WO2021063269A1 - 一种信号发送方法、信号处理方法及雷达装置 - Google Patents

一种信号发送方法、信号处理方法及雷达装置 Download PDF

Info

Publication number
WO2021063269A1
WO2021063269A1 PCT/CN2020/117876 CN2020117876W WO2021063269A1 WO 2021063269 A1 WO2021063269 A1 WO 2021063269A1 CN 2020117876 W CN2020117876 W CN 2020117876W WO 2021063269 A1 WO2021063269 A1 WO 2021063269A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmitting antenna
transmitting
antenna groups
transmit
radar
Prior art date
Application number
PCT/CN2020/117876
Other languages
English (en)
French (fr)
Inventor
汪义凯
殷潜
李珽
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20871063.2A priority Critical patent/EP4027168A4/en
Publication of WO2021063269A1 publication Critical patent/WO2021063269A1/zh
Priority to US17/709,228 priority patent/US20220221569A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/282Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • G01S7/0234Avoidance by code multiplex
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/581Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of interrupted pulse modulated waves and based upon the Doppler effect resulting from movement of targets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • G01S7/0235Avoidance by time multiplex
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4052Means for monitoring or calibrating by simulation of echoes
    • G01S7/406Means for monitoring or calibrating by simulation of echoes using internally generated reference signals, e.g. via delay line, via RF or IF signal injection or via integrated reference reflector or transponder
    • G01S7/4065Means for monitoring or calibrating by simulation of echoes using internally generated reference signals, e.g. via delay line, via RF or IF signal injection or via integrated reference reflector or transponder involving a delay line
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/343Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using sawtooth modulation

