WO2011032745A1 - Radarsensorvorrichtung mit wenigstens einer planaren antenneneinrichtung - Google Patents

Radarsensorvorrichtung mit wenigstens einer planaren antenneneinrichtung Download PDF

Info

Publication number
WO2011032745A1
WO2011032745A1 PCT/EP2010/060316 EP2010060316W WO2011032745A1 WO 2011032745 A1 WO2011032745 A1 WO 2011032745A1 EP 2010060316 W EP2010060316 W EP 2010060316W WO 2011032745 A1 WO2011032745 A1 WO 2011032745A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
radar sensor
columns
sensor device
antenna columns
Prior art date
Application number
PCT/EP2010/060316
Other languages
English (en)
French (fr)
Inventor
Volker Gross
Goetz Kuehnle
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to JP2012529166A priority Critical patent/JP5373974B2/ja
Priority to CN201080041611.0A priority patent/CN102612658B/zh
Priority to EP10731761A priority patent/EP2478387A1/de
Priority to US13/496,397 priority patent/US9310478B2/en
Publication of WO2011032745A1 publication Critical patent/WO2011032745A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3233Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/22Antenna units of the array energised non-uniformly in amplitude or phase, e.g. tapered array or binomial array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/93185Controlling the brakes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9321Velocity regulation, e.g. cruise control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles

Definitions

  • Radar sensor device with at least one planar antenna device The invention relates to a radar sensor device having at least one planar one
  • Antenna device which has a plurality of vertically aligned and as a thinned array in a plane parallel to each other at certain distances arranged antenna columns, each having at least two line-fed patch elements. Furthermore, the invention relates to a device, in particular a driver assistance system of a motor vehicle.
  • radar sensors are increasingly being used to detect the traffic environment in the context of driver assistance systems, for example for radar-assisted distance control (Adaptive Cruise Control Systems / ACC).
  • Adaptive Cruise Control Systems / ACC Such a cruise control system is known for example from Robert Bosch GmbH, "Adaptive cruise control ACC", yellow series, edition 2002, technical briefing.
  • planar antenna devices or patch antennas are particularly suitable for use in the aforementioned radar sensors.
  • antennas In such antennas is a planar array of radiating resonators (antenna elements or patch elements / patches), which are each assigned a defined amplitude and phase.
  • the superimposition of the radiation patterns of the individual patch elements yields the resulting radiation pattern of the antenna, the lines being responsible for the characteristic of the azimuth and the columns for the characteristic of the elevation.
  • the antenna elements are usually arranged in vertically oriented antenna columns.
  • Many radar sensors with the use of the environment detection in the automotive sector use such planar antenna concepts.
  • One advantage of the planar antenna concepts is the resulting low installation depth of the radar sensors.
  • Wavelength in air ( ⁇ / 2) is located.
  • the antenna aperture is the deciding factor. The larger the antenna aperture, the better the angular accuracy. If the antenna aperture is provided with a uniform linear array structure as in the previously known radar sensors, then a large number of mixers is required, which leads to increased overall sensor costs.
  • DE 100 36 131 A1 proposes a radar sensor for detecting the traffic situation in the vicinity of a motor vehicle with a carrier element, with an array of patch antennas in the form of a combination of a filled subarray of patch antennas and a thinned subarray of patch antennas. However, the patch antennas are redundant, d. H. the signal relationships are measured several times.
  • a radar sensor device is provided with at least one planar antenna device, which has a plurality of vertically aligned and as a thinned array in a plane parallel to one another at specific distances from each other.
  • MRA minimum redundancy arrays
  • the determined distances of the antenna columns from each other can each be an integer multiple of a constant basic distance. It is advantageous if the constant basic distance is less than or equal to half the wavelength in air. Then there is a uniqueness for the range of +/- 90 degrees.
  • a device in particular a driver assistance system of a motor vehicle is specified in claim 4.
