WO2011034127A1 - スパッタリングターゲットに用いられる銅材料およびその製造方法 - Google Patents

スパッタリングターゲットに用いられる銅材料およびその製造方法 Download PDF

Info

Publication number
WO2011034127A1
WO2011034127A1 PCT/JP2010/066027 JP2010066027W WO2011034127A1 WO 2011034127 A1 WO2011034127 A1 WO 2011034127A1 JP 2010066027 W JP2010066027 W JP 2010066027W WO 2011034127 A1 WO2011034127 A1 WO 2011034127A1
Authority
WO
WIPO (PCT)
Prior art keywords
sputtering
copper material
copper
plate thickness
plate
Prior art date
Application number
PCT/JP2010/066027
Other languages
English (en)
French (fr)
Inventor
清慈 廣瀬
大輔 菊地
功 高橋
宏明 金森
偉銘 周
章文 中嶋
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to KR1020147034047A priority Critical patent/KR101515341B1/ko
Priority to JP2011502973A priority patent/JP4974198B2/ja
Priority to CN201080039836.2A priority patent/CN102482768B/zh
Publication of WO2011034127A1 publication Critical patent/WO2011034127A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Definitions

  • the present invention relates to a copper material used as a sputtering target and a manufacturing method thereof.
  • TFTs thin film transistors
  • FIG. 1 shows a cross-sectional view of an example of the structure of a TFT element in a liquid crystal display.
  • the TFT element 1 includes a scanning electrode 3 on a glass substrate 2 and a gate electrode 4 in which a part of the scanning line functions as a TFT ON / OFF control.
  • the gate electrode is formed so as to be covered with an insulating film 5 of silicon nitride, and an amorphous silicon (hereinafter abbreviated as a-Si) layer 6 and an a-Si layer 7 doped with P (phosphorus) are sequentially formed on the insulating film 5.
  • Source-drain electrodes 8 and 9 are formed.
  • a silicon nitride protective film 10 is formed so as to cover them.
  • a tin-doped indium oxide (hereinafter referred to as ITO) film 11 is disposed in the pixel region.
  • ITO tin-doped indium oxide
  • the problem with using a copper wiring film for TFT element wiring is that when a Cu film is formed directly on a glass substrate, the Cu wiring film peels off from the glass due to poor adhesion at the Cu / glass interface. It is done.
  • Patent Documents 1 to 3 and the like As an invention for solving the problem of peeling, techniques described in Patent Documents 1 to 3 and the like have been proposed.
  • Patent Document 1 peeling is suppressed by interposing a refractory metal such as molybdenum between a copper wiring and a glass substrate to form a barrier layer having excellent adhesion to the glass substrate.
  • a refractory metal such as molybdenum
  • Patent Documents 2 and 3 by using a target obtained by alloying copper, an oxide is formed at the interface between the copper wiring and the glass substrate, and an alloy element is concentrated at the interface between the copper wiring and the glass substrate. Peeling is suppressed.
  • One of the important characteristics required in the process of forming the gate electrode of the TFT element is the uniformity of the wiring film within the substrate surface. Due to the uniformity of the film, that is, the difference in film thickness and the presence of irregularities, the electric capacity in the TFT becomes non-uniform, which adversely affects the display. In addition, in the TFT element manufacturing process, if there is a difference in film thickness or coarse clusters (particles, splashes, etc.), wiring defects such as disconnection and short circuit may occur when wiring electrodes are created by etching. Is done.
  • Patent Documents 4 to 8 disclose the invention of a sputtering target that can form a uniform wiring film when a pure copper film to be a semiconductor wiring or the like is formed by a sputtering process, and can suppress coarse clusters and disconnection defects. Technology has been proposed.
  • Patent Document 4 discloses that a defective disconnection is produced by melting and solidifying copper having a purity of 99.9999% or more excluding oxygen, nitrogen, carbon and hydrogen gas components at an oxygen concentration of 0.1 ppm or less. A sputtering target capable of obtaining wiring for VLSI with a low rate is described. By reducing the amount of impurities in the copper material, disconnection defects and the like are reduced.
  • Patent Document 5 uses a sputtering target in which the average crystal grain size of the recrystallized structure is 80 microns or less and the Vickers hardness is 100 or less in copper having a purity of 99.995% or more. It is described that the expansion of protrusions and the generation of coarse clusters are suppressed.
  • Patent Document 6 discloses that in copper having a purity of 99.999% or more excluding gas components, the X-ray diffraction peak intensity I (111) of the (111) plane in the sputtering surface is increased, and the average particle size is 250 ⁇ m or less. In addition, it is described that the uniformity of the film thickness is improved by setting the variation of the particle diameter depending on the location within 20%.
  • the volume of crystals facing the (110) plane on the surface is set to 80% or more, and the crystals are uniformly distributed from the surface to the center, so that the jumping out of copper atoms is perpendicular to the surface, It describes that it is possible to form a film up to a deep part of a groove having a large aspect ratio.
  • Patent Document 8 in copper having a purity of 99.999% or more, the average crystal grain size is controlled to 10 to 30 ⁇ m, and each of the orientations (111), (200), (220), and (311) is provided. It is described that uniformity and minimal particle generation can be achieved by having a random orientation with less than 50% of the particles.
  • the size of the substrate such as a liquid crystal display for a large television has been increased, and the substrate size exceeding 2 m, such as 1870 mm ⁇ 2200 mm, has been achieved in the seventh generation. Accordingly, it is necessary to form a film on a large substrate also in a sputtering process for creating wiring, and even if the method described in the above-mentioned patent document is used, the thickness of the generated wiring film is different for each part of the substrate.
  • the problems such as non-uniformity and the generation of coarse clusters become more obvious. Further, since the sputtering target itself used is also increased in size, the metal structure tends to be non-uniform for each portion of the sputtering target material, and the influence on film thickness accuracy and coarse cluster formation is increased.
  • the present invention generates particles more uniformly than in the prior art when creating wiring in a sputtering process for a large substrate used in a TFT liquid crystal panel or the like, and It is an object of the present invention to provide a copper material for a sputtering target in which the generation frequency of the particles hardly changes even during use.
  • the inventors of the present invention have made extensive researches on the above-described problems, and thereby the variation in the crystal grain size within the plane and the plane between the plane and the depth from the sputtering plane. It has been found that a copper material suitable for a sputtering target capable of producing a uniform wiring film can be provided by controlling the variation in thickness, preferably the same variation in hardness in addition to this. The present invention has been made based on this finding.
  • the present invention (1) Made of high-purity copper having a purity of 99.99% or more, a sputtering surface, a surface parallel to the sputtering surface at a position of 1 ⁇ 4 plate thickness in the thickness direction from the sputtering surface, and the sputtering
  • the arithmetic averages of the crystal grain sizes measured on the plane parallel to the sputtering surface at a position of 1 ⁇ 2 thickness from the surface to the thickness direction of the plate are 100 to 200 ⁇ m, respectively, within each measurement surface and between each measurement surface
  • a copper material suitable for a sputtering target capable of producing a uniform wiring film can be provided.
  • the copper material for sputtering target of the present invention generates particles more uniformly than before when creating wiring in a sputtering process on a large substrate used for a TFT liquid crystal panel or the like, and even during use Changes in the frequency of the particles are unlikely to occur.
  • FIG. 6 is an explanatory diagram of sampling of a measurement test in Example 1.
  • FIG. 6 is an explanatory diagram of sampling of a measurement test in Example 2.
  • FIG. 6 is an explanatory diagram of sampling of a measurement test in Example 2.