Definitions

  • This application relates to the field of radar technology, and in particular to a signal sending method, a signal processing method and a radar device.
  • ADAS advanced driving assistance system
  • the system uses a variety of sensors installed on the car to sense the surrounding environment and Collecting data, identifying, detecting and tracking objects, etc., so that drivers can be aware of possible dangers in advance, effectively increasing the comfort and safety of car driving.
  • the sensing layer includes vision sensors such as on-board cameras and radar sensors such as on-board radars.
  • Millimeter-wave radar is a type of vehicle-mounted radar, and is widely used in unmanned driving systems due to its low cost and mature technology.
  • Unmanned driving technology puts forward higher resolution requirements for millimeter-wave radar, and the lateral high resolution of radar can be achieved by increasing the antenna aperture.
  • Multiple-input-multiple-output (MIMO) is a technical means to increase the antenna aperture, making MIMO radar a development direction for vehicle-mounted millimeter-wave radars.
  • MIMO radar mainly has several specific implementation forms of frequency division multiplexing (FDM), code division multiplexing (CDM) and time division multiplexing (TDM).
  • FDM frequency division multiplexing
  • CDM code division multiplexing
  • TDM time division multiplexing
  • the current speed defuzzification scheme is to use the angle-domain fast Fourier transform (FFT) scheme, that is, the echo signal received by the radar, that is, the electric signal sent by the radar's transmitting antenna is reflected by the target object.
  • FFT angle-domain fast Fourier transform
  • the latter signal undergoes FFT, and traverses all velocity ambiguity multiples, and performs FFT coherent accumulation in the angle domain to determine the correct velocity ambiguity multiple, and then determine the true velocity of the target object according to the correct velocity ambiguity multiple.
  • the radar includes many transmitting antennas, the phase jump between two adjacent transmitting antennas caused by speed ambiguity is small, and the result of FFT is easily affected by phase noise, and it is not easy to determine the speed ambiguity multiple, that is, the speed ambiguity Performance is low.
  • the present application provides a signal sending method, a signal processing method, and a radar device, which are used to improve the performance of speed defuzzification, so as to more accurately determine the actual speed of the target.
  • an embodiment of the present application provides a signal sending method, which can be applied to a radar device, the radar device includes at least three transmitting antennas, and the method includes:
  • each of the transmitting antenna groups includes at least one transmitting antenna
  • Signals are transmitted through the at least two transmit antenna groups, wherein the at least two transmit antenna groups transmit signals in a TDM manner, and each of the at least two transmit antenna groups includes multiple transmit antennas.
  • the multiple transmitting antennas transmit signals in a CDM manner.
  • the method may be executed by a detection device.
  • the detection device is, for example, a radar device.
  • the radar device may be a radar or a communication device communicatively connected to the radar.
  • the included transmitting antennas may be grouped first, for example, the included N transmitting antennas are divided into at least two transmitting antenna groups, for example, K transmitting antenna groups, where K transmitting antennas
  • the group uses TDM to transmit signals, and the transmit antennas included in each transmit antenna group transmit signals at the same time. For example, the transmit antennas included in each transmit antenna group transmit signals in CDM mode.
  • the radar device Since the number of transmitting antenna groups transmitted by the radar device in the TDM manner is reduced, the phase jump between each virtual antenna array element of the radar device can be increased.
  • the radar device only needs to perform K FFTs when solving velocity ambiguity, which reduces the amount of calculation compared with performing N FFTs in the prior art.
  • the transmitting antennas included in each transmitting antenna group transmit signals at the same time, and the signal-to-noise ratio of the signal that can be accumulated in a unit time is relatively large, which is more conducive to detecting the target from the FFT result of each transmitting antenna group.
  • determining at least two transmitting antenna groups of the radar device includes:
  • the at least two transmitting antenna groups are randomly determined according to the at least three transmitting antennas.
  • a way to determine at least two transmitting antenna groups Each time the radar device transmits a signal, the transmitting antennas included in the radar device can be randomly divided into at least two transmitting antenna groups, so that the adjacent virtual antenna groups can be arranged in the order of antennas.
  • the law of phase jump between antenna elements is random to reduce the possibility of velocity and angle coupling and improve the performance of velocity and angle decoupling.
  • the transmitting antennas included in the radar device are numbered from 1 to N, and the N is greater than or equal to 3.
  • each transmitting antenna group there are at least two transmitting antennas with different numbers. Continuous; or, in each transmitting antenna group, the numbers of any two transmitting antennas are not continuous.
  • each transmitting antenna group there are at least two adjacent transmitting antennas whose numbered interval is greater than 1, or any two adjacently numbered transmitting antennas are separated from each other.
  • the interval is greater than 1.
  • the numbers of the transmitting antennas included in each transmitting antenna group divided by the radar device are randomly selected.
  • the numbers of at least two transmitting antennas are not continuous; or, the numbers of any two transmitting antennas are not continuous, Or, at least two transmit antennas with adjacent numbers have an interval greater than 1, or any two transmit antennas with adjacent numbers have an interval greater than 1.
  • each time the radar device sends a signal it can ensure that the interval between the numbers of the transmitting antennas included in each transmitting antenna group is as large as possible, so that the phase jump law between adjacent virtual antenna array elements is more random, so as to reduce the speed as much as possible. Possibility of coupling with angle to improve the performance of decoupling speed and angle.
  • the determining at least two transmitting antenna groups of the radar device includes:
  • the first grouping method among the multiple grouping methods is determined based on the optimal performance parameters of the at least two transmitting antenna groups indicated by the first grouping method, and the performance parameters are used to indicate the performance of speed defuzzification.
  • the multiple grouping modes include all possible grouping modes of the at least three transmitting antennas.
  • the radar device can compare the speed ambiguity resolution performance corresponding to multiple grouping methods.
  • One grouping method can be considered as at least two transmissions randomly divided by the radar device at a time.
  • Antenna groups so that the radar device determines at least two transmitting antenna groups based on the grouping method with the best performance for speed ambiguity resolution, that is, the first grouping method.
  • the subsequent radar device can use these at least two transmitting antenna groups to transmit signals, without the need to re-determine at least two transmitting antenna groups each time, which can not only ensure that the subsequent speed ambiguity resolution performance is better, but also reduce the radar device burden.
  • the number of transmitting antennas included in the at least two transmitting antenna groups is different or the same.
  • the number of transmitting antennas included in at least two transmitting antenna groups may be the same or different. This is applicable to the case where the number of transmitting antennas is a prime number, and it is also applicable to the case where the number of transmitting antennas is not a prime number. The scope of application is wider.
  • a signal processing method which is applied to a radar device, the radar device includes at least three transmitting antennas and at least one receiving antenna, and the method includes:
  • each transmitting antenna group includes at least A transmitting antenna, wherein the at least two transmitting antenna groups transmit signals in a TDM manner, and each of the at least two transmitting antenna groups includes the multiple transmitting antennas in the transmitting antenna group including multiple transmitting antennas.
  • the real speed of the target is determined according to the first speed blur multiple and the estimated speed of the target, where the first speed blur multiple is one of at least two speed blur multiples corresponding to the at least two sets of detection information.
  • the signal received by the radar device may be divided into at least two groups of signals according to the at least two transmitting antenna groups divided by the signals sent by the radar device, so as to determine one signal according to each group of signals.
  • the received signal is divided into signals corresponding to each transmitting antenna and then the detection information is determined, the number of groups for determining the detection information is reduced, thereby reducing the amount of calculation.
  • the determining at least two sets of detection information according to the signal received by the at least one receiving antenna includes:
  • the at least two groups of signals are signals corresponding to the at least two transmitting antenna groups in the received signals.
  • determine the speed blur multiples including:
  • the at least two pieces of detection information are superimposed, and the speed blur multiple is determined according to the superposition result.
  • determining the speed blur multiple according to the superposition result includes:
  • the speed blur multiple corresponding to the maximum peak value is determined as the speed blur multiple.
  • a method is provided.
  • the execution subject of the method may be a chip set in a detection device, and the method includes:
  • each of the transmitting antenna groups includes at least one transmitting antenna
  • the transmitting antenna uses the code division multiplexing CDM method to transmit signals.
  • determining at least two transmitting antenna groups of the radar device includes:
  • the at least two transmitting antenna groups are randomly determined according to the at least three transmitting antennas.
  • the transmitting antennas included in the radar device are numbered from 1 to N, and the N is greater than or equal to 3.
  • each transmitting antenna group there are at least two transmitting antennas with different numbers. Continuous; or, in each transmitting antenna group, the numbers of any two transmitting antennas are not continuous.
  • each transmitting antenna group there are at least two adjacent transmitting antennas whose numbered interval is greater than 1, or any two adjacently numbered transmitting antennas are separated from each other.
  • the interval is greater than 1.
  • determining at least two transmitting antenna groups of the radar device includes:
  • the first grouping method among the multiple grouping methods is determined based on the optimal performance parameters of the at least two transmitting antenna groups indicated by the first grouping method, and the performance parameters are used to indicate the performance of speed defuzzification.
  • the multiple grouping modes include all possible grouping modes of the at least three transmitting antennas.
  • the number of transmitting antennas included in the at least two transmitting antenna groups is different or the same.
  • an apparatus including:
  • At least one processor configured to determine at least two transmitting antenna groups of the device, wherein each of the transmitting antenna groups includes at least one transmitting antenna;
  • the at least two transmit antenna groups are used to transmit signals, wherein the at least two transmit antenna groups transmit signals in a time division multiplexing TDM manner, and each of the at least two transmit antenna groups includes multiple The multiple transmitting antennas included in the transmitting antenna group of the transmitting antennas transmit signals in a code division multiplexing CDM manner.
  • the at least one processor is specifically used for:
  • the at least two transmitting antenna groups are randomly determined according to the at least three transmitting antennas.
  • the transmit antennas included in the device are numbered from 1 to N, and the N is greater than or equal to 3.
  • each transmit antenna group there are at least two transmit antennas with discontinuous numbers. Or, in each transmitting antenna group, the numbers of any two transmitting antennas are not consecutive.
  • each transmitting antenna group there are at least two adjacent transmitting antennas whose numbered interval is greater than 1, or any two numbered adjacent transmitting antennas are separated from each other. Greater than 1.
  • the at least one processor is specifically used for:
  • the first grouping method among the multiple grouping methods is determined based on the optimal performance parameters of the at least two transmitting antenna groups indicated by the first grouping method, and the performance parameters are used to indicate the performance of speed defuzzification.
  • the multiple grouping modes include all possible grouping modes of the at least three transmitting antennas.
  • the number of transmitting antennas included in the at least two transmitting antenna groups is different or the same.
  • a device is provided.
  • the device is, for example, the aforementioned radar device.
  • the device includes at least one processing unit and a communication interface, and the at least one processing unit and the communication interface are coupled with each other to implement the first aspect or the first aspect described above.
  • the device is a radar.
  • the communication interface can be realized by, for example, the antenna, feeder, and codec in the device, or, if the device is a chip set in the detection device, the communication interface is, for example, the communication interface in the chip, and the communication interface is The radio frequency transceiving component in the detection device is connected to realize the transmission and reception of information through the radio frequency transceiving component. among them,
  • the at least one processing unit is configured to determine at least two transmitting antenna groups of the radar device, wherein each of the transmitting antenna groups includes at least one transmitting antenna;
  • the communication interface is configured to control the at least two transmitting antenna groups to transmit signals in a time division multiplexing TDM manner.
  • Each of the at least two transmitting antenna groups includes multiple transmitting antennas.
  • Multiple transmitting antennas use code division multiplexing CDM mode to transmit signals.
  • the at least one processing unit is specifically used for:
  • the at least two transmitting antenna groups are randomly determined according to the at least three transmitting antennas.
  • the transmit antennas included in the device are numbered from 1 to N, and the N is greater than or equal to 3.
  • each transmit antenna group there are at least two transmit antennas with discontinuous numbers. Or, in each transmitting antenna group, the numbers of any two transmitting antennas are not consecutive.
  • each transmitting antenna group there are at least two adjacent transmitting antennas whose numbered interval is greater than 1, or any two numbered adjacent transmitting antennas are separated from each other. Greater than 1.
  • the at least one processing unit is specifically used for:
  • the first grouping method among the multiple grouping methods is determined based on the optimal performance parameters of the at least two transmitting antenna groups indicated by the first grouping method, and the performance parameters are used to indicate the performance of speed defuzzification.
  • the multiple grouping modes include all possible grouping modes of the at least three transmitting antennas.
  • the number of transmitting antennas included in the at least two transmitting antenna groups is different or the same.
  • a device which is a chip set in a detection device.
  • the device includes at least one processor and a communication interface, the communication interface is used to provide program instructions for the at least one processor, and when the at least one processor executes the program instructions, the following steps are implemented:
  • each of the transmitting antenna groups includes at least one transmitting antenna
  • the transmitting antenna uses the code division multiplexing CDM method to transmit signals.
  • the at least one processor is specifically used for:
  • the at least two transmitting antenna groups are randomly determined according to the at least three transmitting antennas.
  • the transmitting antennas included in the radar device are numbered from 1 to N, and the N is greater than or equal to 3.
  • each transmitting antenna group there are at least two transmitting antennas with different numbers. Continuous; or, in each transmitting antenna group, the numbers of any two transmitting antennas are not continuous.
  • each transmitting antenna group there are at least two adjacent transmitting antennas whose numbered interval is greater than 1, or any two adjacently numbered transmitting antennas are separated from each other.
  • the interval is greater than 1.
  • the at least one processor is specifically used for:
  • the first grouping method among the multiple grouping methods is determined based on the optimal performance parameters of the at least two transmitting antenna groups indicated by the first grouping method, and the performance parameters are used to indicate the performance of speed defuzzification.
  • the multiple grouping modes include all possible grouping modes of the at least three transmitting antennas.
  • the number of transmitting antennas included in the at least two transmitting antenna groups is different or the same.
  • an apparatus in a seventh aspect, includes:
  • a communication interface for receiving at least one signal
  • At least one processing unit configured to determine at least two sets of detection information according to the signals received by the communication interface, the at least two sets of detection information corresponding to at least two transmitting antenna groups composed of at least three transmitting antennas included in the device, each Each of the transmitting antenna groups includes at least one transmitting antenna, wherein the at least two transmitting antenna groups transmit signals in a TDM manner, and each of the at least two transmitting antenna groups includes multiple transmitting antennas.
  • the multiple transmitting antennas transmit signals in a CDM manner;
  • the real speed of the target is determined according to the first speed blur multiple and the estimated speed of the target, where the first speed blur multiple is one of at least two speed blur multiples corresponding to the at least two sets of detection information.
  • the at least one processing unit is specifically used for:
  • the at least two groups of signals are signals corresponding to the at least two transmitting antenna groups in the received signals.
  • the at least one processing unit is specifically used for:
  • the at least two pieces of detection information are superimposed, and the speed blur multiple is determined according to the superposition result.
  • the at least one processing unit is specifically used for:
  • the speed blur multiple corresponding to the maximum peak value is determined as the speed blur multiple.
  • a device is provided.
  • the device is, for example, the aforementioned radar device.
  • the device includes at least one receiving antenna and at least one processor.
  • the at least one receiving antenna and at least one processor are coupled to each other to implement the second The methods described in the various possible designs of the aspect or the second aspect.
  • the radar device is a radar.
  • the transceiver is, for example, realized by antennas, feeders, codecs, etc. in the communication equipment, or if the radar device is a chip set in the detection equipment, the transceiver is, for example, a communication interface in the chip. Connect with the radio frequency transceiving component in the detection device to realize the information transmission and reception through the radio frequency transceiving component. among them,
  • the at least one receiving antenna is used to receive at least one signal
  • the at least one processor is configured to determine at least two sets of detection information according to a signal received by the at least one receiving antenna, where the at least two sets of detection information correspond to at least two transmit antenna groups formed by the at least three transmit antennas,
  • Each of the transmitting antenna groups includes at least one transmitting antenna, wherein the at least two transmitting antenna groups transmit signals in a TDM manner, and each of the at least two transmitting antenna groups includes a transmitting antenna group of multiple transmitting antennas.
  • the included multiple transmitting antennas use CDM to transmit signals;
  • the real speed of the target is determined according to the first speed blur multiple and the estimated speed of the target, where the first speed blur multiple is one of at least two speed blur multiples corresponding to the at least two sets of detection information.
  • the at least one processor is specifically used for:
  • the at least two groups of signals are signals corresponding to the at least two transmitting antenna groups in the received signals.
  • the at least one processor is specifically used for:
  • the at least two pieces of detection information are superimposed, and the speed blur multiple is determined according to the superposition result.
  • the at least one processor is specifically used for:
  • the speed blur multiple corresponding to the maximum peak value is determined as the speed blur multiple.
  • the device may be the radar device in the above-mentioned method design.
  • the device is a chip provided in a detection device.
  • the detection device is a radar.
  • the device includes: a memory for storing computer executable program codes; and a processor, which is coupled with the memory.
  • the program code stored in the memory includes instructions.
  • the device may also include a communication interface, which may be a transceiver in the detection device, for example, implemented by the antenna, feeder, and codec in the radar device, or if the device is installed in the detection device In the chip, the communication interface can be the input/output interface of the chip, such as input/output pins.
  • a communication interface which may be a transceiver in the detection device, for example, implemented by the antenna, feeder, and codec in the radar device, or if the device is installed in the detection device In the chip, the communication interface can be the input/output interface of the chip, such as input/output pins.
  • a communication system may, for example, include one or more of the devices described in the fourth aspect, the fifth aspect, the sixth aspect, the seventh aspect, or the eighth aspect, or the communication
  • the system may also include other communication devices, such as a central node, or may also include a target object.
  • a computer storage medium stores instructions that, when run on a computer, cause the computer to execute the above-mentioned first aspect or any one of the possible designs of the first aspect Or, make the computer execute the method described in the second aspect or any one of the possible designs of the second aspect.
  • a computer program product containing instructions.
  • the computer program product stores instructions that, when run on a computer, cause the computer to execute the first aspect or any one of the possible possibilities of the first aspect.
  • the method described in the design; or, the computer is caused to execute the method described in the second aspect or any one of the possible designs of the second aspect.
  • FIG 1 is the working principle diagram of millimeter wave radar
  • Figure 2 is a schematic diagram of a transmitted signal, an echo signal and an intermediate frequency signal
  • Figure 3 is a schematic diagram of the principle of SIMO radar angle measurement
  • Figure 4 is a schematic diagram of the principle of a MIMO radar virtual antenna array element
  • Figure 5 is a schematic diagram of MIMO radar using TDM to send signals
  • FIG. 6 is a direction diagram corresponding to a speed ambiguity coefficient provided by an embodiment of the application.
  • FIG. 7 is a direction diagram corresponding to another speed ambiguity coefficient provided by an embodiment of the application.
  • FIG. 8 is a schematic flowchart of a signal sending method provided by an embodiment of the application.
  • Figure 9 is a schematic diagram of a radar device using CDM to send signals
  • FIG. 10 is a schematic diagram of signals sent by at least two transmitting antenna groups of a radar device according to an embodiment of the application;
  • FIG. 11 is a schematic diagram of an angle domain FFT result corresponding to a transmitting antenna group according to an embodiment of the application.
  • FIG. 12 is a schematic diagram of an angle-domain FFT result corresponding to another transmitting antenna group according to an embodiment of the application.
  • FIG. 13 is a schematic flowchart of a signal processing method provided by an embodiment of this application.
  • FIG. 14 is a schematic structural diagram of a radar device provided by an embodiment of the present application.
  • 15 is a schematic diagram of another structure of a radar device provided by an embodiment of the present application.
  • FIG. 16 is a schematic diagram of still another structure of a radar device provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • a radar detection device such as a radar, or other devices used for detection (for example, ranging).
  • Radar or radar device
  • the signal emitted by the radar can be a radar signal.
  • the reflected signal received by the target object can also be a radar signal.
  • the emission period of the radar detection device refers to the period during which the radar detection device transmits a complete waveform of the radar signal.
  • Radar detection devices generally send radar signals with multiple sweep cycles in a continuous period of time.
  • FMCW Frequency modulated continuous wave
  • Chirp continuous wave electromagnetic wave whose frequency changes linearly with time.
  • the linear change here generally refers to a linear change within a transmission period.
  • the waveform of the chirp continuous wave is generally a sawtooth wave or a triangle wave, or there may also be other possible waveforms, such as a stepped frequency waveform.
  • the maximum speed range of the radar detection device is a parameter related to the configuration of the radar detection device (for example, related to the factory setting parameters of the radar detection device).
  • the radar detection device is a radar, and the time interval between the signals sent by two adjacent transmitting antennas of the radar in the time domain is T, and the maximum detection speed of the radar is ⁇ /4T.
  • Intermediate frequency (IF) signal taking the radar detection device as an example, the local oscillator signal of the radar and the reflected signal received by the radar (the signal transmitted by the radar is reflected by the target object) are processed by the mixer
  • the latter signal is the intermediate frequency signal.
  • the frequency-modulated continuous wave signal generated by the oscillator is partly used as a local oscillator signal, and partly as a transmission signal through the transmitting antenna, and the reflected signal of the transmission signal received by the receiving antenna will be mixed with the local oscillator signal to obtain The "intermediate frequency signal".
  • the intermediate frequency signal Through the intermediate frequency signal, one or more of the distance information, speed information or angle information of the target object can be obtained.
  • the distance information can be the distance information of the target object relative to the current radar
  • the speed information can be the projection of the speed of the target object relative to the current radar in the direction of the line connecting the target object and the radar
  • the angle information can be the target object relative to the current radar.
  • the current radar angle information Further, the frequency of the intermediate frequency signal is called an intermediate frequency.
  • Velocity ambiguity refers to the phenomenon that when the pulse Doppler radar is working at low and medium repetition frequencies, the velocity of the measured target object is confused due to the spectrum overlap phenomenon, and it is difficult to distinguish the true velocity of the target.
  • the radar sends a signal through the transmitting antenna. If the signal hits the target object, it will form an echo signal through the reflection of the target object. The radar receives the echo signal through the receiving antenna.
  • the speed of, fd is the frequency shift of the echo signal relative to the signal transmitted by the radar transmitting antenna.
  • fr is the repetition frequency of the radar signal
  • vt will be confused with the target velocity of ⁇ *(fd-nfr)/2 (n is a positive integer). If the user cannot distinguish between the true Doppler shift of the target object and the overlap caused by the frequency interval of the signal repetition frequency emitted by the radar transmitting antenna, velocity ambiguity occurs.
  • Unambiguous velocity refers to the radial velocity value of the target object corresponding to the phase shift from one pulse to the next that can be measured by the Doppler radar.
  • the maximum unambiguous speed which can be the maximum detection speed of the radar, refers to the maximum pulse phase shift that the Doppler radar can measure from one pulse to the next pulse is 360°, and the target object corresponding to the 360° pulse phase shift The value of the radial velocity.
  • the above-mentioned speed blur can also be considered as: if a target object moves too far within the time interval of two pulses, its true phase shift exceeds 360°, but in fact it will be configured to be less than 360°
  • the speed value corresponding to the phase shift will also be less than the maximum unambiguous speed.
  • the measured speed value is not the true speed value, that is, the speed is blurred.
  • At least one means one or more, and “plurality” means two or more.
  • And/or describes the association relationship of related objects, which means that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects before and after are in an "or” relationship.
  • "The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • At least one of a, b, or c can mean: a, b, c, a-b, a-c, b-c or a-b-c, where a, b, and c can be single or multiple.
  • Millimeter waves refer to electromagnetic waves with a wavelength between 1 and 10 mm, and the corresponding frequency range is 30 to 300 GHz. In this frequency band, the characteristics of millimeter waves make it very suitable for use in the automotive field. Large bandwidth: abundant frequency domain resources, low antenna sidelobe, which is conducive to imaging or quasi-imaging; short wavelength: the volume and antenna aperture of the radar device can be reduced, and the weight is reduced; narrow beam: the beam requirement of millimeter wave under the same antenna size The beam is much narrower than the microwave, and the radar resolution is high; strong penetration: Compared with the laser radar and optical system, it has the ability to penetrate smoke, dust and fog, and can work around the clock.
  • Vehicle-mounted millimeter wave radar systems generally include oscillators, transmitting antennas, receiving antennas, mixers, couplers, processors, and controllers. As shown in Figure 1, it is the working principle diagram of millimeter wave radar.
  • the oscillator generates a radar signal whose frequency increases linearly with time.
  • the radar signal is generally a frequency modulated continuous wave. Part of the radar signal is output to the mixer through the directional coupler as the local oscillator signal, and part is transmitted through the transmitting antenna.
  • the receiving antenna receives the transmitted radar signal and the radar signal reflected back after encountering the object in front of the vehicle, the mixer The received radar signal is mixed with the local oscillator signal to obtain an intermediate frequency signal.
  • the intermediate frequency signal contains information such as the relative distance, speed, and angle of the target object and the radar system.
  • the intermediate frequency signal is sent to the processor after being amplified by a low-pass filter, and the processor processes the received signal.
  • the received signal is subjected to fast Fourier transform and spectrum analysis to obtain the target object relative to
  • the distance, speed and other signals of the radar system can also obtain information such as the angle of the target object relative to the radar system.
  • the processor can output the obtained information to the controller to control the behavior of the vehicle.
  • FIG. 2 it is a schematic diagram of FMCW radar sending signals.
  • the radar signal generated by the oscillator is a frequency modulated continuous wave, that is, the radar system transmits a group of chirp signals with the same waveform and different time starting points through the transmitting antenna.
  • the chirp signal can also be called a chirp signal.
  • the interval at which the chirp signal is transmitted (denoted by T in Figure 2) is called the pulse repetition interval (Pulse Repetition Time, PRT).
  • PRT Pulse Repetition Time
  • the radar transmits 1 chirp signal in 1 PRT, and the time length of the chirp signal is less than or equal to 1 PRT. Normally, the time length of the chirp signal is less than 1 PRT.
  • the transmitting antenna of the radar sends a signal
  • the echo signal received by the receiving antenna of the radar refers to the signal transmitted back after the radar signal transmitted by the transmitting antenna encounters an object.
  • the mixer mixes the received echo signal with the local oscillator signal to obtain an intermediate frequency signal. According to the intermediate frequency signal, information such as the relative distance and speed of the target object and the radar system can be determined.
  • the intermediate frequency signal is used in each PRT for the radar signal processing part, that is, the sampled and quantized data sequence is composed of two Dimensional array, one dimension of this two-dimensional array corresponds to the sampling point number in the PRT, and the other dimension corresponds to the PRT number; after that, Fourier transform is performed on this two-dimensional array to obtain the radar reception expressed in the range-Doppler domain signal.
  • the echo component of each target object is expressed in the range-Doppler domain, it corresponds to a two-dimensional sinc function, that is, each target object corresponds to a local peak in the range-Doppler domain representation.
  • the radar received signal represented by the range-Doppler domain is actually a complex two-dimensional array.
  • the complex two-dimensional array is modulo point by point, and the obtained modulus corresponds to a local peak.
  • the local peak corresponds to two-dimensional serial numbers, and the frequency of the single-frequency sine wave corresponding to the target object and the phase difference of the intermediate frequency signal in different PRTs can be obtained, and the distance and speed information of the target object can be obtained.
  • Figure 3 it is a schematic diagram of the principle of radar angle measurement.
  • the signal transmitted by the transmitting antenna is reflected by the target object and then received by the two receiving antennas.
  • the phase difference between the two receiving antennas is According to the phase difference and wavelength, the distance difference between the two receiving antennas and the target object is calculated, that is, d Rx sin ⁇ in Figure 3, where d Rx is the distance between the two receiving antennas, and ⁇ is the target object and the receiving antenna.
  • the angle between the normals of, so that the value of ⁇ can be calculated, that is, the angle of the target object relative to the radar.
  • the angle of the target object relative to the radar can be calculated by formula (1).
  • Figure 3 only takes the radar including one transmitting antenna and two receiving antennas as an example to illustrate the principle of radar angle measurement. If it is a MIMO radar, it includes M transmitting antennas and N receiving antennas. You can refer to Figure 3 to detect M *The angle of the target object relative to the radar under the N virtual antenna array elements, which will not be repeated here.
  • FIG. 4 For a MIMO radar, that is, a radar including multiple transmitting antennas and multiple receiving antennas, as shown in FIG. 4, it is a schematic diagram of the principle of the virtual antenna array element of the MIMO radar.
  • Figure 4 takes a MIMO radar including 3 transmitting antennas (Tx1, Tx2, and Tx3) and 4 receiving antennas (Rx1, Rx2, Rx3, and Rx4) as an example.
  • An array element composed of a transmitting antenna and multiple receiving antennas can be called a virtual antenna array element.
  • 3 transmitting antennas and 4 receiving antennas can be understood as 12 virtual antenna array elements, for example, including virtual antenna array elements.
  • Antenna array element (M, N) M is the number of the receiving antenna, and N is the number of the transmitting antenna.
  • each receiving antenna is the superimposed signal after all the signals transmitted by the transmitting antenna are transmitted by the target object.
  • Each receiving antenna can extract signals from different transmitting antennas and reflected by the target object from the received signals according to the transmission parameters of the signals sent by multiple transmitting antennas, such as the transmission time of the transmitted signal, as the virtual antenna array element. receive signal.
  • the maximum detection speed of the radar can be calculated by the following formula (2).
  • the MIMO radar can use TDM to send signals, that is, different transmitting antennas send signals at different starting moments, and the time range for each transmitting antenna to send signals does not overlap, that is, each transmitting antenna transmits signals. Within the time range of the signal, there is no other transmitting antenna to send the signal.
  • FIG 5 it is a schematic diagram of MIMO radar using TDM to send signals.
  • the abscissa t of Fig. 5 represents the time domain, and the ordinate f represents the frequency domain.
  • Fig. 5 takes the MIMO radar including N transmitting antennas as an example.
  • the N transmitting antennas are the transmitting antenna Tx1, the transmitting antenna Tx2 and the transmitting antenna TxN.
  • the starting time of transmitting antenna Tx1 is t1
  • the starting time of transmitting antenna Tx2 is t2
  • the starting time of transmitting antenna Tx3 is tn, that is, different transmitting antennas are used. Signals are sent at different starting moments.
  • the time is assumed that two adjacent transmit antennas transmit signals in the time domain interval T r, for example, the time transmit antennas Tx1 and Tx2 transmit antenna transmission signal interval T r, if two adjacent transmit antennas transmitting
  • the time interval of the signal is the same, so the time interval between the transmitting antenna Tx1 and the transmitting antenna TxN to send signals is N*Tr.
  • the maximum detection speed of the radar can be calculated by the following formula (3).
  • the movement of the target object will cause the kth transmitting antenna to produce a Doppler phase difference ⁇ 1 with respect to the first transmitting antenna:
  • the radar may include multiple virtual antenna array elements, for example, the 12 virtual antenna array elements in FIG. 4 may perform 2 dimension-fast Fourier transform (2 dimension-fast Fourier transform) on the received echo signals.
  • 2D-FFT Fourier transformation
  • the radar received signal expressed in the range-Doppler domain is actually a complex two-dimensional array.
  • the complex two-dimensional array is modulo point by point, and the obtained modulus corresponds to the local peak. According to the local peak, the target object can be obtained.
  • the frequency of the single-frequency sine wave also known as Doppler shift.
  • the Doppler frequency shift is denoted as f damb .
  • the calculated f damb may not be the real f d , that is, f damb is fuzzy. If f damb is regarded as f d , then the calculated speed is also fuzzy. From this perspective, velocity ambiguity can also mean that if the absolute value of the true velocity of the target object
  • the number of phase ambiguities can be defined as the velocity ambiguity multiple ⁇ , which can also be referred to as the velocity ambiguity coefficient ⁇ .
  • each virtual antenna array element of the radar is numbered in order of position, as shown in Figure 4, from left to right, 12 virtual antenna arrays
  • the number of yuan is from 1 to 12.
  • the phase of the n-th virtual antenna element is:
  • f damb is the Doppler frequency shift
  • N is the number of transmitting antennas
  • k is the number of the transmitting sequence corresponding to the virtual antenna array element.
  • ⁇ n,k ( ⁇ ) are the phase values.
  • the echo signal received by the n-th virtual antenna array element is the range-Doppler domain of the radar received signal obtained after 2D-FFT. From the range-Doppler domain, the target to be detected can be determined. Range-Doppler The phase value corresponding to the peak value of the Le domain characterizing the target is ⁇ n,k ( ⁇ ), and ⁇ n,k ( ⁇ ) can be directly measured.
  • the angle domain FFT accumulation method is to traverse all possible ⁇ and perform N FFTs in the angle domain to find the ⁇ corresponding to the largest peak.
  • the current angle-domain FFT accumulation method requires N FFT processing and peak search for each target to be detected for N transmitting antennas. If the value of N is large, the amount of calculation is large.
  • the minimum phase jump is defined as 2 ⁇ /N, and the following phase jump refers to the minimum phase jump. If the value of N is large, the phase jump caused by ambiguity, that is, 2 ⁇ /N is small, the peak difference corresponding to different ⁇ is small, the detection difficulty increases, and the performance of speed ambiguity resolution is poor.
  • the embodiments of the present application provide a signal transmission method and a corresponding signal processing method.
  • the radar device divides N transmitting antennas into K transmitting antenna groups, and the K transmitting antenna groups adopt TDM.
  • the signal is transmitted in the method, and the transmitting antenna included in each of the K transmitting antenna groups adopts the CDM method to transmit the signal. Therefore, when solving the velocity ambiguity, since only K FFTs are required, the amount of calculation is reduced.
  • the transmitting antennas included in each transmitting antenna group use CDM to send signals, so that when FFT is performed, the signal-to-noise ratio that can be accumulated per unit time is relatively large, which is beneficial for detecting the target.
  • an embodiment of the present application provides a signal sending method.
  • FIG. 8 is a flowchart of the method.
  • the method provided by the embodiment shown in FIG. 8 may be executed by a radar device.
  • the radar device may be a radar chip.
  • the radar device is called a radar, or the radar device may also be a communication device that is communicatively connected with the radar.
  • the signal sent by the radar device can all be a radar signal.
  • the signal received can also be a radar signal.
  • the signal received by the radar may include an echo signal, or may include, for example, reflected waves from the ground. In this article, the signal received by the radar is an echo signal as an example.
  • the radar device determines at least two transmitting antenna groups.
  • the at least two transmitting antenna groups include a first transmitting antenna group and a second transmitting antenna group. Further, a third transmitting antenna group and the like may also be included.
  • the number of transmitting antenna groups is not specifically limited here. It should be noted here that any two antenna groups in the at least two transmitting antenna groups do not include the same transmitting antenna, or at least two antenna groups in the at least two transmitting antenna groups include the same transmitting antenna .
  • the radar device transmits signals through at least two transmitting antenna groups, and the at least two transmitting antenna groups transmit signals in a TDM manner.
  • Each of the at least two transmitting antenna groups includes all the transmitting antenna groups that include multiple transmitting antennas.
  • the multiple transmitting antennas use CDM to transmit signals. This step can also be understood as that, within the time range during which any one of the at least two antenna groups sends signals, there is no other transmitting antenna group to send signals.
  • the radar device transmits a signal in a first time range through the first transmitting antenna group, and transmits a signal in a second time range through the second transmitting antenna group. Further, the codes used by the multiple transmitting antennas included in any one of the transmitting antenna groups to transmit signals are different.
  • first time range and the second time range do not overlap in the time domain.
  • the non-overlap refers to the time when the first time range and the second time range do not overlap.
  • the radar device transmits a signal in a third time range through the third transmitting antenna group.
  • the first time range, the second time range, and the third time range do not overlap in the time domain.
  • the non-overlap here refers to the time when any two time ranges of the first time range, the second time range, and the third time range do not overlap.
  • the radar device of the present application may also include more transmitting antenna groups.
  • the time range of the signal transmitted by any two of the multiple transmitting antenna groups included in the radar device There is no overlap, and for any one of the multiple transmitting antenna groups including multiple transmitting antennas, the multiple transmitting antennas in the group use different codewords to transmit signals, which will not be repeated here.
  • the radar device may include at least 3 transmitting antennas and at least one receiving antenna.
  • the radar device may divide the included transmitting antennas into at least two transmitting antenna groups, and any one of the two transmitting antenna groups includes at least one transmitting antenna.
  • the radar device includes 12 transmitting antennas, then the radar device may divide the 12 transmitting antenna groups into 3 transmitting antenna groups, or divide the 12 transmitting antennas into 4 transmitting antennas, or it may also divide the 12 transmitting antennas into 4 transmitting antennas.
  • the 12 transmitting antennas are divided into 6 transmitting antenna groups, which is not limited in the embodiment of the present application. It should be noted that if the radar device includes three transmitting antennas, there must be one transmitting antenna group including only one transmitting antenna.
  • the number of transmitting antennas included in at least two transmitting antenna groups may be the same or different.
  • the different numbers of transmit antennas included in the at least two transmit antenna groups may mean that the transmit antenna data of the at least two transmit antenna groups are different, or the number of each transmit antenna group is different. This can be applied to the case where the number of transmitting antennas is a prime number, and it can also be applied to the case where the number of transmitting antennas is not a prime number, and the application range is wider.
  • the number of transmit antennas included in at least two transmit antenna groups may be the same.
  • the radar device may divide the 12 transmitting antenna groups into 3 transmitting antenna groups, and each transmitting antenna group includes 4 transmitting antennas.
  • the number of transmit antennas included in at least two transmit antenna groups may be different.
  • the radar device may divide the 7 transmitting antenna groups into 3 transmitting antenna groups.