  • An exemplary embodiment of the invention is described in principle below with reference to the drawing. Show it:
  • Figure 1 is a schematic representation of the essential components of a
  • Figure 2 is a schematic representation of an array of planar antenna device with four antenna columns according to the prior art
  • FIG. 3 shows a schematic representation of an array of a planar antenna device with three antenna columns for a first embodiment of the radar sensor device according to the invention.
  • Figure 4 is a schematic representation of an array of planar antenna device with four antenna columns for a second embodiment of the radar sensor device according to the invention.
  • a motor vehicle 10 shown in FIG. 1 with an adaptive cruise control device 11 as a driver assistance system has as an object detection sensor a radar sensor device 12 mounted on the front end of the motor vehicle 10, in whose housing a control device 14 of the adaptive cruise control device 11 is accommodated.
  • the radar sensor device 12 is used to detect objects in an environment of the motor vehicle 10.
  • the radar sensor device 12 is connected to the control device 14.
  • the control device 14 is connected via a data bus 16 (CAN, MOST, or the like) to an electronic drive control unit 18, a brake system control unit 20 and to an HMI control unit 22 of a human / machine interface.
  • the control unit 14 and the HMI control unit 22 may also be integrated in a control device of the adaptive cruise control device 12, in particular in a common housing.
  • the radar sensor device 12 uses a multi-beam radar to measure the distances, relative speeds and azimuth angles of objects located in front of the motor vehicle 10 which reflect radar waves.
  • the raw data received at regular time intervals, for example every 10 ms, are evaluated in the control device 14 in order to identify and track individual objects and, in particular, to recognize a vehicle driving directly ahead on its own lane and to select it as the target object.
  • the radar sensor device 12 has a planar antenna device with arrays 15. 2 or 15. 3 of antenna gaps 15 b to 15 h (see FIGS. 3 and 4).
  • FIG. 2 shows a planar antenna device or a non-thinned array 15.1 having four antenna columns 15a according to the prior art that are oriented vertically and are arranged parallel to each other in a plane at intervals.
  • the antenna gaps 15a are arranged in equidistant, ie constant basic distances, which correspond to half the wavelength ⁇ in air, to each other.
  • 0.5 "wavelength ⁇ in air, 1, 0 ⁇ wavelength ⁇ in air and 1, 5 ⁇ wavelength ⁇ in air occur as different distances.
  • FIG. 3 shows a planar antenna device for a first embodiment of the radar sensor device 12 according to the invention with three antenna columns 15b, 15c and 15d arranged vertically at right angles to each other and arranged as a thinned array 15.2 in a plane parallel to each other, each having a plurality of line-fed patch elements 23 ,
  • the thinned array 15.2 of antenna columns 15b, 15c and 15d is implemented with minimal redundancy such that the amount of the determined spacings of the antenna columns 15b, 15c and 15d to each other in the thinned array 15.2 all the different distances between any two antenna columns 15a of the corresponding non-thinned Having arrays 15.1 of Figure 1 a planar antenna device with the same antenna aperture and the same nature of the antenna columns 15a at least once but in a minimum possible number.
  • FIG. 4 shows a planar antenna device for a second embodiment of the radar sensor device 12 according to the invention with four antenna columns 15e, 15f, 15g and 15h arranged vertically and arranged as a thinned array 15.3 in a plane parallel to each other at specific spacings.
  • 15e between the antenna columns, and 15f a distance of 0.5 ⁇ wavelength ⁇ in air
  • 15f and 15g a distance of 1, 5 ⁇ wavelength ⁇ in air
  • between the antenna columns 15g and 15h a Distance in the amount of 1, 0 ⁇ wavelength ⁇ provided in air.
  • the antenna gaps 15e and 15g a distance of 2.0 ⁇ wavelength ⁇ in air
  • between the antenna columns 15f and 15h a distance of 2.5 ⁇ wavelength ⁇ in air
  • between the antenna columns 15e and 15h a distance of 3, 0 ⁇ wavelength ⁇ in air.
  • the determined distances of the antenna columns 15a to 15g to each other are each an integer multiple of a constant basic distance, namely half the wavelength ⁇ in air.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Security & Cryptography (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Traffic Control Systems (AREA)

