなわちモノオール(D)としては、開始剤にプロピレンオキシドのみを開環付加重合させたポリオキシプロピレンモノオールが好ましい。プロピレンオキシドのみを用いることは、得られる軟質ポリウレタンフォームの加湿時の耐久性が向上するため好ましい。
本発明におけるモノオール(D)の平均水酸基数は1である。モノオール(D)の水酸基価が10~200mgKOH/gであると、ポリオールシステム液の粘度が高くなりすぎず取扱いが容易である。また得られる軟質ポリウレタンフォームは物性を損なうことなく優れた通気性を有することができる。該水酸基価は10~120mgKOH/gが好ましい。
本発明におけるポリオール(E)は、ポリオール(A)、(B)、および(C)のいずれにも該当しないポリオールであり、例えば、ポリオール(B)よりも高水酸基価のポリオール、ポリオール(A)およびポリオール(B)よりも平均水酸基数が大きくかつポリオール(C)よりもオキシエチレン含有量が高いポリオール、ポリオキシアルキレンポリオール以外の高分子量ポリオールなどが挙げられる。
すなわちポリオール(E)としてのポリオキシアルキレンポリオールは、開始剤にプロピレンオキシドのみを開環付加重合させたポリオキシプロピレンポリオールが好ましい。ポリオール(E)としては、上記のうちポリオキシアルキレンポリオールが好ましく、ポリオキシプロピレンポリオールポリオールが特に好ましい。プロピレンオキシドのみを用いることは、得られる軟質ポリウレタンフォームの加湿時の耐久性が向上するため好ましい。ポリオール(E)は、1種のみを用いても2種以上を併用してもよい。
ポリオール混合物(X)において、ポリオール(A)とポリオール(B)との合計の100質量部のうち、ポリオール(A)が5~80質量部であることが好ましく、10~50質量部がより好ましい。ポリオール混合物(X)中のポリオール(A)の割合が5質量部以上であると、低反発で、温度変化に対する反発弾性率および硬さの変化が小さい(感温性の低い)軟質ポリウレタンフォームが得られやすい。また、コラップス等を抑制し、軟質ポリウレタンフォームを安定して製造することができる。一方、80質量部以下であると、軟質ポリウレタンフォームの良好な硬度が得られやすい。
なお、ポリマー分散ポリオール中のポリマー微粒子は、ポリオールの含有量に含めないものとする。
本発明において用いられるポリイソシアネート化合物としては、特に制限はなく、イソシアネート基を2以上有する芳香族系、脂環族系、脂肪族系等のポリイソシアネート;前記ポリイソシアネートの2種類以上の混合物;これらを変性して得られる変性ポリイソシアネート等が挙げられる。
活性水素含有化合物とは、ポリオール混合物(X)、および発泡剤として使用しうる水等をいう。イソシアネート指数とは、ポリイソシアネート化合物のイソシアネート基の当量を、発泡原液組成物中の全活性水素含有化合物中の全ての活性水素の合計の当量で除した数値の100倍で表される。
上記イソシアネート指数が80以上であると、得られた軟質ポリウレタンフォームを工業用として使用する際に切断しやすい点で好ましい。上記イソシアネート指数が90以上であると、ポリオール、モノオールが適度にポリイソシアネート化合物と反応し、可塑剤としての影響が小さく、洗濯耐久性が良好となり好ましい。またウレタン化触媒が放散しにくく、製造された軟質ポリウレタンフォームが変色しにくい等の点でも好ましい。該イソシアネート指数が130以下であると発泡特性が安定し、良好な外観の軟質ポリウレタンフォームが得られる。
ポリオール混合物(X)とポリイソシアネート化合物とを反応させるウレタン化触媒としては、ウレタン化反応を促進させる触媒として公知のものを適宜用いることができる。
例えば、アミン化合物、有機金属化合物、カルボン酸金属塩等が挙げられる。1種を単独で用いてもよく、2種以上を組み合わせてもよい。
アミン化合物としては、トリエチレンジアミン、ビス(2-ジメチルアミノエチル)エーテル、N,N,N’,N’-テトラメチルヘキサメチレンジアミン等の3級アミン類が挙げられる。
有機金属化合物としては、ジブチルスズオキシド、ジブチルスズジラウレート、ジブチルスズ、およびジブチルスズジアセテート等のジブチルスズ類;ジオクチルスズオキシド、ジオクチルスズジラウレート、およびジオクチルスズジアセテート等のジオクチルスズ類;スタナスオクトエート、ネオデカン酸スズ、オクチル酸ビスマス等が挙げられる。
カルボン酸金属塩としては、酢酸カリウム、2-エチルヘキサン酸カリウム等が挙げられる。
有機金属化合物としては、反応性を制御しやすい点でジオクチルスズ類が好ましい。すなわちウレタン化触媒にジオクチルスズ類を含むことが好ましい。
ジオクチルスズ類を使用すると、特に初期の反応性を制御しやすくなり、発泡原液組成物のクリームタイムが長くなり、外観不良が生じ難く、歩留りが向上する。すなわち、2-エチルヘキサン酸スズまたはジブチルスズジラウレート等の金属ウレタン触媒に比べて、ジオクチルスズ類は活性が高すぎないため、分子量が高いポリオール(A)と組み合わせて軟質ポリウレタンフォーム製造時の良好なクリームタイムを確保するうえで特に好ましい。