  • the copper material for a sputtering target of the present invention has a microstructure in a plane parallel to the sputtering surface and the sputtering surface inside the plate in high purity copper (hereinafter simply referred to as “pure copper”) having a purity of 99.99% or more.
  • pure copper high purity copper
  • the crystal grain size is in a specific range, and in a preferred embodiment, the hardness is in a specific range.
  • Electrolytic copper which is a raw material for producing a pure copper ingot, contains a certain amount of impurities, and they also appear in the pure copper ingot.
  • impurities contain B, Al, Si, P, As, Sb, and Bi in an amount of 5 ppm or less. This is because these elements are elements used as dopants for Si semiconductors and may adversely affect semiconductor characteristics.
  • a more preferable purity is 99.995% or more.
  • the copper material for the sputtering target is required to have a uniform structure, it is desirable to have a recrystallized structure by breaking the non-uniform structure by casting solidification by hot working.
  • the crystal grain size of the recrystallized structure is small, the total area of the crystal grain boundary is incidentally increased, but the crystal grain boundary is a part where the atomic arrangement is disturbed, and the ease of element jumping during sputtering is within the grain. Unlike this, the film to be formed tends to be non-uniform.
  • the crystal grain size is large, high energy is required to make the target material fly off, and a large number of target atoms solidify and fly out, so that the formation of coarse clusters tends to be nonuniform.
  • the arithmetic average of the crystal grain size is 100 to 200 ⁇ m, preferably 120 to 180 ⁇ m, and more preferably 130 to 170 ⁇ m.
  • Suppressing the variation of crystal grains is important for controlling the jumping out of the target material and forming a uniform film.
  • the sputtering target material is scraped in the plate thickness direction during use, and is exchanged using about 1/3 to 1/2 of the plate thickness.
  • uniformity within the surface of the target and within the plate is required.
  • the standard deviation of the grain size distribution on the sputtering surface (one flat plate surface in the case of a flat plate) and on the plane parallel to the sputtering surface at 1/4 and 1/2 plate thickness positions from the sputtering surface is within 10 ⁇ m.
  • the standard deviation of the crystal grain size is preferably 8 ⁇ m or less, and more preferably 6 ⁇ m or less.
  • the number of samples for measuring the crystal grain size is 6 or more on each surface. The measurement points are equally divided into at least three in the longitudinal direction on each surface, and the number of measurements in each divided region is measured to be equal.
  • the crystal grain size at each measurement location is the average grain size (crystal grain size) measured by JIS H 0501 (cutting method).
  • the strain inherent in the copper material in order to affect the jump out of the target material.
  • the strain inherent in the material varies from site to site, the energy differs from the surroundings, and the target material jumps out from site to site, making uniform film formation impossible.
  • the strain inside the copper material can be evaluated by measuring the hardness. By controlling the inherent strain using hardness as a guide, a copper material with less variation can be provided.
  • the arithmetic average of hardness ((micro) Vickers hardness) is preferably 51 to 100 Hv, and more preferably 51 to 90 Hv.
  • the hardness is 100 Hv or less.
  • O material oxygen-free copper
  • the hardness is 51 to 59 Hv, “Copper product data Book (2nd edition) "(edited by Japan Copper and Brass Association, published on March 31, 2009, 2nd edition, page 61), and the value was set as the lower limit of the above preferred range.
  • the upper limit value of a preferable range of hardness can be 100 Hv or less by suppressing the working rate of cold working to about 30% or less.
  • a copper material having a hardness of 51 to 100 Hv can be easily obtained.
  • cold working is performed to adjust the hardness.
  • the processing rate is 0%, that is, the hardness in a completely annealed state (O material) is 51 to 59 Hv.
  • O material the hardness in a completely annealed state
  • the processing rate is increased, the hardness is gradually improved, and the processing rate is increased to 100 Hv at a processing rate of 30%. To reach. If the processing rate is too high, it exceeds 100 Hv, and the above-mentioned problem occurs.
  • the hardness distribution on the sputtering surface and the plane parallel to the sputtering surface at the 1/4 and 1/2 plate thicknesses is controlled within a standard deviation of 5 Hv, similarly to the crystal grain size.
  • a sputtering target having a uniform metal structure on the entire surface can be provided, and uniform film formation by sputtering becomes possible.
  • the standard deviation of hardness exceeds 5 Hv, a non-uniform metal structure is formed and uniform film formation cannot be performed.
  • the standard deviation of hardness is 3 Hv or less in each measurement plane and between each measurement plane.
  • the number of samples for measuring the hardness is 6 or more on each surface. The measurement points are equally divided into at least three in the longitudinal direction on each surface, and the number of measurements in each divided region is measured to be equal.
  • the method for producing a copper material for a sputtering target of the present invention is not particularly limited, but in order to control the crystal grain size and hardness on the sputtering surface and inside the plate, the following points in the production process: It is preferable to pay attention to.
  • a preferred method for producing a copper material in the present invention includes steps of melt casting, hot working, cold rolling, and heat treatment. Further, a chamfering process may be included between the hot working and the cold working. Further, cold rolling and heat treatment may be repeated.
  • hot working is hot rolling, hot extrusion, or the like, and refers to a process of working an ingot obtained by a melt casting process at a high temperature.
  • the desired size of the crystal grains is obtained by hot working and water cooling at a cooling rate of 50 ° C./second or more immediately after the hot working. Can be controlled.
  • immediate after hot working means that within hot rolling, it is within 60 seconds after coming out of the roll, and in hot extrusion, within 10 seconds after being extruded from the die. It means that.
  • the heating temperature of the material made of pure copper before hot rolling is desirably 700 to 1000 ° C.
  • the heating temperature of the material is lower than 700 ° C., sufficient dynamic recrystallization does not occur during extrusion, and a uniform metal structure cannot be obtained.
  • the temperature is higher than 1000 ° C., it is difficult to control the crystal grain size.
  • Hot rolling it is necessary not to stagnate the material in order to avoid local cooling of the material edge and the like due to heat removal from the transport roll and side edge roll. By avoiding cooling from the end, a uniform structure can be obtained over the entire surface of the material, and variations in crystal grain size and hardness inside the copper material can be reduced.
  • Hot rolling is performed a plurality of passes, but it is desirable to cool by water cooling after the final pass.
  • the time from immediately after the final pass to water cooling is within 60 seconds, and the water cooling rate is 50 ° C./second or more, more preferably 70 ° C./second or more.
  • the cooling rate is more preferably 100 ° C./second or more.
  • the upper limit of the cooling rate is not particularly limited, but in practice, it is usually about 300 ° C./second or less. Moreover, it is preferable to perform cooling until a material becomes 200 degrees C or less.
  • the hot extrusion process of the present invention the extruded material can be immediately water-cooled without being exposed to the atmosphere, so that it is possible to cool at a high rate immediately after dynamic recrystallization. Therefore, a metal structure with little variation in temperature inside the material and a very small variation in crystal grain size and hardness in the longitudinal direction (direction from the front end to the rear end of the extruded material) and the width direction can be obtained.
  • the processing temperature of the material before hot extrusion is preferably in the range of 700 to 1000 ° C.
  • the heating temperature of the material is lower than 700 ° C., sufficient dynamic recrystallization does not occur during extrusion, and it is difficult to obtain a uniform metal structure.