Abstract

Radarsensorvorrichtung mit wenigstens einer planaren Antenneneinrichtung, welche mehrere vertikal ausgerichteten und als ausgedünntes Array (15.2) in einer Ebene parallel in bestimmten Abständen zueinander angeordnete Antennenspalten (15b, 15c, 15d) aufweist, welche jeweils wenigstens zwei liniengespeiste Patch-Elemente (23) aufweisen, wobei das ausgedünnte Array (15.2) von Antennenspalten (15b, 15c, 15d) derart mit minimaler Redundanz ausgeführt ist, dass die Menge der bestimmten Abstände der Antennenspalten (15b, 15c, 15d) zueinander in dem ausgedünnten Array (15.2) sämtliche unterschiedlichen Abstände zwischen zwei beliebigen Antennenspalten eines korrespondierenden nichtausgedünnten Arrays einer planaren Antenneneinrichtung mit gleicher Antennenapertur und gleicher Beschaffenheit der Antennenspalten wenigstens einmal jedoch in minimal möglicher Anzahl aufweist.

Description

Beschreibung
Titel
Radarsensorvorrichtunq mit wenigstens einer planaren Antenneneinrichtunq Die Erfindung betrifft eine Radarsensorvorrichtung mit wenigstens einer planaren
Antenneneinrichtung, welche mehrere vertikal ausgerichtete und als ausgedünntes Array in einer Ebene parallel in bestimmten Abständen zueinander angeordnete Antennenspalten aufweist, welche jeweils wenigstens zwei liniengespeiste Patch-Elemente aufweisen. Des Weiteren betrifft die Erfindung eine Vorrichtung, insbesondere ein Fahrerassistenzsystem eines Kraftfahrzeugs.
Stand der Technik
In Kraftfahrzeugen werden zunehmend Radarsensoren zur Erfassung des Ver- kehrsumfelds im Rahmen von Fahrerassistenzsystemen eingesetzt, beispielsweise zur radargestützten Abstandsregelung (Adaptive Cruise Control-Systeme / ACC). Ein derartiges Fahrgeschwindigkeitsregelungssystem ist beispielsweise aus Robert Bosch GmbH, "Adaptive Fahrgeschwindigkeitsregelung ACC", Gelbe Reihe, Ausgabe 2002, Technische Unterrichtung, bekannt.
Wegen ihrer flachen Bauform und leichten Herstellbarkeit, beispielsweise im Ätzverfahren, eignen sich sogenannte planare Antenneneinrichtungen oder Patch- Antennen für den Einsatz in den vorstehend genannten Radarsensoren besonders. Bei derartigen Antennen handelt es sich um eine flächige Anordnung von strahlenden Resonatoren (Antennenelemente bzw. Patch-Elemente / Patches), die jeweils mit definierter Amplitude und Phase belegt sind. Die Überlagerung der Strahlungsdiagramme der einzelnen Patch-Elemente ergibt das resultierende Strahlungsdiagramm der Antenne, wobei die Zeilen für die Charakteristik des Azimuts und die Spalten für die Charakteristik der Elevation verantwortlich sind. Die Antennenelemente werden üblicherweise in vertikal ausgerichteten Antennenspalten angeordnet. Viele Radarsensoren mit dem Einsatzgebiet der Umfelderfassung im Automobilbereich nutzen derartige planare Antennekonzepte. Ein Vorteil der planaren Antennenkonzepte ist die daraus resultierende geringe Bautiefe der Radarsenso- ren. Dadurch entsteht mehr Flexibilität beim Einbauort der Radarsensoren sowie neue Anwendungsgebiete beispielsweise durch einen Einbau im Seitenbereich des Fahrzeugs. Neben der Baugröße spielen selbstverständlich auch die Herstellungskosten der Radarsensoren eine wesentliche Rolle. Gerade bei planaren Antennenkonzepten, welche eine Signalauswertung auf den Einzelkanälen (kein HF-Beamforming) durchführen, stellt die Anzahl der verwendeten Mischer einen großen Kostenfaktor dar. Dabei spielt die Anordnung bzw. die Anzahl der Antennenpatches eine wesentliche Rolle. Bekannte Radarsensoren mit planaren Antenneneinrichtungen weisen in der Regel die Struktur eines Uniform Linear Array (ULA) auf. Dabei sind die Antennenspalten mit den Patchelementen in äquidis- tanten Abständen angeordnet, welche in der Regel im Bereich der Hälfte der
Wellenlänge in Luft (λ/2) liegt.
