WO2015028175A1 - Radarsensor für kraftfahrzeuge - Google Patents

Radarsensor für kraftfahrzeuge Download PDF

Info

Publication number
WO2015028175A1
WO2015028175A1 PCT/EP2014/064073 EP2014064073W WO2015028175A1 WO 2015028175 A1 WO2015028175 A1 WO 2015028175A1 EP 2014064073 W EP2014064073 W EP 2014064073W WO 2015028175 A1 WO2015028175 A1 WO 2015028175A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar
antenna elements
groups
group
antenna
Prior art date
Application number
PCT/EP2014/064073
Other languages
English (en)
French (fr)
Inventor
Thomas Binzer
Volker Gross
Raphael Hellinger
Andre Treptow
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2015028175A1 publication Critical patent/WO2015028175A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/44Monopulse radar, i.e. simultaneous lobing
    • G01S13/4445Monopulse radar, i.e. simultaneous lobing amplitude comparisons monopulse, i.e. comparing the echo signals received by an antenna arrangement with overlapping squinted beams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/343Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using sawtooth modulation

Definitions

  • the invention relates to a radar sensor for motor vehicles, having an antenna arrangement which has at least two groups of antenna elements which differ in their effective direction in elevation, a control device which is designed to activate the groups alternately, and an evaluation device for evaluating the radar echoes received by the antenna arrangement and for angle-resolving locating of objects, wherein the evaluation device is designed to estimate the elevation angle of the objects on the basis of the radar echoes received by the different groups.
  • Radar sensors of this type are used to detect the traffic environment in the context of driver assistance systems, for example for radar-assisted distance control (ACC).
  • ACC radar-assisted distance control
  • Such a driver assistance system is known for example from the publication "Adaptive cruise control ACC", Robert Bosch GmbH, yellow series, edition 2002, technical briefing.
  • An important measure of the radar sensor is, in addition to the distance and the relative speed and the angle of the located objects. Both the horizontal angle (azimuth angle) and the vertical angle (elevation angle) are important here.
  • the azimuth angle is used to estimate the lateral offset and thus track assignment.
  • the elevation angle makes it possible to distinguish between objects that can be driven or driven over and objects that represent real obstacles.
  • PSS Predictive Safety Systems
  • the azimuthal angular resolution is usually achieved by generating a plurality of angularly offset radar lobes in which the radar echoes in separate th channels are evaluated.
  • radar lobe is pivoted in the horizontal direction.
  • An estimate of the elevation angle is possible, for example, by mechanical pivoting of the radar sensor in the vertical.
  • the elevation angle is usually determined only indirectly via a temporal evaluation of the backscatter behavior of objects.
  • planar antenna devices or patch antennas are particularly suitable because they can be produced simply and inexpensively because of their flat design, for example in the etching process.
  • Such an antenna device is typically a planar arrangement of radiating resonators on an HF substrate, each of which has a specific amplitude and phase. The directional characteristic of the antenna arrangement is then obtained by superposition of the radiation patterns of the individual patch elements.
  • a radar sensor according to the preamble of claim 1 is known from WO 2012 089 385 A1.
  • the object of the invention is to enable a more versatile use of such a radar sensor. This object is achieved in that the groups differ in their directional characteristic in azimuth.
  • the radar lobe is pivoted periodically in the vertical, so that a larger elevation angle range can be covered without sacrificing sensitivity and range.
  • the angular deviation between the two radar lobes will be smaller than the angular extent of a single radar lobe in the elevation, so that an object located in front of the vehicle always remains within the field of view of the radar sensor, regardless of which of the groups of antenna elements is currently active.
  • the development of the distance, the relative velocity and the azimuth angle of the object can be tracked with high temporal resolution, and the simultaneous estimation of the elevation angle (with lower temporal resolution) provides important additional information about the object, for example, whether the object is traversable or not whether it's a truck or a car, and the like.
  • changes in the road inclination for example, driving over a dome or driving through a trough can be seen in this way on the basis of the change in the elevation angle of a vehicle ahead. Since the groups of antenna elements also differ in their directional characteristic in the azimuth, with the alternate activation in addition to the
  • Swiveling the radar lobe in elevation also changes the field of view, for example, between a narrow field of view with a long range and another field of view with a shorter range. In this way, more detailed information about the traffic environment can be obtained practically without additional hardware, so that the traffic situation can be assessed more reliably.
  • one of the sets of antenna elements is configured to locate objects having a near-elevation angle, and the azimuth directional characteristic corresponds to a narrow, long-range field of view, while another set of antenna elements is used to locate objects of zero different elevation angle is provided and has a wide field of view with a shorter range.
  • this group can detect relatively high-altitude objects, such as trucks or bridges, and on the other hand, even close-to-lane objects can be detected, even if they are of lower height, as they always do so due to the small object distance still within the detection range of the slightly upwardly directed radar lobe.
  • intervals in which the different groups of antenna elements are active, can be of different lengths, wherein the ratio between the durations of the activation periods can be varied as a function of the situation. For example, when traveling at high speed, it is possible to work predominantly with the antenna array, which offers a high range, while in stop-and-go operation, predominantly the antenna group is used which offers a wide field of view and greater or equal for near objects with elevation angles Zero is sensitive, but relatively insensitive to run over objects on the road surface.
  • any "group" of antenna elements can also consist of a single antenna element, each group preferably consists of a plurality of antenna elements which are connected to a common feed network whose configuration determines the phase relationship between the individual antenna elements and thus the directional characteristic of the group.
  • lens elements can also be used to influence the directional characteristic.
  • a bistatic antenna concept is realized, i.e. separate antenna elements are provided for transmitting the radar signal and for receiving the radar echo.
  • a plurality of antenna elements can be provided for receiving the radar returns, which are offset in the horizontal relative to the optical axis of a lens, so that a plurality of angularly offset
  • Receiving lobes are generated which allow a determination of the azimuth angle of the objects.
  • FIG. 1 shows a block diagram of a radar sensor according to the invention
  • FIG. 2 shows a sketch for explaining the mode of operation of the radar sensor in the estimation of the elevation angle of an object
  • FIG. 3 shows elevational diagrams for two groups of antenna elements in the radar sensor according to FIG. 1;
  • FIGS. 5 and 6 are azimuthal antenna diagrams for the two sets of antenna elements, the elevational diagrams of which are shown in FIG.