ジオクチルスズ触類を使用する場合の使用量は、ポリオール混合物(X)の100質量部に対して、0.01~3.0質量部が好ましく、0.03~2.0質量部がより好ましく、0.05~1.0質量部がさらに好ましく、0.07~0.5質量部が最も好ましい。3.0質量部以下であると軟質ポリウレタンフォームの収縮が抑制され、0.01質量部以上であると軟質ポリウレタンフォームのセトリング(Settling)が抑制され、良好な外観の軟質ポリウレタンフォームが製造可能であるので好ましい。
また、ジオクチルスズ類を分子量が高いポリオール(A)と組み合わせて使用すると、得られる軟質ポリウレタンフォームの通気性が良好となるため好ましい。
ウレタン化触媒として、アミン類と有機金属化合物とを併用する場合、アミン類として3級アミン類、有機金属化合物としてジオクチルスズ類のみからなる組合せがクリームタイム、通気性などが良好となるので好ましい。
整泡剤としては、シリコーン系整泡剤、フッ素系整泡剤等が挙げられる。これらのうち、シリコーン系整泡剤が好ましい。シリコーン系整泡剤のうち、ポリオキシアルキレン・ジメチルポリシロキサンコポリマーを主成分とするシリコーン系整泡剤が好ましい。整泡剤は、ポリオキシアルキレン・ジメチルポリシロキサンコポリマー単独であっても、これに他の併用成分を含んだ混合物であってもよい。他の併用成分としては、ポリアルキルメチルシロキサン、グリコール類、ポリオキシアルキレン化合物等が挙げられる。整泡剤としては、ポリオキシアルキレン・ジメチルポリシロキサンコポリマー、ポリアルキルメチルシロキサンおよびポリオキシアルキレン化合物を含む整泡剤混合物の使用が、得られる軟質ポリウレタンフォームの安定性に優れる点から特に好ましい。
発泡剤としては、フッ素化炭化水素等の公知の発泡剤が使用できる。さらに、発泡剤としては、水および不活性ガスからなる群から選ばれた少なくとも1種が好ましい。不活性ガスとしては、具体的には、空気、窒素、炭酸ガス等が好ましく挙げられる。これらのうちでも、環境への配慮から水がより好ましく、発泡剤として水のみを用いることが最も好ましい。
発泡剤の使用量は、水を使用する場合、ポリオール混合物(X)の100質量部に対して、10質量部以下が好ましく、0.1~4.0質量部がより好ましい。
低密度の軟質ポリウレタンフォームを製造する場合、ポリオール混合物の100質量部に対して、0.5~5.0質量部の水を使用するのが好ましい。
本発明の軟質ポリウレタンフォームは、難燃剤を含有してもよい。難燃剤としては、ハロゲン含有化合物、リン酸エステル化合物、含ハロゲンリン酸エステル化合物等の有機系化合物、およびメラミン等の樹脂系難燃剤が挙げられる。また、水酸化アルミニウム、酸化亜鉛、膨張性黒鉛等の無機系化合物が挙げられる。これらの難燃剤は単独で用いてもよいし、2種類以上を併用してもよい。ハロゲン含有化合物としては、大八化学社製のCR-504L、日産化学工業社製のメラミン粉体、ICL-IPジャパン社製のファイロールPCF等が挙げられる。
例えば、マットレスとして用いられる軟質ポリウレタンフォームには、その用途に応じた難燃性を要求されることがあり、上記難燃剤を用途に応じて用いることができる。
難燃剤の含有量は、ポリオール混合物(X)の100質量部に対して、3~60質量部が好ましく、5~50質量部がより好ましい。
本発明において軟質ポリウレタンフォームを製造する際には、上述したウレタン化触媒、発泡剤、整泡剤、難燃剤等以外に所望の添加物も使用できる。添加剤としては、炭酸カリウム、硫酸バリウム等の充填剤;乳化剤等の界面活性剤;酸化防止剤、紫外線吸収剤等の老化防止剤;メラミン、尿素およびそれらの誘導体、可塑剤、着色剤、抗カビ剤、破泡剤、分散剤、変色防止剤等が挙げられる。
上記組合せにおいて、それぞれの好適な割合は、ポリオール混合物(X)において、ポリオール(A)、ポリオール(B)、ポリオール(C)、およびモノオール(D)がそれぞれ、10~30質量部、50~80質量部、1~8質量部、および1~24質量部である。また、ポリオール混合物(X)100質量部に対し、3級アミン類が0.01~3質量部であり、ジオクチルスズ系触媒が0.01~3質量部である。
本発明で得られる軟質ポリウレタンフォームの形成法としては、密閉された金型内に発泡原液組成物を注入し発泡成形する方法(モールド法)でも、開放系で発泡原液組成物を発泡させる方法(スラブ法)でもよく、スラブ法が好ましい。具体的には、ワンショット法、セミプレポリマー法、プレポリマー法等の公知の方法により行うことができる。軟質ポリウレタンフォームの製造には、通常用いられる製造装置を用いることができる。
良好な成形性が得られやすい点で、クリームタイムは10秒以上が好ましく、15秒以上がより好ましい。生産性の点では50秒以下が好ましく、40秒以下がより好ましい。
本発明で得られる軟質ポリウレタンフォームは、分子量が高いポリオール(A)を用いたにもかかわらず、良好な硬度が得られる。また良好な荷重分散性も得ることができる。これは分子量が高いポリオール(A)がポリイソシアネートを介在してポリオール(B)とのウレタンネットワークを適度に形成することにより、Sag-Factorの値が2.05から2.25の範囲である、体圧分散性に優れる軟質ポリウレタンフォームが形成されるためと考えられる。
実用上、軟質ポリウレタンフォームの25%硬さ(ILD)は40N/314cm2以上が好ましく、50N/314cm2以上がより好ましい。
50%硬さ(ILD)は60N/314cm2以上が好ましく、75N/314cm2以上がより好ましい。