  • the three transmitting antenna groups are transmitting antenna group 1, transmitting antenna group 2, and transmitting antenna group 3.
  • Each of transmitting antenna group 1 and transmitting antenna group 2 includes three transmitting antennas, and transmitting antenna group 3 includes one transmitting antenna.
  • the radar device includes 6 transmitting antennas, then the radar device can divide the 6 transmitting antenna groups into 3 transmitting antenna groups.
  • the three transmitting antenna groups are transmitting antenna group 1, transmitting antenna group 2, and transmitting antenna group 3.
  • transmitting antenna group 1 includes 1 transmitting antenna
  • transmitting antenna group 2 includes 2 transmitting antennas
  • transmitting antenna group 3 includes 3 A transmitting antenna.
  • the at least two transmitting antenna groups may transmit signals in TDM mode, and each transmitting antenna group includes the transmitting antenna group.
  • the antenna can transmit signals at the same time. That is, the transmitting antenna groups transmit signals in a time-sharing manner, and for a transmitting antenna group, the transmitting antennas in the group transmit signals at the same time.
  • each transmitting antenna group including multiple transmitting antennas may transmit signals in a CDM manner, that is, different transmitting antennas use different CDM codes when transmitting signals.
  • each linear FMCW is numbered, and the signals are transmitted after encoding.
  • FIG. 8 it is a schematic diagram of a MIMO radar using CDM to send signals.
  • the abscissa t of Fig. 9 represents the time when the transmitting antenna transmits the signal, and the ordinate represents the CDM code.
  • Fig. 8 takes the MIMO radar including 3 transmitting antennas as an example.
  • the 3 transmitting antennas are the transmitting antenna Tx1, the transmitting antenna Tx2, and the transmitting antenna Tx3. .
  • the CDM code used by the transmitting antenna Tx1 to send the signal is code 1
  • the CDM code used by the transmitting antenna Tx2 to send the signal is code 2
  • the CDM code used by the transmitting antenna Tx3 to send the signal is code 3, that is, different
  • the transmitting antenna uses different CDM codes to transmit signals.
  • the embodiment of the present application does not limit the manner in which the transmitting antennas included in a transmitting antenna group transmit signals at the same time.
  • the subsequent processing of the received echo signal by the radar device as long as it can be determined from the received signal and each transmitted signal
  • the signal corresponding to the antenna is sufficient.
  • the signal corresponding to each transmitting antenna can be determined from the signals corresponding to each transmitting antenna group.
  • the CDM code is more complicated, which increases the complexity of decoding.
  • the CDM code may use binary phase shift keying (BPSK).
  • BPSK binary phase shift keying
  • QPSK Quadrature Phase Shift Keying
  • the embodiment of the present application can determine that each transmitting antenna group includes 2 transmitting antennas, 3 transmitting antennas, or 4 transmitting antennas, which can reduce the accuracy of the phase shifter. Requirements, and can reduce the complexity of decoding.
  • the radar device divides the included transmitting antennas into at least two transmitting antenna groups.
  • the radar device divides the included N transmitting antennas into K transmitting antenna groups, that is, K transmitting antennas.
  • Signals are sent in groups, as shown in Figure 10 for the corresponding waveforms of the signals sent by the radar device.
  • the abscissa of FIG. 10 represents the time of transmitting the signal, and the ordinate represents the CDM code.
  • the CDM code includes M codes as an example.
  • the transmitting antennas included in each transmitting antenna group are merely illustrative.
  • the multiple transmitting antennas included in each transmitting antenna group containing multiple transmitting antennas transmit signals in a CDM manner, that is, the multiple transmitting antennas included in each transmitting antenna group containing multiple transmitting antennas are encoded and then simultaneously transmit signals. Since the signals are sent at the same time, there will be no coupling of speed and angle. Therefore, in the embodiment of the present application, the velocity and angle coupling phenomenon is generated between the transmitting antenna groups, so when the velocity ambiguity is resolved, only K FFTs are required. Compared with the prior art, N FFTs are required. Obviously Reduce the amount of calculation. At the same time, the amount of data that needs to be stored is also reduced, thereby saving storage space. Furthermore, since at least two transmitting antennas included in one transmitting antenna group transmit signals at the same time, the signal-to-noise ratio of the signals that can be accumulated per unit time is relatively large when performing FFT, which is beneficial for detecting the target.
  • dividing the included transmitting antennas into at least two transmitting antenna groups by the radar apparatus may be randomly dividing the included transmitting antennas into at least two transmitting antenna groups. It can be considered that the radar device randomly divides the included transmitting antennas into at least two transmitting antenna groups each time before transmitting a signal. If the radar device sends signals multiple times, each random division of the transmitting antenna can be understood as a grouping method, and then the multiple random divisions correspond to multiple grouping methods. In the embodiment of the present application, at least two transmit antenna groups corresponding to some of the multiple grouping modes may be the same or different. Alternatively, the radar device randomly divides the included transmitting antennas into at least two transmitting antenna groups. It can also be considered that the at least two transmitting antenna groups corresponding to the multiple grouping modes are random, that is, irregular.
  • the radar device may randomly divide the transmitting antenna into at least two transmitting antenna groups.
  • the number of the transmitting antenna included in the radar device refers to the number of the order of the position of the transmitting antenna.
  • the number of the transmitting antenna included in the radar device is 1-N; or in some embodiments, the number of the transmitting antenna included in the radar device is 0-N-1, where N is greater than or equal to 3.
  • the number of the transmitting antennas included in each transmitting antenna group obtained after the radar device randomly divides the transmitting antennas may be continuous.
  • the radar device includes 12 transmitting antennas, and the 12 transmitting antennas are sequentially numbered as Tx1, Tx2, Tx3, Tx4, Tx5, Tx6, Tx7, Tx8, Tx9, Tx10, Tx11, and Tx12 according to the position sequence.
  • the radar device randomly divides the 12 transmitting antennas into 3 transmitting antenna groups, which can be ⁇ Tx1, Tx2, Tx3, Tx4 ⁇ , ⁇ Tx5, Tx6, Tx7, Tx8 ⁇ and ⁇ Tx9, Tx10, Tx11 and Tx12 ⁇ .
  • the number of the transmitting antennas included in each transmitting antenna group obtained after the radar device randomly divides the transmitting antennas may be discontinuous.
  • each transmit antenna group there are at least two transmit antennas with discontinuous numbers.
  • the radar device randomly divides the 12 transmitting antennas into 3 transmitting antenna groups, then the 3 transmitting antenna groups can be ⁇ Tx1, Tx2, Tx3, Tx7 ⁇ , ⁇ Tx4, Tx5, Tx6, Tx11 ⁇ and ⁇ Tx8, Tx9, Tx10, and Tx12 ⁇ .
  • each transmit antenna group the numbers of any two transmit antennas are not continuous.
  • the radar device randomly divides the 12 transmitting antennas into 3 transmitting antenna groups, then the 3 transmitting antenna groups can be ⁇ Tx1, Tx4, Tx7, Tx10 ⁇ , ⁇ Tx2, Tx5, Tx8, Tx11 ⁇ and ⁇ Tx3, Tx6, Tx9 and Tx12 ⁇ .
  • At least one interval is greater than 1.
  • each transmit antenna group at least two transmit antennas with adjacent numbers have a number interval greater than one.
  • the radar device randomly divides the 12 transmitting antennas into 3 transmitting antenna groups, then the 3 transmitting antenna groups can be ⁇ Tx1, Tx2, Tx3, Tx7 ⁇ , ⁇ Tx4, Tx5, Tx6, Tx11 ⁇ and ⁇ Tx8, Tx9, Tx10, and Tx12 ⁇ .
  • two transmitting antennas with adjacent numbers can be understood as meaning that in each transmitting antenna group, if the numbers of two transmitting antennas are consecutive, it can be considered that the numbers of the two transmitting antennas are adjacent.
  • Tx1 and Tx2 in ⁇ Tx1, Tx2, Tx3, Tx7 ⁇ are two transmit antennas with adjacent numbers
  • Tx2 and Tx3 are also two transmit antennas with adjacent numbers.
  • two transmitting antennas with adjacent numbers can also be understood as, in a transmitting antenna group, if the numbers of the two transmitting antennas are not consecutive, but the transmitting antenna corresponding to the number between the two transmitting antennas does not belong to the group. Transmit antenna group.
  • Tx3 and Tx7 in ⁇ Tx1, Tx2, Tx3, Tx7 ⁇ are two transmitting antennas with discontinuous numbers, but Tx4, Tx5, and Tx6 do not belong to ⁇ Tx1, Tx2, Tx3, Tx7 ⁇ , Tx3 and Tx7 are two numbers Adjacent transmitting antenna.
  • each transmit antenna group the interval between the numbers of any two adjacent transmit antennas is greater than one.
  • the radar device randomly divides the 12 transmitting antennas into 3 transmitting antenna groups, then the 3 transmitting antenna groups can be ⁇ Tx1, Tx6, Tx9, Tx12 ⁇ , ⁇ Tx2, Tx5, Tx7, Tx11 ⁇ and ⁇ Tx3, Tx8, Tx10 and Tx12 ⁇ .
  • the radar device may randomly divide at least two transmitting antenna groups each time before transmitting a signal.
  • the corresponding at least two transmission groups may be the same or different.
  • the determined at least two transmitting antenna groups are ⁇ Tx1, Tx6, Tx9 , Tx12 ⁇ , ⁇ Tx2, Tx5, Tx7, Tx11 ⁇ and ⁇ Tx3, Tx8, Tx10 and Tx12 ⁇ .
  • the determined at least two transmitting antenna groups are ⁇ Tx1, Tx4, Tx7, Tx10 ⁇ , ⁇ Tx2, Tx5, Tx8, Tx11 ⁇ and ⁇ Tx3, Tx6, Tx9, and Tx12 ⁇ ;
  • the determined at least two transmitting antenna groups are ⁇ Tx1, Tx6, Tx9, Tx12 ⁇ , ⁇ Tx2, Tx5, Tx7, Tx11 ⁇ and ⁇ Tx3, Tx8, Tx10, and Tx12 ⁇ .
  • the radar device randomly divides the transmitting antenna into at least two transmitting antenna groups, which can increase the phase jump between each virtual antenna array element, which is beneficial to distinguish the target peak value represented by the range-Doppler domain and improve the resolution of speed ambiguity Performance.
  • Figure 11 is a schematic diagram of the angle domain FFT results corresponding to the serial numbers of the transmit antennas included in a transmit antenna group
  • Fig. 12 shows the angles corresponding to the discontinuous numbers of the transmit antennas included in a transmit antenna group.
  • Fig. 11 and Fig. 12 both take the radar device including 6 transmitting antennas as an example.
  • the six transmitting antennas in Figure 11 use TDM to transmit signals. Assuming that the velocity ambiguity coefficient is 1, the minimum phase jump between each virtual antenna array element becomes 60°, that is, the phase is [0°, 60°, 120°, 180°, 240° and 300°].
  • the 6 transmitting antennas in Figure 12 are divided into two transmitting antenna groups, assuming that the velocity ambiguity coefficient is 1, and the Doppler phase of the first transmitting antenna group is 0°, then the second transmitting antenna group is relative to the first transmitting antenna
  • the phase jump of the group becomes 180°.
  • these two transmit antenna groups are ⁇ transmit antenna 1, transmit antenna 4, and transmit antenna 6 ⁇ and ⁇ transmit antenna 3, transmit antenna 5, and transmit antenna 2 ⁇ as an example, the minimum phase jump between each virtual antenna element Is 180°, that is, the phase is [180°, 0°, 0°, 180°, 0°, and 180°]. Comparing FIG. 11 and FIG.
  • the transmitting antenna group is randomly divided into at least two transmitting antenna groups, so that the phase jump between the virtual antenna array elements can be changed randomly, and it is not easy to generate velocity and angle coupling. And because the transmitting antenna is divided into at least two transmitting antenna groups, the phase jump is changed from 60° to 180°, which is not susceptible to the influence of phase noise. It is easier to distinguish the maximum peak of the FFT result in the angle domain and increase the solution speed. Blurred performance.
  • the embodiment of the present application randomly divides the transmitting antenna group into at least two transmitting antenna groups, which can reduce the amount of calculation.
  • the radar device determines the true speed of the target object according to the signal after the transmitted signal is transmitted by the target object.
  • the process of determining the true speed of the target object the process of solving the speed blur is involved.
  • the radar device sends signals from at least two randomly divided transmitting antenna groups, and the different at least two transmitting antenna groups may cause the radar device to have different speed ambiguity resolution performance.
  • the numbers of the transmitting antennas included in at least two transmitting antenna groups are continuous, it is easy to cause the phenomenon of velocity and angle coupling, and the phase jumps between the virtual antenna elements of the radar device are small, and the speed ambiguity is resolved. Performance is poor.
  • the interval between the numbers of any two adjacent transmitting antennas can be larger, so as to maximize the phase jump between each virtual antenna array element and reduce the speed and angle coupling. phenomenon.
  • the real speed here does not necessarily refer to the actual speed of the target object's movement, but may refer to the speed that does not affect the angle of the target object relative to the radar.
  • the radar device can compare the speed ambiguity resolution performance corresponding to multiple grouping methods.
  • One grouping method can be considered as at least two transmitting antenna groups randomly divided by the radar device at a time, so that the radar device is based on the velocity ambiguity resolution
  • the grouping method with the best performance, that is, the first grouping method determines at least two transmitting antenna groups.
  • the radar device randomly divides the transmitting antennas multiple times within a preset time range, and at least two transmitting antenna groups determined for each division correspond to a grouping manner. At least two transmitting antenna groups corresponding to multiple grouping modes may be the same or different.
  • the radar device randomly divides the transmitting antennas 5 times, then there are a first grouping method, a second grouping method, a third grouping method, a fourth grouping method, and a fifth grouping method. At least two transmitting antenna groups corresponding to each grouping manner may be the same or different. Assuming that the grouping method with the best defuzzification speed performance is the first grouping method, and the radar device selects the first grouping method, it can be considered that the radar device determines the speed defuzzification corresponding to at least two transmitting antenna groups corresponding to the five grouping methods.
  • Performance so as to select at least two transmitting antenna groups with the best speed deambiguation performance, so that subsequent radar devices can use these at least two transmitting antenna groups to transmit signals without having to re-determine at least two transmitting antenna groups each time, It can not only ensure that the subsequent speed ambiguity resolution performance is better, but also reduce the burden of the radar device.
  • the performance of speed defuzzification can be characterized by performance parameters corresponding to the grouping method.
  • the performance parameter can be the angle estimation accuracy or the success rate of speed defuzzification.
  • the radar device can determine the speed defuzzification performance according to the value of the performance parameter.
  • the performance parameter is the accuracy of angle estimation or the success rate of speed defuzzification. The larger the value of the performance parameter, the better the performance of speed defuzzification.
  • the value of the performance parameter is the largest, which means that the performance parameter is the best, and the speed defuzzification performance is the best.
  • the radar device may determine the first grouping mode among the multiple grouping modes within a preset time range.
  • the preset time range may be obtained according to the experience of the radar device in the actual use process, which is not limited in the embodiment of the present application.
  • the radar device divides the N transmitting antennas into K transmitting antenna groups.
  • the K transmitting antenna groups transmit signals in a TDM manner, and each of the K transmitting antenna groups includes multiple transmitting antennas.
  • the multiple transmitting antennas included in the transmitting antenna group use CDM to transmit signals. Therefore, when solving the velocity ambiguity, since only K FFTs are required, the amount of calculation is reduced.
  • the transmitting antennas included in each transmitting antenna group use CDM to send signals, so that when FFT is performed, the signal-to-noise ratio that can be accumulated per unit time is relatively large, which is beneficial for detecting the target.
  • the embodiment of the present application also provides a signal processing method, which can be considered as a method to resolve speed ambiguity.
  • the method can be executed by a radar detection device.
  • the radar detection device can be a radar chip or a radar chip.
  • the communication device for communication is, for example, an in-vehicle communication device.
  • the following embodiments of the present application mostly use the radar detection device as a radar device, such as a millimeter wave radar, as an example to explain and describe the embodiments.
  • the embodiment of the present application does not limit the detection device to only a radar detection device, nor does it limit the radar detection device to only a millimeter wave radar or a radar.
  • the signal sent by the detection device may be a radio signal. If the detection device is a radar detection device as an example, then the signal sent by the detection device can be considered as a radar signal. In the embodiment of the present application, the detection device is a radar detection device, and the signal sent by the detection device is a radar signal as an example.
  • FIG. 13 is a flowchart of a signal processing method provided by an embodiment of this application.
  • this method is applied to a radar device, where the radar device includes at least three transmitting antennas and at least one receiving antenna.
  • the specific process of this method is as follows:
  • the radar device determines at least two sets of detection information according to the signal received by at least one receiving antenna.
  • the radar device may transmit radar signals through the included transmitting antenna. If there are multiple target objects around the radar device, and these multiple target objects are within the maximum ranging range of the radar device, the radar signal emitted by the radar device will be reflected by the multiple target objects and reflected to the radar device, thus the radar device At least one signal from the target object is received.
  • the radar device receives at least one signal, and can process the at least one signal, thereby realizing detection of target objects around the radar device.
  • the multiple transmitting antennas included in each transmitting antenna group containing multiple transmitting antennas use, for example, the CDM method to transmit signals. That is, different transmitting antenna groups send signals at different starting times, and therefore, the characteristics of signals sent by different transmitting antenna groups are also different.
  • the radar device can extract signals corresponding to different transmitting antenna groups from at least one signal received according to the difference of the radar signals sent by different transmitting antenna groups. Wherein, the radar device extracts the signals corresponding to different transmitting antenna groups from the received at least one signal. It can also be understood that the radar device divides the received at least one signal into at least two groups of signals according to the at least two transmitting antenna groups.
  • the antenna group corresponds to a group of signals.
  • the radar device includes two transmitting antenna groups as an example.
  • the two transmitting antenna groups are respectively a first transmitting antenna group and a second transmitting antenna group.
  • the radar device receives at least one signal from The extracted signal corresponding to the first transmitting antenna group is the first group of signals, and the signal corresponding to the second transmitting antenna group extracted from the at least one signal by the radar device is the second group of signals.
  • the radar device After the radar device extracts the first set of signals and the second set of signals, the first set of signals and the second set of signals are processed separately to obtain two sets of detection information for detecting the target object. For example, the radar device converts the first set of signals and the second set of signals into the range-Doppler domain respectively to obtain two sets of detection information, for example, the first set of detection information and the second set of detection information.
  • the first signal corresponds to the first group of detection information
  • the second signal corresponds to the second group of detection information. It should be noted that if the radar device includes at least three transmitting antenna groups, then the radar device can determine at least three groups of detection information according to at least one signal, where the transmission antenna group corresponds to the detection information group one-to-one.
  • the radar device includes a transmitting antenna group 1, a transmitting antenna group 2, a transmitting antenna group 3.
  • the determined detection information includes a detection information group corresponding to the transmitting antenna group 1, a detection information group 2 corresponding to the transmitting antenna group 2, and The detection information group 3 corresponding to the transmitting antenna group 3.
  • the detection information here may also be referred to as a detection signal.
  • the detection information included in the at least two sets of detection information can be understood as information used to determine the characteristics of the target object.
  • the detection information can represent the distance, speed, or radar cross section (Radar-Cross Section, RCS) of the target object relative to the radar device.
  • the detection information can be the distance, speed, or RCS of the target relative to the radar device; or, the detection information can also be the grid point or the sampling point serial number in the two-dimensional data formed by sampling and quantizing the signal.
  • the point or sampling point serial number can represent the distance of the target object relative to the radar device.
  • the detection information may also include information that characterizes the angle of the target object relative to the radar device.
  • the radar device processes the first set of signals or the second set of signals, and the method for obtaining the corresponding two sets of detection information can refer to the above-mentioned radar device to determine the target object and the radar device based on the intermediate frequency signal.
  • the relative distance and speed method is to mix the first set of signals with the local oscillator signal to obtain the intermediate frequency signal and convert it to the range-Doppler domain to obtain two sets of detection information.
  • the radar device determines at least three pieces of detection information according to the at least two sets of detection information.
  • the radar device After the radar device obtains at least two sets of detection information, it can continue to separate the at least two sets of detection information according to the difference in the CDM codes corresponding to the transmit antennas included in each transmit antenna group to obtain at least three detection information, one detection information corresponding to one Transmitting antenna.
  • at least three pieces of detection information are used to determine the estimated speed of the target object, that is, to detect the speed of the target object. Since the speed of the detected target object may be ambiguous, it is referred to herein as the estimated speed of the target object.
  • the radar device may perform incoherent accumulation and constant false-alarm rate (CFAR) detection on the separated at least two sets of detection information according to each transmitting antenna.
  • CFAR constant false-alarm rate
  • At least three pieces of detection information can be used to determine the position and velocity of the target object.
  • the determined velocity may be ambiguous. Therefore, in order to obtain the true speed of the target object, the radar device can resolve the speed ambiguity.
  • the speed of the target object determined by at least four pieces of detection information is referred to as the estimated speed of the target object, and the speed of the target object determined after the speed blur is resolved is referred to as the true speed of the target object.
  • the real speed here refers to the speed that does not affect the angle measurement of the target object.
  • the radar device determines the true speed of the target according to the first speed ambiguity multiple and the estimated speed of the target.
  • the speed ambiguity resolution process of the radar device can be understood as the process of determining the first speed ambiguity multiple by the radar device, that is, the process of determining the correct value of the aforementioned ⁇ .
  • the radar device may determine multiple phases of multiple virtual antenna array elements.
  • the virtual antenna array element here refers to the virtual antenna array element composed of the transmitting antenna and the receiving antenna included in the radar device. For example, as shown in Figure 3, if the radar device includes 3 transmitting antennas and 4 receiving antennas, then the radar device correspondingly includes There are 12 virtual antenna array elements, one virtual antenna array element corresponds to one transmitting antenna and one receiving antenna.
  • the multiple phases of the multiple virtual antenna array elements can be understood as the total phase, that is, the aforementioned ⁇ n,k ( ⁇ ).
  • the radar device can then perform Doppler phase compensation for multiple phases respectively. That is, subtract the possibly ambiguous Doppler phase from the determined ⁇ n,k ( ⁇ ). Specifically, the Doppler phase compensation can be performed by the following formula (11):
  • the radar device uses the angle-domain FFT de-ambiguation method to determine the velocity ambiguity multiple. Specifically, the radar device converts the signal obtained after compensation into the angle domain, that is, performs FFT processing on the compensated signal in the angle domain. It can also be understood as superimposing at least three pieces of detection information in the angle domain to obtain N groups of FFT results.
  • the phase of the n-th virtual antenna element is:
  • the radar device performs FFT processing on the compensated signal in the angle domain, so that more beam energy can be accumulated, which is helpful for detecting the maximum peak value of the FFT result, that is, the value with the highest beam energy.
  • the speed blur multiple corresponding to the maximum peak value is the correct speed blur multiple, that is, the first speed blur multiple.
  • the radar device has determined the first velocity ambiguity multiple, and the Doppler frequency shift f d of the echo signal received by the radar relative to the signal transmitted by the radar transmitting antenna can be determined by formula (13):
  • f damb is the Doppler frequency shift
  • T r is the time interval between two adjacent transmitting antenna groups transmitting signals in the time domain. Since the first speed ambiguity factor is correct, f d is also close to the true value, so that the speed of the target object determined by the radar device according to f d is also close to the true speed of the target object. Specifically, the radar device determines the true velocity v of the target object as:
  • the radar device divides N transmitting antennas into K transmitting antenna groups, these K transmitting antenna groups transmit signals in TDM mode, and each of the K transmitting antenna groups includes multiple transmitting antennas.
  • the multiple transmitting antennas included in the transmitting antenna group use CDM to transmit signals. Therefore, when solving the velocity ambiguity, since only K FFTs are required, the amount of calculation is reduced.
  • the multiple transmitting antennas included in each transmitting antenna group including multiple transmitting antennas use CDM to transmit signals, so that when FFT is performed, the signal-to-noise ratio that can be accumulated per unit time is relatively large, which is beneficial for detecting the target.
  • each device such as a radar device, includes a hardware structure and/or software module corresponding to each function.
  • a hardware structure and/or software module corresponding to each function.
  • the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered as going beyond the scope of the embodiments of the present application.
  • the embodiments of the present application may divide the functional modules of the radar device.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 14 shows a possible schematic structural diagram of the radar device involved in the foregoing embodiment of the present application.
  • the radar device 14 may include a processing unit 1401, a communication interface 1402, and a storage unit 1403.
  • the communication interface 1402 may also be referred to as an interface unit.
  • the processing unit 1401 can be used to execute or control all operations performed by the radar device in the embodiment shown in FIG. 8 except for the receiving and sending operations, such as S801, and/or to support the text Other processes of the described technique.
  • the communication interface 1402 may be used to perform all the transceiving operations performed by the radar device in the embodiment shown in FIG. 8, such as S802, and/or other processes used to support the technology described herein.
  • the radar device includes at least three transmitting antennas, wherein:
  • the processing unit 1401 is configured to determine at least two transmitting antenna groups of the radar device, wherein each transmitting antenna group includes at least one transmitting antenna;
  • the communication interface 1402 is used to control at least two transmitting antenna groups to transmit signals, wherein at least two transmitting antenna groups use time division multiplexing TDM to transmit signals, and each of the at least two transmitting antenna groups includes multiple transmitting antennas The multiple transmitting antennas included in the transmitting antenna group use CDM to transmit signals.
  • processing unit 1401 is specifically used to:
  • At least two transmitting antenna groups are randomly determined based on the at least three transmitting antennas.
  • the number of the transmitting antennas included in the radar device is 1 to N, and N is greater than or equal to 3.
  • N is greater than or equal to 3.
  • the numbers of any two transmitting antennas are not consecutive.
  • each transmitting antenna group there are at least two adjacent transmitting antennas whose numbered interval is greater than 1, or the numbering interval of any two adjacently numbered transmitting antennas is greater than 1.
  • processing unit 1401 is specifically used to:
  • the first grouping method among the multiple grouping methods is determined, and the performance parameters of at least two transmit antenna groups determined based on the first grouping method are optimal, and the performance parameters are used to indicate the performance of speed defuzzification.
  • the multiple grouping modes include all possible grouping modes of at least two transmitting antenna groups.
  • the number of transmitting antennas included in the at least two transmitting antenna groups is different or the same.
  • the processing unit 1401 can be used to perform all operations performed by the radar device in the embodiment shown in FIG. 13 except for the transceiving operations, such as S1302, S1303 and/or for supporting the operations described herein. Other processes of the described technology.
  • the communication interface 1402 may be used to perform or control all the transceiving operations performed by the radar device in the embodiment shown in FIG. 13, such as S1301 and/or other processes used to support the technology described herein. among them,
  • the communication interface 1402 is used to receive at least one signal
  • the processing unit 1401 is configured to determine at least two sets of detection information according to the signal received by the communication interface 1402.
  • the at least two sets of detection information correspond to at least two transmitting antenna groups composed of at least three transmitting antennas, and each transmitting antenna group includes at least one transmitting antenna.
  • at least two transmitting antenna groups use TDM to transmit signals
  • each of the at least two transmitting antenna groups includes multiple transmitting antennas, and multiple transmitting antennas included in the transmitting antenna group use CDM to transmit signals;
  • the real speed of the target is determined according to the first speed blur multiple and the estimated speed of the target, where the first speed blur multiple is one of at least two speed blur multiples corresponding to at least two sets of detected information.
  • processing unit 1401 is specifically used to:
  • the at least two groups of signals are signals corresponding to at least two transmitting antenna groups among the received signals.
  • processing unit 1401 is specifically used to:
  • processing unit 1401 is specifically used to:
  • the speed blur multiple corresponding to the largest peak value is determined as the speed blur multiple.
  • the optional design can be implemented independently or integrated with any of the above-mentioned optional designs.
  • FIG. 15 is a schematic diagram of another possible structure of a radar device provided by an embodiment of this application.
  • the radar device 15 may include a processor 1501, a transmitter 1502, and a receiver 1503. Its functions may correspond to the specific functions of the processing unit 1401 and the communication interface 1402 shown in FIG. 14 respectively, and will not be repeated here.
  • the communication interface 1402 may be implemented by the transmitter 1502 and the receiver 1503.
  • the radar device 15 may further include a memory 1504 for storing program instructions and/or data for the processor 1501 to read.
  • FIG. 2 provides a schematic structural diagram of a radar device.
  • Figure 16 provides a schematic diagram of another possible structure of the radar device.
  • the radar device provided in FIGS. 14-16 may be part or all of the radar device in the actual communication scenario, or may be a functional module integrated in the radar device or located outside the radar device, for example, a chip system, specifically to achieve corresponding The function of the radar device shall prevail, and the structure and composition of the radar device are not specifically limited.
  • the radar device 16 includes a transmitting antenna 1601, a receiving antenna 1602, and a processor 1603. Further, the radar device further includes a mixer 1604 and/or an oscillator 1605. Further, the radar device 16 may also include a low-pass filter and/or a coupler, etc. Among them, the transmitting antenna 1601 and the receiving antenna 1602 are used to support the radio communication of the detection device, the transmitting antenna 1601 supports the transmission of radar signals, and the receiving antenna 1602 supports the reception of radar signals and/or the reception of reflected signals, so as to finally realize the detection function .
  • the processor 1603 performs some possible determination and/or processing functions. Further, the processor 1603 also controls the operation of the transmitting antenna 1601 and/or the receiving antenna 1602.
  • the signal to be transmitted is transmitted by the processor 1603 controlling the transmitting antenna 1601, and the signal received through the receiving antenna 1602 can be transmitted to the processor 1603 for corresponding processing.
  • the various components included in the radar device 16 can be used to cooperate with the implementation of the method provided by the embodiment shown in FIG. 8 or FIG. 13.
  • the radar device may also include a memory for storing program instructions and/or data.
  • the transmitting antenna 1601 and the receiving antenna 1602 may be set independently, or may be integrated as a transmitting and receiving antenna to perform corresponding transmitting and receiving functions.
  • the processor 1603 can be used to perform all operations performed by the radar device in the embodiment shown in FIG. 8 except for the transceiving operations, such as S801, and/or to support the operations described herein. Other processes of the technology.
  • the transmitting antenna 1601 and the receiving antenna 1602 may be used to perform all the transceiving operations performed by the radar device in the embodiment shown in FIG. 8, such as S802, and/or other processes used to support the technology described herein.
  • the transmitting antenna 1601 includes at least three transmitting antennas, where:
  • the processor 1603 is configured to determine at least two transmitting antenna groups of the radar device, where each transmitting antenna group includes at least one transmitting antenna;
  • the transmitting antenna 1601 is configured to transmit signals in a manner of at least two transmitting antenna groups, wherein the at least two transmitting antenna groups transmit signals in a time division multiplexing TDM manner, and each of the at least two transmitting antenna groups includes The multiple transmitting antennas included in the transmitting antenna group of multiple transmitting antennas use the code division multiplexing CDM mode to transmit signals.
  • the processor 1603 is specifically used for:
  • At least two transmitting antenna groups are randomly determined based on the at least three transmitting antennas.
  • the number of the transmitting antennas included in the radar device is 1 to N, and N is greater than or equal to 3.
  • N is greater than or equal to 3.
  • the numbers of any two transmitting antennas are not consecutive.
  • each transmitting antenna group there are at least two adjacent transmitting antennas whose numbered interval is greater than 1, or the numbering interval of any two adjacently numbered transmitting antennas is greater than 1.
  • the processor 1603 is specifically used for:
  • the first grouping mode among the multiple grouping modes is determined, and the performance parameters of the at least two transmitting antenna groups determined based on the first grouping mode are optimal, and the performance parameters are used to indicate the performance of speed defuzzification.
  • the multiple grouping modes include all possible grouping modes of at least two transmitting antenna groups.
  • the number of transmitting antennas included in the at least two transmitting antenna groups is different or the same.
  • the processor 1603 may be used to perform all operations performed by the radar device in the embodiment shown in FIG. 13 except for the transceiving operations, such as S1302, S1303 and/or for supporting the operations described herein. Other processes of the described technology.
  • the transmitting antenna 1601 and the receiving antenna 1602 may be used to perform all the transceiving operations performed by the radar device in the embodiment shown in FIG. 13, such as S1301 and/or other processes used to support the technology described herein.
  • the receiving antenna 1602 includes at least one receiving antenna, wherein:
  • the receiving antenna 1602 is configured to receive at least one signal in a manner of at least one receiving antenna
  • the processor 1603 is configured to determine at least two sets of detection information according to the signals received by the receiving antenna 1602.
  • the at least two sets of detection information correspond to at least two transmitting antenna groups composed of at least three transmitting antennas, and each transmitting antenna group includes at least one Transmitting antennas, wherein at least two transmitting antenna groups use TDM to transmit signals, and each of the at least two transmitting antenna groups includes multiple transmitting antennas, and multiple transmitting antennas included in the transmitting antenna group use CDM to transmit signals;
  • the real speed of the target is determined according to the first speed blur multiple and the estimated speed of the target, where the first speed blur multiple is one of at least two speed blur multiples corresponding to at least two sets of detected information.
  • the processor 1603 is specifically used for:
  • the at least two groups of signals are signals corresponding to at least two transmitting antenna groups among the received signals.
  • the processor 1603 is specifically used for:
  • processing unit processor 1603 is specifically used for:
  • the speed blur multiple corresponding to the largest peak value is determined as the speed blur multiple.
  • FIG. 17 is a schematic structural diagram of an apparatus 17 provided by an embodiment of this application.
  • the device 17 shown in FIG. 17 may be the radar device itself, or may be a chip or circuit capable of completing the function of the radar device, for example, the chip or circuit may be provided in the radar device.
  • the apparatus 17 shown in FIG. 17 may include a processor 1701 (for example, the processing unit 1401 may be implemented by the processor 1501, and the processor 1501 and the processor 1701 may be the same component, for example) and an interface circuit 1702 (for example, the transceiver unit 1402 may be implemented by the interface circuit 1702, the transmitter 1502 and the receiver 1503 and the interface circuit 1702 are, for example, the same component).
  • a processor 1701 for example, the processing unit 1401 may be implemented by the processor 1501, and the processor 1501 and the processor 1701 may be the same component, for example
  • an interface circuit 1702 for example, the transceiver unit 1402 may be implemented by the interface circuit 1702, the transmitter 1502 and the receiver 150
  • the processor 1701 can enable the device 17 to implement the steps performed by the radar device in the method provided in the embodiment shown in FIG. 8 or FIG. 13.
  • the device 17 may further include a memory 1703, and the memory 1703 may be used to store instructions.
  • the processor 1701 executes the instructions stored in the memory 1703 to enable the device 17 to implement the steps executed by the radar device in the method provided in the embodiment shown in FIG. 8 or FIG. 13.
  • the processor 1701, the interface circuit 1702, and the memory 1703 can communicate with each other through an internal connection path to transfer control and/or data signals.
  • the memory 1703 is used to store computer programs.
  • the processor 1701 can call and run the computer programs from the memory 1703 to control the interface circuit 1702 to receive signals or send signals to complete the radar in the method provided by the embodiment shown in FIG. 8 or FIG. 13 The steps performed by the device.
  • the memory 1703 may be integrated in the processor 1701, or may be provided separately from the processor 1701.
  • the interface circuit 1702 may include a receiver and a transmitter.
  • the receiver and the transmitter may be the same component or different components.
  • the component can be called a transceiver.
  • the interface circuit 1702 may include an input interface and an output interface, and the input interface and the output interface may be the same interface, or may be different interfaces respectively.
  • the device 17 may not include the memory 1703, and the processor 1701 may read instructions (programs or codes) in the memory outside the chip or circuit to implement the instructions shown in FIG. 9 or FIG. 13 The steps performed by the first radar detection device in the method provided by the illustrated embodiment.
  • the device 17 may include a resistor, a capacitor, or other corresponding functional components, and the processor 1701 or the interface circuit 1702 may be implemented by corresponding functional components.
  • the function of the interface circuit 1702 may be realized by a transceiver circuit or a dedicated chip for transceiver.
  • the processor 1701 may be implemented by a dedicated processing chip, a processing circuit, a processor, or a general-purpose chip.
  • a general-purpose computer may be considered to implement the radar device provided in the embodiment of the present application. That is, the program codes that realize the functions of the processor 1701 and the interface circuit 1702 are stored in the memory 1703, and the processor 1701 implements the functions of the processor 1701 and the interface circuit 1702 by executing the program codes stored in the memory 1703.
  • the functions and actions of the modules or units in the device 17 listed above are only exemplary descriptions, and the functional units in the device 17 can be used to perform the actions or actions performed by the radar device in the embodiment shown in FIG. 8 or FIG. Processing process. In order to avoid repetition, detailed description is omitted here.
  • the radar device when implemented by software, it may be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium, (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the processor included in the detection device used to execute the detection method or signal transmission method may be a central processing unit (CPU), a general-purpose processor, or digital signal processing.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • the processor may also be a combination for realizing computing functions, for example, including a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the steps of the method or algorithm described in the embodiments of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in random access memory (RAM), flash memory, read-only memory (ROM), erasable programmable read-only Memory (erasable programmable read-only memory, EPROM), electrically erasable programmable read-only memory (EEPROM), register, hard disk, mobile hard disk, compact disc (read-only memory) , CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the ASIC may be located in the detection device.
  • the processor and the storage medium may also exist as discrete components in the detection device.
  • FIGS. 14-17 only show the simplified design of the radar device.
  • a radar device can include any number of transmitters, receivers, processors, controllers, memories, and other possible components.
  • the embodiments of the present application also provide a communication system, which includes communication devices such as at least one radar device and/or at least one central node that execute the above-mentioned embodiments of the present application.
  • the central node is used to control the driving of the vehicle and/or the processing of other radar devices according to the transmission parameters of the at least one radar device.
  • the central node may be located in the vehicle, or other possible locations, subject to the realization of the control.
  • the disclosed device and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods, for example, multiple units or components may be divided. It can be combined or integrated into another device, or some features can be omitted or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate parts may or may not be physically separate.
  • the parts displayed as units may be one physical unit or multiple physical units, that is, they may be located in one place, or they may be distributed to multiple different places. . Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the prior art, or all or part of the technical solutions can be embodied in the form of a software product, which is stored in a storage medium It includes several instructions to make a device (may be a single-chip microcomputer, a chip, etc.) or a processor (processor) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种信号发送方法、信号处理方法及雷达装置,属于传感器技术领域。雷达装置包括至少三个发射天线,其中的信号发送方法包括:确定雷达装置的至少两个发射天线组(S801),其中,每个发射天线组包括至少一个发射天线;通过至少两个发射天线组发送信号,其中,至少两个发射天线组采用TDM方式发送信号,至少两个发射天线组中的每个包含多个发射天线的发射天线组包括的多个发射天线采用CDM方式发送信号(S802)。技术方案可应用于自动驾驶、辅助驾驶、智能驾驶、智能网联车、智能汽车、电动车/电动汽车等相关领域,用于辅助驾驶和自动驾驶中的目标探测和跟踪,能够提高速度和角度解耦合的性能,从而较为准确地确定目标的角度信息。