Zur Erzielung einer möglichst guten Winkelgenauigkeit mit der Radarsensorik, ist die Antennenapertur der entscheidende Faktor. Je größer die Antennenapertur ist, desto besser ist die Winkelgenauigkeit. Wird die Antennenapertur wie bei den bisher bekannten Radarsensoren mit einer Uniform Linear Array-Struktur versehen, so ist eine große Anzahl von Mischern vonnöten, was zu erhöhten Sensorgesamtkosten führt. In der DE 100 36 131 A1 wird ein Radarsensor zur Erfassung der Verkehrssituation im Umfeld eines Kraftfahrzeuges mit einem Trägerelement, mit einem Array von Patchantennen in Form einer Kombination eines gefüllten Subarrays von Patchantennen und eines ausgedünnten Subarrays von Patchantennen vorgeschlagen. Die Patchantennen sind jedoch redundant vorhanden, d. h. die Signal- beziehungen werden mehrfach gemessen.
Offenbarung der Erfindung
Erfindungsgemäß wird eine Radarsensorvorrichtung mit wenigstens einer plana- ren Antenneneinrichtung, welche mehrere vertikal ausgerichtete und als ausgedünntes Array in einer Ebene parallel in bestimmten Abständen zueinander an- geordnete Antennenspalten, welche jeweils wenigstens zwei liniengespeiste Patch-Elemente aufweisen, vorgeschlagen, wobei das ausgedünnte Array von Antennenspalten derart mit minimaler Redundanz ausgeführt ist, dass die Menge der bestimmten Abstände der Antennenspalten zueinander in dem ausgedünnten Array sämtliche unterschiedlichen Abstände zwischen zwei beliebigen Antennenspalten eines korrespondierenden nicht-ausgedünnten Arrays einer planaren Antenneneinrichtung mit gleicher Antennenapertur und gleicher Beschaffenheit der Antennenspalten wenigstens einmal jedoch in minimal möglicher Anzahl aufweist.
Durch diese Maßnahmen wird ein sehr guter Kompromiss zwischen der geforderten Winkeleindeutigkeit und Winkelgenauigkeit unter Einsatz von sogenannten Minimum Redundancy Arrays (MRA) von Antennenspalten erreicht. Dabei wird die Anordnung der Antennenspalten mit Patchelementen nicht äquidistant augeführt, sondern unter Berücksichtigung des Prinzips der minimalen Redundanz mit augedünnten bzw. Sparse Arrays. Dies führt in vorteilhafter Weise zu einer weiteren erheblichen Reduzierung der Antennenspalten bzw. Patchelemente und damit auch der Anzahl der benötigten Mischer, wodurch eine Kostensenkung bei der Herstellung des Radarsensors erreicht wird. Dadurch, dass jeder Abstand zwischen den Antennenspalten also jede Phasenbeziehung wenigstens einmal aber so selten wie nur möglich vorhanden ist, wird eine minimale Redundanz erreicht. Sämtliche unterschiedlichen Abstände von beliebigen Kombinationen von Antennenspalten eines herkömmlichen bzw. nicht-ausgedünnten Arrays einer planaren Antenneneinrichtung mit derselben Apertur müssen vorhanden sein, um die Eindeutigkeit zu gewährleisten.
Die bestimmten Abstände der Antennenspalten zueinander können jeweils ein ganzzahliges Vielfaches eines konstanten Grundabstands sein. Vorteilhaft ist es, wenn der konstante Grundabstand kleiner oder gleich der halben Wellenlänge in Luft ist. Dann ergibt sich für den Bereich von +/- 90 Grad eine Eindeutigkeit.
Eine Vorrichtung, insbesondere ein Fahrerassistenzsystem eines Kraftfahrzeugs ist in Anspruch 4 angegeben. Nachfolgend ist anhand der Zeichnung ein Ausführungsbeispiel der Erfindung prinzipmäßig beschrieben. Es zeigen:
Figur 1 eine schematische Darstellung der wesentlichen Komponenten eines
Fahrerassistentsystems bzw. einer adaptiven Geschwindigkeitsregelvorrichtung in einem Kraftfahrzeug;
Figur 2 eine schematische Darstellung eines Arrays einer planaren Antenneneinrichtung mit vier Antennenspalten gemäß dem Stand der Technik;
Figur 3 eine schematische Darstellung eines Arrays einer planaren Antenneneinrichtung mit drei Antennenspalten für eine erste Ausführungsform der erfindungsgemäßen Radarsensorvorrichtung; und
Figur 4 eine schematische Darstellung eines Arrays einer planaren Antenneneinrichtung mit vier Antennenspalten für eine zweite Ausführungsform der erfindungsgemäßen Radarsensorvorrichtung.
Beschreibung von Ausführungsbeispielen