65%硬さ(ILD)は80N/314cm2以上が好ましく、100N/314cm2以上がより好ましい。
本明細書において、耐久性の指標として、圧縮率が50%と90%での圧縮残留歪みおよび湿熱圧縮残留歪みを用いる。これらの値が小さい方が、耐久性が良好である。
本発明で得られる軟質ポリウレタンフォームは、特に乾熱条件での耐久性に優れ、90%での圧縮残留歪みの値が10%以下を達成できる。
90%圧縮残留歪みは20%以下が好ましく、15%以下がより好ましく、12%以下がさらに好ましく、10%以下が最も好ましい。
50%湿熱圧縮残留歪みは15%以下が好ましく、10%以下がより好ましく、5%以下がさらに好ましく、4%以下が最も好ましい。
90%湿熱圧縮残留歪みは20%以下が好ましく、15%以下がより好ましく、12%以下がさらに好ましく、10%以下が最も好ましい。
なお、数平均分子量(Mn)は下記の方法で測定した。
分子量測定用の標準試料として市販されている重合度の異なる数種の単分散ポリスチレン重合体についてのGPCを、GPC測定装置(東ソー社製、装置名:HLC-8220GPC)を用いて測定し、ポリスチレンの分子量と保持時間(リテンションタイム)との関係をもとに検量線を作成した。
試料をテトラヒドロフランで0.5質量%に希釈し、0.5μmのフィルターに通過させた後、該試料についてのGPCを、前記GPC測定装置を用いて測定した。
前記検量線を用いて、試料のGPCスペクトルをコンピュータ解析することにより、該試料の数平均分子量(Mn)を求めた。
ポリオールA1:下記製造例1で得られるポリオキシプロピレンポリオール。
ポリオールA2:下記製造例2で得られるポリオキシプロピレンポリオール。
ポリオールA3:下記製造例3で得られるポリオキシプロピレンポリオール。
ポリオールB2:水酸化カリウム触媒を用いてグリセリンを開始剤としてPOを開環付加重合させて得られる平均水酸基数が3であり、水酸基価が168mgKOH/gのポリオキシプロピレンポリオール。
ポリオールB3:水酸化カリウム触媒を用いてジプロピレングリコールを開始剤としてPOを開環付加重合させて得られる平均水酸基数が2であり、水酸基価が56mgKOH/gのポリオキシプロピレンポリオール。
ポリオールC1:水酸化カリウム触媒を用いてグリセリンを開始剤としてPOおよびエチレンオキシド(以下「EO」とも記す。)の混合物を開環付加重合させて得られる平均水酸基数が3であり、水酸基価が48mgKOH/gであり、全オキシエチレン基含有量が80質量%であるポリオキシプロピレンオキシエチレンポリオール。
モノオールD1:n-ブチルアルコールを開始剤として、亜鉛ヘキサシアノコバルテート-tert-ブチルアルコール錯体触媒を用いてPOを開環付加重合させて得られる平均水酸基数が1であり、水酸基価が16.7mgKOH/gのポリオキシプロピレンモノオール。
整泡剤a:シリコーン系整泡剤(東レダウコーニング社製、商品名:SRX-298)。
整泡剤b:シリコーン系整泡剤(東レダウコーニング社製、商品名:SZ-1327)。
ウレタン化触媒a:トリエチレンジアミンのジプロピレングリコール溶液。(東ソー社製、商品名:TEDA-L33)。
ウレタン化触媒b:ジオクチルスズジラウレート(日東化成社製、商品名:ネオスタンU-810)。
ウレタン化触媒c:ジオクチルスズジアセテート(日東化成社製、商品名:ネオスタンU-820)。
ウレタン化触媒d:ネオデカン酸スズ(日東化成社製、商品名:ネオスタンU-50)。
ウレタン化触媒e:オクチル酸ビスマス80質量部とオクチル酸20質量部の混合物(日本化学産業社製、商品名:プキャット25)
ポリイソシアネート化合物a:TDI-80(2,4-TDI/2,6-TDI=80/20質量%の混合物)、イソシアネート基含有量48.3質量%(日本ポリウレタン工業社製、商品名:コロネートT-80)。
難燃剤b:トリス・β-クロロプロピルホスフェート(ICL-IPジャパン社製、商品名:ファイロールPCF)
難燃剤c:メラミン粉体(日産化学工業社製、平均粒子径43μm)
水酸化カリウム触媒の存在下、ジプロピレングリコールを開始剤として、POを分子量が1,000になるまで開環付加重合させた後、珪酸マグネシウムで精製し、開始剤(a1)を製造した。ついで、DMC触媒である亜鉛ヘキサシアノコバルテート-tert-ブチルアルコール錯体触媒の存在下、前記開始剤(a1)にPOを開環付加重合させて、平均水酸基数2、数平均分子量(Mn)10,000、および水酸基価11mgKOH/gのポリオキシプロピレンポリオールであるポリオール(A1)を得た。総不飽和度は、0.007meq/gであった。
DMC触媒である亜鉛ヘキサシアノコバルテート-tert-ブチルアルコール錯体触媒の存在下、前記開始剤(a1)にPOを開環付加重合させて、平均水酸基数2、数平均分子量(Mn)15,000、および水酸基価7.5mgKOH/gのポリオキシプロピレンポリオールであるポリオール(A2)を得た。総不飽和度は、0.008meq/gであった。
DMC触媒である亜鉛ヘキサシアノコバルテート-tert-ブチルアルコール錯体触媒の存在下、前記開始剤(a1)にPOを開環付加重合させて、平均水酸基数2、数平均分子量(Mn)20,000、および水酸基価5.6mgKOH/gのポリオキシプロピレンポリオールであるポリオール(A3)を得た。総不飽和度は、0.008meq/gであった。
