WO2011030721A1 - 基板処理装置の運転方法 - Google Patents

基板処理装置の運転方法 Download PDF

Info

Publication number
WO2011030721A1
WO2011030721A1 PCT/JP2010/065132 JP2010065132W WO2011030721A1 WO 2011030721 A1 WO2011030721 A1 WO 2011030721A1 JP 2010065132 W JP2010065132 W JP 2010065132W WO 2011030721 A1 WO2011030721 A1 WO 2011030721A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
substrate
gas
vacuum chamber
processing apparatus
Prior art date
Application number
PCT/JP2010/065132
Other languages
English (en)
French (fr)
Inventor
豊 小風
昌久 植田
善明 吉田
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to KR1020127006040A priority Critical patent/KR101338771B1/ko
Priority to DE112010003598T priority patent/DE112010003598T5/de
Priority to JP2011530822A priority patent/JPWO2011030721A1/ja
Priority to CN201080039989.7A priority patent/CN102484065B/zh
Publication of WO2011030721A1 publication Critical patent/WO2011030721A1/ja
Priority to US13/414,953 priority patent/US9305752B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas

Definitions

  • the present invention relates to a method for operating a substrate processing apparatus.
  • Piezoelectric elements that are currently developed and put to practical use in sensors, actuators, transmitters, RF filters, etc., and ferroelectric memories (FeRAM) that are used as nonvolatile memories for various IC cards, portable information terminals, etc.
  • FeRAM ferroelectric memories
  • a ferroelectric thin film is sandwiched between noble metal electrodes. Dry etching using plasma is used for microfabrication of ferroelectric thin films and noble metal electrodes.
  • Ferroelectric thin films and noble metal electrodes are called difficult-to-etch materials and are reactive with halogen gas (plasma). Since these halides have a low vapor pressure, the etching product is not exhausted as a gas and tends to adhere to the inner wall of the chamber. When ions in the plasma come into contact with the deposit, they react and the deposit is separated from the inner wall of the chamber to generate particles. The generated particles adhered to the processing substrate, which caused a reduction in device yield.
  • plasma halogen gas
  • the present inventor pays attention to the fact that when the plasma immediately after generation is unstable, ions in the plasma react with the deposits to generate particles, and how to stably generate the plasma is important. Recognized as a result of research, the present invention was completed.
  • the present invention was created in order to solve the disadvantages of the prior art described above, and an object of the present invention is to provide a method of operating a substrate processing apparatus that can stably generate plasma and suppress generation of particles. .
  • the present invention applies a voltage to a vacuum chamber, a vacuum exhaust unit that evacuates the vacuum chamber, a gas supply unit that supplies a gas into the vacuum chamber, and a plasma generation unit. And a plasma generation unit for generating plasma of the gas in the vacuum chamber, and the substrate processing apparatus for processing the substrate by bringing the plasma into contact with the substrate disposed in the vacuum chamber.
  • a plasma processing step of contacting the substrate with the rare gas plasma to generate the reactive gas plasma, and contacting the plasma of the reactive gas with the substrate to process the substrate. It is.
  • the present invention is a method for operating a substrate processing apparatus, wherein the pressure in the vacuum chamber at the time of plasma generation in the plasma ignition step is higher than the pressure in the vacuum chamber at the start of substrate processing in the plasma processing step. It is the operating method of a substrate processing apparatus.
  • the present invention is a method for operating a substrate processing apparatus, wherein the supply flow rate of the rare gas into the vacuum chamber during plasma generation in the plasma ignition step is the vacuum at the start of substrate processing in the plasma processing step. This is a method of operating the substrate processing apparatus that is larger than the supply flow rate of the rare gas into the tank.
  • the present invention is a method for operating a substrate processing apparatus, wherein the rare gas contains any one kind of gas selected from the group consisting of He, Ne, Ar, Kr, and Xe. It is the operation method of an apparatus.
  • the present invention is a method for operating a substrate processing apparatus, wherein, in the plasma processing step, the plasma of the reactive gas is brought into contact with the substrate to etch the substrate.
  • the present invention is a method for operating a substrate processing apparatus, wherein the substrate includes an electrode film made of a conductive material and a ferroelectric film made of a ferroelectric material, and in the plasma processing step, plasma of the reactive gas is used.