Description

一种信号发送方法、信号处理方法及雷达装置
相关申请的交叉引用
本申请要求在2019年09月30日提交中国专利局、申请号为201910945492.4、申请名称为“一种信号发送方法、信号处理方法及雷达装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及雷达技术领域,尤其涉及一种信号发送方法、信号处理方法及雷达装置。
背景技术
随着科技的发展,智能汽车逐步进入了日常生活。其中,高级驾驶辅助系统(advanced driving assistant system,ADAS)在智能汽车中发挥着十分重要的作用,该系统利用安装在车上的各式各样的传感器,在汽车行驶过程中感应周围的环境、收集数据,进行物体的辨识、侦测与追踪等,从而预先让驾驶者察觉到可能发生的危险,有效增加了汽车驾驶的舒适性和安全性。
在无人驾驶技术中,传感层包括车载摄像头等视觉系传感器和车载雷达等雷达系传感器。毫米波雷达为车载雷达的一种,由于成本较低、技术比较成熟,被广泛应用于无人驾驶系统。无人驾驶技术对毫米波雷达提出了更高分辨率的要求,而雷达的横向高分辨可以通过增加天线孔径来实现。多输入多输出(multiple-input-multiple-output,MIMO)是增加天线孔径的一项技术手段,使得MIMO雷达成为车载毫米波雷达发展的一个方向。
MIMO雷达主要有频分多路复用(frequency division multiplexing,FDM)、码分多路复用(code division multiplexing,CDM)和时分多路复用(time division multiplexing,TDM)几种具体实现形式。考虑到实现复杂度及半导体器件成本限制,车载毫米波雷达大多采用TDM技术。然而,TDM MIMO在实际使用中,由于运动目标多普勒频率在不同发射天线切换时间内带来的相位变化量会耦合到各收发虚拟天线上,且TDM MIMO本身降低了在慢时间的采样率,使得不模糊测速范围降低,在计算目标物体的速度时更易发生速度混叠的情况,即出现速度模糊,得到的目标物体的速度并非是真实速度。
目前的一种速度解模糊的方案是利用角度域快速傅里叶变换(fast fourier transform,FFT)的方案,即对雷达接收的回波信号,也就是雷达的发射天线发送电信号经目标物体反射后的信号进行FFT,并遍历所有的速度模糊倍数,在角度域进行FFT相干积累,从而确定正确的速度模糊倍数,进而根据正确的速度模糊倍数确定目标物体的真实速度。当雷达包括的发射天线较多时,由于速度模糊引起的相邻两个发射天线之间的相位跳变较小,FFT的结果容易受相位噪声的影响,不易确定速度模糊倍数,即速度解模糊的性能较低。
发明内容
本申请提供一种信号发送方法、信号处理方法及雷达装置,用于提高速度解模糊的性能,从而较为准确地确定目标的实际速度。
第一方面,本申请实施例提供一种信号发送方法,该方法可以应用于雷达装置,所述雷达装置包括至少三个发射天线,所述方法包括:
确定所述雷达装置的至少两个发射天线组,其中,每个所述发射天线组包括至少一个发射天线;
通过所述至少两个发射天线组发送信号,其中,所述至少两个发射天线组采用TDM方式发送信号,所述至少两个发射天线组中的每个包含多个发射天线的发射天线组包括的所述多个发射天线采用CDM方式发送信号。
在本申请实施例中,该方法可以由探测装置执行,探测装置例如为雷达装置,该雷达装置可以是雷达,也可以是与雷达通信连接的通信装置。在该方案中,雷达装置发送信号时,可以先对包括的发射天线进行分组,例如将包括的N个发射天线分成至少两个发射天线组,例如K个发射天线组,其中,K个发射天线组采用TDM方式发送信号,每一个发射天线组包括的发射天线同时发送信号,例如,每一个发射天线组包括的发射天线采用CDM方式发送信号。由于雷达装置以TDM方式发送的发射天线组的组数减少,从而可以增大雷达装置的各个虚拟天线阵元之间的相位跳变。通过本申请实施例的信号发送方法,雷达装置在解速度模糊时,只需要进行K次FFT,相较于现有技术中进行N次FFT,减小了计算量。且每一个发射天线组包括的发射天线同时发送信号,单位时间内可以积累的信号的信噪比较大,更利于从每一个发射天线组对应的FFT结果检测目标。
在一种可能的设计中,确定所述雷达装置的至少两个发射天线组,包括:
根据所述至少三个发射天线随机确定所述至少两个发射天线组。
确定至少两个发射天线组的一种方式,雷达装置每次发送信号前,可以随机将雷达装置包括的发射天线划分为至少两个发射天线组,这样可以使得按照天线排布顺序的相邻虚拟天线阵元之间的相位跳变规律是随机的,以降低产生速度和角度耦合的现象的可能性,提高速度角度解耦合的性能。
在一种可能的设计中,所述雷达装置包括的发射天线的编号为1到N,所述N大于或等于3,在所述每个发射天线组中,至少存在两个发射天线的编号不连续;或者,在所述每个发射天线组中,任意两个发射天线的编号不连续。
在另一种可能的设计中,在所述每个发射天线组中,至少存在两个编号相邻的发射天线的编号的间隔大于1,或者,任意两个编号相邻的发射天线的编号的间隔大于1。
在实际应用中,雷达装置划分的每个发射天线组包括的发射天线的编号是随机选择的,例如,至少存在两个发射天线的编号不连续;或者,任意两个发射天线的编号不连续,又或者,至少存在两个编号相邻的发射天线的编号的间隔大于1,或者,任意两个编号相邻的发射天线的编号的间隔大于1。这样雷达装置每次发送信号前,可以保证每个发射天线组包括的发射天线的编号之间的间隔尽量大,使得相邻虚拟天线阵元之间的相位跳变规律更加随机,以尽量降低速度和角度耦合的可能性,提高速度角度解耦合的性能。
在一种可能的设计中,所述确定所述雷达装置的至少两个发射天线组,包括:
确定多个分组方式中的第一分组方式,基于所述第一分组方式所指示的所述至少两个发射天线组的性能参数最优,所述性能参数用于指示速度解模糊的性能。
在一种可能的设计中,所述多个分组方式包括所述至少三个发射天线所有可能的分组方式。
确定至少两个发射天线组的另一种方式,雷达装置在实际使用中,可以对比多个分组 方式对应的解速度模糊的性能,一个分组方式可以认为是雷达装置一次随机划分的至少两个发射天线组,从而雷达装置基于解速度模糊的性能最优的分组方式,即第一分组方式确定至少两个发射天线组。这样后续雷达装置可以采用这至少两个发射天线组发送信号,而不需要每次都重新确定至少两个发射天线组,既能够尽量保证后续解速度模糊的性能较好,又可以减少雷达装置的负担。
在一种可能的设计中,所述至少两个发射天线组包含的发射天线的数目不同或者相同。
在本申请实施例中,至少两个发射天线组包括的发射天线的数目可以相同,也可以不同,这样既可以适用于发射天线数是质数的情况,又可以适用发射天线数不是质数的情况,适用范围更广。
第二方面,提供了一种信号处理方法,该方法应用于雷达装置,所述雷达装置包括至少三个发射天线和至少一个接收天线,所述方法包括:
根据所述至少一个接收天线接收的信号确定至少两组检测信息,所述至少两组检测信息对应所述至少三个发射天线组成的至少两个发射天线组,每个所述发射天线组包括至少一个发射天线,其中,所述至少两个发射天线组采用TDM方式发送信号,所述至少两个发射天线组中的每个包含多个发射天线的发射天线组包括的所述多个发射天线采用CDM方式发送信号;
根据所述至少两组检测信息确定至少三个检测信息,其中,所述至少三个检测信息用于确定目标的速度估计值,其中,所述至少三个检测信息对应于所述至少三个发射天线;
根据第一速度模糊倍数以及所述目标的速度估计值确定所述目标的真实速度,所述第一速度模糊倍数为对应于所述至少两组检测信息的至少两个速度模糊倍数中的一个。
在本申请实施例中,雷达装置解速度模糊时,可以根据雷达装置发送信号所划分的至少两个发射天线组将雷达装置接收的信号划分为至少两组信号,从而根据每一组信号确定一组检测信息,相较于现有技术中,将接收的信号划分为与每一个发射天线对应的信号之后再确定检测信息而言,确定检测信息的组数降低了,从而减少了计算量。
在一种可能的设计中,所述根据所述至少一个接收天线接收的信号确定至少两组检测信息,包括:
将所述至少两组信号分别转化到距离-多普勒域,获得所述至少两组检测信息;
其中,所述至少两组信号为所述接收到的信号中对应于所述至少两个发射天线组的信号。
在一种可能的设计中,确定速度模糊倍数,包括:
确定所述雷达装置包括的多个虚拟天线阵元的多个相位,其中,虚拟天线阵元对应一个发射天线和一个接收天线,一个虚拟天线阵元对应一个相位;
对所述多个相位分别进行多普勒相位补偿;
在角度域,叠加所述至少两个检测信息,并根据叠加结果确定所述速度模糊倍数。
在一种可能的设计中,根据叠加结果确定所述速度模糊倍数,包括:
将叠加结果中,最大峰值对应的速度模糊倍数确定为所述速度模糊倍数。
关于第二方面或第二方面的各种可能的实施方式所带来的技术效果,可以参考对第一方面或第一方面的各种可能的实施方式的技术效果的介绍。
第三方面,提供了一种方法,该方法的执行主体可以为设置在探测设备中的芯片,该方法包括:
确定雷达装置的至少两个发射天线组,其中,每个所述发射天线组包括至少一个发射天线;
控制所述至少两个发射天线组采用时分多路复用TDM方式发送信号,以及,控制所述至少两个发射天线组中的每个包含多个发射天线的发射天线组包括的所述多个发射天线采用码分多路复用CDM方式发送信号。
在一种可能的设计中,确定所述雷达装置的至少两个发射天线组,包括:
根据所述至少三个发射天线随机确定所述至少两个发射天线组。
在一种可能的设计中,所述雷达装置包括的发射天线的编号为1到N,所述N大于或等于3,在所述每个发射天线组中,至少存在两个发射天线的编号不连续;或者,在所述每个发射天线组中,任意两个发射天线的编号不连续。
在另一种可能的设计中,在所述每个发射天线组中,至少存在两个编号相邻的发射天线的编号的间隔大于1,或者,任意两个编号相邻的发射天线的编号的间隔大于1。
在一种可能的设计中,确定所述雷达装置的至少两个发射天线组,包括:
确定多个分组方式中的第一分组方式,基于所述第一分组方式所指示的所述至少两个发射天线组的性能参数最优,所述性能参数用于指示速度解模糊的性能。
在一种可能的设计中,所述多个分组方式包括所述至少三个发射天线所有可能的分组方式。
在一种可能的设计中,所述至少两个发射天线组包含的发射天线的数目不同或者相同。
第四方面,提供一种装置,所述装置包括:
至少一个处理器,用于确定所述装置的至少两个发射天线组,其中,每个所述发射天线组包括至少一个发射天线;以及
所述至少两个发射天线组,用于发送信号,其中,所述至少两个发射天线组采用时分多路复用TDM方式发送信号,所述至少两个发射天线组中的每个包含多个发射天线的发射天线组包括的所述多个发射天线采用码分多路复用CDM方式发送信号。
在一种可能的设计中,所述至少一个处理器具体用于:
根据所述至少三个发射天线随机确定所述至少两个发射天线组。
在一种可能的设计中,所述装置包括的发射天线的编号为1到N,所述N大于或等于3,在所述每个发射天线组中,至少存在两个发射天线的编号不连续;或者,在所述每个发射天线组中,任意两个发射天线的编号不连续。
在一种可能的设计中,在所述每个发射天线组中,至少存在两个编号相邻的发射天线的编号的间隔大于1,或者,任意两个编号相邻的发射天线的编号的间隔大于1。
在一种可能的设计中,所述至少一个处理器具体用于:
确定多个分组方式中的第一分组方式,基于所述第一分组方式所指示的所述至少两个发射天线组的性能参数最优,所述性能参数用于指示速度解模糊的性能。
在一种可能的设计中,所述多个分组方式包括所述至少三个发射天线所有可能的分组方式。
在一种可能的设计中,所述至少两个发射天线组包含的发射天线的数目不同或者相同。
第五方面,提供了一种装置,该装置例如为前述的雷达装置,该装置包括至少一个处理单元和通信接口,至少一个处理单元和通信接口相互耦合,用于实现上述第一方面或第一方面的各种可能的设计所描述的方法。示例性的,所述装置为雷达。其中,通信接口例 如可以通过装置中的天线、馈线和编解码器等实现,或者,如果所述装置为设置在探测设备中的芯片,那么通信接口例如为芯片中的通信接口,该通信接口与探测设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。其中,
所述至少一个处理单元,用于确定所述雷达装置的至少两个发射天线组,其中,每个所述发射天线组包括至少一个发射天线;
所述通信接口,用于控制所述至少两个发射天线组采用时分多路复用TDM方式发送信号,所述至少两个发射天线组中的每个包含多个发射天线的发射天线组包括的多个发射天线采用码分多路复用CDM方式发送信号。
在一种可能的设计中,所述至少一个处理单元具体用于:
根据所述至少三个发射天线随机确定所述至少两个发射天线组。
在一种可能的设计中,所述装置包括的发射天线的编号为1到N,所述N大于或等于3,在所述每个发射天线组中,至少存在两个发射天线的编号不连续;或者,在所述每个发射天线组中,任意两个发射天线的编号不连续。
在一种可能的设计中,在所述每个发射天线组中,至少存在两个编号相邻的发射天线的编号的间隔大于1,或者,任意两个编号相邻的发射天线的编号的间隔大于1。
在一种可能的设计中,所述至少一个处理单元具体用于:
确定多个分组方式中的第一分组方式,基于所述第一分组方式所指示的所述至少两个发射天线组的性能参数最优,所述性能参数用于指示速度解模糊的性能。
在一种可能的设计中,所述多个分组方式包括所述至少三个发射天线所有可能的分组方式。
在一种可能的设计中,所述至少两个发射天线组包含的发射天线的数目不同或者相同。
第六方面,提供了一种装置,该装置为设置在探测设备中的芯片。其中,所述装置包括至少一个处理器以及通信接口,所述通信接口用于为所述至少一个处理器提供程序指令,当所述至少一个处理器执行所述程序指令时,实现以下步骤:
确定雷达装置的至少两个发射天线组,其中,每个所述发射天线组包括至少一个发射天线;
控制所述至少两个发射天线组采用时分多路复用TDM方式发送信号,以及,控制所述至少两个发射天线组中的每个包含多个发射天线的发射天线组包括的所述多个发射天线采用码分多路复用CDM方式发送信号。
在一种可能的设计中,所述至少一个处理器具体用于:
根据所述至少三个发射天线随机确定所述至少两个发射天线组。
在一种可能的设计中,所述雷达装置包括的发射天线的编号为1到N,所述N大于或等于3,在所述每个发射天线组中,至少存在两个发射天线的编号不连续;或者,在所述每个发射天线组中,任意两个发射天线的编号不连续。
在另一种可能的设计中,在所述每个发射天线组中,至少存在两个编号相邻的发射天线的编号的间隔大于1,或者,任意两个编号相邻的发射天线的编号的间隔大于1。
在一种可能的设计中,所述至少一个处理器具体用于:
确定多个分组方式中的第一分组方式,基于所述第一分组方式所指示的所述至少两个发射天线组的性能参数最优,所述性能参数用于指示速度解模糊的性能。
在一种可能的设计中,所述多个分组方式包括所述至少三个发射天线所有可能的分组 方式。
在一种可能的设计中,所述至少两个发射天线组包含的发射天线的数目不同或者相同。
第七方面,提供了一种装置,所述装置包括:
通信接口,用于接收至少一个信号;
至少一个处理单元,用于根据所述通信接口接收的信号确定至少两组检测信息,所述至少两组检测信息对应所述装置包括的至少三个发射天线组成的至少两个发射天线组,每个所述发射天线组包括至少一个发射天线,其中,所述至少两个发射天线组采用TDM方式发送信号,所述至少两个发射天线组中的每个包含多个发射天线的发射天线组包括的所述多个发射天线采用CDM方式发送信号;
根据所述至少两组检测信息确定至少三个检测信息,其中,所述至少三个检测信息用于确定目标的速度估计值,其中,所述至少三个检测信息对应于所述至少三个发射天线;
根据第一速度模糊倍数以及所述目标的速度估计值确定所述目标的真实速度,所述第一速度模糊倍数为对应于所述至少两组检测信息的至少两个速度模糊倍数中的一个。
在一种可能的设计中,所述至少一个处理单元具体用于:
将所述至少两组信号分别转化到距离-多普勒域,获得所述至少两组检测信息;
其中,所述至少两组信号为所述接收到的信号中对应于所述至少两个发射天线组的信号。
在一种可能的设计中,所述至少一个处理单元具体用于:
确定所述雷达装置包括的多个虚拟天线阵元的多个相位,其中,虚拟天线阵元对应一个发射天线和一个接收天线,一个虚拟天线阵元对应一个相位;
对所述多个相位分别进行多普勒相位补偿;
在角度域,叠加所述至少两个检测信息,并根据叠加结果确定所述速度模糊倍数。
在一种可能的设计中,所述至少一个处理单元具体用于:
将叠加结果中,最大峰值对应的速度模糊倍数确定为所述速度模糊倍数。
第八方面,提供了一种装置,该装置例如为前述的雷达装置,该装置包括至少一个接收天线和至少一个处理器,至少一个接收天线和至少一个处理器相互耦合,用于实现上述第二方面或第二方面的各种可能的设计所描述的方法。示例性的,所述雷达设备为雷达。其中,收发器例如通过通信设备中的天线、馈线和编解码器等实现,或者,如果所述雷达装置为设置在探测设备中的芯片,那么收发器例如为芯片中的通信接口,该通信接口与探测设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。其中,
所述至少一个接收天线,用于接收至少一个信号;
所述至少一个处理器,用于根据所述至少一个接收天线接收的信号确定至少两组检测信息,所述至少两组检测信息对应所述至少三个发射天线组成的至少两个发射天线组,每个所述发射天线组包括至少一个发射天线,其中,所述至少两个发射天线组采用TDM方式发送信号,所述至少两个发射天线组中的每个包含多个发射天线的发射天线组包括的所述多个发射天线采用CDM方式发送信号;
根据所述至少两组检测信息确定至少三个检测信息,其中,所述至少三个检测信息用于确定目标的速度估计值,其中,所述至少三个检测信息对应于所述至少三个发射天线;
根据第一速度模糊倍数以及所述目标的速度估计值确定所述目标的真实速度,所述第一速度模糊倍数为对应于所述至少两组检测信息的至少两个速度模糊倍数中的一个。
在一种可能的设计中,所述至少一个处理器具体用于:
将所述至少两组信号分别转化到距离-多普勒域,获得所述至少两组检测信息;
其中,所述至少两组信号为所述接收到的信号中对应于所述至少两个发射天线组的信号。
在一种可能的设计中,所述至少一个处理器具体用于:
确定所述雷达装置包括的多个虚拟天线阵元的多个相位,其中,虚拟天线阵元对应一个发射天线和一个接收天线,一个虚拟天线阵元对应一个相位;
对所述多个相位分别进行多普勒相位补偿;
在角度域,叠加所述至少两个检测信息,并根据叠加结果确定所述速度模糊倍数。
在一种可能的设计中,所述至少一个处理器具体用于:
将叠加结果中,最大峰值对应的速度模糊倍数确定为所述速度模糊倍数。
第九方面,提供再一种装置。该装置可以为上述方法设计中的雷达装置。示例性地,所述装置为设置在探测设备中的芯片。示例性地,所述探测设备为雷达。该装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使该装置或者安装有该装置的设备执行上述第一方面或第一方面的任意一种可能的实施方式中的方法,或者,使该装置或者安装有该装置的设备执行上述第二方面或第二方面的任意一种可能的实施方式中的方法。
其中,该装置还可以包括通信接口,该通信接口可以是探测设备中的收发器,例如通过所述雷达装置中的天线、馈线和编解码器等实现,或者,如果该装置为设置在探测设备中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。
第十方面,提供一种通信系统,该通信系统可以例如包括第四方面或第五方面或第六方面或第七方面或第八方面所述的装置中的一个或多个,或者,该通信系统还可以包括其他通信装置,例如中央节点,或者还可以包括目标物体。
第十一方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法;或者,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法。
第十二方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法;或者,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法。
上述第三方面至第十二方面及其实现方式的有益效果可以参考对第一方面的方法及其实现方式或第二方面的方法及其实现方式的有益效果的描述。
附图说明
图1为毫米波雷达的工作原理图;
图2为一种发射信号、回波信号与中频信号的示意图;
图3为SIMO雷达测角原理示意图;
图4为MIMO雷达虚拟天线阵元原理示意图;
图5为MIMO雷达采用TDM方式发送信号的示意图;
图6为本申请实施例提供的一种速度模糊系数对应的方向图;
图7为本申请实施例提供的另一种速度模糊系数对应的方向图;
图8为本申请实施例提供的信号发送方法的流程示意图;
图9为雷达装置采用CDM方式发送信号的示意图;
图10为本申请实施例提供的雷达装置的至少两个发射天线组发送信号的示意图;
图11为本申请实施例提供的一种发射天线组对应的角度域FFT的结果示意图;
图12为本申请实施例提供的另一种发射天线组对应的角度域FFT的结果示意图;
图13为本申请实施例提供的信号处理方法的流程示意图;
图14是本申请实施例提供的雷达装置的一种结构示意图;
图15是本申请实施例提供的雷达装置的又一种结构示意图;
图16是本申请实施例提供的雷达装置的再一种结构示意图;
图17是本申请实施例提供的一种装置的结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
在介绍本申请之前,首先对本申请实施例中的部分用语进行简单解释说明,以便于本领域技术人员理解。
1)雷达探测装置,例如为雷达(radar),或者也可以是其他的用于进行探测(例如,测距)的装置。
2)雷达,或称为雷达装置,也可以称为探测器、雷达探测装置或者雷达信号发送装置等。其工作原理是通过发送信号(或者称为探测信号),并接收经过目标物体反射的反射信号,来探测相应的目标物体。雷达所发射的信号可以是雷达信号,相应的,所接收的经过目标物体反射的反射信号也可以是雷达信号。
3)雷达探测装置的发射周期(或者,称为雷达探测装置的扫频周期、扫频时间或扫频时长等),是指雷达探测装置进行一个完整波形的雷达信号发射的周期。雷达探测装置一般会在一段连续的时长内进行多个扫频周期的雷达信号发送。
4)调频连续波(frequency modulated continuous wave,FMCW),频率随时间变化的电磁波。在下文的介绍中,以FMCW雷达为例,需要说明的是,本申请也可以应用于其他机制的雷达,本申请对雷达的类型不作限制。
5)线性调频连续波,频率随时间线性变化的电磁波。这里的线性变化一般是指在一个发射周期内线性变化。具体的,线性调频连续波的波形一般是锯齿波或者三角波,或者也可能存在其它可能的波形,例如步进频波形等。
6)雷达探测装置的最大测速范围,或称雷达探测装置的最大探测速度,是与雷达探测装置的配置有关的参数(例如,与雷达探测装置的出厂设置参数相关)。例如雷达探测装置为雷达,该雷达在时域上相邻的两个发射天线发送的信号的时间间隔为T,该雷达的最大探测速度为±λ/4T。
7)中频(intermediate frequency,IF)信号,以雷达探测装置是雷达为例,雷达的本振信号与雷达接收的反射信号(是雷达的发送信号经过目标物体反射后的信号)经过混频 器处理后的信号,即为中频信号。具体来说,通过振荡器产生的调频连续波信号,一部分作为本振信号,一部分作为发送信号通过发射天线发射出去,而接收天线接收的发送信号的反射信号,会与本振信号混频,得到所述的“中频信号”。通过中频信号,可以得到目标物体的距离信息、速度信息或角度信息中的一个或多个。其中,距离信息可以是目标物体相对于当前的雷达的距离信息,速度信息可以是目标物体相对于当前的雷达的速度在目标物体和雷达连线方向上的投影,角度信息可以是目标物体相对于当前的雷达的角度信息。进一步的,中频信号的频率称为中频频率。
8)速度模糊,指在脉冲多普勒雷达工作,在中低重复频率时,由于频谱重叠现象引起所测目标物体的速度发生混淆,难以分辨目标真实速度的现象。雷达通过发射天线发送信号,该信号如果碰到目标物体,经由目标物体的反射形成回波信号,雷达通过接收天线接收该回波信号。雷达可以根据该回波信号相对于雷达发射天线发射的信号的频移来确定目标物体相对于雷达的径向速度,即vt=λ*fd/2,其中,λ是发射波长,vt是目标物体的速度,fd是回波信号相对于雷达发射天线发射的信号的频移。当fd>fr/2时,其中,fr为雷达发送信号的重复频率,vt将与λ*(fd-nfr)/2(n为正整数)的目标速度相混淆。如果用户无法分辨目标物体的真实多普勒频移与由雷达发射天线发射的信号重复频率的频率间隔引起的重叠,就产生了速度模糊。
9)不模糊速度,指多普勒雷达能够测量的一个脉冲到下一个脉冲的相移对应的目标物体的径向速度值。
10)最大不模糊速度,可以是雷达最大探测速度,指的是多普勒雷达能够测量的一个脉冲到下一个脉冲的最大脉冲相移是360°,与360°脉冲相移所对应的目标物体的径向速度值。从这个角度来说,上述的速度模糊也可以认为是:如果一个目标物体在两个脉冲的时间间隔内移动得太远,它的真实相移超过360°,但是实际上会配置一个小于360°的相移值,而该相移对应的速度值也将小于最大不模糊速度,测量的速度值并不是真实的速度值,即出现速度模糊。
11)“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联物体的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联物体是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个物体进行区分,不用于限定多个物体的顺序、时序、优先级或者重要程度。
如上介绍了本申请实施例涉及的一些概念,下面介绍本申请实施例的技术特征。