表1~4に示す配合割合の原料を用いて、軟質ポリウレタンフォームを製造し、得られた軟質ポリウレタンフォームの物性を評価した。評価結果を表1~4に示す。なお、例1~19、および例21~24が実施例であり、例20は比較例である。例25~26は難燃剤を添加した実施例である。
すなわち、表1~4に示した原料のうち、ポリイソシアネート化合物以外の全原料を混合し、液温23℃±1℃のポリオールシステム液を調製した。またポリイソシアネート化合物を液温23℃±1℃に調製した。
ポリオールシステム液にポリイソシアネート化合物を所定量加え、ミキサー(毎分2,000回転)で5秒間混合して発泡原液組成物とした。これを混合直後に、上部が開口している木箱に注入し、室温(23℃)で発泡させて軟質ポリウレタンフォーム(スラブフォーム)を得た。木箱は、縦が300mm、横が300mm、高さが300mmの大きさで、内面にビニールシートが敷きつめられたものを使用した。
得られた軟質ポリウレタンフォームを木箱から取り出し、室温(23℃)、湿度50%RHの室内に24時間放置した後、下記の方法で評価を行った。
[クリームタイム、およびライズタイム]
ポリオールシステム液とポリイソシアネート化合物の混合を開始した時点を0s(0秒)とし、反応混合液がクリーム状に白濁して立ち上がってくるまでの時間をクリームタイム、0sから発泡が終了して軟質ポリウレタンフォーム上部からガス抜け(所謂ヘルシーバブル(Healthy bubble))が観測された時点までの時間をライズタイム(Rise time)として、ストップウオッチで測定した。
[形状保持性]
形状保持性は、発泡後収縮のないものを○、収縮および崩壊するものを×として評価した。
コア密度、およびコア反発弾性率は、JIS K6400(1997年版)に準拠した方法で測定した。軟質ポリウレタンフォームの中央部から表皮部を除いて縦横各250mm、高さ50mmの大きさに切り出したものを測定に用いた。
25%硬さ(ILD)、50%硬さ(ILD)、65%硬さ(ILD)、通気性、引張強度、伸び、引裂強度、ヒステリシスロス率、50%圧縮残留歪み、90%圧縮残留歪み、50%湿熱圧縮残留歪み、および90%湿熱圧縮残留歪みは、JIS K6400(1997年版)に準拠した方法で測定した。
Sag-Factorは、「65%硬さ(ILD)/25%硬さ(ILD)」の値である。
通気性は、JIS K6400(1997年版)のB法に準拠した方法で測定した。
難燃性はカリファルニア工業規格(CAL)第117号、および英国工業規格(BS)第5852号に準拠した方法で測定した。
カリファルニア工業規格(CAL)第117号のSectionA PartIは試験片サイズ:305mm×75mm×13mm、熱老化処理:104℃×24時間、試験片数:常温処理が5枚、および熱老化処理が5枚である。
試験方法は試験片を縦に吊り、12秒間バーナーで燃焼させる。12秒後にバーナーを離した後の燃焼時間及び燃焼距離を測定する。常温処理試料を5枚および熱老化処理試料を5枚ずつ行い、平均値を取る。合格基準は、最大燃焼距離が196mm以下、平均燃焼距離が147mm以下、最大燃焼時間が10秒以内、および平均燃焼時間が5秒以内である。
カリファルニア工業規格(CAL)第117号のSectionD PartIIは試験片サイズ:203mm×184mm×51mm、および203mm×102mm×51mmである。
試験方法はいす型の木枠に試料と布を一緒にセットし、次に火の着いたタバコを中央に静置し、布をかぶせる。燃焼が終了した時点で、その試料の残存率を計る。合格基準は試験を3回行い、それぞれの試験片の残存率が80%以上である。
英国工業規格(BS)第5852号は、試験片サイズ:450mm×450mm×75mm、および450mm×300mm×75mmである。
試験方法は試料を規定通り布で覆い、イス型に組み立て、背もたれ中心部に規定通り作製した点火木枠をセットし、最下部のリント布に1.4mlのイソプロピルアルコールをしみこませ着火する。合格基準は、2回の試験において、残炎時間、および残塵時間が10分以内であり、重量ロスが60g以内であれば合格となる。
また、例1~19、および例21~24で得られた軟質ポリウレタンフォームは、硬度、および耐久性が良好であるとともに、Sag-Factorの値が2.05~2.25の範囲であり、マットレス用として用いたときに、耐久性に優れ、かつ寝心地性に優れるという性能が得られる。
更に、例25~26で得られた軟質ポリウレタンフォームは、難燃性が良好であるとともにSag-Factorの値が2.05~2.25の範囲であり、マットレス用として用いたときに、難燃性に優れ、かつ寝心地性に優れるという性能が得られる。
また例1と例2とを比べると、例1に比べて、数平均分子量(Mn)が大きく、水酸基価が小さいポリオール(A2)を用いた例2は、耐久性がより向上した。同様に、例3と例4とを比べると、数平均分子量(Mn)が大きく、水酸基価が小さいポリオール(A2)を用いた例4は、耐久性がより向上した。例5と例6とを比べた場合も同様である。
更に、例1、例3、例5、および例11~13は硬度、および耐久性が良好であるとともに、Sag-Factorの値が2.05~2.25の範囲であり、かつ通気性が18~100L/minの範囲であるため、マットレス用として用いた場合に、耐久性、寝心地性に優れ、かつ通気性が良いため熱が蓄積しないという性能が得られる。