  • the present invention is a method for operating a substrate processing apparatus, wherein the electrode film contains at least one conductive material selected from the group of conductive materials composed of Pt, Ir, IrO 2 , and SrRuO 3. It is the operating method of a substrate processing apparatus.
  • the present invention is a method for operating a substrate processing apparatus, wherein the ferroelectric film includes barium titanate (BaTiO 3 ), lead titanate (PbTiO 3 ), and bismuth lanthanum titanate ((Bi, La) 4 Ti.
  • the present invention relates to a method for operating a substrate processing apparatus, wherein the reaction gas includes any one halogen element selected from the group consisting of fluorine, chlorine, bromine, and iodine in a chemical structure.
  • the reaction gas includes any one halogen element selected from the group consisting of fluorine, chlorine, bromine, and iodine in a chemical structure.
  • the etching apparatus 80 includes a vacuum chamber 89, a plasma generation unit 92, a gas supply unit 81, a vacuum exhaust unit 82, and a temperature control unit 88. Inside the vacuum chamber 89, a stage 86 for placing a substrate is provided. The stage 86 is provided with an electrode 95, and a chuck DC power source 96 is electrically connected to the electrode 95. When a DC voltage is applied to the electrode 95 from the chuck DC power supply 96, the stage 86 is configured to hold the substrate placed on the stage 86 by electrostatic attraction.
  • ICP inductively coupled plasma
  • the temperature controller 88 is connected to the stage 86, and controls the heater 99 provided on the stage 86 while flowing a heat conduction medium such as He gas between the stage 86 and the substrate to be processed.
  • the substrate which is the processing object placed on the stage 86, can be heated or cooled to a predetermined temperature.
  • An RF introduction window 93 made of quartz, alumina or the like is provided at the top (ceiling portion) of the vacuum chamber 89 so that radio waves can be transmitted from the outside to the inside of the vacuum chamber 89.
  • the plasma generation unit 92 includes an RF antenna 83 as a plasma generation unit, a matching box 87a, and an AC power source 84 for plasma.
  • the RF antenna 83 is installed above the RF introduction window 93 and is electrically connected to the plasma AC power source 84 via the matching box 87a.
  • an AC voltage is applied from the plasma AC power source 84 to the RF antenna 83, radio waves are radiated from the RF antenna 83 through the RF introduction window 93 into the vacuum chamber 89, and the etching gas supplied into the vacuum chamber 89 is plasma. It can be made.
  • An AC power source 85 for sputtering is electrically connected to the electrode 97 provided on the stage 86 through a matching box 87b.
  • a matching box 87b When an AC voltage is applied from the sputtering AC power supply 85 to the electrode 97 of the stage 86, ions in the plasma are accelerated and collide with the substrate on the stage 86 so that the substrate can be etched.
  • Both the gas supply unit 81 and the vacuum exhaust unit 82 are disposed outside the vacuum chamber 89.
  • the vacuum exhaust unit 82 includes a pressure regulating valve 82a and a vacuum pump 82b.
  • the vacuum pump 82b is connected to the inside of the vacuum chamber 89 via the pressure regulating valve 82a, and the inside of the vacuum chamber 89 can be evacuated.
  • the gas supply unit 81 is connected to the inside of the vacuum chamber 89 so that an etching gas can be supplied into the vacuum chamber 89.
  • ⁇ Operation method of substrate processing apparatus A method for operating the substrate processing apparatus according to the present invention will be described using the etching apparatus 80 described above.
  • a substrate on which an Ir thin film is formed on the surface facing upward is used as a processing object.
  • the vacuum chamber 89 is evacuated by the evacuation unit 82.
  • the evacuation unit 82 continues to evacuate the vacuum chamber 89.
  • the substrate is loaded into the vacuum chamber 89 while maintaining the vacuum atmosphere in the vacuum chamber 89 by a loading device (not shown), and the surface opposite to the surface on which the Ir thin film is formed is brought into contact with the stage 86, so that the Ir thin film The side is exposed and placed on the stage 86.
  • a DC voltage is applied to the electrode 95 provided on the stage 86 from the DC power source 96 for chuck, and the substrate is held on the stage 86 by electrostatic adsorption.
  • a rare gas is supplied from the gas supply unit 81 into the vacuum chamber 89.
  • Ar gas is used as the rare gas.