毫米波是指波长介于1~10mm之间的电磁波,所对应的频率范围为30~300GHz。在这个频段,毫米波相关的特性使其非常适合应用于车载领域。带宽大:频域资源丰富,天线副瓣低,有利于实现成像或准成像;波长短:雷达设备体积和天线口径得以减小,重量减轻;波束窄:在相同天线尺寸下毫米波的波束要比微波的波束窄得多,雷达分辨率高;穿透强:相比于激光雷达和光学系统,更加具有穿透烟、灰尘和雾的能力,可全天候工作。
车载毫米波雷达系统,一般包括振荡器、发射天线、接收天线、混频器、耦合器、处理器和控制器等装置。如图1所示,为毫米波雷达的工作原理图。振荡器会产生一个频率 随时间线性增加的雷达信号,该雷达信号一般是调频连续波。该雷达信号的一部分经过定向耦合器输出至混频器作为本振信号,一部分通过发射天线发射出去,接收天线接收发射出去的雷达信号遇到车辆前方的物体后反射回来的雷达信号,混频器将接收的雷达信号与本振信号进行混频,得到中频信号。中频信号包含了目标物体与该雷达系统的相对距离、速度、以及角度等信息。中频信号经过低通滤波器并经过放大处理后输送到处理器,处理器对接收的信号进行处理,一般是对接收的信号进行快速傅里叶变换,以及频谱分析等,以得到目标物体相对于该雷达系统的距离、速度等信号,还可以得到目标物体相对于该雷达系统的角度等信息。最后,处理器可以将得到的信息输出给控制器,以控制车辆的行为。
示例性的,如图2所示,为FMCW雷达发送信号的示意图。振荡器所产生的雷达信号为调频连续波,即雷达系统通过发射天线发射1组波形相同,时间起点不同的线性调频信号,该线性调频信号也可以称为啁啾(chirp)信号。发射chirp信号的间隔(图2中用T表示)称为脉冲重复间隔(Pulse Repetition Time,PRT)。雷达在1个PRT发射1个chirp信号,chirp信号时间长度小于或等于1个PRT,通常情况下,chirp信号时间长度小于1个PRT。如图2所示,雷达的发射天线发送信号,雷达的接收天线接收的回波信号指的是发射天线发射的雷达信号遇到物体后发射回来的信号。混频器将接收的回波信号与本振信号进行混频,得到中频信号。根据该中频信号可以确定目标物体与该雷达系统的相对距离、速度等信息。
示例性的,根据中频信号确定目标物体与雷达系统的相对距离和速度时,可以是:将中频信号在每个PRT中用于雷达信号处理的部分,即经过采样和量化后的数据序列组成二维数组,这个二维数组中的一维对应PRT内的采样点序号,另一维对应于PRT编号;之后对这个二维数组进行傅里叶变换,得到距离-多普勒域表示的雷达接收信号。每个目标物体的回波分量采用距离-多普勒域表示时,对应一个二维sinc函数,即每个目标物体在距离多-普勒域表示中,对应一个局部峰值。距离-多普勒域表示的雷达接收信号实际上是复数二维数组,对该复数二维数组逐点取模,获得的模值对应局部峰值。该局部峰值对应两个维度的序号,可以获得该目标物体对应的单频正弦波的频率和不同PRT中该中频信号的相位差,进而可以获得该目标物体的距离和速度信息。
下面以雷达包括一个发射天线和两个接收天线为例介绍雷达测角原理。如图3所示,为雷达测角原理示意图,在图3中,发射天线发射的信号经由目标物体反射后被两个接收天线接收。这两个接收天线的相位差为
Figure PCTCN2020117876-appb-000001
根据该相位差以及波长计算得到两个接收天线分别距离目标物体的距离差,即图3中的d Rx sinθ,其中,d Rx为两个接收天线之间的距离,θ为目标物体与接收天线的法线之间的夹角,从而可以计算得到θ的值,即目标物体相对雷达的角度。具体的,目标物体相对雷达的角度可以通过公式(1)计算所得。
Figure PCTCN2020117876-appb-000002
其中,图3仅以雷达包括一个发射天线和两个接收天线为例说明雷达测角原理,如果是MIMO雷达,即包括M个发射天线和N个接收天线,可以参考图3所示,检测M*N个虚拟天线阵元下目标物体相对雷达的角度,这里不再赘述。
对于MIMO雷达,即包括多个发射天线和多个接收天线的雷达而言,如图4所示,为MIMO雷达虚拟天线阵元原理示意图。图4以MIMO雷达包括3个发射天线(Tx1、Tx2和Tx3)和4个接收天线(Rx1、Rx2、Rx3和Rx4)为例。一个发射天线和多个接收天线组成的阵元可以称为一个虚拟天线阵元,如图4所示,3个发射天线和4个接收天线可以 理解为是12个虚拟天线阵元,例如包括虚拟天线阵元(M,N),M为接收天线的编号,N为发射天线的编号。每个接收天线接收的信号是所有发射天线发射的信号被目标物体发射后叠加的信号。每个接收天线根据多个发射天线发送信号的发射参数,例如发送信号的发送时刻,可以从接收的信号中提取分别来自不同发射天线,且经过目标物体反射后的信号,作为虚拟天线阵元的接收信号。
假设雷达包括的相邻的两个发射天线发送的信号的时间间隔为T r,这里相邻的两个发射天线指的是两个发射天线的信号发送的起始时刻在时域上相邻。定义雷达的最大探测速度为v max,那么该雷达的最大测速范围为[-v max,+v max]。其中,雷达的最大探测速度可以通过如下的公式(2)计算所得。
v max=λ/4T r       (2)
例如,在一些实施例中,MIMO雷达可以采用TDM方式发送信号,即不同的发射天线发送信号的起始时刻不同,且每个发射天线发送信号的时间范围不重叠,也就是每个发射天线发送信号的时间范围内,不存在其他发射天线发送信号。如图5所示,为MIMO雷达采用TDM方式发送信号的示意图。图5横坐标t表示时域,纵坐标f表示频域,图5以MIMO雷达包括N个发射天线为例,这N个发射天线分别为发射天线Tx1、发射天线Tx2直到发射天线TxN。从图5中可以看出,发射天线Tx1发送信号的起始时刻为t1,发射天线Tx2发送信号的起始时刻为t2,发射天线Tx3发送信号的起始时刻为tn,即不同的发射天线采用不同的起始时刻发送信号。
在图5中,假设相邻两个发射天线在时域上发送信号的时间间隔为T r,例如发射天线Tx1和发射天线Tx2发送信号的时间间隔为T r,如果相邻两个发射天线发送信号的时间间隔相同,那么发射天线Tx1和发射天线TxN发送信号的时间间隔为N*Tr。此时雷达的最大探测速度可以通过如下的公式(3)计算所得。
v max=λ/4×N×T r         (3)
从公式(1)和公式(2)可以看出,如果MIMO雷达采用TDM方式发送信号,那么雷达的最大探测速度将减少N倍。
此外,目标物体移动会导致第k个发射天线相对于第1个发射天线产生多普勒相位差φ 1
φ 1=2πf dT r(k-1)       (4)
在公式(4)中,f d为雷达接收的回波信号相对于雷达发射天线发射的信号的多普勒频移,k=1,...,M,这里k为雷达发送信号的顺序。也就是第k个发射天线指的是该发射天线发送信号的顺序是k。
如此,由公式(2)和公式(4)可以计算确定相邻的两个发射天线之间的相位差φ就为:
φ=2π(d Txsinθ/λ+f dT r)        (5)
从公式(5)中可以看出,相邻的两个发射天线之间的相位差既包含角度信息,又包含速度信息,即产生角度速度耦合的现象。
如果不能正确补偿多普勒频移引起的上述φ,则确定的目标物体相对雷达的实际角度就会发生偏差,如果偏差较大,那么对于车载雷达来说,就不能准确定位车辆的位置,可能造成安全问题。
为了得到较为准确的速度和角度,需要消除多普勒频移对计算角度的影响,这就需要 估算真实的多普勒频移,即f d=2v/λ。在一些实施例中,雷达可以对包括的多个虚拟天线阵元,例如图4中的12个虚拟天线阵元接收的可以对接收的回波信号进行2维快速傅里叶变换(2dimension-fast fourier transformation,2D-FFT)处理,得到距离-多普勒域表示的雷达接收信号。距离-多普勒域表示的雷达接收信号实际上是复数二维数组,对该复数二维数组逐点取模,获得的模值对应局部峰值,根据该局部峰值可以获得该目标物体对应的单频正弦波的频率,也称为多普勒频移。在本文中,将多普勒频移记为f damb
实际上计算所得的f damb可能并不是真实的f d,即f damb是模糊的,如果将f damb当成是f d,那么计算所得的速度也是模糊的。速度模糊从这个角度来讲,也可以指如果目标物体的真实速度的绝对值|v|>v max时,使得多普勒相位|2πf dT r×M|>π,这就产生了相位模糊,从而出现速度模糊,也就是计算所得的速度并非是目标物体的真实速度。
对此,可以对速度解模糊,也就是将模糊速度恢复到单chrip对应的最大不模糊速度,即v max=λ/4T r。具体的,可以将相位模糊次数定义为速度模糊倍数ξ,该速度模糊倍数也可以称为速度模糊系数ξ。
当雷达包括的发射天线的个数为奇数,有如下公式(6):
Figure PCTCN2020117876-appb-000003
当雷达包括的发射天线的个数为偶数,且f damb>0时,有如下公式(7):
Figure PCTCN2020117876-appb-000004
当雷达包括的发射天线的个数为偶数,且f damb<0时,有如下公式(8):
Figure PCTCN2020117876-appb-000005
对于真实的f d而言,可以有公式(9):
Figure PCTCN2020117876-appb-000006
从公式(9)中可以看出,速度模糊系数ξ的取值有M种可能。假设M为3,那么ξ可能的取值为[-1,0,1],解模糊后的速度v∈[-3v max,3v max]。在设计雷达时,通常要求单chirpp对应的最大不模糊速度需要满足系统的需求。对速度解模糊就是从ξ的多种可能的取值确定正确的一个的过程。
目前速度解模糊方法之一,例如为角度域FFT累积法,具体的流程是:假设雷达的各个虚拟天线阵元按照位置顺序编号,如图4所示,从左到右,12个虚拟天线阵元的编号依次从1到12。第n个虚拟天线阵元的相位为:
Figure PCTCN2020117876-appb-000007
在公式(10)中,f damb为多普勒频移,N为发射天线的个数,k为虚拟天线阵元对应的发射顺序的编号。ξ=0,...N-1为模糊系数,代表N种可能的多普勒模糊相位,φ n,k(ξ)为相位值。第n个虚拟天线阵元接收的回波信号,经过2D-FFT后得到的距离-多普勒域表示的雷达接收信号,从距离-多普勒域可以确定待检测的目标,距离-多普勒域表征目标的峰值对应的相位值就是φ n,k(ξ),φ n,k(ξ)可以直接测量所得。
由于直接测量所得的φ n,k(ξ)受速度模糊影响,也可能是模糊的,所以需要在每个目标 点出进行可能的多普勒相位补偿。角度域FFT累积法就是通过遍历所有可能的ξ,在角度域进行N次FFT出来,找到最大峰值对应的ξ。
可见,目前的角度域FFT累积法,对于N个发射天线来说,每个待检测目标都需要进行N次FFT处理以及峰值搜索,如果N的取值较大时,那么计算量较大。另外,定义最小相位跳变为2π/N,下文中的相位跳变指的是最小相位跳变。如果N的取值较大,由模糊引起的相位跳变即2π/N较小,不同的ξ对应的峰值差异较小,检测难度增加,解速度模糊的性能较差。例如,请参见图6和图7,图6示意了N=3对应的模糊系数对应的方向图。图7示意了N=12对应的模糊系数对应的方向图。从图6和图7可以看出,当N=12时,各个峰值之间的差异较小,因此检测难度更大,解速度模糊的性能较差。再者,由于最大不模糊速度减小了N倍,且雷达采用TDM发送信号,那么单位时间内累积的信号的信噪比也减小了,不容易确定目标。
为了解决上述问题,本申请实施例提供了一种信号发送方法以及对应的信号处理方法,该方法中,雷达装置将N个发射天线划分为K个发射天线组,这K个发射天线组采用TDM方式发送信号,且这K个发射天线组中的每一个发射天线组包括的发射天线采用CDM方式发送信号。从而在解速度模糊时,由于只需要进行K次FFT,所以减小了计算量。且每一个发射天线组包括的发射天线采用CDM方式发送信号,这样在进行FFT时,单位时间内可以积累的信噪比较大,有利于检测目标。
在一种可能的解决方案中,本申请实施例提供一种信号发送方法,请参见图8,为该方法的流程图。图8所示的实施例提供的方法可以由雷达装置来执行,该雷达装置可以是雷达芯片,例如将该雷达装置称为雷达,或者,该雷达装置也可以与雷达通信连接的通信装置。另外在下文的介绍过程中,雷达装置所发送的信号,均可以是雷达信号,自然的,所接收的信号也可以是雷达信号。雷达所接收的信号可以包括回波信号,也可以包括例如地面等的反射波。在本文中,以雷达所接收的信号是回波信号为例。
S801、雷达装置确定至少两个发射天线组。具体的,所述至少两个发射天线组包括第一发射天线组以及第二发射天线组。进一步,还可以包含第三发射天线组等。这里对发射天线组的数目不做具体限定。这里需要说明的是,所述至少两个发射天线组中的任两个天线组不包含相同的发射天线,或者,所述至少两个发射天线组中存在至少两个天线组包含相同的发射天线。
S802、雷达装置通过至少两个发射天线组发送信号,至少两个发射天线组采用TDM方式发送信号,所述至少两个发射天线组中的每个包含多个发射天线的发射天线组包括的所述多个发射天线采用CDM方式发送信号。该步骤也可以理解为,所述至少两个天线组中任一个天线组发送信号的时间范围内,不存在其它发射天线组发送信号。
以上S802还可以替换为:
所述雷达装置通过所述第一发射天线组在第一时间范围内发送信号,通过所述第二发射天线组在第二时间范围内发送信号。进一步,所述任一发射天线组内包含的多个发射天线发送信号所采用的编码不同。
其中,所述第一时间范围、第二时间范围在时域上不重叠。这里的不重叠是第一时间范围和第二时间范围不存在重合的时间。
进一步可选的,若所述至少一个发射天线组还包括第三发射天线组,所述雷达装置通过所述第三发射天线组在第三时间范围内发送信号。所述第一时间范围、第二时间范围以 及第三时间范围在时域上不重叠。这里的不重叠是第一时间范围、第二时间范围和第三时间范围中的任两个时间范围不存在重合的时间。
需要说明的是,本申请的雷达装置还可以包含更多个发射天线组,为实现本申请的方案,雷达装置包含的多个发射天线组发射信号中任两个发射天线组发送信号的时间范围不存在重叠,且对于所述多个发射天线组中任一个包含多个发射天线的发射天线组,其组内的多个发射天线采用不同的码字发送信号,这里不再赘述。
在本申请实施例中,雷达装置可以包括至少3个发射天线和至少1个接收天线。雷达装置可以将包括的发射天线划分为至少两个发射天线组,这两个发射天线组中的任意一个发射天线组包括至少一个发射天线。示例性的,雷达装置包括12个发射天线,那么雷达装置可以将这12个发射天线组划分为3个发射天线组,也可以将这12个发射天线划分为4个发射天线,或者也可以将这12个发射天线划分为6个发射天线组,对此,本申请实施例不作限制。需要说明的是,如果雷达装置包括3个发射天线,必然存在1个发射天线组仅包含一个发射天线。
在本申请实施例中,至少两个发射天线组包括的发射天线的数目可以相同,也可以不同。至少两个发射天线组包括的发射天线的数目不同可以指存在至少两个发射天线组的发射天线数据不同,或者,每个发射天线组的数目均不相同。这样既可以适用于发射天线数是质数的情况,又可以适用发射天线数不是质数的情况,适用范围更广。
例如,在一些实施例中,至少两个发射天线组包含的发射天线的数目可以相同。示例性的,雷达装置包括12个发射天线,那么雷达装置可以将这12个发射天线组划分为3个发射天线组,每个发射天线组包括4个发射天线。
又例如,在另一些实施例中,至少两个发射天线组包含的发射天线的数目可以不同。示例性的,雷达装置包括7个发射天线,那么雷达装置可以将这7个发射天线组划分为3个发射天线组。这3个发射天线组为发射天线组1、发射天线组2和发射天线组3,其中,发射天线组1、发射天线组2均包括3个发射天线,发射天线组3包括1个发射天线。或者,雷达装置包括6个发射天线,那么雷达装置可以将这6个发射天线组划分为3个发射天线组。这3个发射天线组为发射天线组1、发射天线组2和发射天线组3,其中,发射天线组1包括1个发射天线、发射天线组2包括2个发射天线,发射天线组3包括3个发射天线。
在本申请实施例中,雷达装置在采用划分发射天线后得到的至少两个发射天线组发送信号时,可以是至少两个发射天线组采用TDM方式发送信号,且每一个发射天线组包括的发射天线可以同时发送信号。即发射天线组之间分时发送信号,针对一个发射天线组,组内的发射天线同时发送信号。
例如,每个包含多个发射天线的发射天线组包括的多个发射天线可以采用CDM方式发送信号,即不同的发射天线发送信号时采用的CDM码不同。或者,也可以理解为不同的发射天线发送信号时在各个线性FMCW进行编号,编码后发送信号。示例性的,如图8所示,为MIMO雷达采用CDM方式发送信号的示意图。图9横坐标t表示发射天线发送信号的时间,纵坐标表示CDM码,图8以MIMO雷达包括3个发射天线为例,这3个发射天线分别为发射天线Tx1、发射天线Tx2和发射天线Tx3。从图9中可以看出,发射天线Tx1发送信号采用的CDM码为编码1,发射天线Tx2发送信号采用的CDM码为编码2,发射天线Tx3发送信号采用的CDM码为编码3,即不同的发射天线采用不同的CDM码发 送信号。
当然,本申请实施例不限制一个发射天线组包括的发射天线采用何种方式同时发送信号,出于后续雷达装置对接收的回波信号的处理,只要能从接收的信号中确定与每一个发射天线对应的信号即可。例如,根据CDM码的不同,可以从每一个发射天线组对应的信号中确定与每一个发射天线对应信号。
如果一个发送天线组包括的发射天线较多,那么CDM码较复杂,增加了解码的复杂度。另外,考虑到移相器的精度等,在本申请实施例中,优选CDM采用简单的编码。示例性的,CDM码可以采用双相相移键控(binary phase shift keying,BPSK)。又示例性的,CDM码也可以采用正交相移键控(Quadrature Phase Shift Keying,QPSK)。当雷达装置包括的发射天线的数量较多时,本申请实施例可以确定每一个发射天线组包括2个发射天线、3个发射天线或者4个发射天线,这样既能够降低对移相器的精度的要求,又能够降低解码的复杂度。
可见,在本申请实施例中,雷达装置将包括的发射天线划分为至少两个发射天线组,例如,雷达装置将包括的N个发射天线划分为K个发射天线组,也就是K个发射天线组分时发送信号,如图10为对应的雷达装置发送信号的波形图。图10横坐标表示发送信号的时间,纵坐标表示CDM码。图10中以CDM码包括M个编码为例。图10中,每个发射天线组包括的发射天线只是示意。由于每个包含多个发射天线的发射天线组包括的多个发射天线采用CDM方式发送信号,即每个包含多个发射天线的发射天线组包括的多个发射天线进行编码之后同时发送信号。由于是同时发送信号,那么在就不会产生速度和角度耦合的现象。所以在本申请实施例中,速度和角度耦合现象是在发射天线组之间产生的,那么在解速度模糊时,只需要进行K次FFT,相对于现有技术中需要进行N次FFT,显然减小了计算量。同时,也减小了所需要存储的数据量,从而可以节省存储空间。再者,由于一个发射天线组包括的至少两个发射天线同时发送信号,这样在进行FFT时,单位时间内可以积累的信号的信噪比较大,有利于检测目标。
在本申请实施例中,雷达装置将包括的发射天线划分为至少两个发射天线组可以是随机将包括的发射天线划分为至少两个发射天线组。可以认为雷达装置每次在发送信号前,将包括的发射天线随机划分为至少两个发射天线组。如果雷达装置多次发送信号,每一次随机划分发射天线可以理解为一个分组方式,那么多次随机划分对应多个分组方式。在本申请实施例中,多个分组方式中部分分组方式对应的至少两个发射天线组可能相同,也可能不同。或者,雷达装置将包括的发射天线随机划分为至少两个发射天线组,也可以认为是多个分组方式所对应的至少两个发射天线组是随机的,也就是没有规律。
为了便于理解,下面介绍雷达装置将发射天线随机划分为至少两个发射天线组可能包括的几种情况。在下文中,雷达装置包括的发射天线的编号指的是发射天线的位置顺序的编号。例如雷达装置包括的发射天线编号为1-N;或者在一些实施例中,雷达装置包括的发射天线编号为0-N-1,其中,N大于或等于3。
第一种情况,雷达装置随机划分发射天线后得到的每一个发射天线组包括的发射天线的编号可以是连续的。示例性的,雷达装置包括12个发射天线,这12个发射天线按照位置顺序编号依次为Tx1、Tx2、Tx3、Tx4、Tx5、Tx6、Tx7、Tx8、Tx9、Tx10、Tx11和Tx12。雷达装置将这12个发射天线随机划分为3个发射天线组,这3个发射天线组可以是{Tx1、Tx2、Tx3、Tx4},{Tx5、Tx6、Tx7、Tx8}和{Tx9、Tx10、Tx11和Tx12}。
第二种情况,雷达装置随机划分发射天线后得到的每一个发射天线组包括的发射天线的编号可以是不连续。
例如,在每个发射天线组中,至少存在两个发射天线的编号不连续。示例性的,沿用上述的例子,雷达装置将这12个发射天线随机划分为3个发射天线组,那么这3个发射天线组可以是{Tx1、Tx2、Tx3、Tx7},{Tx4、Tx5、Tx6、Tx11}和{Tx8、Tx9、Tx10和Tx12}。
又例如,在每个发射天线组中,任意两个发射天线的编号不连续。示例性的,沿用上述的例子,雷达装置将这12个发射天线随机划分为3个发射天线组,那么这3个发射天线组可以是{Tx1、Tx4、Tx7、Tx10},{Tx2、Tx5、Tx8、Tx11}和{Tx3、Tx6、Tx9和Tx12}。
第三种情况,进一步的,雷达装置随机划分发射天线后得到的每一个发射天线组包括的发射天线的编号之间的多个间隔中,至少存在一个间隔大于1。
例如,在每个发射天线组中,至少存在两个编号相邻的发射天线的编号的间隔大于1。示例性的,沿用上述的例子,雷达装置将这12个发射天线随机划分为3个发射天线组,那么这3个发射天线组可以是{Tx1、Tx2、Tx3、Tx7},{Tx4、Tx5、Tx6、Tx11}和{Tx8、Tx9、Tx10和Tx12}。
需要说明的是,两个编号相邻的发射天线可以理解为,在每个发射天线组中,如果两个发射天线编号连续,可以认为这两个发射天线的编号是相邻的。例如{Tx1、Tx2、Tx3、Tx7}中的Tx1和Tx2为两个编号相邻的发射天线,Tx2和Tx3也为两个编号相邻的发射天线。或者,两个编号相邻的发射天线也可以理解为,在一个发射天线组中,如果两个发射天线编号是不连续的,但是这两个发射天线之间的编号对应的发射天线不属于该发射天线组。例如{Tx1、Tx2、Tx3、Tx7}中的Tx3和Tx7为两个编号不连续的发射天线,但是Tx4、Tx5、Tx6不属于{Tx1、Tx2、Tx3、Tx7},Tx3和Tx7为两个编号相邻的发射天线。
又例如,在每个发射天线组中,任意两个编号相邻的发射天线的编号的间隔大于1。示例性的,沿用上述的例子,雷达装置将这12个发射天线随机划分为3个发射天线组,那么这3个发射天线组可以是{Tx1、Tx6、Tx9、Tx12},{Tx2、Tx5、Tx7、Tx11}和{Tx3、Tx8、Tx10和Tx12}。
在本申请实施例中,雷达装置每次在发送信号前,均可以随机划分至少两个发射天线组。不同次发送信号,对应的至少两个发射组可以是相同,也可以是不同的。例如,沿用上述的例子,以雷达装置发送信号的次数是两次为例,雷达装置第一次发送信号和第二次发送信号时,确定的至少两个发射天线组为{Tx1、Tx6、Tx9、Tx12},{Tx2、Tx5、Tx7、Tx11}和{Tx3、Tx8、Tx10和Tx12}。又例如,雷达装置第一次发送信号时,确定的至少两个发射天线组为{Tx1、Tx4、Tx7、Tx10},{Tx2、Tx5、Tx8、Tx11}和{Tx3、Tx6、Tx9和Tx12};雷达装置第二次发送信号时,确定的至少两个发射天线组为{Tx1、Tx6、Tx9、Tx12},{Tx2、Tx5、Tx7、Tx11}和{Tx3、Tx8、Tx10和Tx12}。
雷达装置将包括发射天线随机划分为至少两个发射天线组,可以增大各个虚拟天线阵元之间的相位跳变,从而有利于区分距离-多普勒域表示的目标峰值,提高解速度模糊的性能。
例如,请参见图11和图12,图11为一个发射天线组包括的发射天线的编号连续对应的角度域FFT结果示意图,图12为一个发射天线组包括的发射天线的编号不连续对应的角度域FFT结果示意图。其中,图11和图12均以雷达装置包括6个发射天线为例。图11 的6个发射天线采用TDM发送信号,假设速度模糊系数为1,各个虚拟天线阵元之间最小相位跳变为60°,即相位为[0°、60°、120°、180°、240°和300°]。图12的6个发射天线划分为两个发射天线组,假设速度模糊系数为1,第一个发射天线组的多普勒相位是0°,那么第二个发射天线组相对第一个发射天线组的相位跳变为180°。例如这两个发射天线组例如为{发射天线1、发射天线4和发射天线6}和{发射天线3、发射天线5和发射天线2}为例,各个虚拟天线阵元之间最小相位跳变为180°,即相位为[180°、0°、0°、180°、0°和180°]。对比图11和图12,可以看出,通过将发射天线组随机划分为至少两个发射天线组,且图12所示的FFT结果的目标峰值更容易区分,有利于检测目标。通过本申请实施例将发射天线组随机划分为至少两个发射天线组,可以使得虚拟天线阵元之间的相位跳变随机变化,不容易产生速度和角度耦合。且由于发射天线划分为至少两个发射天线组,导致相位跳变从60°变为180°,不容易受到相位噪声的影响,更容易区分在角度域上的FFT结果的最大峰值,增加解速度模糊的性能。同时,本申请实施例将发射天线组随机划分为至少两个发射天线组,可以减少计算量。
在一些实施例中,考虑到采用不同的至少两个发射天线组发送信号,之后雷达装置根据所发送信号经过目标物体发射后的信号来确定目标物体的真实速度。在确定目标物体的真实速度的过程中,涉及到解速度模糊的过程。而雷达装置例如随机划分的至少两个发射天线组发送信号,不同的至少两个发射天线组可能导致雷达装置解速度模糊的性能也所有不同。例如,如果至少两个发射天线组包括的发射天线的编号是连续的,那么容易产生速度和角度耦合的现象,且雷达装置的各个虚拟天线阵元之间相位跳变较小,解速度模糊的性能较差。而如果至少两个发射天线组包括的发射天线的编号是不连续的,相对至少两个发射天线组包括的发射天线的编号是连续的而言,不容易产生速度和角度耦合的现象,且雷达装置的各个虚拟天线阵元之间相位跳变较大,解速度模糊的性能较好。优选地,在每个发射天线组中,任意两个编号相邻的发射天线的编号的间隔可以较大,以尽量增大各个虚拟天线阵元之间的相位跳变,降低速度和角度耦合的现象。
需要说明的是,这里的真实速度并不一定指目标物体运动的实际速度,可以指不影响测量目标物体相对雷达的角度的速度。