例24で得られた軟質ポリウレタンフォームについて、20℃または-5℃の雰囲気中で硬さを測定し、硬度の温度依存性を評価した。またガラス転移点を測定した。
すなわち、アイコーエンジニアリング社製のCPUゲージMODEL-9500(製品名、プッシュプルゲージ)を用い、直径20mmの半円球の鋼球を、軟質ポリウレタンフォームに対して、50mm/分の速度で15mm押し込んだときの値を測定し、プッシュプルゲージによる硬度とした。
ガラス転移点は、JIS K7244 に準拠した方法で動的粘弾性を測定して求めた。装置はセイコーインスツルメンタル社製、DMS 6100(製品名)を用い、窒素雰囲気下で3℃/分で昇温しながら、周波数10Hzで貯蔵弾性率(E’)を測定した。貯蔵弾性率(E’)のトップピークの温度を測定し、ガラス転移温度とした。
なお、2010年4月2日に出願された日本特許出願2010-086125号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
Claims (12)
- ポリオール混合物(X)とポリイソシアネート化合物とを、ウレタン化触媒、発泡剤および整泡剤の存在下で反応させて軟質ポリウレタンフォームを製造する方法において、
ポリオール混合物(X)が、下記ポリオール(A)、下記ポリオール(B)および下記モノオール(D)を含むことを特徴とする軟質ポリウレタンフォームの製造方法。
ポリオール(A):平均水酸基数が2~3、数平均分子量が8,500~30,000、およびオキシエチレン基含有量が0~30質量%であるポリオキシアルキレンポリオール。
ポリオール(B):平均水酸基数が2~3、水酸基価が20~250mgKOH/g、およびオキシエチレン基含有量が0~20質量%であるポリオキシアルキレンポリオール。
モノオール(D):水酸基価が10~200mgKOH/gであるポリオキシアルキレンモノオール。 - 前記ウレタン化触媒がジオクチルスズ類を含む、請求項1に記載の軟質ポリウレタンフォームの製造方法。
- 軟質ポリウレタンフォームのコア密度が10~110kg/m3である、請求項1または2に記載の軟質ポリウレタンフォームの製造方法。
- 前記ポリオール(A)とポリオール(B)との合計の100質量部のうち、ポリオール(A)が5~80質量部である、請求項1~3のいずれか一項に記載の軟質ポリウレタンフォームの製造方法。
- 前記ポリオール混合物(X)の100質量部のうち、前記モノオール(D)が1~25質量部である、請求項1~4のいずれか一項に記載の軟質ポリウレタンフォームの製造方法。
- 前記モノオール(D)が、開始剤にプロピレンオキシドのみを開環付加重合させたポリオキシプロピレンモノオールである、請求項1~5のいずれか一項に記載の軟質ポリウレタンフォームの製造方法。
- 前記ポリオール混合物(X)が、さらに下記ポリオール(C)を含み、ポリオール混合物(X)の100質量部のうち、該ポリオール(C)が0.1~10質量部である、請求項1~6のいずれか一項に記載の軟質ポリウレタンフォームの製造方法。
ポリオール(C):平均水酸基数が2~6、水酸基価が10~60mgKOH/g、およびオキシエチレン基含有量が50質量%以上であるポリオキシアルキレンポリオール。 - 前記ウレタン化触媒の使用量が、ポリオール混合物(X)の100質量部に対して、0.001~5.0質量部である、請求項1~7のいずれか一項に記載の軟質ポリウレタンフォームの製造方法。
- 前記発泡剤が水のみである、請求項1~8のいずれか一項に記載の軟質ポリウレタンフォームの製造方法。
- 請求項1~9のいずれか一項に記載の方法で製造された軟質ポリウレタンフォーム。
- マットレス用である、請求項10に記載の軟質ポリウレタンフォーム。
- 自動車の内装部材用途である、請求項10に記載の軟質ポリウレタンフォーム。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011800159614A CN102812065A (zh) | 2010-04-02 | 2011-04-01 | 软质聚氨酯泡沫及其制造方法 |
EP11765851A EP2554560A1 (en) | 2010-04-02 | 2011-04-01 | Flexible polyurethane foam and production method therefor |
JP2012509638A JPWO2011125951A1 (ja) | 2010-04-02 | 2011-04-01 | 軟質ポリウレタンフォームおよびその製造方法 |
KR1020127023606A KR20130018686A (ko) | 2010-04-02 | 2011-04-01 | 연질 폴리우레탄 폼 및 그 제조 방법 |
US13/633,402 US20130030068A1 (en) | 2010-04-02 | 2012-10-02 | Flexible polyurethane foam and process for its production |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-086125 | 2010-04-02 | ||