Ein in Figur 1 gezeigtes Kraftfahrzeug 10 mit einer adaptiven Geschwindigkeitsregelvorrichtung 1 1 als Fahrerassistenzsystem weist als Objektdetektionssensor eine an der Frontpartie des Kraftfahrzeugs 10 angebrachte Radarsensorvorrichtung 12 auf, in deren Gehäuse auch eine Steuereinrichtung 14 der adaptiven Geschwindigkeitsregelvorrichtung 1 1 untergebracht ist. Die Radarsensorvorrichtung 12 dient der Detektion von Objekten in einem Umfeld des Kraftfahrzeugs 10. Die Radarsensorvorrichtung 12 ist mit der Steuereinrichtung 14 verbunden. Die Steuereinrichtung 14 ist über einen Datenbus 16 (CAN, MOST, oder dergleichen) mit einer elektronischen Antriebs-Steuereinheit 18, einer Bremssystem- Steuereinheit 20 sowie mit einer HMI-Steuereinheit 22 einer Mensch-/Maschine- Schnittstelle verbunden. In weiteren, nicht dargestellten Ausführungsbeispielen können die Steuereinheit 14 und die HMI-Steuereinheit 22 auch in einer Steuereinrichtung der adaptiven Geschwindigkeitsregelvorrichtung 12, insbesondere in einem gemeinsamen Gehäuse integriert sein. Die Radarsensorvorrichtung 12 misst mit Hilfe eines Mehrstrahlradars die Abstände, Relativgeschwindigkeiten und Azimutwinkel von vor dem Kraftfahrzeug 10 befindlichen Objekten, welche Radarwellen reflektieren. Die in regelmäßigen Zeitabständen, beispielsweise alle 10 ms, empfangenen Rohdaten werden in der Steuereinrichtung 14 ausgewertet, um einzelne Objekte zu identifizieren und zu verfolgen und um insbesondere ein unmittelbar auf der eigenen Fahrspur vorausfahrendes Fahrzeug zu erkennen und als Zielobjekt auszuwählen.
Wie weiter aus Figur 1 ersichtlich, weist die erfindungsgemäße Radarsensorvorrichtung 12 eine planare Antenneneinrichtung mit Arrays 15.2 oder 15.3 von Antennenspalten 15b bis 15h (siehe Figuren 3 und 4) auf.
Figur 2 zeigt eine planare Antenneneinrichtung bzw. einen nicht-ausgedünnten Array 15.1 mit vier vertikal ausgerichteten und in einer Ebene parallel in Abständen zueinander angeordneten Antennenspalten 15a gemäß dem Stand der Technik. Die Antennenspalten 15a sind in äquidistanten, d. h. konstanten Grundabständen, welche der halben Wellenlänge λ in Luft entsprechen, zueinander angeordnet. Wie aus Figur 2 ersichtlich kommen als unterschiedliche Abstände 0,5 " Wellenlänge λ in Luft, 1 ,0 Wellenlänge λ in Luft und 1 ,5 Wellenlänge λ in Luft vor.
In Figur 3 ist eine planare Antenneneinrichtung für eine erste Ausführungsform der erfindungsgemäßen Radarsensorvorrichtung 12 mit drei vertikal ausgerichteten und als ausgedünntes Array 15.2 in einer Ebene parallel in bestimmten Abständen zueinander angeordneten Antennenspalten 15b, 15c und15d, welche jeweils mehrere liniengespeiste Patch-Elemente 23 aufweisen, dargestellt. Das ausgedünnte Array 15.2 von Antennenspalten 15b, 15c und 15d ist derart mit minimaler Redundanz ausgeführt, dass die Menge der bestimmten Abstände der Antennenspalten 15b, 15c und 15d zueinander in dem ausgedünnten Array 15.2 sämtliche unterschiedlichen Abstände zwischen zwei beliebigen Antennenspalten 15a des korrespondierenden nicht-ausgedünnten Arrays 15.1 aus Figur 1 einer planaren Antenneneinrichtung mit gleicher Antennenapertur und gleicher Beschaffenheit der Antennenspalten 15a wenigstens einmal jedoch in minimal möglicher Anzahl aufweist. Wie weiter aus Figur 3 ersichtlich, ist dabei zwischen den Antennenspalten 15b und 15c ein Abstand von 0,5 Wellenlänge λ in Luft und zwischen den Antennenspalten 15c und 15d ein Abstand in Höhe von 1 ,0 Wel- lenlänge λ in Luft vorgesehen. Darüber hinaus verbleibt zwischen den Antennenspalten 15b und 15d ein Abstand von 1 ,5 Wellenlänge λ in Luft.
In Figur 4 ist eine planare Antenneneinrichtung für eine zweite Ausführungsform der erfindungsgemäßen Radarsensorvorrichtung 12 mit vier vertikal ausgerichteten und als ausgedünntes Array 15.3 in einer Ebene parallel in bestimmten Abständen zueinander angeordneten Antennenspalten 15e, 15f, 15g und 15h gezeigt. Wie aus Figur 4 ersichtlich ist dabei zwischen den Antennenspalten 15e und 15f ein Abstand von 0,5 Wellenlänge λ in Luft, zwischen den Antennenspalten 15f und 15g ein Abstand von 1 ,5 Wellenlänge λ in Luft und zwischen den Antennenspalten 15g und 15h ein Abstand in Höhe von 1 ,0 Wellenlänge λ in Luft vorgesehen. Des weiteren verbleibt zwischen den Antennenspalten 15e und 15g ein Abstand von 2,0 Wellenlänge λ in Luft, zwischen den Antennenspalten 15f und 15h ein Abstand von 2,5 Wellenlänge λ in Luft und zwischen den Antennenspalten 15e und 15h ein Abstand von 3,0 Wellenlänge λ in Luft.
Die bestimmten Abstände der Antennenspalten 15a bis 15g zueinander sind jeweils ein ganzzahliges Vielfaches eines konstanten Grundabstands, nämlich der halben Wellenlänge λ in Luft.