进一步地,雷达装置在实际使用中,可以对比多个分组方式对应的解速度模糊的性能,一个分组方式可以认为是雷达装置一次随机划分的至少两个发射天线组,从而雷达装置基于解速度模糊的性能最优的分组方式,即第一分组方式确定至少两个发射天线组。雷达装置在预设的时间范围内,多次随机划分发射天线,每一次划分所确定的至少两个发射天线组对应一个分组方式。多个分组方式分别对应的至少两个发射天线组可能相同,也可能有不同。例如,以预设的时间范围内,雷达装置5次随机划分发射天线,那么存在第一分组方式、第二分组方式、第三分组方式、第四分组方式和第五分组方式,其中,这5个分组方式对应的至少两个发射天线组可能相同,也可能不同。假设解模糊速度的性能最优的分组方式为第一分组方式,雷达装置选择第一分组方式可以认为,雷达装置确定这5个分组方式分别对应的至少两个发射天线组对应的速度解模糊的性能,从而选择速度解模糊的性能最优的至少两个发射天线组,这样后续雷达装置可以采用这至少两个发射天线组发送信号,而不需要每次都重新确定至少两个发射天线组,既能够尽量保证后续解速度模糊的性能较好,又可以减少雷达装置的负担。
速度解模糊的性能可以通过分组方式对应的性能参数来表征,例如该性能参数可以是 角度估计精度,或者速度解模糊的成功率。雷达装置可以根据性能参数的取值来确定速度解模糊的性能。例如,性能参数是角度估计精度或速度解模糊的成功率,那么性能参数的取值越大,速度解模糊的性能越好。多个分组方式对应的性能参数中,性能参数的取值最大,表示性能参数最优,速度解模糊的性能最优。
在一些实施例中,雷达装置可以在预设的时间范围内,确定多个分组方式中的第一分组方式。预设的时间范围可以是根据雷达装置在实际使用过程中的经验所得,本申请实施例不作限制。
在本申请实施例中,雷达装置将N个发射天线划分为K个发射天线组,这K个发射天线组采用TDM方式发送信号,且这K个发射天线组中的每个包含多个发射天线的发射天线组包括的多个发射天线采用CDM方式发送信号。从而在解速度模糊时,由于只需要进行K次FFT,所以减小了计算量。且每一个发射天线组包括的发射天线采用CDM方式发送信号,这样在进行FFT时,单位时间内可以积累的信噪比较大,有利于检测目标。
如上的实施例介绍了如何发送信号,以减少后续用于确定目标物体的速度的过程中,涉及到解速度模糊的计算量。对应的,本申请实施例还提供了一种信号处理方法,可以认为是解速度模糊的方法,该方法可以由雷达探测装置来执行,该雷达探测装置可以是雷达芯片,也可以是与雷达进行通信的通信装置,例如为车载通信装置。为阐述方便,本申请实施例下文中多以雷达探测装置为雷达装置,例如毫米波雷达,为例,进行实施例的解释和说明。但是本申请实施例不限定探测装置仅为雷达探测装置,也不限制雷达探测装置仅为毫米波雷达或者雷达。另外,探测装置所发送的信号可以是无线电信号,如果以探测装置是雷达探测装置为例,那么可以认为探测装置所发送的信号是雷达信号。本申请实施例就以探测装置是雷达探测装置、探测装置所发送的信号是雷达信号为例。
请参见图13,为本申请实施例提供的信号处理方法的流程图。在下文的介绍过程中,以该方法应用于雷达装置,其中,雷达装置包括至少三个发射天线和至少一个接收天线。该方法的具体流程如下:
S1301、雷达装置根据至少一个接收天线接收的信号确定至少两组检测信息。
当需要对周围的目标物体进行检测时,例如确定周围的目标物体距离雷达装置的相对距离、角度,或者目标物体的速度时,雷达装置可以通过所包括的发射天线发射雷达信号。如果雷达装置周围存在多个目标物体,且这多个目标物体在雷达装置的最大测距范围内,那么雷达装置发射的雷达信号会被这多个目标物体反射,反射给雷达装置,从而雷达装置接收来自目标物体的至少一个信号。
雷达装置接收至少一个信号,可以对至少一个信号进行处理,从而实现对雷达装置周围的目标物体进行检测。
由于雷达装置的发射天线划分成的两个发射天线组采用TDM方式发送信号,每个包含多个发射天线的发射天线组包括的多个发射天线采用例如CDM方式发送信号。也就是不同的发射天线组发送信号的起始时间不同,因此,不同的发射天线组发送信号的特征也有所不同。雷达装置可以根据不同发射天线组发送的雷达信号的不同,从接收的至少一个信号中提取出对应不同发射天线组的信号。其中,雷达装置从接收的至少一个信号中提取出对应不同发射天线组的信号,也可以理解为,雷达装置根据至少两个发射天线组将接收的至少一个信号划分为至少两组信号,一个发射天线组对应一组信号。
为了便于阐述,在下文的介绍中,以雷达装置包括两个发射天线组为例,这两个发射 天线组分别为第一发射天线组和第二发射天线组,其中,雷达装置从至少一个信号提取的与第一发射天线组对应的信号为第一组信号,雷达装置从至少一个信号提取的与第二发射天线组对应的信号为第二组信号。
雷达装置提取出第一组信号和第二组信号之后,对第一组信号和第二组信号分别进行处理,获得用于检测目标物体的两组检测信息。例如,雷达装置将第一组信号和第二组信号分别转化到距离-多普勒域,获得两组检测信息,例如为第一组检测信息和第二组检测信息。其中,第一信号对应第一组检测信息,第二信号对应第二组检测信息。需要说明的是,如果雷达装置包括至少三个发射天线组,那么雷达装置根据至少一个信号可以确定至少三组检测信息,其中,发射天线组与检测信息组一一对应。例如,雷达装置包括发射天线组1、发射天线组2、发射天线组3,确定的检测信息包括与发射天线组1对应的检测信息组1、与发射天线组2对应的检测信息组2、与发射天线组3对应的检测信息组3。
需要说明的是,这里的检测信息也可以称为检测信号。至少两组检测信息包括的检测信息可以理解为用于确定目标物体特征的信息,例如,检测信息可以是表征目标物体相对雷达装置的距离、速度或者雷达散射截面积(Radar-Cross Section,RCS)等信息,例如,检测信息可以是目标相对雷达装置的距离、速度或RCS等;或者,检测信息也可以是对信号采样和量化后形成的二维数据中的格点或者采样点序号,该格点或者采样点序号可以表征目标物体相对雷达装置的距离。检测信息的表现形式有多种,这里就不一一举例了。当然,如果雷达装置包括至少两个接收天线,那么检测信息还可以包括表征目标物体相对雷达装置的角度的信息。
具体的,在一种可能的方案中,雷达装置对第一组信号或第二组信号进行处理,获得对应的两组检测信息的方法可以参照如上述雷达装置根据中频信号确定目标物体与雷达装置的相对距离和速度的方法,即将第一组信号与本振信号进行混频,获得中频信号,并转化到距离-多普勒域,进而获得两组检测信息。
S1302、雷达装置根据至少两组检测信息确定至少三个检测信息。
雷达装置获得至少两组检测信息后,可以根据每一个发射天线组包括的发射天线对应的CDM码的不同,对至少两组检测信息继续进行分离,获得至少三个检测信息,一个检测信息对应一个发射天线。其中,至少三个检测信息用于确定目标物体的速度估计值,也就是用来检测目标物体的速度。由于所检测的目标物体的速度可能是模糊的,因此,这里称为目标物体的速度估计值。当然,在获得至少三个检测信息之前,雷达装置可以将分离后的至少两组检测信息按照各个发射天线进行非相干积累和恒虚警率(constant false-alarm rate,CFAR)检测。
至少三个检测信息可以用来确定目标物体的位置和速度,但是由于各个发射天线之间由于多普勒频移引起相位跳变,导致确定的速度有可能是模糊的。因此,为了得到目标物体的真实速度,雷达装置可以进行解速度模糊。为了便于区分,在下文中,将通过至少四个检测信息确定的目标物体的速度称为目标物体的速度估计值,将解速度模糊后确定的目标物体的速度称为目标物体的真实速度。需要说明的是,这里的真实速度指的是不影响目标物体测角的速度。
S1303、雷达装置根据第一速度模糊倍数以及目标的速度估计值确定目标的真实速度。
速度模糊倍数可以有多个,速度模糊倍数的个数与至少两个发射天线组的个数相同。这多个速度模糊倍数中有的速度模糊倍数是错误的,有的是正确的。正确的速度模糊倍数 在下文中称为第一速度模糊倍数。雷达装置解速度模糊的过程,可以理解为雷达装置确定第一速度模糊倍数的过程,也就是确定前述ξ的正确取值的过程。
示例性的,雷达装置可以确定多个虚拟天线阵元的多个相位。这里的虚拟天线阵元指的是雷达装置包括的发射天线和接收天线构成的虚拟天线阵元,例如前述图3,如果雷达装置包括3个发射天线和4个接收天线,那么该雷达装置对应包括12个虚拟天线阵元,一个虚拟天线阵元对应一个发射天线和一个接收天线。这多个虚拟天线阵元的多个相位可以理解为是总相位,也就是前述的φ n,k(ξ)。
之后雷达装置可以对多个相位分别进行多普勒相位补偿。也就是在确定的φ n,k(ξ)上减去可能模糊的多普勒相位,具体可以通过如下的公式(11)来进行多普勒相位补偿:
Figure PCTCN2020117876-appb-000008
在公式(11)中,
Figure PCTCN2020117876-appb-000009
为多普勒相位补偿后各个虚拟天线阵元之间的相位。f damb为多普勒频移,N为发射天线的个数,k为虚拟天线阵元对应的发射顺序的编号,ξ=0,...N-1为模糊系数,代表N种可能的多普勒模糊相位,T r为相邻两个发射天线组在时域上发送信号的时间间隔。雷达装置通过公式(11)后可以获得N种可能的相位补偿后的信号。
雷达装置采用角度域FFT解模糊法确定速度模糊倍数。具体的,雷达装置将补偿后获得的信号转换到角度域,也就是在角度域,对补偿后的信号作FFT处理。也可以理解为在角度域,叠加至少三个检测信息,得到N组FFT结果。
如果雷达装置选择了正确的ξ,那么第n个虚拟天线阵元的相位为:
Figure PCTCN2020117876-appb-000010
从公式(12)中可以看出,如果雷达装置选择了正确的ξ,各个虚拟天线阵元的相位仅包含角度信息,即与速度无关,实现速度和角度的解耦,即速度解模糊成功。
雷达装置在角度域对补偿后的信号作FFT处理,这样可以累积到更多的波束能量,从而有利于检测FFT结果的最大峰值,也就是波束能量最高的值。而最大峰值对应的速度模糊倍数就是正确的速度模糊倍数,即第一速度模糊倍数。
雷达装置确定了第一速度模糊倍数,可以通过公式(13)确定雷达接收的回波信号相对于雷达发射天线发射的信号的多普勒频移f d
Figure PCTCN2020117876-appb-000011
在公式(12)中,
Figure PCTCN2020117876-appb-000012
为第一速度模糊倍数的估计值,f damb为多普勒频移,T r为相邻两个发射天线组在时域上发送信号的时间间隔。由于第一速度模糊倍数是正确的,所以f d也接近真实值,从而雷达装置根据f d确定的目标物体的速度也接近目标物体的真实速度。具体的,雷达装置确定目标物体的真实速度v为:
Figure PCTCN2020117876-appb-000013
本申请实施例中,雷达装置将N个发射天线划分为K个发射天线组,这K个发射天线组采用TDM方式发送信号,且这K个发射天线组中的每个包含多个发射天线的发射天 线组包括的多个发射天线采用CDM方式发送信号。从而在解速度模糊时,由于只需要进行K次FFT,所以减小了计算量。且每个包含多个发射天线的发射天线组包括的多个发射天线采用CDM方式发送信号,这样在进行FFT时,单位时间内可以积累的信噪比较大,有利于检测目标。
上述主要从雷达装置发送信号以及处理信号的角度对本申请实施例提供的方案进行了介绍。下面结合附图介绍本申请实施例中用来实现上述方法的装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。
可以理解的是,各个装置,例如雷达装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
本申请实施例可以对雷达装置进行功能模块的划分,例如,可对应各个功能划分各个功能模块,也可将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
例如,以采用集成的方式划分雷达装置各个功能模块的情况下,图14示出了本申请上述实施例中所涉及的雷达装置的一种可能的结构示意图。该雷达装置14可以包括处理单元1401、通信接口1402和存储单元1403。其中,通信接口1402也可以称为接口单元。
其中,第一种设计中,处理单元1401可以用于执行或控制图8所示的实施例中由雷达装置所执行的除了收发操作之外的全部操作,例如S801,和/或用于支持本文所描述的技术的其它过程。通信接口1402可以用于执行图8所示的实施例中由雷达装置所执行的全部收发操作,例如S802,和/或用于支持本文所描述的技术的其它过程。该雷达装置包括至少三个发射天线,其中,
处理单元1401,用于确定雷达装置的至少两个发射天线组,其中,每个发射天线组包括至少一个发射天线;
通信接口1402,用于控制至少两个发射天线组发送信号,其中,至少两个发射天线组采用时分多路复用TDM方式发送信号,至少两个发射天线组中的每个包括多个发射天线的发射天线组包括的多个发射天线采用CDM方式发送信号。
作为一种可选的设计,处理单元1401具体用于:
根据至少三个发射天线随机确定至少两个发射天线组。
作为一种可选的设计,雷达装置包括的发射天线的编号为1到N,N大于或等于3,在每个发射天线组中,至少存在两个发射天线的编号不连续;或者,在每个发射天线组中,任意两个发射天线的编号不连续。
作为一种可选的设计,在每个发射天线组中,至少存在两个编号相邻的发射天线的编号的间隔大于1,或者,任意两个编号相邻的发射天线的编号的间隔大于1。
作为一种可选的设计,处理单元1401具体用于:
确定多个分组方式中的第一分组方式,基于第一分组方式所确定的至少两个发射天线 组的性能参数最优,性能参数用于指示速度解模糊的性能。
作为一种可选的设计,多个分组方式包括至少两个发射天线组所有可能的分组方式。
作为一种可选的设计,至少两个发射天线组包含的发射天线的数目不同或者相同。
或者作为另一种设计中,处理单元1401可以用于执行图13所示的实施例中由雷达装置所执行的除了收发操作之外的全部操作,例如S1302,S1303和/或用于支持本文所描述的技术的其它过程。通信接口1402可以用于执行或者控制图13所示的实施例中由雷达装置所执行的全部收发操作,例如S1301和/或用于支持本文所描述的技术的其它过程。其中,
通信接口1402,用于接收至少一个信号;
处理单元1401,用于根据通信接口1402接收的信号确定至少两组检测信息,至少两组检测信息对应至少三个发射天线组成的至少两个发射天线组,每个发射天线组包括至少一个发射天线,其中,至少两个发射天线组采用TDM方式发送信号,至少两个发射天线组中的每个包括多个发射天线的发射天线组包括的多个发射天线采用CDM方式发送信号;
根据至少两组检测信息确定至少三个检测信息,其中,至少三个检测信息用于确定目标的速度估计值,其中,至少三个检测信息对应于至少三个发射天线;
根据第一速度模糊倍数以及目标的速度估计值确定目标的真实速度,第一速度模糊倍数为对应于至少两组检测信息的至少两个速度模糊倍数中的一个。
作为一种可选的设计,处理单元1401具体用于:
将至少两组信号分别转化到距离-多普勒域,获得至少两组检测信息;
其中,至少两组信号为接收到的信号中对应于至少两个发射天线组的信号。
作为一种可选的设计,处理单元1401具体用于:
确定雷达装置包括的多个虚拟天线阵元的多个相位,其中,虚拟天线阵元对应一个发射天线和一个接收天线,一个虚拟天线阵元对应一个相位;
对多个相位分别进行多普勒相位补偿;
在角度域,叠加至少两个检测信息,并根据叠加结果确定速度模糊倍数。
作为一种可选的设计,处理单元1401具体用于:
将叠加结果中,最大峰值对应的速度模糊倍数确定为速度模糊倍数。
在另一种设计下,可选的设计可以独立实现,也可以与上述任一可选的设计集成实现。
图15为本申请实施例提供的雷达装置的另一种可能的结构示意图。该雷达装置15可以包处理器1501、发射器1502以及接收器1503。其功能可分别与图14所展示的处理单元1401和通信接口1402的具体功能相对应,此处不再赘述。通信接口1402可以通过发射器1502以及接收器1503实现。可选的,雷达装置15还可以包含存储器1504,用于存储程序指令和/或数据,以供处理器1501读取。
前述图2提供了一种雷达装置的结构示意图。参考上述内容,提出又一可选的方式。图16提供了雷达装置再一种可能的结构示意图。图14~图16所提供的雷达装置可以为实际通信场景中雷达装置的部分或者全部,或者可以是集成在雷达装置中或者位于雷达装置外部的功能模块,例如可以是芯片系统,具体以实现相应的功能为准,不对雷达装置结构和组成进行具体限定。
该可选的方式中,雷达装置16包括发射天线1601、接收天线1602以及处理器1603。进一步,所述雷达装置还包括混频器1604和/或振荡器1605。进一步,雷达装置16还可以包括低通滤波器和/或耦合器等。其中,发射天线1601和接收天线1602用于支持所述探 测装置进行无线电通信,发射天线1601支持雷达信号的发射,接收天线1602支持雷达信号的接收和/或反射信号的接收,以最终实现探测功能。处理器1603执行一些可能的确定和/或处理功能。进一步,处理器1603还控制发射天线1601和/或接收天线1602的操作。具体的,需要发射的信号通过处理器1603控制发射天线1601进行发射,通过接收天线1602接收到的信号可以传输给处理器1603进行相应的处理。雷达装置16所包含的各个部件可用于配合执行图8或图13所示的实施例所提供的方法。可选的,雷达装置还可以包含存储器,用于存储程序指令和/或数据。其中,发射天线1601和接收天线1602可以是独立设置的,也可以集成设置为收发天线,执行相应的收发功能。
其中,第一种设计中,处理器1603可以用于执行图8所示的实施例中由雷达装置所执行的除了收发操作之外的全部操作,例如S801,和/或用于支持本文所描述的技术的其它过程。发射天线1601和接收天线1602可以用于执行图8所示的实施例中由雷达装置所执行的全部收发操作,例如S802,和/或用于支持本文所描述的技术的其它过程。所述发射天线1601包括至少三个发射天线,其中,
处理器1603,用于确定雷达装置的至少两个发射天线组,其中,每个发射天线组包括至少一个发射天线;
所述发射天线1601,用于以至少两个发射天线组的方式发送信号,其中,至少两个发射天线组采用时分多路复用TDM方式发送信号,至少两个发射天线组中的每个包括多个发射天线的发射天线组包括的多个发射天线采用码分多路复用CDM方式发送信号。
作为一种可选的设计,处理器1603具体用于:
根据至少三个发射天线随机确定至少两个发射天线组。
作为一种可选的设计,雷达装置包括的发射天线的编号为1到N,N大于或等于3,在每个发射天线组中,至少存在两个发射天线的编号不连续;或者,在每个发射天线组中,任意两个发射天线的编号不连续。
作为一种可选的设计,在每个发射天线组中,至少存在两个编号相邻的发射天线的编号的间隔大于1,或者,任意两个编号相邻的发射天线的编号的间隔大于1。
作为一种可选的设计,处理器1603具体用于:
确定多个分组方式中的第一分组方式,基于第一分组方式所确定的至少两个发射天线组的性能参数最优,性能参数用于指示速度解模糊的性能。
作为一种可选的设计,多个分组方式包括至少两个发射天线组所有可能的分组方式。
作为一种可选的设计,至少两个发射天线组包含的发射天线的数目不同或者相同。
或者作为另一种设计中,处理器1603可以用于执行图13所示的实施例中由雷达装置所执行的除了收发操作之外的全部操作,例如S1302,S1303和/或用于支持本文所描述的技术的其它过程。发射天线1601和接收天线1602可以用于执行图13所示的实施例中由雷达装置所执行的全部收发操作,例如S1301和/或用于支持本文所描述的技术的其它过程。所述接收天线1602包括至少一个接收天线,其中,
所述接收天线1602,用于以至少一个接收天线的方式接收至少一个信号;
处理器1603,用于根据所述接收天线1602接收的信号确定至少两组检测信息,至少两组检测信息对应至少三个发射天线组成的至少两个发射天线组,每个发射天线组包括至少一个发射天线,其中,至少两个发射天线组采用TDM方式发送信号,至少两个发射天线组中的每个包括多个发射天线的发射天线组包括的多个发射天线采用CDM方式发送信 号;
根据至少两组检测信息确定至少三个检测信息,其中,至少三个检测信息用于确定目标的速度估计值,其中,至少三个检测信息对应于至少三个发射天线;
根据第一速度模糊倍数以及目标的速度估计值确定目标的真实速度,第一速度模糊倍数为对应于至少两组检测信息的至少两个速度模糊倍数中的一个。
作为一种可选的设计,处理器1603具体用于:
将至少两组信号分别转化到距离-多普勒域,获得至少两组检测信息;
其中,至少两组信号为接收到的信号中对应于至少两个发射天线组的信号。
作为一种可选的设计,处理器1603具体用于:
确定雷达装置包括的多个虚拟天线阵元的多个相位,其中,虚拟天线阵元对应一个发射天线和一个接收天线,一个虚拟天线阵元对应一个相位;
对多个相位分别进行多普勒相位补偿;
在角度域,叠加至少两个检测信息,并根据叠加结果确定速度模糊倍数。
作为一种可选的设计,处理单元处理器1603具体用于:
将叠加结果中,最大峰值对应的速度模糊倍数确定为速度模糊倍数。
图17为本申请实施例提供的一种装置17的结构示意图。图17所示的装置17可以是雷达装置本身,或者可以是能够完成雷达装置的功能的芯片或电路,例如该芯片或电路可以设置在雷达装置中。图17所示的装置17可以包括处理器1701(例如处理单元1401可以通过处理器1501实现,处理器1501和处理器1701例如可以是同一部件)和接口电路1702(例如收发单元1402可以通过接口电路1702实现,发射器1502和接收器1503与接口电路1702例如为同一部件)。该处理器1701可以使得装置17实现图8或图13所示的实施例所提供的方法中雷达装置所执行的步骤。可选的,装置17还可以包括存储器1703,存储器1703可用于存储指令。处理器1701通过执行存储器1703所存储的指令,使得装置17实现图8或图13所示的实施例所提供的方法中雷达装置所执行的步骤。
进一步的,处理器1701、接口电路1702和存储器1703之间可以通过内部连接通路互相通信,传递控制和/或数据信号。存储器1703用于存储计算机程序,处理器1701可以从存储器1703中调用并运行计算机程序,以控制接口电路1702接收信号或发送信号,完成图8或图13所示的实施例所提供的方法中雷达装置执行的步骤。存储器1703可以集成在处理器1701中,也可以与处理器1701分开设置。
可选地,若装置17为设备,接口电路1702可以包括接收器和发送器。其中,接收器和发送器可以为相同的部件,或者为不同的部件。接收器和发送器为相同的部件时,可以将该部件称为收发器。
可选地,若装置17为芯片或电路,则接口电路1702可以包括输入接口和输出接口,输入接口和输出接口可以是相同的接口,或者可以分别是不同的接口。
可选地,若装置17为芯片或电路,装置17也可以不包括存储器1703,处理器1701可以读取该芯片或电路外部的存储器中的指令(程序或代码)以实现图9或图13所示的实施例所提供的方法中第一雷达探测装置执行的步骤。
可选地,若装置17为芯片或电路,则装置17可以包括电阻、电容或其他相应的功能部件,处理器1701或接口电路1702可以通过相应的功能部件实现。
作为一种实现方式,接口电路1702的功能可以考虑通过收发电路或收发的专用芯片 实现。处理器1701可以考虑通过专用处理芯片、处理电路、处理器或通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的雷达装置。即,将实现处理器1701、接口电路1702的功能的程序代码存储在存储器1703中,处理器1701通过执行存储器1703存储的程序代码来实现处理器1701、接口电路1702的功能。
其中,以上列举的装置17中各模块或单元的功能和动作仅为示例性说明,装置17中各功能单元可用于执行图8或图13所示的实施例中雷达装置所执行的各动作或处理过程。这里为了避免赘述,省略其详细说明。
再一种可选的方式,当使用软件实现雷达装置时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地实现本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如软盘、硬盘、磁带)、光介质(例如DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
需要说明的是,用于执行本申请实施例提供的检测方法或信号发送方法的上述探测装置中所包含的处理器可以是中央处理器(central processing unit,CPU),通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
结合本申请实施例所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory,ROM)存储器、可擦除可编程只读存储器(erasable programmable read-only memory,EPROM)、电可擦除可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(compact disc read-only memory,CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于探测装置中。当然,处理器和存储介质也可以作为分立组件存在于探测装置中。
可以理解的是,图14~图17仅仅示出了雷达装置的简化设计。在实际应用中,雷达装置可以包含任意数量的发射器,接收器,处理器,控制器,存储器以及其他可能存在的元件。
本申请实施例还提供一种通信系统,其包含执行本申请上述实施例所提到的至少一个雷达装置和/或至少一个中央节点等通信装置。所述中央节点用于根据所述至少一个雷达装置的发射参数,控制车辆的行驶和/或其他雷达装置的处理。所述中央节点可以位于车辆中,或者其他可能的位置,以实现所述控制为准。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (23)