JP2010086125 | 2010-04-02 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/633,402 Continuation US20130030068A1 (en) | 2010-04-02 | 2012-10-02 | Flexible polyurethane foam and process for its production |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011125951A1 true WO2011125951A1 (ja) | 2011-10-13 |
Family
ID=44762889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/058454 WO2011125951A1 (ja) | 2010-04-02 | 2011-04-01 | 軟質ポリウレタンフォームおよびその製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20130030068A1 (ja) |
EP (1) | EP2554560A1 (ja) |
JP (1) | JPWO2011125951A1 (ja) |
KR (1) | KR20130018686A (ja) |
CN (1) | CN102812065A (ja) |
TW (1) | TW201141895A (ja) |
WO (1) | WO2011125951A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016011402A (ja) * | 2014-06-30 | 2016-01-21 | 株式会社ブリヂストン | 導電性部材用組成物 |
JPWO2015011921A1 (ja) * | 2013-07-25 | 2017-03-02 | セーレン株式会社 | 合成皮革およびその製造方法 |
JP2020055909A (ja) * | 2018-09-28 | 2020-04-09 | 株式会社イノアックコーポレーション | ポリウレタンフォーム、パッド、ポリウレタンフォームの製造方法、及び、パッドの製造方法 |
WO2020175220A1 (ja) | 2019-02-28 | 2020-09-03 | Agc株式会社 | ウレタンプレポリマー、粘着剤、貼付材、粘着テープ、ウェアラブルデバイス及びウェアラブルデバイスキット |
WO2022145362A1 (ja) | 2020-12-28 | 2022-07-07 | Agc株式会社 | 水性分散液、粘着剤組成物、粘着剤、貼付材、及び粘着テープ |
WO2023008476A1 (ja) | 2021-07-30 | 2023-02-02 | Agc株式会社 | 一液型接着剤組成物及び硬化物 |
WO2023008478A1 (ja) | 2021-07-30 | 2023-02-02 | Agc株式会社 | 二液型接着剤組成物及び硬化物 |
WO2024122477A1 (ja) * | 2022-12-05 | 2024-06-13 | 株式会社イノアックコーポレーション | ポリウレタンフォーム |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2612876A1 (de) | 2012-01-03 | 2013-07-10 | Basf Se | Flammgeschützte Polyurethanschaumstoffe |
EP3293218A1 (de) * | 2016-09-13 | 2018-03-14 | Covestro Deutschland AG | Verfahren zur erniedrigung der aldehydemissionen von polyurethanschaumstoffen |
DE102017105679A1 (de) * | 2017-03-16 | 2018-09-20 | Webasto SE | Dachschale mit Akustikdämmschicht |
CN111417663A (zh) | 2017-12-08 | 2020-07-14 | 国际壳牌研究有限公司 | 用于低密度聚氨酯泡沫的抗氧化剂 |
JP6510098B1 (ja) * | 2018-02-14 | 2019-05-08 | Agc株式会社 | ポリウレタンフォーム製造用組成物、ポリオールシステム液及びポリウレタンフォームの製造方法 |
US10793692B2 (en) * | 2018-10-24 | 2020-10-06 | Covestro Llc | Viscoelastic flexible foams comprising hydroxyl-terminated prepolymers |
US11572433B2 (en) | 2021-03-12 | 2023-02-07 | Covestro Llc | In-situ formed polyols, a process for their preparation, foams prepared from these in-situ formed polyols and a process for their preparation |