  • the radar sensor RS shown in FIG. 1 has an antenna arrangement with three groups Rx, Tx1, Tx2 of antenna elements 10, 12, 14.
  • the antenna elements 12, 14 of the groups Tx1 and Tx2 serve alternately to transmit a radar signal which is generated by a local oscillator 16.
  • the antenna elements 12 of the group Tx1 are arranged in a plurality of columns which are vertically oriented and each comprise a plurality of evenly spaced antenna elements. Via a feed network 18, the radar signal to be transmitted is distributed to the individual columns and then fed into the individual antenna elements 12 within this column in series. The columns are evenly spaced horizontally.
  • the feed network 18 is configured such that all the antenna elements 12 of the group Tx1 are driven in phase, so that a superimposing effect of the radiation emitted by the individual antenna elements results in a collimating effect in both azimuth and elevation.
  • the main emission direction is perpendicular to the plane in which the antenna elements 10, 12, 14 are arranged, for example, on a common high-frequency substrate. So that the individual antenna elements 12 of a column are excited in phase, the distance d1 between two adjacent antenna elements 12 within a column with the wavelength ⁇ on the substrate coincides (or is an integer multiple thereof).
  • the configuration of the antenna elements 14 in the group Tx2 is in principle the same as in the group Tx1, but with the difference that the number of columns is small. is ner and that the distance d2 between adjacent antenna elements 14 within a column deviates from the wavelength ⁇ . In the example shown it is greater than this wavelength. This has the consequence that the successive antenna elements 14 within each column have a certain phase shift to each other, so that by overlapping a radar K2 results (Fig. 2), the main radiation direction in the elevation by a certain angle relative to the main emission direction of the group Tx1 generated Radarkeule K1 is pivoted. At the end of each column there is an absorber Abs which prevents reflection of the injected signal.
  • the antenna elements 10 of this group Rx are arranged in four columns and are connected in series within each column. Each column forms a receive channel and is connected to an input of a four-channel mixer 24. Another input of this four-channel mixer 24 is supplied from the oscillator 16 the same signal, which is also transmitted to the feed network 18 or 20. The signal received by each antenna column is mixed with the signal of the local oscillator 16.
  • the four-channel mixer 24 thus supplies as mixing products four intermediate frequency signals Z1-Z4 whose frequency corresponds in each case to the frequency difference between the received signal and the signal of the local oscillator 16.
  • the frequency of the oscillator 16 is modulated in a ramp (the distance d1 between the antenna elements 12 therefore corresponds exactly to the mean wavelength of the transmitted signal on the substrate).
  • the frequency of the radar echo received by the antenna elements 10 therefore differs from the signal of the local oscillator by an amount which depends on the signal transit time from the radar sensor to the object and back and on the other hand, due to the Doppier effect, on the relative speed of the object.
  • the intermediate frequency signals Z1-Z4 information about the distance and the relative speed of the object.
  • the intermediate frequency signals Z1-Z4 are fed to an evaluation device 26 and there recorded channel by channel, each over the duration of a frequency ramp, and decomposed into a spectrum by fast Fourier transformation.
  • each object is distinguished by a peak at the frequency determined by the respective object distance and the relative speed.
  • the radar echoes received by the various columns of the group Rx have a phase shift dependent on the respective azimuth angle ⁇ of the object. Due to the bundling of the signal transmitted by the group Tx1 or Tx2, the amplitude of the received radar echo also depends on the azimuth angle of the object. By comparing the amplitude and phase differences with a corresponding antenna pattern, therefore, the azimuth angle ⁇ can also be determined in the evaluation device 26.
  • An electronic controller 28 not only controls the frequency modulation of the oscillator 16, but also causes the oscillator to output the signal to be transmitted alternately to the group Tx1 and the group Tx2.
  • the active and inactive phases of the groups Tx1 and Tx2 thus alternate periodically, for example with a period corresponding to a complete cycle of rising and falling frequency ramps of the oscillator 16.
  • the signal of the control device 28, which causes the switching between the feed networks 18 and 20, is also supplied to a contrast calculation unit 30, which also receives a signal P from the evaluation device 26.
  • the signal P indicates the strength (power) of the radar echo for each located object, for example averaged over all four channels.
  • an estimated value for the elevation angle ⁇ of the object can then be calculated in an elevation angle estimation unit 32, as will be explained below with reference to FIGS. 2 to 4.
  • Fig. 2 it is assumed that the radar sensor RS is installed in a vehicle so that the substrate on which the antenna elements 10, 12, 14 are located is vertically oriented.
  • the curve K1 ' shows the corresponding angular distribution of the intensity of the radar lobe K1. It can be seen that the maximum lies at the elevation angle 0 °.
  • the group Tx2 generates the radar lobe K2 due to the phase shift between the antenna elements 14 of each column, the main radiation direction of which is inclined upward by a certain angle.
  • the corresponding angular distribution of the intensity is indicated by the curve K2 'in FIG. It can be seen that the maximum is here at an elevation angle of 5 °. In the example shown in FIG. 2, the object 22 is at an elevation angle ⁇ of approximately 4 °.
  • the consequence is that in the periods in which the group Tx2 is active, one obtains a relatively strong radar echo, since the object 22 is located approximately in the middle of the radar lobe K2, while in periods in which the group Tx1 is active , Receives a significantly weaker signal, since the object 22 is located at the edge of the corresponding Radarkeule K1.
  • the contrast K calculated according to the formula given above is therefore negative in this example.
  • an associated value of the contrast K can be calculated for each elevation angle.
  • the connection between see the contrast K and the elevation angle ⁇ is indicated in Fig. 4 by the curve E.
  • the elevation angle ⁇ of the located object can then be determined in the elevation angle estimation unit 32.
  • the contrast calculation unit 30 and the elevation angle estimation unit 32 are shown as separate units. In practice, however, these units are usually formed by software modules of an electronic data processing system which also assumes the functions of the evaluation device 26 and the control device 28.
  • Fig. 5 shows in the form of an antenna diagram the
  • Directional characteristic 34 of this group in azimuth is characterized by a pronounced main lobe with a relatively long range of, for example, 160m, but only a relatively narrow field of view that only allows objects to be reliably located whose lateral offset to each side is no more than about 5m. Since in this group the main radiation direction in elevation corresponds to an angle of 0 °, the long range can be fully exploited (at least in even terrain).
  • the group Tx2 due to its smaller number of columns, has a directional characteristic 36 which is shown in FIG. 6 and which corresponds to a narrow range but a much wider field of view. This group is therefore particularly suitable for locating objects in the vicinity, including objects to the left and right of their own lane.
  • the antenna diagrams 34, 36 of both groups are symmetrical.