  • the rare gas of the present invention is preferably Ar gas for reasons such as price and availability, but is not limited thereto, and gases such as He, Ne, Kr, and Xe may be used.
  • the exhaust conductance of the pressure regulating valve 82a is controlled by the control device 98, and the inside of the vacuum layer 89 is regulated to a predetermined pressure.
  • the pressure at this time varies depending on the structure of the RF antenna 83, the volume of the vacuum chamber 89, the supply flow rate of the rare gas, etc., but is preferably in the range of 3 Pa to 10 Pa where the plasma immediately after generation is most stable (A to B). Represents A or more and B or less).
  • the plasma AC power supply 84 is activated, an AC current is passed through the RF antenna 83, and the radio wave is emitted into the vacuum chamber 89 through the RF introduction window 93 from the RF antenna 83. A rare gas plasma is generated.
  • the reactive gas described later is a polyatomic molecular gas, and the plasma of the reactive gas contains positive ions and negative ions, whereas the rare gas is a monoatomic molecular gas, and the rare gas plasma does not contain negative ions. . Therefore, even in the case where the etching product is already attached to the RF introduction window 93, in the case of a rare gas plasma, negative ions come into contact with the etching product and react to peel off the etching product from the RF introduction window 93. The generation of particles is suppressed. Thereafter, until the etching process is finished, power is continuously applied from the plasma AC power supply 84 to the RF antenna 83 to maintain the rare gas plasma.
  • the exhaust conductance of the pressure regulating valve 82a is increased, the pressure in the vacuum chamber 89 is lowered, and the pressure is regulated to a predetermined pressure lower than the pressure at the time of plasma generation in the plasma ignition process.
  • the pressure at this time is preferably in the range of 0.2 Pa to 3 Pa, which is the pressure for etching the substrate.
  • the substrate is heated or cooled to a predetermined temperature by starting the temperature controller 88 and controlling a heater 99 provided on the stage 86 while flowing a heat conduction medium such as He between the stage 86 and the substrate. .
  • the substrate temperature can be etched near room temperature, when etching a conductive material or a ferroelectric material having a low halide vapor pressure, the substrate is heated or cooled to 250 ° C. or more, particularly around 300 ° C. Is desirable.
  • the supply flow rate of the rare gas into the vacuum chamber 89 is decreased, the supply of the reaction gas is started, and the reaction gas is brought into contact with the plasma of the rare gas. Then, the reaction gas is turned into plasma, and active species such as ions and radicals of the reaction gas are generated and brought into contact with the Ir thin film on the substrate.
  • a mixed gas of Cl 2 gas and O 2 gas is used as the reaction gas.
  • the reaction gas of the present invention is not limited to this, and a substrate such as a halogen-based gas containing any one type of halogen element selected from the group consisting of fluorine, chlorine, bromine, and iodine in the chemical structure.
  • It may contain a gas capable of etching.
  • the supply of the reactive gas is started after the supply flow rate of the rare gas is reduced.
  • the supply flow rate of the rare gas may be reduced after the supply of the reaction gas is started. If no rare gas is required for etching, the supply flow rate of the rare gas may be zero.
  • the inside of the vacuum chamber 89 may be controlled to a predetermined pressure even after the reaction gas supply starts. .
  • the sputtering AC power supply 85 is activated, an AC voltage is applied to the electrode 97 provided on the stage 86, and ions in the plasma are turned into an Ir thin film on the substrate. Then, the etching process is started. That is, the pressure in the vacuum chamber 89 at the time of plasma generation in the plasma ignition step is higher than the pressure in the vacuum chamber 89 at the start of substrate processing in the plasma processing step.
  • the supply flow rate of the rare gas into the vacuum chamber 89 at the time of plasma generation in the plasma ignition step is larger than the supply flow rate of the rare gas into the vacuum chamber 89 at the start of substrate processing in the plasma processing step.
  • the Ir thin film reacts with the plasma of the reactive gas, and the generated etching product is evaporated or sputtered to incident ions, and the gasified etching product is evacuated and removed. Since the Ir halide has a low vapor pressure, a part of the etching product is not exhausted as a gas, but adheres to the chamber such as the shield 91 and the RF introduction window 93 provided so as to surround the stage 86.