KR102345638B1 (ko) * | 2021-05-24 | 2021-12-29 | 박연복 | 비대면 방식의 장애인 운동 관리 플랫폼 제공 시스템 |
US11718705B2 (en) | 2021-07-28 | 2023-08-08 | Covestro Llc | In-situ formed polyether polyols, a process for their preparation, and a process for the preparation of polyurethane foams |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004083884A (ja) * | 2002-06-28 | 2004-03-18 | Toyo Quality One Corp | 液状樹脂不透過性ポリウレタンフォーム、その積層品及び防音床材 |
JP2004175973A (ja) * | 2002-11-28 | 2004-06-24 | Dainippon Ink & Chem Inc | ポリオール組成物、硬質ポリウレタンフォーム用組成物及び硬質ポリウレタンフォームの製造方法 |
JP2006328324A (ja) * | 2005-05-30 | 2006-12-07 | Nippon Polyurethane Ind Co Ltd | ポリウレタンフォームの製造方法 |
WO2008050841A1 (fr) * | 2006-10-25 | 2008-05-02 | Asahi Glass Company, Limited | Procédé de production d'une mousse de polyuréthane souple |
JP2010086125A (ja) | 2008-09-30 | 2010-04-15 | Nidec Sankyo Corp | ドライバーモジュール、磁気情報処理システム及び磁気情報読取装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4883825A (en) * | 1987-12-30 | 1989-11-28 | Union Carbide Chemicals And Plastics Company Inc. | Process for the manufacture of low density, flexible polyurethane foams |
DE60232270D1 (de) * | 2001-12-21 | 2009-06-18 | Asahi Glass Co Ltd | Polyurethanweichschaumstoff mit geringer rückprallelastizität und herstellungsverfahren dafür |
-
2011
- 2011-04-01 CN CN2011800159614A patent/CN102812065A/zh active Pending
- 2011-04-01 JP JP2012509638A patent/JPWO2011125951A1/ja active Pending
- 2011-04-01 EP EP11765851A patent/EP2554560A1/en not_active Withdrawn
- 2011-04-01 KR KR1020127023606A patent/KR20130018686A/ko not_active Application Discontinuation
- 2011-04-01 WO PCT/JP2011/058454 patent/WO2011125951A1/ja active Application Filing
- 2011-04-06 TW TW100111813A patent/TW201141895A/zh unknown
-
2012
- 2012-10-02 US US13/633,402 patent/US20130030068A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004083884A (ja) * | 2002-06-28 | 2004-03-18 | Toyo Quality One Corp | 液状樹脂不透過性ポリウレタンフォーム、その積層品及び防音床材 |
JP2004175973A (ja) * | 2002-11-28 | 2004-06-24 | Dainippon Ink & Chem Inc | ポリオール組成物、硬質ポリウレタンフォーム用組成物及び硬質ポリウレタンフォームの製造方法 |
JP2006328324A (ja) * | 2005-05-30 | 2006-12-07 | Nippon Polyurethane Ind Co Ltd | ポリウレタンフォームの製造方法 |
WO2008050841A1 (fr) * | 2006-10-25 | 2008-05-02 | Asahi Glass Company, Limited | Procédé de production d'une mousse de polyuréthane souple |