Abstract

Radarsensor für Kraftfahrzeuge, mit einer Antennenanordnung (Rx, Tx1, Tx2), die mindestens zwei Gruppen (Tx1, Tx2) von Antennenelementen (12, 14) aufweist, die sich in ihrer Wirkrichtung in Elevation unterscheiden, einer Steuereinrichtung (28), die dazu ausgebildet ist, die Gruppen abwechselnd zu aktivieren, und mit einer Auswerteeinrichtung (26) zur Auswertung der von der Antennenanordnung empfangenen Radarechos und zur winkelauflösenden Ortung von Objekten (22), wobei die Auswerteeinrichtung (26) dazu ausgebildet ist, den Elevationswinkel (a) der Objekte anhand der von den verschiedenen Gruppen (Tx1, Tx2) empfangenen Radarechos abzuschätzen, dadurch gekennzeichnet, dass die Gruppen (Tx1, Tx2) sich auch in ihrer Richtcharakteristik im Azimut unterscheiden.

Description

Titel
Radarsensor für Kraftfahrzeuge
Stand der Technik Die Erfindung betrifft einen Radarsensor für Kraftfahrzeuge, mit einer Antennenanordnung, die mindestens zwei Gruppen von Antennenelementen aufweist, die sich in ihrer Wirkrichtung in Elevation unterscheiden, einer Steuereinrichtung, die dazu ausgebildet ist, die Gruppen abwechselnd zu aktivieren, und mit einer Auswerteeinrichtung zur Auswertung der von der Antennenanordnung empfangenen Radarechos und zur win- kelauflösenden Ortung von Objekten, wobei die Auswerteeinrichtung dazu ausgebildet ist, den Elevationswinkel der Objekte anhand der von den verschiedenen Gruppen empfangenen Radarechos abzuschätzen.
Radarsensoren dieser Art werden zur Erfassung des Verkehrsumfelds im Rahmen von Fahrerassistenzsystemen eingesetzt, beispielsweise zur radargestützten Abstandsre- gelung (ACC; Adaptive Cruise Control). Ein derartiges Fahrerassistenzsystem ist beispielsweise aus der Veröffentlichung "Adaptive Fahrgeschwindigkeitsregelung ACC", Robert Bosch GmbH, Gelbe Reihe, Ausgabe 2002, Technische Unterrichtung, bekannt. Eine wichtige Messgröße des Radarsensors ist neben der Entfernung und der Relativgeschwindigkeit auch der Winkel der georteten Objekte. Hierbei ist sowohl der horizontale Wnkel (Azimutwinkel) als auch der vertikale Winkel (Elevationswinkel) von Bedeutung. Der Azimutwinkel wird zur Schätzung des Querversatzes und damit zur Spurzuordnung verwendet. Der Elevationswinkel ermöglicht eine Unterscheidung zwischen Objekten, die unterfahrbar oder überfahrbar sind, und Objekten, die echte Hindernisse darstellen. So lassen sich insbesondere bei Sicherheitsanwendungen (PSS; Predictive Safety Systems) Fehlauslösungen durch metallische Gegenstände wie Kanaldeckel, Blechdosen auf der Fahrbahn und dergleichen vermeiden.
Das azimutale Winkelauflösungsvermögen wird zumeist dadurch erreicht, dass mehrere winkelversetzte Radarkeulen erzeugt werden, in denen die Radarechos in getrenn- ten Kanälen ausgewertet werden. Es sind auch scannende Radarsysteme bekannt, bei denen die Radarkeule in horizontaler Richtung verschwenkt wird. Eine Abschätzung des Elevationswinkels ist beispielsweise durch mechanische Schwenkung des Radarsensors in der Vertikalen möglich. Aus Kostengründen wird der Elevationswinkel je- doch zumeist nur indirekt über eine zeitliche Auswertung des Rückstreuverhaltens von Objekten ermittelt.
Für den Einsatz in Radarsensoren für Kraftfahrzeuge sind sogenannte planare Antenneneinrichtungen oder Patch-Antennen besonders geeignet, da sie sich wegen ihrer flachen Bauform einfach und kostengünstig herstellen lassen, beispielsweise im Ätz- verfahren. Bei einer solchen Antenneneinrichtung handelt es sich typischerweise um eine flächige Anordnung von strahlenden Resonatoren auf einem HF-Substrat, die jeweils mit einer bestimmten Amplitude und Phase belegt sind. Die Richtcharakteristik der Antennenanordnung ergibt sich dann durch Überlagerung der Strahlungsdiagramme der einzelnen Patch-Elemente. Ein Radarsensor nach dem Oberbegriff des Anspruchs 1 ist aus WO 2012 089 385 A1 bekannt.
Offenbarung der Erfindung
Aufgabe der Erfindung ist es, eine vielseitigere Nutzung eines solchen Radarsensors zu ermöglichen. Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass die Gruppen sich auch in ihrer Richtcharakteristik im Azimut unterscheiden.
Durch die wechselweise Aktivierung der Gruppen von Antennenelementen wird die Radarkeule periodisch in der Vertikalen verschwenkt, so dass ohne Einbußen an Empfindlichkeit und Reichweite ein größerer Elevationswinkelbereich abgedeckt werden kann. Im allgemeinen wird dabei die Winkelabweichung zwischen den beiden Radarkeulen kleiner sein als die Winkelausdehnung einer einzelnen Radarkeule in der Eleva- tion, so dass ein Objekt, das sich vor dem Fahrzeug befindet, stets im Blickfeld des Radarsensors bleibt, unabhängig davon, welche der Gruppen von Antennenelementen gerade aktiv ist. Folglich lassen sich die Entwicklung des Abstands, der Relativgeschwindigkeit und des Azimutwinkels des Objektes mit hoher zeitlicher Auflösung verfolgen, und die gleichzeitige Abschätzung des Elevationswinkels (mit geringerer zeitlicher Auflösung) liefert wichtige zusätzliche Informationen über das Objekt, beispiels- weise ob das Objekt überfahrbar ist oder nicht, ob es sich um einen Lkw oder Pkw handelt, und dergleichen. Auch Änderungen der Fahrbahnneigung, beispielsweise das Überfahren einer Kuppe oder das Durchfahren einer Mulde lassen sich auf diese Weise anhand der Änderung des Elevationswinkels eines vorausfahrenden Fahrzeugs erkennen. Da sich die Gruppen der Antennenelemente auch in ihrer Richtcharakteristik im Azimut unterscheiden, erfolgt mit der wechselweisen Aktivierung zusätzlich zu dem