  • the shield 91 is provided to prevent the etching product from adhering to the inner wall of the vacuum chamber 89.
  • the outputs of the plasma AC power supply 84 and the sputtering AC power supply 85 are stopped, and the supply of the reaction gas from the gas supply unit 81 is stopped. Further, the introduction of the rare gas from the temperature control unit 88 is stopped, and the vacuum suction of the stage 86 is released. Next, the substrate after etching is taken out by a carry-out device (not shown) while maintaining the vacuum atmosphere in the vacuum chamber 89.
  • the object to be processed of the present invention is not limited to this, and a halogen such as Pt, Ir, IrO 2 , SrRuO 3, etc. is formed on the substrate like a piezoelectric element.
  • a processing object in which a ferroelectric film made of a ferroelectric having a low vapor pressure of halide such as) is sequentially laminated may be etched. That is, one or both of the electrode film and the ferroelectric film may be etched.
  • the substrate processing apparatus used in the present invention is not limited to the etching apparatus as described above, and an apparatus that generates plasma in a vacuum chamber, such as a plasma CVD apparatus or a plasma ashing apparatus, may be used. Good.
  • the plasma source of the substrate processing apparatus used in the present invention is not limited to the above-described inductive coupling type (ICP), and plasma of capacitive coupling type (CCP), electron cyclotron resonance type (ECR), helicon wave excitation type, etc. A source may be used.
  • a ⁇ 8 inch substrate (substrate having a diameter of 20 cm) having an Ir thin film formed on the surface facing upward is carried into a vacuum chamber 89 evacuated in an etching apparatus 80 to expose the Ir thin film on the stage 86. Arranged.
  • a DC voltage of ⁇ 800 V was applied to the electrode 95 provided on the stage 86 from the DC power source 96 for chuck, and the substrate was electrostatically attracted to the stage 86.
  • the substrate was temperature controlled to a temperature of 300 ° C. while flowing He gas at a pressure of 800 Pa between the stage 86 and the substrate.
  • Ar gas was supplied into the vacuum chamber 89 to set the pressure in the vacuum chamber 89 to 7 Pa. After the pressure in the vacuum chamber 89 was stabilized, 1600 W of power was applied from the plasma AC power source 84 to the RF antenna 83 to generate Ar gas plasma. Next, the pressure regulating valve 82a was controlled to reduce the pressure in the vacuum chamber 89 to 0.5 Pa.
  • the supply flow rate of Ar gas was decreased, the supply of Cl 2 gas and O 2 gas was started, and the supply flow ratio of Ar: Cl 2 : O 2 gas was set to 1: 4: 2. .
  • the gas supplied into the vacuum chamber 89 was brought into contact with the plasma and turned into plasma.
  • an AC voltage of 300 W was applied from the sputtering AC power supply 85 to the electrode 97 provided on the stage 86, and ions in the plasma were incident on the substrate to etch the Ir thin film.
  • the outputs of the plasma AC power supply 84 and the sputtering AC power supply 85 were stopped, and the supply of the reaction gas from the gas supply unit 81 was stopped. Further, the introduction of He gas from the temperature controller 88 was stopped, and the vacuum suction of the stage 86 was released. While maintaining the vacuum atmosphere in the vacuum chamber 89, the substrate after etching was taken out from the vacuum chamber 89, and then the number of particles on the substrate was measured. The above processing steps were repeated using a plurality of substrates one by one. However, the etching products were removed from the vacuum chamber 89 before the first substrate was carried in, but the etching products were not removed from the vacuum chamber 89 after the second substrate.
  • a ⁇ 8 inch substrate (substrate having a diameter of 20 cm) having an Ir thin film formed on the surface facing upward is carried into a vacuum chamber 89 evacuated in an etching apparatus 80 to expose the Ir thin film on the stage 86. Arranged.
  • a DC voltage of ⁇ 800 V was applied to the electrode 95 provided on the stage 86 from the DC power source 96 for chuck, and the substrate was electrostatically attracted to the stage 86.
  • the substrate was controlled to a temperature of 300 ° C. while flowing He gas at a pressure of 800 Pa between the substrate of the stage 86.