  • the temperature is higher than 1000 ° C., it is difficult to control the crystal grain size.
  • the cooling rate is more preferably 100 ° C./second or more.
  • the upper limit of the cooling rate is not particularly limited, but in practice, it is usually about 300 ° C./second or less. Moreover, it is preferable to perform cooling until a material becomes 200 degrees C or less. On the other hand, in hot forging, it is difficult to eliminate non-uniform cooling after forging at a size corresponding to the recent demand for larger targets, and a uniform crystal grain structure cannot be obtained.
  • the material after hot working may be tempered by cold rolling and annealing.
  • the total cold working rate is desirably 30% or less (including 0%, which means that rolling is not performed). When the total of the cold working rates exceeds 30%, the amount of strain inside the material increases, and the specified value of hardness tends to be exceeded.
  • the material that is cooled immediately after hot working (hot extruding or hot rolling) and is cold-rolled as necessary is any machining such as lathe machining.
  • the target shape is processed by, for example, and used for sputtering.
  • Example 1 Invention Examples 1 to 3, Comparative Examples 5 to 7) Ingots having a purity (mass%) shown in Table 1-1 and having a plate thickness of 150 mm, a width of 220 mm, and a length of 2100 mm were produced. After heating them at the heating temperature shown in Table 1-1, hot rolling was performed to prepare a base plate having a thickness of 23 mm, a width of 220 mm, and a length of about 13 m. During the hot rolling, the material was not stagnated on the transport roll, and the time from the final pass to water cooling was 45 seconds. Water cooling was performed at a rate of 50 ° C./second or more as shown in Table 1-1 by passing through a water cooling zone equipped with a shower.
  • the oxide film on the surface of the obtained base plate was chamfered to a plate thickness of 22 mm, and then cold rolled to a thickness of 20 mm ⁇ width of 220 mm, and the edge portion was cut and removed to obtain a thickness of 20 mm ⁇ width.
  • Copper materials for sputtering targets of Invention Examples 1 to 3 and Comparative Examples 5 to 7 having a flat plate size of 200 mm ⁇ length of about 12 m were prepared.
  • Comparative Example 8 A copper material for a sputtering target of Comparative Example 8 was prepared in the same manner as in Examples 1 to 3 except that the number of seconds from the final pass to water cooling was 90 seconds.
  • Comparative Example 9 A copper material for a sputtering target of Comparative Example 9 was prepared in the same manner as in Examples 1 to 3 except that the water cooling rate was 12 ° C./second. The change of the water cooling rate was adjusted by the passing speed and the shower flow rate in the water cooling zone.
  • Comparative Example 10 A copper material for a sputtering target of Comparative Example 10 was prepared in the same manner as Examples 1 to 3 except that water cooling was not performed.
  • Comparative Example 11 The sputtering of Comparative Example 11 was performed in the same manner as in Examples 1 to 3 except that the thickness after hot rolling was 31 mm, the oxide film on the surface was chamfered to 30 mm, and then cold rolled. A copper material for the target was prepared.
  • the plate surface 22 shown in the explanatory view based on the schematic perspective view of FIG. 2, from the plate surface 22 to the plate thickness depth direction.
  • Each of the surface 23 parallel to the plate surface 22 at the 1/4 plate thickness position and the surface 24 parallel to the plate surface 22 at the 1/2 plate thickness position from the plate surface 22 in the plate thickness depth direction
  • a total of 18 places There are, grain size, and hardness were measured by the following method.
  • 2A is a perspective view showing the entirety of the copper material 21.
  • a dotted line 25 is a 1 ⁇ 4 plate thickness from the plate surface 22 in the plate thickness depth direction.
  • the dotted line 26 indicates the position of 1/2 plate thickness from the plate surface 22 in the plate thickness depth direction.
  • 2 (b) to 2 (c) correspond to exploded perspective views of the copper materials 21a, 21b, and 21c obtained by disassembling the copper material 21 of FIG. 2 (a) along dotted lines 25 and 26, respectively.
  • the rolling tip (longitudinal tip) (61, 64, 67) is a surface 23 parallel to the plate surface 22 and a surface 24 parallel to the plate surface 22 at a position of 1/2 plate thickness from the plate surface 22.
  • FIG. 3 is an overall perspective view (FIG. 3 (a)) and an exploded perspective view (FIGS. 3 (b) to (c)) of the copper material 21 similar to FIG. 2, and the same reference numerals in FIG. The symbols have the same meaning as in FIG.
  • [1] Crystal grain size The crystal grain size in the copper material plate was measured based on JIS H 0501 (cutting method) by observing the microstructure in the above-described portions 31 to 36, 41 to 46, and 51 to 56.
  • [2] Hardness The hardness of the copper material plate was measured with a micro Vickers hardness tester in accordance with JIS Z 2244 on the surfaces at the above-mentioned portions 31 to 36, 41 to 46, 51 to 56. .
  • [3] Sputtering characteristics The obtained copper material plate was cut into a diameter of 6 inches (15.24 cm) and a thickness of 6 mm at positions 61 to 69 shown in FIG. 3 and polished to prepare a sputtering target.
  • the roughness was all adjusted by polishing the maximum roughness Ra to 0.5 to 0.8 ⁇ m.
  • a DC magnetron sputtering apparatus was used to perform sputtering on an OA-10 glass substrate manufactured by Nippon Electric Glass Co., Ltd. to produce a 0.3 ⁇ m-thick copper wiring.
  • the sputtering conditions were an Ar gas pressure of 0.4 Pa and a discharge power of 12 W / cm 2 .
  • heat treatment was performed in a vacuum at 300 ° C. for 30 minutes.
  • Ten film thicknesses of the copper wiring after the heat treatment were measured. A plate with a maximum film thickness and a minimum film thickness range of ⁇ 7% at 90 points of total data of nine target materials cut out from the same plate is judged as “good”, and a plate with more variation than that is judged as “bad”. did.
  • Example 2 (Invention Examples 101 to 103, Comparative Examples 105 to 108) A pure copper ingot having a purity shown in Table 2-1 and having a diameter of 300 mm and a length of 800 mm was produced as a billet for hot extrusion. The billet is heated to the heating temperature shown in Table 2-1, followed by extrusion. Subsequently, the extruded material is immediately cooled to 150 ° C. or less at a cooling rate shown in Table 2-1, and the element is 22 mm thick ⁇ 200 mm wide. I got a plate.
  • the base plate was cold-rolled to produce copper materials for sputtering targets of Invention Examples 101 to 103 and Comparative Examples 105 to 108 of flat plates having a thickness of 20 mm ⁇ width of 200 mm ⁇ length of about 12 m.
  • Example 104 The copper material for sputtering target according to Example 104 of the present invention was prepared in the same manner as Examples 101 to 103 of the present invention except that a base plate was prepared with a thickness of 27 mm after extrusion and a flat plate with a thickness of 20 mm was prepared by cold rolling. Created.
  • Comparative Example 109 A copper material for a sputtering target of Comparative Example 109 was prepared in the same manner as in Examples 101 to 103 of the present invention except that a base plate having a thickness of 30 mm after extrusion was prepared and a flat plate having a thickness of 20 mm was prepared by cold rolling. did.
  • Example 2 The obtained flat plate obtained by hot extrusion was examined for crystal grain size, hardness and sputtering characteristics in the same manner as in Example 1 in the same manner as in Example 1. The results are shown in Table 2-2.
  • the inventive examples 101 to 104 all satisfy the characteristics. Since Comparative Example 105 had a large amount of impurities, the sputtering characteristics were poor. In Comparative Example 106, the deformation resistance of the material during hot extrusion was too high, and the sample could not be obtained because the material could not be extruded properly. In Comparative Examples 107 and 108, the arithmetic average and standard deviation of the crystal grain size were not specified, so that the sputtering characteristics were poor. In Comparative Example 109 (Comparative Example of the invention according to the item (2)), the specified value of the hardness arithmetic average deviated, so that a film having a uniform thickness was not obtained and the sputtering characteristics were poor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