Verschwenken der Radarkeule in Elevation auch ein Wechsel des Gesichtsfeldes, beispielsweise zwischen einem engen Gesichtsfeld mit großer Reichweite und einem weiteren Gesichtsfeld mit kürzerer Reichweite. Auf diese Weise lassen sich praktisch ohne zusätzliche Hardware detailliertere Informationen über das Verkehrsumfeld gewinnen, so dass die Verkehrssituation zuverlässiger eingeschätzt werden kann.
Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.
In einer bevorzugten Ausführungsform ist eine der Gruppen der Antennenelemente zur Ortung von Objekten mit einem Elevationswinkel nahe null ausgelegt, und die Richt- Charakteristik im Azimut entspricht einem engen Gesichtsfeld mit großer Reichweite, während eine andere Gruppe von Antennenelementen zur Ortung von Objekten mit einem von null verschiedenen Elevationswinkel vorgesehen ist und ein weites Gesichtsfeld mit kürzerer Reichweite hat. Mit dieser Gruppe können zum einen Objekte mit relativ großer Höhe erfasst werden wie beispielsweise Lkw oder Brücken, und zum anderen können auch nahe Objekte am Fahrbahnrand erfasst werden, und zwar auch dann, wenn sie eine geringere Höhe haben, da sie aufgrund des geringen Objektabstands immer noch im Erfassungsbereich der leicht nach oben gerichteten Radarkeule liegen. Diese Intervalle, in denen die verschiedenen Gruppe von Antennenelementen aktiv sind, können unterschiedlich lang sein, wobei das Verhältnis zwischen den Dauern der Aktivierungsperioden situationsabhängig variiert werden kann. Beispielsweise kann bei Fahrten mit hoher Geschwindigkeit vorwiegend mit der Antennengruppe gearbeitet werden, die eine hohe Reichweite bietet, während im Stop-and-Go-Betrieb vorwiegend mit der Antennengruppe gearbeitet wird, die ein weites Gesichtsfeld bietet und für nahe Objekte mit Elevationswinkeln größer oder gleich null empfindlich ist, jedoch relativ unempfindlich für überfahrbare Objekte auf der Fahrbahnoberfläche.
Obgleich grundsätzlich jede "Gruppe" von Antennenelementen auch aus einem einzi- gen Antennenelement bestehen kann, besteht jede Gruppe bevorzugt aus mehreren Antennenelementen, die an ein gemeinsames Speisenetzwerk angeschlossen sind, dessen Konfiguration die Phasenbeziehung zwischen den einzelnen Antennenelementen und damit die Richtcharakteristik der Gruppe festlegt. Wahlweise oder zusätzlich können jedoch zur Beeinflussung der Richtcharakteristik auch Linsenelemente einge- setzt werden.
In einer vorteilhaften Ausführungsform ist ein bistatisches Antennenkonzept verwirklicht, d.h., es sind getrennte Antennenelemente zum Senden des Radarsignals und zum Empfang des Radarechos vorgesehen. Beispielsweise können zum Empfang der Radarechos mehrere Antennenelemente vorgesehen sein, die in der Horizontalen rela- tiv zur optischen Achse einer Linse versetzt sind, so dass mehrere winkelversetzte
Empfangskeulen erzeugt werden, die eine Bestimmung des Azimutwinkels der Objekte erlauben.
Im folgenden wird ein Ausführungsbeispiel anhand der Zeichnung näher erläutert. Es zeigen: Fig. 1 ein Blockdiagramm eines erfindungsgemäßen Radarsensors;
Fig. 2 eine Skizze zur Erläuterung der Funktionsweise des Radarsensors bei der Abschätzung des Elevationswinkels eines Objektes; Fig. 3 Elevationsdiagramme für zwei Gruppen von Antennenelementen in dem Radarsensor nach Fig. 1 ;
Fig. 4 eine Kontrastkurve, die eine Abschätzung des Elevationswin- kels erlaubt; und
Fig. 5 und 6 azimutale Antennendiagramme für die beiden Gruppen von Antennenelementen, deren Elevationsdiagramme in Fig. 3 gezeigt sind.