  • Ar gas, Cl 2 gas, and O 2 gas were supplied into the vacuum chamber 89 at a flow rate ratio of 1: 4: 2, and the pressure in the vacuum chamber 89 was set to 7 Pa. After the pressure in the vacuum chamber 89 was stabilized, 1600 W of power was applied from the plasma AC power source 84 to the RF antenna 83 to generate gas plasma in the vacuum chamber 89.
  • the pressure regulating valve 82a was controlled to reduce the pressure in the vacuum chamber 89 to 0.5 Pa.
  • An AC voltage of 300 W was applied to the electrode 97 provided on the stage 86 from the sputtering AC power supply 85, and ions in the plasma were incident on the substrate to etch the Ir thin film.
  • the outputs of the plasma AC power supply 84 and the sputtering AC power supply 85 were stopped, and the supply of the reaction gas from the gas supply unit 81 was stopped. Further, the introduction of He gas from the temperature controller 88 was stopped, and the vacuum suction of the stage 86 was released. While maintaining the vacuum atmosphere in the vacuum chamber 89, the substrate after etching was taken out from the vacuum chamber 89, and then the number of particles on the substrate was measured.
  • the above processing steps were repeated using a plurality of substrates one by one. However, the etching products were removed from the vacuum chamber 89 before the first substrate was carried in, but the etching products were not removed from the vacuum chamber 89 after the second substrate.
  • FIG. 2 shows the transition of the number of particles on the substrate after etching with respect to the number of processed substrates in each case of Example 1 (plasma ignition with Ar gas) and Comparative Example 1 (plasma ignition with etching gas). Yes.
  • Comparative Example 1 the number of particles increased with the number of processed substrates, but in Example 1, the number of particles remained very small even when a plurality of substrates were processed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)

Abstract

安定してプラズマを生成させることにより、パーティクルの発生を抑制できる基板処理装置の運転方法を提供する。真空排気された真空槽内に基板を配置したのち、まず真空槽内に希ガスを供給し、プラズマ発生手段に電圧を印加して希ガスのプラズマを生成させる。次いで、真空槽内に反応ガスを供給して、反応ガスを希ガスのプラズマと接触させ、反応ガスのプラズマを生成させる。この反応ガスのプラズマを基板に接触させて、基板を処理する。プラズマ生成手段によって反応ガスをプラズマ化するのではなく、まず希ガスをプラズマ化することにより、安定してプラズマが生成され、パーティクルの発生が抑制される。

Description

基板処理装置の運転方法
 本発明は、基板処理装置の運転方法に関する。
 現在、センサ、アクチュエータ、発信器、RFフィルタ等で開発・実用化されている圧電素子や、各種ICカード、携帯情報端末等の不揮発性メモリとして利用されている強誘電体メモリ(FeRAM)は、どちらも強誘電体薄膜を貴金属電極が挟み込んだ構造をしている。