Claims

Ansprüche
1 . Radarsensorvorrichtung (12) mit wenigstens einer planaren Antenneneinrichtung, welche mehrere vertikal ausgerichtete und als ausgedünntes Array (15.2, 15.3) in einer Ebene parallel in bestimmten Abständen zueinander angeordnete Antennenspalten (15b bis 15h) aufweist, welche jeweils wenigstens zwei liniengespeiste Patch-Elemente (23) aufweisen, dadurch gekennzeichnet, dass das ausgedünnte Array (15.2, 15.3) von Antennenspalten (15b bis 15h) derart mit minimaler Redundanz ausgeführt ist, dass die Menge der bestimmten Abstände der Antennenspalten (15b bis 15h) zueinander in dem ausgedünnten Array (15.2, 15.3) sämtliche unterschiedlichen Abstände zwischen zwei beliebigen Antennenspalten (15a) eines korrespondierenden nicht-ausgedünnten Arrays (15.1 ) einer planaren Antenneneinrichtung mit gleicher Antennenapertur und gleicher Beschaffenheit der Antennenspalten (15a) wenigstens einmal jedoch in minimal möglicher Anzahl aufweist.
2. Radarsensorvorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass die bestimmten Abstände der Antennenspalten (15b bis 15h) zueinander jeweils ein ganzzahliges Vielfaches eines konstanten Grundabstands sind.
3. Radarsensorvorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass der konstante Grundabstand kleiner oder gleich der halben Wellenlänge (λ) in Luft ist.
4. Vorrichtung, insbesondere Fahrerassistenzsystem (1 1 ) eines Kraftfahrzeugs (10) mit wenigstens einer Radarsensorvorrichtung (12) gemäß Anspruch 1 , 2 oder 3 zur Detektion von Objekten in einem Umfeld des Kraftfahrzeugs (10), und einer Steuereinrichtung (14), welche mit der wenigstens einen Radarsensorvorrichtung (12) verbunden ist.
PCT/EP2010/060316 2009-09-16 2010-07-16 Radarsensorvorrichtung mit wenigstens einer planaren antenneneinrichtung WO2011032745A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012529166A JP5373974B2 (ja) 2009-09-16 2010-07-16 少なくとも1つの平面アンテナ装置を備えたレーダセンサ装置
CN201080041611.0A CN102612658B (zh) 2009-09-16 2010-07-16 具有至少一个平面天线装置的雷达传感器设备
EP10731761A EP2478387A1 (de) 2009-09-16 2010-07-16 Radarsensorvorrichtung mit wenigstens einer planaren antenneneinrichtung
US13/496,397 US9310478B2 (en) 2009-09-16 2010-07-16 Radar sensor device having at least one planar antenna device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009029503A DE102009029503A1 (de) 2009-09-16 2009-09-16 Radarsensorvorrichtung mit wenigstens einer planaren Antenneneinrichtung
DE102009029503.8 2009-09-16

Publications (1)

Publication Number Publication Date
WO2011032745A1 true WO2011032745A1 (de) 2011-03-24

Family

ID=42797290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/060316 WO2011032745A1 (de) 2009-09-16 2010-07-16 Radarsensorvorrichtung mit wenigstens einer planaren antenneneinrichtung

Country Status (6)

Country Link
US (1) US9310478B2 (de)
EP (1) EP2478387A1 (de)
JP (1) JP5373974B2 (de)
CN (1) CN102612658B (de)
DE (1) DE102009029503A1 (de)
WO (1) WO2011032745A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140035780A1 (en) * 2011-04-20 2014-02-06 Saverio Trotta Antenna device, amplifier and receiver circuit, and radar circuit
CN103792525A (zh) * 2014-01-23 2014-05-14 西安电子科技大学 一种分布式宽带相控阵雷达阵列基线长度及带宽优化方法
DE112014006707B4 (de) 2014-05-29 2021-07-29 Toyota Jidosha Kabushiki Kaisha Array-antennenvorrichtung