 純度が99.99%以上である高純度銅からなり、スパッタリング面、該スパッタリング面から板厚深さ方向に1/4板厚の位置でのスパッタリング面と平行な面、および該スパッタリング面から板厚深さ方向に1/2板厚の位置でのスパッタリング面と平行な面で測定した結晶粒径の算術平均がそれぞれ100~200μmであり、各測定面内および各測定面の間において、結晶粒径の標準偏差が10μm以内であるスパッタリングターゲット用銅材料、並びにその製造方法。

Description

スパッタリングターゲットに用いられる銅材料およびその製造方法
 本発明は、スパッタリングターゲットとして用いられる銅材料及びその製造方法に関するものである。
 近年、モバイルPC、携帯電話端末などの小型電子機器から大型のテレビまで、種々のサイズにおいてフラットパネルディスプレイが使用されている。フラットパネルディスプレイに分類される、液晶ディスプレイや有機ELディスプレイにおいては、高画質・動画の高速描画への要求を満たすために、画素のドットに薄膜トランジスタ(Thin Film Transistor:以下TFTと記載)素子を組み込んだものが開発され、現在主流となっている。
 図1に液晶ディスプレイにおけるTFT素子の構造一例を断面で図示した。TFT素子1は、ガラス基板2の上に走査線3および走査線の一部がTFTのON/OFF制御として機能を有するゲート電極4がある。ゲート電極を窒化シリコンの絶縁膜5で覆う形で形成され、順次、絶縁膜5の上に、アモルファスシリコン(以下a-Siと記載)層6、P(リン)をドープしたa-Si層7、ソース-ドレイン電極8および9が形成される。それらを覆う様に窒化シリコンの保護膜10が形成される。画素領域にはスズドープ酸化インジウム(以下ITOと記載)膜11が配置されている。
 従来、走査線、ゲート電極、ソース-ドレイン電極にはMo、Crのような高融点金属やアルミニウムとその合金などが用いられてきた。しかしながら、液晶ディスプレイの大型化や高画素化に伴い配線長が増大され、信号遅延、電力損失等による、画像表示むら等の問題が顕在化した。そこで電気抵抗率の低い銅配線が着目されるようになった。
 TFT素子の配線に銅配線膜を用いることでの課題は、ガラス基板上に直接Cu膜を形成すると、Cu/ガラス界面における密着性が悪いためにCu配線膜がガラスから剥離するということが挙げられる。
 その剥離の問題を解消するための発明として、特許文献1~3等に記載された技術が提案されている。
 特許文献1には、銅配線とガラス基板の間にモリブデンなどの高融点金属を介在させ、ガラス基板との密着性に優れるバリア層を形成することで、剥離を抑制している。
 特許文献2および3には、銅を合金化したターゲットを用いることで、酸化物を銅配線とガラス基板界面に形成させる、合金元素を銅配線とガラス基板界面に濃化させるなどの手法により、剥離を抑制している。
 特許文献2および3の発明の様に銅合金化などの手法も開発されているが、現在工業的には、特許文献1に記載発明の様に、ガラスと密着性のよいMoやTiなどを図1の記載のバリア層12として銅配線の下に形成することで剥離を改善し、スパッタリングにより純銅の配線を形成している。
 TFT素子のゲート電極の形成工程において要求される重要な特性の一つに、配線膜の基板面内均一性が挙げられる。膜の均一性、すなわち膜厚の違いや凹凸などの存在により、TFT内での電気容量が不均一になるため、表示に悪影響が与えられる。また、TFT素子製造工程において、膜厚の違いや、粗大なクラスタ(パーティクル、スプラッシュ等)が存在すると、エッチングにて配線電極を作成した際に、断線および短絡などの配線不良を引き起こすことが懸念される。
 半導体配線等となる純銅膜をスパッタリング工程にて形成する場合に、均一な配線膜が作成でき、粗大クラスタの抑制および断線不良を抑制できるスパッタリングターゲットの発明としては、特許文献4~8等に記載された技術が提案されている。
 特許文献4には、酸素、窒素、炭素および水素のガス成分を除いた純度99.9999%以上の銅を基体として、酸素濃度0.1ppm以下で溶解、凝固させて製造することで、不良断線率の少ない、超LSI用の配線を得ることが可能なスパッタリングターゲットを記載している。銅材料中の不純物量を低減させることで、断線不良などを低減させる。
 特許文献5には、純度99.995%以上の銅において、再結晶組織の平均結晶粒径を80ミクロン以下にして、且つ、ビッカース硬さを100以下にしたスパッタリングターゲットを用いることで、スパッタ粒子の飛び出しの拡がりと粗大クラスタ発生を抑制することが記載されている。
 特許文献6には、ガス成分を除いた純度99.999%以上の銅において、スパッタ面内における(111)面のX線回折ピーク強度I(111)を高め、平均粒径を250μm以下にして、場所による粒径のばらつきを20%以内にすることで、膜厚均一性を良好にすることが記載されている。
 特許文献7には、表面に(110)面を向いた結晶の体積を80%以上にし、それらの結晶が表面から中心に均一に分布させることにより、銅原子の飛び出しを表面から垂直にさせ、アスペクト比の大きな溝の深奥部まで製膜可能にすることが記載されている。
 特許文献8には、99.999%以上の純度の銅において、平均結晶粒径を10~30μmに制御し、(111)、(200)、(220)及び(311)の各々の配向を有する粒子の量を50%よりも少なくして、ランダムな配向を有することで、均一性及び最小の粒子発生を達成できることが記載されている。
 成分、結晶粒径、歪および結晶配向の制御により、スパッタ粒子の飛び出しを制御し、均一な膜生成および粗大クラスタを抑制することが、従来の発明において可能になった。しかしながら、大型テレビ用の液晶ディスプレイなど基板サイズの大型化が進行し、第7世代などでは1870mm×2200mmなど、2mを超える基板サイズとなった。それに伴い配線を作成するスパッタリング工程においても大型の基板に製膜する必要が出てきており、上述の特許文献に記載の方法を用いても、生成される配線膜の膜厚が基板の部位毎に不均一になる、粗大クラスタの発生がより多くなるなどの課題が顕在化した。また、使用するスパッタリングターゲット自身も大型化するため、スパッタリングターゲット材の部位毎に金属組織が不均一になり易く、膜厚精度および粗大クラスタ形成に及ぼす影響が大きくなった。
特開平7-66423号公報 特許第4065959号公報 特開2008-166742号公報 特許第3727115号公報 特許第3975414号公報 特許第3403918号公報 特許第3997375号公報 特許第3971171号公報
 上述の従来の問題点に鑑みて、本発明は、TFT液晶パネルなどに使用される大型の基板に対してスパッタリング工程で配線を作成する際に、従来以上に均一に粒子を発生し、且つ、使用中においてもその粒子の発生頻度が変化しにくい、スパッタリングターゲット用銅材料を提供することを課題とする。
 本発明者らは、上述の課題に対し鋭意研究することによって、スパッタリング面内およびスパッタリング面から板厚深さ方向に入り込んだ位置での、結晶粒径の該面内でのバラつきとその面間でのバラつき、好ましくはこれに加えて硬さについての同様のバラつきを制御することにより、均一な配線膜を作製可能なスパッタリングターゲットに好適な銅材料を提供することができることを見出した。
 本発明は、この知見に基づきなされたものである。
 すなわち、本発明は、
(1)純度が99.99%以上である高純度銅からなり、スパッタリング面、該スパッタリング面から板厚深さ方向に1/4板厚の位置でのスパッタリング面と平行な面、および該スパッタリング面から板厚深さ方向に1/2板厚の位置でのスパッタリング面と平行な面で測定した結晶粒径の算術平均がそれぞれ100~200μmであり、各測定面内および各測定面の間において、結晶粒径の標準偏差が10μm以内であることを特徴とする、スパッタリングターゲット用銅材料、
(2)スパッタリング面、該スパッタリング面から板厚深さ方向に1/4板厚の位置でのスパッタリング面と平行な面、および該スパッタリング面から板厚深さ方向に1/2板厚の位置でのスパッタリング面と平行な面で測定した硬さの算術平均がそれぞれ51~100Hvであり、各測定面内および各測定面の間において、前記硬さの標準偏差が5Hv以内であることを特徴とする、(1)に記載のスパッタリングターゲット用銅材料、
(3)熱間加工され、該熱間加工の直後に冷却速度50℃/秒以上で水冷されて製造されたことを特徴とする、(1)または(2)に記載のスパッタリングターゲット用銅材料、
(4)熱間加工され、該熱間加工の直後に冷却速度50℃/秒以上で水冷され、該水冷の後に、冷間圧延されて製造されたこと特徴とする、(1)または(2)に記載のスパッタリングターゲット用銅材料、
(5)(1)または(2)項記載のスパッタリングターゲット用銅材料を製造する方法であって、純度が99.99%以上である高純度銅を熱間加工する工程と、該熱間加工の直後に冷却速度50℃/秒以上で水冷する工程を含むことを特徴とする、スパッタリングターゲット用銅材料の製造方法、および
(6)該水冷の後に、冷間圧延率の総和が30%以下になるように冷間圧延する工程を含むことを特徴とする、(5)に記載のスパッタリングターゲット用銅材料の製造方法
を提供するものである。
 本発明により、均一な配線膜を作製可能なスパッタリングターゲットに好適な銅材料を提供することができる。本発明のスパッタリングターゲット用銅材料は、TFT液晶パネルなどに使用される大型の基板に対してスパッタリング工程で配線を作成する際に、従来以上に均一に粒子を発生し、且つ、使用中においてもその粒子の発生頻度の変化が起こりにくい。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