  1. 一种信号发送方法,其特征在于,应用于雷达装置,所述雷达装置包括至少三个发射天线,所述方法包括:
    确定所述雷达装置的至少两个发射天线组,其中,每个所述发射天线组包括至少一个发射天线;
    通过所述至少两个发射天线组发送信号,其中,所述至少两个发射天线组采用时分多路复用TDM方式发送信号,所述至少两个发射天线组中的每个包含多个发射天线的发射天线组包括的所述多个发射天线采用码分多路复用CDM方式发送信号。
  2. 如权利要求1所述的方法,其特征在于,确定所述雷达装置的至少两个发射天线组,包括:
    根据所述至少三个发射天线随机确定所述至少两个发射天线组。
  3. 如权利要求1或2所述的方法,其特征在于,所述雷达装置包括的发射天线的编号为1到N,所述N大于或等于3,在所述每个发射天线组中,至少存在两个发射天线的编号不连续;或者,在所述每个发射天线组中,任意两个发射天线的编号不连续。
  4. 如权利要求1-3任一所述的方法,其特征在于,在所述每个发射天线组中,至少存在两个编号相邻的发射天线的编号的间隔大于1,或者,任意两个编号相邻的发射天线的编号的间隔大于1。
  5. 如权利要求1所述的方法,其特征在于,所述确定所述雷达装置的至少两个发射天线组,包括:
    确定多个分组方式中的第一分组方式,所述第一分组方式所指示的所述至少两个发射天线组的性能参数最优,所述性能参数用于指示速度解模糊的性能。
  6. 如权利要求5所述的方法,其特征在于,
    所述多个分组方式包括所述至少三个发射天线所有可能的分组方式。
  7. 如权利要求1-4任一所述的方法,其特征在于,所述至少两个发射天线组包含的发射天线的数目不同或者相同。
  8. 一种信号处理方法,其特征在于,应用于雷达装置,所述雷达装置包括至少三个发射天线和至少一个接收天线,所述方法包括:
    根据所述至少一个接收天线接收的信号确定至少两组检测信息,所述至少两组检测信息对应所述至少三个发射天线组成的至少两个发射天线组,每个所述发射天线组包括至少一个发射天线,其中,所述至少两个发射天线组采用TDM方式发送信号,所述至少两个发射天线组中的每个包含多个发射天线的发射天线组包括的所述多个发射天线采用CDM方式发送信号;
    根据所述至少两组检测信息确定至少三个检测信息,其中,所述至少三个检测信息用于确定目标的速度估计值,其中,所述至少三个检测信息对应于所述至少三个发射天线;
    根据第一速度模糊倍数以及所述目标的速度估计值确定所述目标的真实速度,所述第一速度模糊倍数为对应于所述至少两组检测信息的至少两个速度模糊倍数中的一个。
  9. 如权利要求8所述的方法,其特征在于,所述根据所述至少一个接收天线接收的信号确定至少两组检测信息,包括:
    将所述至少两组信号分别转化到距离-多普勒域,获得所述至少两组检测信息;
    其中,所述至少两组信号为所述接收到的信号中对应于所述至少两个发射天线组的信号。
  10. 一种装置,其特征在于,所述装置包括:
    至少一个处理器,用于确定所述装置的至少两个发射天线组,其中,每个所述发射天线组包括至少一个发射天线;以及,
    所述至少两个发射天线组,用于发送信号,其中,所述至少两个发射天线组采用时分多路复用TDM方式发送信号,所述至少两个发射天线组中的每个包含多个发射天线的发射天线组包括的所述多个发射天线采用码分多路复用CDM方式发送信号。
  11. 如权利要求10所述的装置,其特征在于,所述至少一个处理器具体用于:
    根据所述至少三个发射天线随机确定所述至少两个发射天线组。
  12. 如权利要求10或11所述的装置,其特征在于,所述装置包括的发射天线的编号为1到N,所述N大于或等于3,在所述每个发射天线组中,至少存在两个发射天线的编号不连续;或者,在所述每个发射天线组中,任意两个发射天线的编号不连续。
  13. 如权利要求10-12任一所述的装置,其特征在于,在所述每个发射天线组中,至少存在两个编号相邻的发射天线的编号的间隔大于1,或者,任意两个编号相邻的发射天线的编号的间隔大于1。
  14. 如权利要求10所述的装置,其特征在于,所述至少一个处理器具体用于:
    确定多个分组方式中的第一分组方式,基于所述第一分组方式所指示的所述至少两个发射天线组的性能参数最优,所述性能参数用于指示速度解模糊的性能。
  15. 如权利要求14所述的装置,其特征在于,
    所述多个分组方式包括所述至少三个发射天线所有可能的分组方式。
  16. 如权利要求10-13任一所述的装置,其特征在于,所述至少两个发射天线组包含的发射天线的数目不同或者相同。
  17. 一种装置,其特征在于,所述装置包括:
    至少一个接收天线,用于接收至少一个信号;
    至少一个处理器,用于根据所述至少一个接收天线接收的信号确定至少两组检测信息,所述至少两组检测信息对应所述装置包括的至少三个发射天线组成的至少两个发射天线组,每个所述发射天线组包括至少一个发射天线,其中,所述至少两个发射天线组采用TDM方式发送信号,所述至少两个发射天线组中的每个包含多个发射天线的发射天线组包括的所述多个发射天线采用CDM方式发送信号;
    根据所述至少两组检测信息确定至少三个检测信息,其中,所述至少三个检测信息用于确定目标的速度估计值,其中,所述至少三个检测信息对应于所述至少三个发射天线;
    根据第一速度模糊倍数以及所述目标的速度估计值确定所述目标的真实速度,所述第一速度模糊倍数为对应于所述至少两组检测信息的至少两个速度模糊倍数中的一个。
  18. 如权利要求17所述的装置,其特征在于,所述至少一个处理器具体用于:
    将所述至少两组信号分别转化到距离-多普勒域,获得所述至少两组检测信息;
    其中,所述至少两组信号为所述接收到的信号中对应于所述至少两个发射天线组的信号。
  19. 一种装置,其特征在于,所述装置包括:
    存储器:用于存储指令;
    处理器,用于从所述存储器中调用并运行所述指令,使得所述装置或者安装有所述装置的设备执行如权利要求1~7或8~9中任意一项所述的方法。
  20. 一种方法,其特征在于,所述方法包括:
    确定雷达装置的至少两个发射天线组,其中,每个所述发射天线组包括至少一个发射天线;
    控制所述至少两个发射天线组采用时分多路复用TDM方式发送信号,以及,控制所述至少两个发射天线组中的每个包含多个发射天线的发射天线组包括的所述多个发射天线采用码分多路复用CDM方式发送信号。
  21. 一种装置,其特征在于,所述装置包括至少一个处理器以及通信接口,所述通信接口用于为所述至少一个处理器提供程序指令,当所述至少一个处理器执行所述程序指令时,实现以下步骤:
    确定雷达装置的至少两个发射天线组,其中,每个所述发射天线组包括至少一个发射天线;
    控制所述至少两个发射天线组采用时分多路复用TDM方式发送信号,以及,控制所述至少两个发射天线组中的每个包含多个发射天线的发射天线组包括的所述多个发射天线采用码分多路复用CDM方式发送信号。
  22. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~7或8~9中任意一项所述的方法。
  23. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求1~7或8~9中任意一项所述的方法。
PCT/CN2020/117876 2019-09-30 2020-09-25 一种信号发送方法、信号处理方法及雷达装置 WO2021063269A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20871063.2A EP4027168A4 (en) 2019-09-30 2020-09-25 SIGNAL TRANSMISSION METHOD, SIGNAL PROCESSING METHOD AND RADAR DEVICE
US17/709,228 US20220221569A1 (en) 2019-09-30 2022-03-30 Signal sending method, signal processing method, and radar apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910945492.4 2019-09-30
CN201910945492.4A CN112578342A (zh) 2019-09-30 2019-09-30 一种信号发送方法、信号处理方法及雷达装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/709,228 Continuation US20220221569A1 (en) 2019-09-30 2022-03-30 Signal sending method, signal processing method, and radar apparatus