Der in Fig. 1 gezeigte Radarsensor RS weist eine Antennenordnung mit drei Gruppen Rx, Tx1 , Tx2 von Antennenelementen 10, 12, 14 auf. Die Antennenelemente 12, 14 der Gruppen Tx1 und Tx2 dienen abwechselnd zum Senden eines Radarsignals, das von einem lokalen Oszillator 16 erzeugt wird. Die Antennenelemente 12 der Gruppe Tx1 sind in mehreren Spalten angeordnet, die vertikal orientiert sind und jeweils mehrere in gleichmäßigen Abständen angeordnete Antennenelemente umfassen. Über ein Speisenetzwerk 18 wird das zu sendende Radarsignal auf die einzelnen Spalten verteilt und dann innerhalb dieser Spalte seriell in die einzelnen Antennenelemente 12 eingespeist. Die Spalten weisen gleichmäßige waagerechte Abstände zueinander auf. Das Speisenetzwerk 18 ist so konfiguriert, dass sämtliche Antennenelemente 12 der Gruppe Tx1 gleichphasig angesteuert werden, so dass sich durch Überlagerung der von den einzelnen Antennenelementen emittierten Strahlung eine Bündelungswirkung sowohl im Azimut als auch in der Elevation ergibt. Die Hauptabstrahlrichtung steht dabei senkrecht auf der Ebene, in der die Antennenelemente 10, 12, 14 beispielsweise auf einem gemeinsamen Hochfrequenzsubstrat angeordnet sind. Damit die einzelnen Antennenelemente 12 einer Spalte gleichphasig angeregt werden, stimmt der Abstand d1 zwischen zwei benachbarten Antennenelementen 12 innerhalb einer Spalte mit der Wellenlänge λ auf dem Substrat überein (oder beträgt ein ganzzahliges Vielfaches davon).
Die Konfiguration der Antennenelemente 14 in der Gruppe Tx2 ist im Prinzip die gleiche wie in der Gruppe Tx1 , nur mit dem Unterschied, dass die Anzahl der Spalten klei- ner ist und dass der Abstand d2 zwischen benachbarten Antennenelementen 14 innerhalb einer Spalte von der Wellenlänge λ abweicht. Im gezeigten Beispiel ist er größer als diese Wellenlänge. Das hat zur Folge, dass die aufeinanderfolgenden Antennenelemente 14 innerhalb jeder Spalte eine bestimmte Phasenverschiebung zueinander aufweisen, so dass sich durch Überlagerung eine Radarkeule K2 ergibt (Fig. 2), deren Hauptabstrahlrichtung in der Elevation um einen bestimmten Winkel gegenüber der Hauptabstrahlrichtung der von der Gruppe Tx1 erzeugten Radarkeule K1 verschwenkt ist. Am Ende jeder Spalte ist ein Absorber Abs angeordnet, der eine Reflexion des eingespeisten Signals verhindert. Wenn das Radarsignal, das entweder von der Gruppe Tx1 oder der Gruppe Tx2 emittiert wird, auf ein Objekt 22 trifft (Fig. 2), beispielsweise ein vorausfahrendes Fahrzeug, so wird ein Teil der Radarstrahlung reflektiert, wobei es eine von der Relativgeschwindigkeit des Objektes abhängige Dopplerverschiebung erfährt, und das reflektierte Signal wird dann von den Antennenelementen 10 der Gruppe Rx empfangen. Die Anten- nenelemente 10 dieser Gruppe Rx sind in vier Spalten angeordnet und sind innerhalb jeder Spalte in Serie miteinander verbunden. Jede Spalte bildet einen Empfangskanal und ist auf einen Eingang eines Vierkanalmischers 24 geschaltet. Einem anderen Eingang dieses Vierkanalmischers 24 wird vom Oszillator 16 dasselbe Signal zugeführt, das auch an das Speisenetzwerk 18 oder 20 übermittelt wird. Das von jeder Antennen- spalte empfangene Signal wird mit dem Signal des lokalen Oszillators 16 gemischt. Der Vierkanalmischer 24 liefert somit als Mischprodukte vier Zwischenfrequenzsignale Z1-Z4, deren Frequenz jeweils dem Frequenzunterschied zwischen dem empfangenen Signal und dem Signal des lokalen Oszillators 16 entspricht.
Entsprechend dem Prinzip eines FMCW-Radars (Frequency Modulated Continuous Wave) wird die Frequenz des Oszillators 16 rampenförmig moduliert (der Abstand d1 zwischen den Antennenelementen 12 entspricht daher genau genommen der mittleren Wellenlänge des gesendeten Signals auf dem Substrat). Die Frequenz des von den Antennenelementen 10 empfangenen Radarechos unterscheidet sich deshalb von dem Signal des lokalen Oszillators um einen Betrag, der einerseits von der Signallaufzeit vom Radarsensor zum Objekt und zurück und andererseits, aufgrund des Doppier- Effekts, von der Relativgeschwindigkeit des Objekts abhängig ist. Entsprechend enthal- ten auch die Zwischenfrequenzsignale Z1 -Z4 Information über den Abstand und die Relativgeschwindigkeit des Objektes. Bei der Frequenzmodulation wechseln steigende und fallende Frequenzrampen miteinander ab, und indem man die Zwischenfrequenzsignale auf der steigenden Rampe und auf der fallenden Rampe einmal addiert und einmal subtrahiert, lassen sich die abstands- und geschwindigkeitsabhängigen Anteile voneinander trennen, so dass man Werte für den Abstand D und die Relativgeschwindigkeit V jedes georteten Objektes erhält.
Die Zwischenfrequenzsignale Z1 -Z4 werden einer Auswerteeinrichtung 26 zugeführt und dort kanalweise, jeweils über die Dauer einer Frequenzrampe, aufgezeichnet und durch schnelle Fourier-Transformation in ein Spektrum zerlegt. In diesem Spektrum zeichnet sich jedes Objekt durch einen Peak bei der durch den jeweiligen Objektabstand und die Relativgeschwindigkeit bestimmten Frequenz ab.