液晶ディスプレイにおけるTFT素子の構造一例を示す概略断面図である。 実施例1における測定試験のサンプリングの説明図である。 実施例2における測定試験のサンプリングの説明図である。
 本発明のスパッタリングターゲット用銅材料は、純度が99.99%以上である高純度銅(以下、単に「純銅」という)において、スパッタリング面内と板内部のスパッタリング面と平行な面におけるミクロ組織の結晶粒径を特定の範囲とし、好ましい実施態様においては、さらに硬さを特定の範囲としたものである。
 スパッタリングターゲット用の銅材料としては、99.99%以上の純度(質量ベース)を有することが必要である。純銅の鋳塊を製造する際の原料である電気銅にはある程度の不純物が含有されており、純銅の鋳塊にもそれらが現れる。不純物は特に、B、Al、Si、P、As、Sb、Biの含有量を各々5ppm以下に抑制することが望ましい。これらの元素はSi半導体のドーパントとして利用される元素であり、半導体特性に悪影響を及ぼす可能性があるためである。より好ましい純度は99.995%以上である。
 スパッタリングターゲット用の銅材料は組織の均一さが求められるため、鋳造凝固による不均一な組織を熱間加工により破壊して再結晶組織を有することが望ましい。再結晶組織の結晶粒径が小さい場合は付随して結晶粒界の総面積が大きくなるが、結晶粒界は原子配列が乱れている部分であり、スパッタリング時の元素の飛び易さが粒内とは異なり、形成する膜が不均一になり易い。また、結晶粒径が大きい場合は、ターゲット物質を飛び立たせるために高いエネルギーが必要であり、ターゲット原子が多く固まって飛び出して粗大クラスタの形成が増え形成する膜が不均一になり易い。本発明において結晶粒径の算術平均は100~200μmであり、好ましくは120~180μmであり、さらに好ましくは130~170μmである。
 結晶粒のバラつきを抑制することは、ターゲット物質の飛び出しを制御して、均一な製膜を行う上で重要である。スパッタリングターゲット材は、使用中に板厚方向に削られ、板厚の1/3~1/2程度を使用して交換を行う。スパッタリングにより均一な製膜を行うためには、ターゲットの面内および板内部での均一性が必要となる。スパッタリング面(平板材では一方の平面の板表面)と、スパッタリング面から1/4板厚および1/2板厚の位置でのスパッタリング面と平行な面における結晶粒径の分布を標準偏差10μm以内に制御することで、全面均一な金属組織を有するスパッタリングターゲットが提供でき、スパッタリングによる均一な製膜が可能となる。標準偏差が10μmを超えると、不均一な金属組織となり、均一な製膜ができなくなる。各測定面内および各測定面の間において、結晶粒径の標準偏差は8μm以下であることが好ましく、6μm以下であることがさらに好ましい。
 本発明において、結晶粒径の測定のサンプル数は、各面において、6個以上とする。測定箇所は各面において、長手方向に少なくとも3個に等分割し、各分割領域内の測定数が等しくなる数を測定するものとする。各測定箇所の結晶粒径は、JIS H 0501(切断法)により測定された平均粒径(結晶粒度)とする。
 また、銅材料に内在するひずみはターゲット物質の飛び出しに影響を及ぼすために制御することが好ましい。材料に内在するひずみが部位毎にバラつくと、周囲とエネルギーが異なるためにターゲット物質の飛び出し方が部位毎に変わり均一な製膜ができない。銅材料内部のひずみは硬さ測定を行う事により評価することができる。硬さを指針として内在するひずみを制御することで、バラつきの少ない銅材料を提供することができる。本発明において、硬さ((マイクロ)ビッカース硬さ)の算術平均は好ましくは51~100Hvであり、さらに好ましくは51~90Hvである。ひずみが多すぎる、すなわち硬さが硬すぎると、ターゲット原子が多く固まって飛び出して粗大クラスタの形成が増え形成する膜が不均一になり易く、硬さを100Hv以下にすることが望ましい。また、一般に、無酸素銅(C1020)において、完全に再結晶又は焼きなましをして、引張強度が最も低くなる熱処理を行った場合(O材)の硬さは51~59Hvと「伸銅品データブック(第2版)」(日本伸銅協会編、平成21年3月31日第2版発行 61頁)に記載されており、その値を上記の好ましい範囲の下限値とした。
 なお、硬さの調節は、圧延などの冷間加工により行い、冷間加工の加工率は30%以下程度に抑えることで、硬さの好ましい範囲の上限値を100Hv以下とすることができ、硬さが51~100Hvの銅材料が簡便に得られる。
 前述の通り、冷間加工は硬さの調節のために実施する。加工率0%、すなわち完全に焼きなまされた状態(O材)での硬さが51~59Hvであり、加工率を高くすると徐々に硬さが向上して、加工率30%で100Hvに到達する。加工率が高すぎると100Hvを超え、前述の問題が生じる。
 本発明において好ましくは、結晶粒径と同様に、スパッタリング面と、1/4板厚および1/2板厚の位置でのスパッタリング面と平行な面における硬さの分布を標準偏差5Hv以内に制御することで、全面均一な金属組織を有するスパッタリングターゲットが提供でき、スパッタリングによる均一な製膜が可能となる。硬さの標準偏差が5Hvを超えると不均一な金属組織となり、均一な製膜ができなくなる。各測定面内および各測定面の間において、硬さの標準偏差は3Hv以下であることがさらに好ましい。
 本発明において、硬さの測定のサンプル数は、各面において、6個以上とする。測定箇所は各面において、長手方向に少なくとも3個に等分割し、各分割領域内の測定数が等しくなる数を測定するものとする。
 本発明のスパッタリングターゲット用銅材料の製造方法は、特に限定されるものではないが、スパッタリング面および板内部において結晶粒径及び硬さを制御するためには、製造プロセスにおいて次に示すような点に留意することが好ましい。本発明における銅材料の好ましい製造方法は、溶解鋳造-熱間加工-冷間圧延-熱処理の工程を取る。また、熱間加工と冷間加工の間に面削の工程を含んでも良い。また、冷間圧延と熱処理を繰り返しても良い。ここにおいて、熱間加工は熱間圧延および熱間押出などであり、溶解鋳造プロセスで得られた鋳塊を高温にて加工するプロセスを指す。次に示すことに留意して製造することにより、前述の金属組織の規定を満たす銅材料が作製可能になり、ターゲット製造を短冊状の板を組み合わせて行う様な大型のディスプレイ用のターゲット材として使用する時にスパッタリング膜を均一に形成しやすくする効果が得られる。
 熱間加工では加工中に動的再結晶が生じ、形成した再結晶粒は材料温度がまだ高温である間は粒成長する。スパッタリングターゲットとして使用する銅材料においては、結晶粒径はほぼこの熱間加工で決定するために、この工程を制御することが好ましい。
 従来の熱間圧延プロセスでは、動的再結晶が起こった後、大気中に曝される時間が長く結晶粒径を所望の大きさに制御することが難しかった。また、板の端部は大気中の冷却が大きいために、材料の幅方向端部および長手端部と中央部において結晶粒径が不均一になってしまう問題があった。
 熱間加工を熱間圧延プロセスで行う場合には、本発明では、熱間加工し、該熱間加工の直後に冷却速度50℃/秒以上で水冷することで、結晶粒の所望の大きさに制御することができる。ここで、熱間加工の直後とは、熱間圧延の場合にはロールより出てから60秒以内であることをいい、また、熱間押出の場合にはダイスより押し出されてから10秒以内であることをいう。
 熱間圧延前の純銅からなる材料の加熱温度は700~1000℃の範囲で行うことが望ましい。材料の加熱温度が700℃より低い場合は押出中に動的再結晶が十分に生じず均一な金属組織が得られない。1000℃より高い場合には、結晶粒径の制御が困難になる。熱間圧延中には、搬送ロールおよびサイドエッジロールからの抜熱により材料端部などが局所的に冷却されることを避けるために、材料を停滞させないことが必要である。端部からの冷却を避けることにより材料全面にわたり均一な組織が得られ、銅材料内部の結晶粒径および硬さのバラつきを小さくすることができる。熱間圧延の圧延は複数回のパスを行うが、最終のパス後には水冷にて冷却することが望ましい。結晶粒径を前述の100~200μmとするには、最終パス直後から水冷を行うまでの時間を60秒以内にして、水冷の冷却速度を50℃/秒以上にすることが望ましく、さらに好ましくは70℃/秒以上にすることである。
 冷却速度は100℃/秒以上がさらに好ましい。この冷却速度の上限値には特に制限はないが、実際上、通常300℃/秒程度以下である。また、冷却は材料が200℃以下になるまで行うことが好ましい。
 熱間加工としては、熱間圧延に対して熱間押出プロセスが、結晶粒径および硬さの制御がより厳密に行える点で好ましい。本発明における熱間押出プロセスでは押出された材料を大気中に暴露させること無く直ぐに水冷できるため、動的再結晶直後に大きな速度で冷却を行うことが可能である。そのため、材料内部での温度変動が少なく長手方向(押し出された材料の先端から後端への方向)および幅方向で結晶粒径及び硬さのバラつきが非常に小さい金属組織が得られる。熱間加工を熱間押出プロセスで行う場合には、熱間押出前の材料の加工温度を700~1000℃の範囲で行うのが好ましい。材料の加熱温度が700℃より低い場合は押出中に動的再結晶が十分に生じず、均一な金属組織が得られにくい。1000℃より高温の場合には、結晶粒径の制御が困難になる。結晶粒径を前述の100~200μmとするには、熱間押出直後の冷却速度を50℃/秒以上にすることが望ましい。
 冷却速度は100℃/秒以上がさらに好ましい。この冷却速度の上限値には特に制限はないが、実際上、通常300℃/秒程度以下である。また、冷却は材料が200℃以下になるまで行うことが好ましい。