Publications (1)

Publication Number Publication Date
WO2021063269A1 true WO2021063269A1 (zh) 2021-04-08

Family

ID=75116890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117876 WO2021063269A1 (zh) 2019-09-30 2020-09-25 一种信号发送方法、信号处理方法及雷达装置

Country Status (4)

Country Link
US (1) US20220221569A1 (zh)
EP (1) EP4027168A4 (zh)
CN (1) CN112578342A (zh)
WO (1) WO2021063269A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115421134A (zh) * 2022-08-15 2022-12-02 赛恩领动(上海)智能科技有限公司 一种雷达的速度解模糊的方法、装置及毫米波雷达

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021127172A1 (en) * 2019-12-20 2021-06-24 Oculii Corp. Systems and methods for phase-modulated radar detection
DE102020107222A1 (de) * 2020-03-17 2021-09-23 HELLA GmbH & Co. KGaA Verfahren zur Bestimmung einer Richtungsinformation

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103299207A (zh) * 2010-12-29 2013-09-11 罗伯特·博世有限公司 用于机动车的雷达传感器
CN104076351A (zh) * 2014-06-30 2014-10-01 电子科技大学 一种用于高速高机动目标的相参积累检测方法
CN104348763A (zh) * 2013-07-23 2015-02-11 华为技术有限公司 一种用于大规模天线的信道测量方法和用户终端
WO2015028175A1 (de) * 2013-08-26 2015-03-05 Robert Bosch Gmbh Radarsensor für kraftfahrzeuge
CN105759271A (zh) * 2015-01-07 2016-07-13 通用汽车环球科技运作有限责任公司 空间认知雷达
US20160204840A1 (en) * 2015-01-12 2016-07-14 Mitsubishi Electric Research Laboratories, Inc. System and Method for 3D Imaging Using a Moving Multiple-Input Multiple-Output (MIMO) Linear Antenna Array
US9509382B1 (en) * 2006-05-02 2016-11-29 Marvell International Ltd. Beamforming to a subset of receive antennas in a wireless MIMO communication system
WO2017061933A1 (en) * 2015-10-09 2017-04-13 Qamcom Technology Ab Method and antenna apparatus
CN107870327A (zh) * 2016-09-26 2018-04-03 松下电器产业株式会社 雷达装置
CN108120965A (zh) * 2016-11-28 2018-06-05 株式会社万都 雷达装置及其误差校正的方法
CN108120957A (zh) * 2016-11-28 2018-06-05 株式会社万都 雷达装置及其天线装置
CN108594233A (zh) * 2018-04-24 2018-09-28 森思泰克河北科技有限公司 一种基于mimo汽车雷达的速度解模糊方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100501221B1 (ko) * 2003-01-04 2005-07-18 주식회사중앙시스템 디지털 위성방송 중계장치
US11067427B2 (en) * 2015-11-17 2021-07-20 Vega Grieshaber Kg Antenna device and method for operating an antenna device
DE102017200317A1 (de) * 2017-01-11 2018-07-12 Robert Bosch Gmbh Radarsensor und Verfahren zur Bestimmung einer Relativgeschwindigkeit eines Radarziels
CN107688178A (zh) * 2017-08-25 2018-02-13 上海通趣科技有限公司 一种基于77GHz毫米波雷达的锯齿波测距测速方法
CN109343053A (zh) * 2018-11-26 2019-02-15 上海瀚唯科技有限公司 4d毫米波雷达系统空间信息感知方法
CN112578341A (zh) * 2019-09-30 2021-03-30 华为技术有限公司 一种信号发送方法、信号处理方法及装置
DE102020111533A1 (de) * 2020-04-28 2021-10-28 Infineon Technologies Ag Mimo-radar-vorrichtungen und mimo-radar-verfahren

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9509382B1 (en) * 2006-05-02 2016-11-29 Marvell International Ltd. Beamforming to a subset of receive antennas in a wireless MIMO communication system
CN103299207A (zh) * 2010-12-29 2013-09-11 罗伯特·博世有限公司 用于机动车的雷达传感器
CN104348763A (zh) * 2013-07-23 2015-02-11 华为技术有限公司 一种用于大规模天线的信道测量方法和用户终端
WO2015028175A1 (de) * 2013-08-26 2015-03-05 Robert Bosch Gmbh Radarsensor für kraftfahrzeuge
CN104076351A (zh) * 2014-06-30 2014-10-01 电子科技大学 一种用于高速高机动目标的相参积累检测方法
CN105759271A (zh) * 2015-01-07 2016-07-13 通用汽车环球科技运作有限责任公司 空间认知雷达
US20160204840A1 (en) * 2015-01-12 2016-07-14 Mitsubishi Electric Research Laboratories, Inc. System and Method for 3D Imaging Using a Moving Multiple-Input Multiple-Output (MIMO) Linear Antenna Array
WO2017061933A1 (en) * 2015-10-09 2017-04-13 Qamcom Technology Ab Method and antenna apparatus
CN107870327A (zh) * 2016-09-26 2018-04-03 松下电器产业株式会社 雷达装置
CN108120965A (zh) * 2016-11-28 2018-06-05 株式会社万都 雷达装置及其误差校正的方法
CN108120957A (zh) * 2016-11-28 2018-06-05 株式会社万都 雷达装置及其天线装置
CN108594233A (zh) * 2018-04-24 2018-09-28 森思泰克河北科技有限公司 一种基于mimo汽车雷达的速度解模糊方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4027168A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115421134A (zh) * 2022-08-15 2022-12-02 赛恩领动(上海)智能科技有限公司 一种雷达的速度解模糊的方法、装置及毫米波雷达
CN115421134B (zh) * 2022-08-15 2023-12-19 赛恩领动(上海)智能科技有限公司 一种雷达的速度解模糊的方法、装置及毫米波雷达

Also Published As

Publication number Publication date
CN112578342A (zh) 2021-03-30
EP4027168A4 (en) 2022-10-19
US20220221569A1 (en) 2022-07-14
EP4027168A1 (en) 2022-07-13

Similar Documents

Publication Publication Date Title
WO2021063269A1 (zh) 一种信号发送方法、信号处理方法及雷达装置
CN110824444B (zh) 用于解析速度模糊的mimo雷达译码
US10914818B2 (en) Angle-resolving FMCW radar sensor
CN106537170B (zh) 雷达系统中的分布式雷达信号处理
US11422249B2 (en) Radar device and method for detecting radar targets
CN113567928A (zh) Mimo雷达装置和mimo雷达方法
CN111157981A (zh) 多入多出调频连续波雷达系统
US11525908B2 (en) Radar apparatuses and methods involving determination of velocity of an object
JP2009522575A (ja) レーダセンサ前端用の時間二重化の装置及び方法
JP7437439B2 (ja) 情報測定方法および情報測定装置
KR20210018339A (ko) 레이더 센서 시스템
CN114137522A (zh) 面向自动驾驶的毫米波正交波形优化方法及车载雷达系统
WO2021008139A1 (zh) 一种检测方法、信号发送方法及装置
CN114814817A (zh) 运动目标速度解模糊方法、装置、电子设备及存储介质
CN117233705A (zh) 一种基于bpsk调相模式的三发四收方法、系统及装置
CN112578341A (zh) 一种信号发送方法、信号处理方法及装置
CN116500620A (zh) 毫米波雷达的数据处理方法、装置、存储介质及无人车
Lim et al. Enhanced velocity estimation based on joint Doppler frequency and range rate measurements
CN112083405B (zh) 一种基于混合波形的目标检测方法及相关装置
US11047974B1 (en) Systems and methods for virtual doppler and/or aperture enhancement
CN114609624A (zh) 基于mimo雷达的目标速度解法、存储器以及电子设备
KR20210109855A (ko) 차량용 레이더의 송신신호 위상 보정 장치 및 방법과, 그를 포함하는 차량용 레이더 장치
US20230176188A1 (en) Target tracking using circulated time division multiplexing of multiple-input multiple-output radar
EP4276490A1 (en) Interference listening method and device, and radar
US20230305103A1 (en) Mimo radar apparatus and mimo radar method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020871063

Country of ref document: EP

Effective date: 20220408