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011084610A1 (de) 2011-10-17 2013-04-18 Robert Bosch Gmbh Winkelauflösender Radarsensor
DE102012015250A1 (de) * 2012-08-01 2014-02-06 Audi Ag Radarsensor für ein Kraftfahrzeug, Kraftfahrzeug und Kommunikationsverfahren
FR2997796B1 (fr) * 2012-11-08 2017-11-03 Inst Nat Des Sciences Appliquees Dispositif en forme de diedre aplati possedant une surface equivalente radar adaptee (maximisation ou minimisation)
JP5697052B2 (ja) * 2012-11-23 2015-04-08 古河電気工業株式会社 アレーアンテナ装置
US9389305B2 (en) * 2013-02-27 2016-07-12 Mitsubishi Electric Research Laboratories, Inc. Method and system for compressive array processing
DE102013205892A1 (de) 2013-04-03 2014-10-09 Robert Bosch Gmbh Radarvorrichtung und Verfahren zum Betrieb einer Radarvorrichtung
DE102013209530A1 (de) 2013-05-23 2014-11-27 Robert Bosch Gmbh Bestimmung eines elevations-dejustagewinkels eines radarsensors eines kraftfahrzeugs
DE102014200692A1 (de) * 2014-01-16 2015-07-16 Robert Bosch Gmbh Verfahren, antennenanordnung, radarsystem und fahrzeug
US9664775B2 (en) * 2014-09-29 2017-05-30 Delphi Technologies, Inc. Radar system and method for virtual antenna signals
US9470782B2 (en) * 2014-11-26 2016-10-18 Valeo Radar Systems, Inc. Method and apparatus for increasing angular resolution in an automotive radar system
KR101673200B1 (ko) * 2015-01-06 2016-11-08 블루웨이브텔(주) 중장비 차량용 근거리 패치배열 레이더 안테나
US11063368B2 (en) 2015-04-01 2021-07-13 Vega Grieshaber Kg Antenna assembly for a level gauge
CN114185042A (zh) 2015-09-17 2022-03-15 松下电器产业株式会社 雷达装置
JP6365494B2 (ja) 2015-10-07 2018-08-01 株式会社デンソー アンテナ装置及び物標検出装置
KR101890352B1 (ko) * 2015-12-11 2018-08-21 주식회사 만도 차량용 레이더 장치 및 그의 고스트 제거 방법
US10677918B2 (en) 2017-02-28 2020-06-09 Analog Devices, Inc. Systems and methods for improved angular resolution in multiple-input multiple-output (MIMO) radar
JP2018182743A (ja) * 2017-04-18 2018-11-15 日本電産株式会社 スロットアレイアンテナ
DE102017214575A1 (de) 2017-08-21 2019-02-21 Astyx Gmbh Abbildendes Radarsystem mit einem Empfangsarray zur Winkelbestimmung von Objekten in zwei Dimensionen durch eine gespreizte Anordnung der Empfangsantennen einer Dimension
DE102018210155A1 (de) * 2018-06-21 2019-12-24 Robert Bosch Gmbh Verfahren und Vorrichtung zur Auswertung von Radarsignalen
DE102018214966A1 (de) * 2018-09-04 2020-03-05 Robert Bosch Gmbh Winkelauflösender Radarsensor
DE102018124503A1 (de) * 2018-10-04 2020-04-09 HELLA GmbH & Co. KGaA Radarsystem für ein Fahrzeug
US11579287B2 (en) * 2019-01-23 2023-02-14 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Millimeter-wave radar for unmanned aerial vehicle swarming, tracking, and collision avoidance
JP7228791B2 (ja) * 2019-03-20 2023-02-27 パナソニックIpマネジメント株式会社 レーダ装置
DE102019114876B4 (de) * 2019-06-03 2022-07-14 Audi Ag Radarantennenanordnung für ein Fahrzeug, umfassend zumindest ein Fahrzeugbauteil, und Fahrzeug
US11435438B2 (en) * 2019-12-30 2022-09-06 Woven Planet North America, Inc. Dynamic sparse radar array for scenarios
US11777231B2 (en) 2020-11-19 2023-10-03 Commscope Technologies Llc Base station antennas having sparse and/or interleaved multi-column arrays
CN113252998B (zh) * 2021-04-30 2022-12-13 西南电子技术研究所(中国电子科技集团公司第十研究所) 相控阵天线和、差波束信号电平的平坦度优化方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10036131A1 (de) 2000-07-25 2002-02-07 Volkswagen Ag Radarsensor zur Erfassung der Verkehrssituation im Umfeld eines Kraftfahrzeuges
EP1486796A2 (de) 2003-06-09 2004-12-15 Fujitsu Ten Limited Radaranordnung mit Schaltermatrix zur adaptiven Strahlformung im Empfangszweig und Umschalten des Sendezweigs
EP2060929A1 (de) 2006-11-01 2009-05-20 Murata Manufacturing Co. Ltd. Radarzielerkennungsmethode und radargerät welches die zielerkennungsmethode benutzt

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5774690A (en) * 1995-09-14 1998-06-30 The United States Of America As Represented By The Secetary Of The Navy Method for optimization of element placement in a thinned array
SE518207C2 (sv) * 1999-09-10 2002-09-10 Ericsson Telefon Ab L M Gles gruppantenn
JP2001091616A (ja) * 1999-09-22 2001-04-06 Mitsubishi Electric Corp 入射角度推定装置及び入射角度推定装置の素子アンテナの配列方法
DK174558B1 (da) * 2002-03-15 2003-06-02 Bruel & Kjaer Sound & Vibratio Stråleformende transducer-antennesystem
US7714782B2 (en) * 2004-01-13 2010-05-11 Dennis Willard Davis Phase arrays exploiting geometry phase and methods of creating such arrays
JP4545460B2 (ja) * 2004-03-10 2010-09-15 三菱電機株式会社 レーダ装置およびアンテナ装置
EP1761799A2 (de) * 2004-04-12 2007-03-14 Ghz Tr Corporation Verfahren und vorrichtungen für fahrzeugradarsensoren
WO2006009122A1 (ja) * 2004-07-16 2006-01-26 Fujitsu Ten Limited モノパルスレーダ装置およびアンテナ切換スイッチ
JP2006047114A (ja) * 2004-08-04 2006-02-16 Fujitsu Ten Ltd レーダ装置
DE102004059915A1 (de) * 2004-12-13 2006-06-14 Robert Bosch Gmbh Radarsystem
JP2007333656A (ja) * 2006-06-16 2007-12-27 Murata Mfg Co Ltd レーダ装置
JP5130079B2 (ja) * 2007-02-28 2013-01-30 株式会社デンソーアイティーラボラトリ 電子走査式レーダ装置及び受信用アレーアンテナ
US7609198B2 (en) * 2007-05-21 2009-10-27 Spatial Digital Systems, Inc. Apparatus and method for radar imaging by measuring spatial frequency components
JP4828553B2 (ja) * 2008-01-29 2011-11-30 富士通テン株式会社 レーダ装置、及び物標の角度検出方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10036131A1 (de) 2000-07-25 2002-02-07 Volkswagen Ag Radarsensor zur Erfassung der Verkehrssituation im Umfeld eines Kraftfahrzeuges
EP1486796A2 (de) 2003-06-09 2004-12-15 Fujitsu Ten Limited Radaranordnung mit Schaltermatrix zur adaptiven Strahlformung im Empfangszweig und Umschalten des Sendezweigs
EP2060929A1 (de) 2006-11-01 2009-05-20 Murata Manufacturing Co. Ltd. Radarzielerkennungsmethode und radargerät welches die zielerkennungsmethode benutzt