 これらに対して、熱間鍛造では近年のターゲットの大型化要請に対応するサイズでは、鍛造後の冷却の不均一を解消することは難しく、均一な結晶粒組織を得ることができない。
 熱間加工後の材料は、冷間圧延及び焼鈍を行って調質をしてもよい。冷間加工率の総和は30%以下(0%も含み、圧延しないことを意味する)にすることが望ましい。冷間加工率の総和が30%を超えると材料内部の歪量が多くなり、硬さの規定値を超えてしまいやすくなる。
 前記の通り熱間加工(熱間押出又は熱間圧延)直後に冷却され、必要に応じて冷間圧延を行い製造された材料、好ましくは平板状の材料は、旋盤加工等の任意の機械加工等によりターゲット形状まで加工され、スパッタリングに用いられる。
 以下に、本発明を実施例に基づき更に詳細に説明するが、本発明はそれらに限定されるものではない。
 実施例1
 (本発明例1~3、比較例5~7)
 表1-1に示す純度(mass%)で板厚150mm、幅220mm、長さ2100mmのサイズの鋳塊を作製した。それらを表1-1に示す加熱温度にて加熱した後、熱間圧延を行い、厚さ23mm、幅220mm、長さ約13mの素板を作成した。熱間圧延時は材料が搬送ロール上で停滞することが無いように行い、最終パスから水冷までの時間を45秒で行った。水冷はシャワーが搭載された水冷ゾーンを通過させ、冷却速度を表1-1に示す50℃/秒以上の速度で行った。次いで得られた素板の表面の酸化膜を面削して板厚を22mmにした後、冷間圧延で厚さ20mm×幅220mmとし、さらにエッジ部分を切断除去することで厚さ20mm×幅200mm×長さ約12mの平板の本発明例1~3および比較例5~7のスパッタリングターゲット用銅材料を作成した。
 (比較例8)
 最終パスから水冷までの秒数を90秒にした以外は、本発明例1~3と同様にして比較例8のスパッタリングターゲット用銅材料を作成した。
 (比較例9)
 水冷速度を12℃/秒にした以外は、本発明例1~3と同様にして比較例9のスパッタリングターゲット用銅材料を作成した。なお水冷速度の変更は水冷帯での通過速度とシャワー流量にて調整した。
 (比較例10)
 水冷を行わない以外は、本発明例1~3と同様にして比較例10のスパッタリングターゲット用銅材料を作成した。
 (本発明例4)
 熱間圧延上がりの板厚を28mmとし、表面の酸化膜を面削して、板厚を27mmにした後、冷間圧延した以外は、本発明例1~3と同様にして本発明例4のスパッタリングターゲット用銅材料を作成した。
 (比較例11)
 熱間圧延上がりの板厚を31mmとし、表面の酸化膜を面削して、板厚を30mmにした後、冷間圧延した以外は本発明例1~3と同様にして比較例11のスパッタリングターゲット用銅材料を作成した。
 このようにして得られた本発明例および比較例の平板の銅材料21について、図2の模式的な斜視図に基づいた説明図に示す板表面22、板表面22から板厚深さ方向に1/4板厚位置で板表面22と平行な面23、および板表面22から板厚深さ方向に1/2板厚位置での板表面22と平行な面24のそれぞれの面で、加工方向である材料の長手方向の圧延先端部(長手先端)における幅方向の中央部(31,41,51)およびサイド(端)部(32,42,52)、長手方向の中央部(長手中央)における幅方向の中央部(33,43,53)およびサイド(端)部(34,44,54)、長手方向の後端部(長手後端)における幅方向の中央部(35,45,55)およびサイド(端)部(36,46,56)の6箇所の計18箇所おいて、結晶粒径、および硬さを下記方法により測定した。
 また、図2中、図2(a)は銅材料21の全体を示す斜視図であり、図2(a)中、点線25は板表面22から板厚深さ方向に1/4板厚の位置を示し、点線26は板表面22から板厚深さ方向に1/2板厚の位置を示す。
 また、図2(b)~(c)は、それぞれ、図2(a)の銅材料21を点線25および26にそって分解した、銅材料21a、21b、21cの分解斜視図に相当する。
 また、図3の模式的な斜視図に基づいた説明図に示すように、本発明例および比較例の平板の銅材料21から、板表面22、板表面22から1/4板厚の位置で板表面22と平行な面23、および板表面22から1/2板厚の位置での板表面22と平行な面24のそれぞれの面で、圧延先端部(長手先端)(61,64,67)、中央部(長手中央)(62,65,68)、後端部(長手後端)(63,66,69)の3箇所の計9箇所にて、面22、23、24のそれぞれがターゲット面(スパッタリング面)になるように、直径6インチの円形の板を切り出し、下記の方法でスパッタリング特性を調査した。なお、図3は図2と同様の銅材料21の全体斜視図(図3(a))とその分解斜視図(図3(b)~(c))であり、図2における符号と同一の符号は、図2におけるものと同じ意味である。
[1]結晶粒径
 銅材料板における結晶粒径は上述の部位31~36、41~46、51~56における面にてミクロ組織観察を行い、JIS H 0501(切断法)に基づき測定した。
[2]硬さ
 銅材料板における硬さは、上述の部位31~36、41~46、51~56における面にてJIS Z 2244に準拠してマイクロビッカース硬さ試験機にて測定を行った。
[3]スパッタリング特性
 得られた銅材料板から、図3に示す位置61~69にて直径φ6インチ(15.24cm)、厚さ6mmに切り出し、研磨を行ってスパッタリングターゲットを作成した。ターゲット面の粗さの影響を除外するため、粗さは全て最大粗さRaを0.5~0.8μmに研磨して揃えた。上述のように作成したスパッタリングターゲット用いて、DCマグネトロンスパッタリング装置にて、膜厚0.7mmの日本電気硝子社製OA-10ガラス基板にスパッタリングを実施し0.3μm膜厚の銅配線を作成した。スパッタリング条件はArガス圧力を0.4Pa、放電電力を12W/cmとした。その後真空中にて300℃、30minの熱処理を行った。熱処理後の銅配線の膜厚を10点測定した。同じ板から切出したターゲット材9枚の総データ90点において最大膜厚および最小膜厚のレンジが±7%になった板を「良」、それ以上のバラつきが存在したものを「不良」とした。
 上記[1]~[3]の結果を表1-2に示す。本発明例は、いずれにおいても良好なスパッタリング特性を呈している。比較例5は不純物量が多いため、スパッタリング特性が不良となった。比較例6、7、9および10は、結晶粒径およびその標準偏差が規定値より外れたため、スパッタリング特性が不良となった。比較例8は結晶粒径および硬さの標準偏差が共に規定値から外れたためにスパッタリング特性が不良となった。
 また、比較例11(前記(2)項に係る発明の比較例)は硬さ算術平均の規定値が外れたため、均一な厚さの膜が得られずにスパッタリング特性が不良となった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例2
 (本発明例101~103、比較例105~108)
 表2-1に示す純度を有する直径300mm×長さ800mmの純銅の鋳塊を作製し、熱間押出用のビレットとした。前記ビレットを表2-1に示す加熱温度に加熱した後、押出を行い、続いて押出材を直ちに表2-1に示す冷却速度で150℃以下まで水冷して厚さ22mm×幅200mmの素板を得た。次いで前記素板を冷間にて圧延を行い、厚さ20mm×幅200mm×長さ約12mの平板の本発明例101~103および比較例105~108のスパッタリングターゲット用銅材料を製造した。
 (本発明例104)
 押出後板厚を27mmにして素板を作成し、冷間圧延にて厚さ20mmの平板を作成した以外は本発明例101~103と同様にして本発明例104のスパッタリングターゲット用銅材料を作成した。
 (比較例109)
 押出後板厚を30mmにして素板を作成し、冷間圧延にて厚さ20mmの平板を作成した以外は本発明例101~103と同様にして比較例109のスパッタリングターゲット用銅材料を作成した。
 得られた熱間押出による平板は、実施例1と同様の位置において、実施例1と同様に結晶粒径、硬さおよびスパッタリング特性を調査した。結果を表2-2に示す。
 表2-2に示した結果の様に、本発明例101~104は何れも特性を満足している。比較例105は不純物量が多かったため、スパッタリング特性が不良となった。比較例106は熱間押出の際に材料の変形抵抗が高すぎて、材料がきちんと押出しできずにサンプルを得ることができなかった。比較例107および108は結晶粒径の算術平均と標準偏差の規定が外れたため、スパッタリング特性が不良となった。比較例109(前記(2)項に係る発明の比較例)は硬さ算術平均の規定値が外れたため、均一な厚さの膜が得られずにスパッタリング特性が不良となった。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 1 TFT素子
 2 ガラス基板
 3 走査線
 4 ゲート電極
 5 絶縁膜
 6 アモルファスシリコン層
 7 リンをドープしたアモルファスシリコン層
 8、9 ソース-ドレイン電極
 10 窒化シリコンの保護膜
 11 スズドープ酸化インジウム膜
 12 バリア層
 21 平板の銅材料
 22 板表面
 23 板表面から板厚深さ方向に1/4板厚位置で板表面と平行な面
 24 板表面から板厚深さ方向に1/2板厚位置で板表面と平行な面
 25 板表面から板厚深さ方向に1/4板厚の位置
 26 板表面から板厚深さ方向に1/2板厚の位置
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2009年9月18日に日本国で特許出願された特願2009-216579に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。