Die von den verschiedenen Spalten der Gruppe Rx empfangenen Radarechos weisen eine vom jeweiligen Azimutwinkel φ des Objekts abhängige Phasenverschiebung zuei- nander auf. Aufgrund der Bündelung des von der Gruppe Tx1 oder Tx2 gesendeten Signals ist auch die Amplitude des empfangenen Radarechos vom Azimutwinkel des Objekts abhängig. Durch Vergleich der Amplituden- und Phasenunterschiede mit einem entsprechenden Antennendiagramm lässt sich daher in der Auswerteeinrichtung 26 auch der Azimutwinkel φ bestimmen. Eine elektronische Steuereinrichtung 28 steuert nicht nur die Frequenzmodulation des Oszillators 16, sondern veranlasst den Oszillator auch, das zu sendende Signal abwechselnd an die Gruppe Tx1 und die Gruppe Tx2 auszugeben. Die aktiven und inaktiven Phasen der Gruppen Tx1 und Tx2 wechseln einander somit periodisch ab, beispielsweise mit einer Periode, die einen vollständigen Zyklus von steigenden und fal- lenden Frequenzrampen des Oszillators 16 entspricht. Das Signal der Steuereinrichtung 28, das die Umschaltung zwischen den Speisenetzwerken 18 und 20 bewirkt, wird auch einer Kontrast-Berechnungseinheit 30 zugeführt, die außerdem ein Signal P von der Auswerteeinrichtung 26 erhält. Das Signal P gibt für jedes geortete Objekt die Stärke (Leistung) des Radarechos an, beispielsweise gemittelt über alle vier Kanäle. In den Perioden, in denen die Gruppe Tx1 zum Senden des Radarsignals benutzt wird, erhält man so für ein gegebenes Objekt eine Leistung P1 , und in den Perioden, in denen die Gruppe Tx2 zum Senden des Radarsignals benutzt wird, erhält man für dasselbe Objekt eine Leistung P2. In der Kontrast-Berechnungseinheit 30 wird nun ein Kontrast K gemäß folgender Formel berechnet: K = (P1 - P2) / (P1 + P2)
Anhand des so berechneten Kontrastes K lässt sich dann in einer Elevationswinkel- Abschätzeinheit 32 ein Schätzwert für den Elevationswinkel α des Objekts berechnen, wie nachstehend unter Bezugnahme auf Fig. 2 bis 4 erläutert werden soll.
In Fig. 2 wird angenommen, dass der Radarsensor RS so in ein Fahrzeug eingebaut ist, dass das Substrat, auf dem sich die Antennenelemente 10, 12, 14 befinden, vertikal orientiert ist. Die Hauptabstrahlrichtung der Radarkeule K1 , die von der Gruppe Tx1 erzeugt wird, ist dann waagerecht orientiert (entsprechend dem Elevationswinkel α = 0). In Fig. 3 zeigt die Kurve K1 ' die entsprechende Winkelverteilung der Intensität der Radarkeule K1. Man erkennt, dass das Maximum bei dem Elevationswinkel 0° liegt. Die Gruppe Tx2 erzeugt dagegen aufgrund der Phasenverschiebung zwischen den Antennenelementen 14 jeder Spalte die Radarkeule K2, deren Hauptabstrahlrichtung um einen bestimmten Winkel aufwärts geneigt ist. Die entsprechende Winkelverteilung der Intensität ist durch die Kurve K2' in Fig. 3 angegeben. Man erkennt, dass das Maximum hier bei einem Elevationswinkel von 5° liegt. In dem in Fig. 2 gezeigten Beispiel befindet sich das Objekt 22 bei einem Elevationswinkel α von etwa 4°. Die Folge ist, dass man in den Perioden, in denen die Gruppe Tx2 aktiv ist, ein relativ starkes Radarecho erhält, da sich das Objekt 22 etwa in der Mitte der Radarkeule K2 befindet, während man in Perioden, in denen die Gruppe Tx1 aktiv ist, ein deutlich schwächeres Signal erhält, da sich das Objekt 22 eher am Rand der entsprechenden Radarkeule K1 befindet. Der nach der oben angegebenen Formel berechnete Kontrast K ist deshalb in diesem Beispiel negativ.
Anhand der in Fig. 3 gezeigten Elevationsdiagramme lässt sich für jeden Elevationswinkel ein zugehöriger Wert des Kontrastes K berechnen. Der Zusammenhang zwi- sehen dem Kontrast K und dem Elevationswinkel α wird in Fig. 4 durch die Kurve E angegeben. Anhand dieser Kurve kann dann in der Elevationswinkel-Schätzeinheit 32 der Elevationswinkel α des georteten Objektes bestimmt werden.
In Fig. 1 sind die Kontrast-Berechnungseinheit 30 und die Elevationswinkel- Schätzeinheit 32 als getrennte Einheiten dargestellt. In der Praxis werden diese Einheiten jedoch zumeist durch Softwaremodule eines elektronischen Datenverarbeitungssystems gebildet das auch die Funktionen der Auswerteeinrichtung 26 und der Steuereinrichtung 28 übernimmt.
Da die Gruppe Tx1 eine relativ große Anzahl von Spalten hat, ergibt sich im Azimut eine starke Bündelungswirkung. Fig. 5 zeigt in Form eines Antennendiagramm die
Richtcharakteristik 34 dieser Gruppe im Azimut. Diese Richtcharakteristik wird geprägt durch eine ausgeprägte Hauptkeule mit einer relativ großen Reichweite von beispielsweise 160m, aber nur einem relativ engen Gesichtsfeld, das es nur erlaubt, Objekte zuverlässig zu orten, deren Lateralversatz nach jeder Seite nicht mehr als etwa 5 m beträgt. Da bei dieser Gruppe die Hauptabstrahlrichtung in Elevation einem Winkel von 0° entspricht, kann die große Reichweite voll ausgeschöpft werden (zumindest in ebenem Gelände).
Die Gruppe Tx2 hat dagegen aufgrund ihrer geringeren Anzahl von Spalten eine Richtcharakteristik 36, die in Fig. 6 gezeigt ist und die einer geringen Reichweite aber einem wesentlich breiteren Gesichtsfeld entspricht. Diese Gruppe ist deshalb besonders geeignet zur Ortung von Objekten im Nahbereich, einschließlich Objekten links und rechts neben der eigenen Fahrspur.
Im gezeigten Beispiel sind die Antennendiagramme 34, 36 beider Gruppen symmetrisch.