JP2010086125A (ja) | 2008-09-30 | 2010-04-15 | Nidec Sankyo Corp | ドライバーモジュール、磁気情報処理システム及び磁気情報読取装置 |
Non-Patent Citations (1)
Title |
---|
"URETHANES TECHNOLOGY INTERNATIONAL", vol. 26, October 2009, CRAIN COMMUNICATIONS LTD., pages: 11 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2015011921A1 (ja) * | 2013-07-25 | 2017-03-02 | セーレン株式会社 | 合成皮革およびその製造方法 |
JP2016011402A (ja) * | 2014-06-30 | 2016-01-21 | 株式会社ブリヂストン | 導電性部材用組成物 |
JP2020055909A (ja) * | 2018-09-28 | 2020-04-09 | 株式会社イノアックコーポレーション | ポリウレタンフォーム、パッド、ポリウレタンフォームの製造方法、及び、パッドの製造方法 |
JP7123483B2 (ja) | 2018-09-28 | 2022-08-23 | 株式会社イノアックコーポレーション | ポリウレタンフォーム、パッド、ポリウレタンフォームの製造方法、及び、パッドの製造方法 |
WO2020175220A1 (ja) | 2019-02-28 | 2020-09-03 | Agc株式会社 | ウレタンプレポリマー、粘着剤、貼付材、粘着テープ、ウェアラブルデバイス及びウェアラブルデバイスキット |
WO2022145362A1 (ja) | 2020-12-28 | 2022-07-07 | Agc株式会社 | 水性分散液、粘着剤組成物、粘着剤、貼付材、及び粘着テープ |
WO2023008476A1 (ja) | 2021-07-30 | 2023-02-02 | Agc株式会社 | 一液型接着剤組成物及び硬化物 |
WO2023008478A1 (ja) | 2021-07-30 | 2023-02-02 | Agc株式会社 | 二液型接着剤組成物及び硬化物 |
WO2024122477A1 (ja) * | 2022-12-05 | 2024-06-13 | 株式会社イノアックコーポレーション | ポリウレタンフォーム |
Also Published As
Publication number | Publication date |
---|---|
KR20130018686A (ko) | 2013-02-25 |
EP2554560A1 (en) | 2013-02-06 |
TW201141895A (en) | 2011-12-01 |
JPWO2011125951A1 (ja) | 2013-07-11 |
US20130030068A1 (en) | 2013-01-31 |
CN102812065A (zh) | 2012-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011125951A1 (ja) | 軟質ポリウレタンフォームおよびその製造方法 | |
JP5266756B2 (ja) | 低反発性軟質ポリウレタンフォームおよびその製造方法 | |
JP5228914B2 (ja) | 軟質ポリウレタンフォームの製造方法 | |
JP5720571B2 (ja) | 軟質ポリウレタンフォームの製造方法 | |
JP5359269B2 (ja) | 軟質ポリウレタンフォームおよびその製造方法 | |
JP3909598B2 (ja) | 低反発軟質ポリウレタンフォームの製造方法 | |
JP2013127011A (ja) | 熱プレス成形用軟質ポリウレタンフォームおよびその製造方法、ならびに熱プレス成形品およびその製造方法 | |
WO2013021871A1 (ja) | 軟質ポリウレタンフォームの製造方法 | |
JP2008031241A (ja) | 軟質ポリウレタンフォームの製造方法 | |
JP4412116B2 (ja) | 低反発性軟質ポリウレタンフォームおよびその製造方法 | |
WO2012115113A1 (ja) | 低反発性軟質ポリウレタンフォームおよびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180015961.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11765851 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012509638 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20127023606 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011765851 Country of ref document: EP |