Claims (6)

  1.  純度が99.99%以上である高純度銅からなり、スパッタリング面、該スパッタリング面から板厚深さ方向に1/4板厚の位置でのスパッタリング面と平行な面、および該スパッタリング面から板厚深さ方向に1/2板厚の位置でのスパッタリング面と平行な面で測定した結晶粒径の算術平均がそれぞれ100~200μmであり、各測定面内および各測定面の間において、結晶粒径の標準偏差が10μm以内であることを特徴とする、スパッタリングターゲット用銅材料。
  2.  スパッタリング面、該スパッタリング面から板厚深さ方向に1/4板厚の位置でのスパッタリング面と平行な面、および該スパッタリング面から板厚深さ方向に1/2板厚の位置でのスパッタリング面と平行な面で測定した硬さの算術平均がそれぞれ51~100Hvであり、各測定面内および各測定面の間において、前記硬さの標準偏差が5Hv以内であることを特徴とする、請求項1に記載のスパッタリングターゲット用銅材料。
  3.  熱間加工され、該熱間加工の直後に冷却速度50℃/秒以上で水冷されて製造されたことを特徴とする、請求項1または2に記載のスパッタリングターゲット用銅材料。
  4.  熱間加工され、該熱間加工の直後に冷却速度50℃/秒以上で水冷され、該水冷の後に、冷間圧延されて製造されたこと特徴とする、請求項1または2に記載のスパッタリングターゲット用銅材料。
  5.  請求項1または2に記載のスパッタリングターゲット用銅材料を製造する方法であって、純度が99.99%以上である高純度銅を熱間加工する工程と、該熱間加工の直後に冷却速度50℃/秒以上で水冷する工程を含むことを特徴とする、スパッタリングターゲット用銅材料の製造方法。
  6.  該水冷の後に、冷間圧延率の総和が30%以下になるように冷間圧延する工程を含むことを特徴とする、請求項5に記載のスパッタリングターゲット用銅材料の製造方法。
PCT/JP2010/066027 2009-09-18 2010-09-16 スパッタリングターゲットに用いられる銅材料およびその製造方法 WO2011034127A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147034047A KR101515341B1 (ko) 2009-09-18 2010-09-16 스퍼터링 타겟에 사용되는 구리재료의 제조방법
JP2011502973A JP4974198B2 (ja) 2009-09-18 2010-09-16 スパッタリングターゲットに用いられる銅材料およびその製造方法
CN201080039836.2A CN102482768B (zh) 2009-09-18 2010-09-16 用于溅射靶的铜材料及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009216579 2009-09-18
JP2009-216579 2009-09-18