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2478387A1

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140035780A1 (en) * 2011-04-20 2014-02-06 Saverio Trotta Antenna device, amplifier and receiver circuit, and radar circuit
CN103792525A (zh) * 2014-01-23 2014-05-14 西安电子科技大学 一种分布式宽带相控阵雷达阵列基线长度及带宽优化方法
CN103792525B (zh) * 2014-01-23 2016-03-23 西安电子科技大学 一种分布式宽带相控阵雷达阵列基线长度及带宽优化方法
DE112014006707B4 (de) 2014-05-29 2021-07-29 Toyota Jidosha Kabushiki Kaisha Array-antennenvorrichtung

Also Published As

Publication number Publication date
US9310478B2 (en) 2016-04-12
DE102009029503A1 (de) 2011-03-24
EP2478387A1 (de) 2012-07-25
CN102612658A (zh) 2012-07-25
US20120223852A1 (en) 2012-09-06
JP5373974B2 (ja) 2013-12-18
CN102612658B (zh) 2017-06-09
JP2013504764A (ja) 2013-02-07

Similar Documents

Publication Publication Date Title
EP2478387A1 (de) Radarsensorvorrichtung mit wenigstens einer planaren antenneneinrichtung
EP2659285B1 (de) Radarsensor für kraftfahrzeuge
EP2729828B1 (de) Radarsystem für kraftfahrzeuge sowie kraftfahrzeug mit einem radarsystem
EP3198678B1 (de) Mimo-radarvorrichtung zum entkoppelten bestimmen eines elevationswinkels und eines azimutwinkels eines objekts und verfahren zum betreiben einer mimo-radarvorrichtung
EP2294450B1 (de) Radarsystem mit überlappenden sende- und empfangsantennen
EP2176681B1 (de) Radarsensor für kraftfahrzeuge
EP2330685B1 (de) Antenneneinrichtung für eine Radarsensorvorrichtung
EP2630514B1 (de) Verfahren und vorrichtung zur objekterfassung
DE102014011766A1 (de) Radar für Fahrzeuge und Verfahren zum Betreiben desselben
EP1728097A1 (de) Radarsystem f r kraftfahrzeuge
EP2769236B1 (de) Winkelauflösender radarsensor
WO2017080791A1 (de) Verfahren zum kalibrieren eines sensors eines kraftfahrzeugs zur winkelmessung, recheneinrichtung, fahrerassistenzsystem sowie kraftfahrzeug
DE112010005193T5 (de) Hindernis-Erfassungsvorrichtung
EP2244104A2 (de) Verfahren und Vorrichtung zum Betrieb eines radargestützten Umfelderkennungssystems
DE102017223471A1 (de) Vorrichtung zum Aussenden und Empfangen elektromagnetischer Strahlung
WO2015028175A1 (de) Radarsensor für kraftfahrzeuge
DE102012006368A1 (de) Radarsensoranordnung zur Umgebungsüberwachung für ein Fahrzeug und Fahrzeug mit einer Radarsensoranordnung
EP2983008B1 (de) Sensorvorrichtung mit kombiniertem ultraschallsensor und radarsensor zum erfassen eines objekts in einem umfeld eines kraftfahrzeugs und kraftfahrzeug
EP0989416A2 (de) Verfahren zur genauen Winkelbemessung von Zielen mittels eines Mehrfachantennen-Radarsystems
WO2009071368A1 (de) Bistatische arrayantenne sowie verfahren
EP2225582B1 (de) Monostatischer mehrstrahl-radarsensor, sowie verfahren
DE102020119934A1 (de) Verfahren zum Betreiben eines Radarsystems, Radarsystem und Fahrzeug mit wenigstens einem Radarsystem
WO2011054573A1 (de) Planare antenneneinrichtung für eine radarsensorvorrichtung
EP1792206A1 (de) Vorrichtung und verfahren zum detektieren von objekten im bereich eines fahrzeugs
DE102020119936A1 (de) Radarsystem, Antennenarray für ein Radarsystem, Fahrzeug mit wenigstens einem Radarsystem und Verfahren zum Betreiben wenigstens eines Radarsystems

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080041611.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10731761

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010731761

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012529166

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13496397

Country of ref document: US