Claims

Ansprüche
1. Radarsensor für Kraftfahrzeuge, mit einer Antennenanordnung (Rx, Tx1 , Tx2), die mindestens zwei Gruppen (Tx1 , Tx2) von Antennenelementen (12, 14) aufweist, die sich in ihrer Wirkrichtung in Elevation unterscheiden, einer Steuereinrichtung (28), die dazu ausgebildet ist, die Gruppen abwechselnd zu aktivieren, und mit einer Auswerteeinrichtung (26) zur Auswertung der von der Antennenanordnung empfangenen Radarechos und zur winkelauflösenden Ortung von Objekten (22), wobei die Auswerteeinrichtung (26) dazu ausgebildet ist, den Elevationswinkel (a) der Objekte anhand der von den verschiedenen Gruppen (Tx1 , Tx2) empfangenen Radarechos abzuschätzen, dadurch gekennzeichnet, dass die Gruppen (Tx1 , Tx2) sich auch in ihrer Richtcharakteristik (34, 36) im Azimut unterscheiden.
2. Radarsensor nach Anspruch 1 , bei dem jede Gruppe (Tx1 , Tx2) der Antennenelemente (12, 14) mindestens eine vertikal orientierte Spalte aus mehreren seriell ge- speisten Antennenelementen (12, 14) aufweist.
3. Antennenanordnung nach Anspruch 1 oder 2, bei der die mindestens zwei Gruppen (Tx1 , Tx2) der Antennenelemente (12, 14) als Sendeantennen konfiguriert sind und mindestens eine weitere Gruppe (Rx) von Antennenelementen (10) als Empfangsantenne konfiguriert ist.
4. Radarsensor nach den Ansprüchen 2 und 3, bei der jede der als Sendeantenne konfigurierten Gruppen (Tx1 , Tx2) von Antennenelementen (12, 14) ein statisches Speisenetzwerk (18, 20) zur Einspeisung des zu sendenden Radarsignals in die Antennenelemente (12, 14) aufweist.
5. Radarsensor nach Anspruch 4, bei der die Speisenetzwerke (18, 20) mit einem gemeinsamen Oszillator (16) verbunden sind und die Steuereinrichtung (28) dazu ausgebildet ist, das Signal des Oszillators (16) abwechselnd auf die beiden Speisenetzwerke (18, 20) zu schalten.
6. Radarsensor nach einem der vorstehenden Ansprüche, bei dem die Auswerteeinrichtung (26) dazu ausgebildet ist, für jedes geortete Objekt einen Leistungsparameter (P) zu berechnen, der ein Maß für die Stärke des empfangenen Radarechos bildet, eine zu der Auswerteeinrichtung (26) gehörende Kontrast-Berechnungseinheit (30) dazu vorgesehen ist, aus der Leistung P1 , die während einer Periode empfangen wird, in der das Radarsignal von einer Gruppe (Tx1) der Antennenelemente (12) gesendet wird, und der Leistung P2, die während einer Periode empfangen wird, in der das Radarsignal von einer anderen Gruppe (Tx2) die Antennenelemente (14) gesendet wird, einen Kontrast K nach der Formel K = (P1 - P2)/(P1 + P2) zu berechnen, und eine Ele- vationswinkel-Schätzeinheit (32) dazu ausgebildet ist, den Elevationswinkel (a) des Objekts (22) anhand des Kontrastes K zu bestimmen.
7. Radarsensor nach einem der vorstehenden Ansprüche, bei dem die hauptsächliche Wirkrichtung einer Gruppe (Tx1) in Elevation einem Elevationswinkel von annähernd 0° entspricht und diese Gruppe im Azimut eine Richtcharakteristik (34) hat, die durch eine große Reichweite bei schmalem Gesichtsfeld gekennzeichnet, während eine andere Gruppe (Tx2), deren Haupt-Wirkrichtung in Elevation einem von 0° verschiedenen Winkel entspricht, eine Richtcharakteristik (36) hat, die durch eine kleinere Reichweite und ein weiteres Gesichtsfeld gekennzeichnet ist
PCT/EP2014/064073 2013-08-26 2014-07-02 Radarsensor für kraftfahrzeuge WO2015028175A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013216951.5 2013-08-26
DE102013216951.5A DE102013216951A1 (de) 2013-08-26 2013-08-26 Radarsensor für Kraftfahrzeuge

Publications (1)

Publication Number Publication Date
WO2015028175A1 true WO2015028175A1 (de) 2015-03-05

Family

ID=51059468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/064073 WO2015028175A1 (de) 2013-08-26 2014-07-02 Radarsensor für kraftfahrzeuge

Country Status (2)