Publications (1)

Publication Number Publication Date
WO2011034127A1 true WO2011034127A1 (ja) 2011-03-24

Family

ID=43758728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066027 WO2011034127A1 (ja) 2009-09-18 2010-09-16 スパッタリングターゲットに用いられる銅材料およびその製造方法

Country Status (5)

Country Link
JP (1) JP4974198B2 (ja)
KR (2) KR20120070586A (ja)
CN (1) CN102482768B (ja)
TW (1) TWI487802B (ja)
WO (1) WO2011034127A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019010A (ja) * 2011-07-08 2013-01-31 Furukawa Electric Co Ltd:The スパッタリングターゲット用銅材料およびその製造方法
JP2013133491A (ja) * 2011-12-26 2013-07-08 Hitachi Cable Ltd スパッタリング用銅ターゲット材及びスパッタリング用銅ターゲット材の製造方法
JP2014043643A (ja) * 2012-08-03 2014-03-13 Kobelco Kaken:Kk Cu合金薄膜形成用スパッタリングターゲットおよびその製造方法
DE112015000124B4 (de) * 2014-04-11 2018-04-26 Mitsubishi Materials Corporation Herstellungsverfahren für zylindrisches Sputter-Target-Material
JP2022042859A (ja) * 2020-09-03 2022-03-15 オリエンタル コッパー シーオー.エルティーディー. 熱間押出プロセスからのスパッタリング法による薄膜コーティング技術のための銅ターゲットの製造

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9165750B2 (en) * 2012-01-23 2015-10-20 Jx Nippon Mining & Metals Corporation High purity copper—manganese alloy sputtering target
JP5783293B1 (ja) 2014-04-22 2015-09-24 三菱マテリアル株式会社 円筒型スパッタリングターゲット用素材
JP7309217B2 (ja) * 2020-06-26 2023-07-18 オリエンタル コッパー シーオー.エルティーディー. スパッタリング法を使用した薄膜コーティングのための銅円筒型ターゲットを熱間押出技術から製造する方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10195609A (ja) * 1996-12-27 1998-07-28 Dowa Mining Co Ltd 結晶方位の制御されたfcc金属及びその製造方法
JPH11158614A (ja) * 1997-11-28 1999-06-15 Hitachi Metals Ltd スパッタリング用銅ターゲットおよびその製造方法
JP2001240949A (ja) * 2000-02-29 2001-09-04 Mitsubishi Materials Corp 微細な結晶粒を有する高純度銅加工品素材の製造方法
JP2005036291A (ja) * 2003-07-16 2005-02-10 Kobe Steel Ltd Ag系スパッタリングターゲット及びその製造方法
JP2005533187A (ja) * 2002-07-16 2005-11-04 ハネウェル・インターナショナル・インコーポレーテッド 銅スパッタリングターゲット及び銅スパッタリングターゲットの形成方法
JP2007051351A (ja) * 2005-08-19 2007-03-01 Mitsubishi Materials Corp パーティクル発生の少ないMn含有銅合金スパッタリングターゲット

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6749699B2 (en) * 2000-08-09 2004-06-15 Olin Corporation Silver containing copper alloy
CN101224533A (zh) * 2007-01-15 2008-07-23 江苏兴荣高新科技股份有限公司 一种铜及铜合金带材的制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10195609A (ja) * 1996-12-27 1998-07-28 Dowa Mining Co Ltd 結晶方位の制御されたfcc金属及びその製造方法
JPH11158614A (ja) * 1997-11-28 1999-06-15 Hitachi Metals Ltd スパッタリング用銅ターゲットおよびその製造方法
JP2001240949A (ja) * 2000-02-29 2001-09-04 Mitsubishi Materials Corp 微細な結晶粒を有する高純度銅加工品素材の製造方法
JP2005533187A (ja) * 2002-07-16 2005-11-04 ハネウェル・インターナショナル・インコーポレーテッド 銅スパッタリングターゲット及び銅スパッタリングターゲットの形成方法
JP2005036291A (ja) * 2003-07-16 2005-02-10 Kobe Steel Ltd Ag系スパッタリングターゲット及びその製造方法
JP2007051351A (ja) * 2005-08-19 2007-03-01 Mitsubishi Materials Corp パーティクル発生の少ないMn含有銅合金スパッタリングターゲット

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019010A (ja) * 2011-07-08 2013-01-31 Furukawa Electric Co Ltd:The スパッタリングターゲット用銅材料およびその製造方法
JP2013133491A (ja) * 2011-12-26 2013-07-08 Hitachi Cable Ltd スパッタリング用銅ターゲット材及びスパッタリング用銅ターゲット材の製造方法
JP2014043643A (ja) * 2012-08-03 2014-03-13 Kobelco Kaken:Kk Cu合金薄膜形成用スパッタリングターゲットおよびその製造方法
DE112015000124B4 (de) * 2014-04-11 2018-04-26 Mitsubishi Materials Corporation Herstellungsverfahren für zylindrisches Sputter-Target-Material
JP2022042859A (ja) * 2020-09-03 2022-03-15 オリエンタル コッパー シーオー.エルティーディー. 熱間押出プロセスからのスパッタリング法による薄膜コーティング技術のための銅ターゲットの製造

Also Published As

Publication number Publication date
KR20120070586A (ko) 2012-06-29
JP4974198B2 (ja) 2012-07-11
KR101515341B1 (ko) 2015-04-24
CN102482768B (zh) 2014-03-12
TWI487802B (zh) 2015-06-11
TW201127969A (en) 2011-08-16
JPWO2011034127A1 (ja) 2013-02-14
KR20150004923A (ko) 2015-01-13
CN102482768A (zh) 2012-05-30

Similar Documents

Publication Publication Date Title
JP4974197B2 (ja) スパッタリングターゲット用銅材料およびその製造方法
JP4974198B2 (ja) スパッタリングターゲットに用いられる銅材料およびその製造方法
JP4869415B2 (ja) 純銅板の製造方法及び純銅板
JP5787647B2 (ja) スパッタリングターゲット用銅材料の製造方法
JP5520746B2 (ja) スパッタリングターゲット用銅材料及びその製造方法
TWI518197B (zh) 熱軋銅板
JP4792116B2 (ja) 純銅板の製造方法及び純銅板
TWI485272B (zh) Pure copper plate manufacturing methods and pure copper plate
US20150279638A1 (en) Copper alloy sputtering target
KR20210029744A (ko) 구리 합금 스퍼터링 타겟 및 구리 합금 스퍼터링 타겟의 제조 방법
JP4869398B2 (ja) 純銅板の製造方法及び純銅板
US9437405B2 (en) Hot rolled plate made of copper alloy used for a sputtering target and sputtering target
TWI388678B (zh) A method for manufacturing a high purity aluminum target for a liquid crystal display
JP7198750B2 (ja) スパッタリングターゲット材、スパッタリングターゲット、スパッタリングターゲット用アルミニウム板及びその製造方法
US20150060269A1 (en) Copper alloy sputtering target

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080039836.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011502973

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10817240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127009380

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10817240

Country of ref document: EP

Kind code of ref document: A1