Country Link
DE (1) DE102013216951A1 (de)
WO (1) WO2015028175A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015121343A1 (de) 2015-12-08 2017-06-08 Valeo Schalter Und Sensoren Gmbh Radarsensoreinrichtung zum Erfassen eines Objektes, Fahrerassistenzsystem, Kraftfahrzeug sowie Verfahren zum Erfassen eines Objektes
DE102016108756A1 (de) 2016-05-12 2017-11-16 Valeo Schalter Und Sensoren Gmbh Radarsensoreinrichtung für ein Kraftfahrzeug, Fahrerassistenzsystem, Kraftfahrzeug sowie Verfahren zum Erfassen eines Objekts
CN111712726A (zh) * 2018-02-15 2020-09-25 罗伯特·博世有限公司 用于机动车的进行角度分辨的宽带的雷达传感器
WO2021063269A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 一种信号发送方法、信号处理方法及雷达装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016207463A1 (de) 2016-04-29 2017-11-02 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben wenigstens eines Fahrzeugs in Bezug auf wenigstens ein passierbares Objekt in der Umgebung des wenigstens einen Fahrzeugs
DE102016124509A1 (de) 2016-12-15 2018-06-21 Valeo Schalter Und Sensoren Gmbh Radarsensor zum Erfassen eines Objekts in einem Umgebungsbereich eines Kraftfahrzeugs mit symmetrisch ausgebildeten Sendeantennen, Fahrerassistenzsystem sowie Kraftfahrzeug
DE102018203438A1 (de) 2018-03-07 2019-09-12 Zf Friedrichshafen Ag Verfahren zur prädiktiven Motorsteuerung und Winkel- und Tiefenmesssystem
KR102167084B1 (ko) * 2018-04-09 2020-10-16 주식회사 만도 레이더 장치 및 그를 위한 안테나 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006063915A1 (de) * 2004-12-13 2006-06-22 Robert Bosch Gmbh Radarsystem mit adaptiver digitaler empfangs-strahlformung und umschaltbarer sende-richtcharakteristik zur abdeckung von nah- und fernbereich
DE102011101216A1 (de) * 2010-05-18 2011-11-24 Mando Corp. Integriertes Radarsystem und Fahrzeugregelungssystem
WO2012089385A1 (de) 2010-12-29 2012-07-05 Robert Bosch Gmbh Radarsensor für kraftfahrzeuge
DE102013000858A1 (de) * 2012-01-19 2013-07-25 Mando Corporation Radarvorrichtung und Antennenvorrichtung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006063915A1 (de) * 2004-12-13 2006-06-22 Robert Bosch Gmbh Radarsystem mit adaptiver digitaler empfangs-strahlformung und umschaltbarer sende-richtcharakteristik zur abdeckung von nah- und fernbereich
DE102011101216A1 (de) * 2010-05-18 2011-11-24 Mando Corp. Integriertes Radarsystem und Fahrzeugregelungssystem
WO2012089385A1 (de) 2010-12-29 2012-07-05 Robert Bosch Gmbh Radarsensor für kraftfahrzeuge
DE102013000858A1 (de) * 2012-01-19 2013-07-25 Mando Corporation Radarvorrichtung und Antennenvorrichtung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Adaptive Fahrgeschwindigkeitsregelung ACC", 2002, ROBERT BOSCH GMBH

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015121343A1 (de) 2015-12-08 2017-06-08 Valeo Schalter Und Sensoren Gmbh Radarsensoreinrichtung zum Erfassen eines Objektes, Fahrerassistenzsystem, Kraftfahrzeug sowie Verfahren zum Erfassen eines Objektes
DE102016108756A1 (de) 2016-05-12 2017-11-16 Valeo Schalter Und Sensoren Gmbh Radarsensoreinrichtung für ein Kraftfahrzeug, Fahrerassistenzsystem, Kraftfahrzeug sowie Verfahren zum Erfassen eines Objekts
WO2017194503A1 (de) 2016-05-12 2017-11-16 Valeo Schalter Und Sensoren Gmbh Radarsensoreinrichtung für ein kraftfahrzeug, fahrerassistenzsystem, kraftfahrzeug sowie verfahren zum erfassen eines objekts
CN111712726A (zh) * 2018-02-15 2020-09-25 罗伯特·博世有限公司 用于机动车的进行角度分辨的宽带的雷达传感器
WO2021063269A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 一种信号发送方法、信号处理方法及雷达装置

Also Published As

Publication number Publication date
DE102013216951A1 (de) 2015-02-26

Similar Documents

Publication Publication Date Title
EP2659284B1 (de) Radarsensor für kraftfahrzeuge
WO2015028175A1 (de) Radarsensor für kraftfahrzeuge
EP3039444B1 (de) Radarsensor für kraftfahrzeuge
EP3161513B1 (de) Radarmessverfahren mit unterschiedlichen sichtbereichen
EP3161514B1 (de) Mimo-radarmessverfahren
EP1728097B1 (de) Radarsystem f r kraftfahrzeuge
EP2507649B1 (de) Verfahren zum eindeutigen bestimmen einer entfernung und/oder einer relativen geschwindigkeit eines objektes, fahrerassistenzeinrichtung und kraftfahrzeug
EP1929331B1 (de) Kraftfahrzeug-radarverfahren und -radarsystem
EP1478942B1 (de) Radarsensor für kraftfahrzeuge mit einer auf die strassenoberfläche gerichteten antennennebenkeule
EP2569650B1 (de) Verfahren und vorrichtung zur bestimmung der position eines objektes relativ zu einem fahrzeug, insbesondere einem kraftfahrzeug, zur verwendung in einem fahrerassistenzsystem des fahrzeuges
EP3574335B1 (de) Verfahren zur ermittlung von wenigstens einer objektinformation wenigstens eines objektes, das mit einem radarsystem insbesondere eines fahrzeugs erfasst wird, radarsystem und fahrerassistenzsystem
EP2391908B1 (de) Verfahren zur detektion von niederschlag mit einem radarortungsgerät für kraftfahrzeuge
DE102010064346A1 (de) Radarsensor für Kraftfahrzeuge
DE102009001265A1 (de) Radarsensor mit Blinheitserkennungseinrichtung
EP1856555A1 (de) Radarsystem für kraftfahrzeuge mit automatischer precrash-cw-funktion
EP2972476A1 (de) Polarimetrisches radar zur objektklassifikation sowie geeignetes verfahren und geeignete verwendung hierfür
EP2769236B1 (de) Winkelauflösender radarsensor
DE102008054624A1 (de) FMCW-Radarsensor für Kraftfahrzeuge
DE102014213190A1 (de) Verfahren zur Objektortung mit einem FMCW-Radar
DE102005042729A1 (de) Kraftfahrzeug-Radarsystem mit horizontaler und vertikaler Auflösung
WO2016180564A1 (de) Radarsensor für kraftfahrzeuge
DE102018202289A1 (de) Winkelauflösender breitbandiger Radarsensor für Kraftfahrzeuge
WO2006066781A2 (de) Kraftfahrzeug-radarsystem mit segmentweisem phasendifferenz-auswerteverfahren
EP3374791A1 (de) Seitliche leitplankenerkennung über einen abstandssensor im kfz
EP3752859B1 (de) Winkelschätzung und mehrdeutigkeitsauflösung von radarsensoren für kraftfahrzeuge mit grossem antennenarray

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14734491

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14734491

Country of ref document: EP

Kind code of ref document: A1