 強誘電体薄膜や貴金属電極の微細加工にはプラズマを用いたドライエッチング方法が使用されているが、強誘電体薄膜や貴金属電極は難エッチング材料と呼ばれ、ハロゲンガス(プラズマ)との反応性に乏しく、かつこれらのハロゲン化物は蒸気圧が低いために、エッチング生成物はガスとして排気されずにチェンバーの内壁に付着しやすい。
 プラズマ中のイオンが付着物と接触すると、反応して、付着物がチェンバーの内壁から剥離され、パーティクルを発生させる。発生したパーティクルは処理基板の上に付着し、デバイスの歩留まりを低下させる原因となっていた。
特開平8-269445号公報
 本発明者は、生成直後のプラズマが不安定なときに、プラズマ中のイオンが付着物と反応してパーティクルの発生が起こることに着目し、いかに安定してプラズマを生成させるかが重要であると認識して研究を行い、本発明を完成させた。
 本発明は上記従来技術の不都合を解決するために創作されたものであり、その目的は、安定してプラズマを生成させ、パーティクルの発生を抑制できる基板処理装置の運転方法を提供することにある。
 上記課題を解決するために本発明は、真空槽と、前記真空槽内を真空排気する真空排気部と、前記真空槽内にガスを供給するガス供給部と、プラズマ生成手段に電圧を印加して前記真空槽内のガスのプラズマを生成させるプラズマ生成部と、を有し、前記真空槽内に配置された基板にプラズマを接触させて、前記基板を処理する基板処理装置の運転方法であって、前記真空槽内に希ガスを供給し、前記プラズマ生成手段に電圧を印加して前記希ガスのプラズマを生成させるプラズマ着火工程と、前記真空槽内に反応ガスを供給し、前記反応ガスを前記希ガスのプラズマに接触させて、前記反応ガスのプラズマを生成させ、前記反応ガスのプラズマを基板に接触させて、前記基板を処理するプラズマ処理工程と、を有する基板処理装置の運転方法である。
 本発明は基板処理装置の運転方法であって、前記プラズマ着火工程でのプラズマ生成時の前記真空槽内の圧力は、前記プラズマ処理工程での基板処理開始時の前記真空槽内の圧力より高い基板処理装置の運転方法である。
 本発明は基板処理装置の運転方法であって、前記プラズマ着火工程でのプラズマ生成時の前記真空槽内への前記希ガスの供給流量は、前記プラズマ処理工程での基板処理開始時の前記真空槽内への前記希ガスの供給流量より大きい基板処理装置の運転方法である。
 本発明は基板処理装置の運転方法であって、前記希ガスは、Heと、Neと、Arと、Krと、Xeとからなる群より選択されるいずれか1種類のガスを含有する基板処理装置の運転方法である。
 本発明は基板処理装置の運転方法であって、前記プラズマ処理工程では、前記反応ガスのプラズマを前記基板に接触させて、前記基板をエッチングする基板処理装置の運転方法である。
 本発明は基板処理装置の運転方法であって、前記基板は導電性材料からなる電極膜と、強誘電体からなる強誘電体膜とを有し、前記プラズマ処理工程では、前記反応ガスのプラズマを前記基板に接触させて、前記電極膜又は前記強誘電体膜のいずれか一方又は両方をエッチングする基板処理装置の運転方法である。
 本発明は基板処理装置の運転方法であって、前記電極膜は、Ptと、Irと、IrO2と、SrRuO3とからなる導電性材料の群のうち少なくとも1種類の導電性材料を含有する基板処理装置の運転方法である。
 本発明は基板処理装置の運転方法であって、前記強誘電体膜は、チタン酸バリウム(BaTiO3)と、チタン酸鉛(PbTiO3)と、チタン酸ビスマスランタン((Bi,La)4Ti312:BLT)と、チタン酸ジルコン酸鉛(Pb(Zr,Ti)O3:PZT)と、チタン酸ジルコン酸ランタン鉛((PbLa)(ZrTi)O3:PLZT)と、タンタル酸ビスマスストロンチウム(SrBi2Ta23:SBT)とからなる群より選択されるいずれか1種類の強誘電体を含有する基板処理装置の運転方法である。
 本発明は基板処理装置の運転方法であって、前記反応ガスは、フッ素と、塩素と、臭素と、ヨウ素とからなる群より選択されるいずれか1種類のハロゲン元素を化学構造中に含むガスを含有する基板処理装置の運転方法である。
 本発明は基板処理装置の運転方法であって、前記プラズマ処理工程での前記基板処理中は前記基板を250℃以上の温度に加熱又は冷却する基板処理装置の運転方法である。
 生成直後のプラズマが安定し、発生するパーティクルの量が少なくなるので、製品の歩留まりが向上する。
エッチング装置の構造を説明するための図 基板処理枚数に対する基板上のパーティクル数の推移を示す図
 80……基板処理装置(エッチング装置)
 81……ガス供給部
 82……真空排気部
 83……プラズマ生成手段(RFアンテナ)
 89……真空槽
 92……プラズマ生成部
<基板処理装置の構造>
 本発明で使用する基板処理装置の一例として、誘導結合プラズマ(ICP)源を搭載したエッチング装置を説明する。
 図1の符号80はこのエッチング装置を示している。
 エッチング装置80は真空槽89とプラズマ生成部92とガス供給部81と真空排気部82と温度制御部88とを有している。
 真空槽89の内部には基板を載置するためのステージ86が設けられている。ステージ86には電極95が設けられており、この電極95にはチャック用直流電源96が電気的に接続されている。チャック用直流電源96から電極95に直流電圧を印加すると、ステージ86はステージ86上に載置された基板を静電吸着により保持できるように構成されている。
 温度制御部88はステージ86に接続されており、ステージ86と処理対象物である基板との間にHeガス等の熱伝導媒体を流しながら、ステージ86に設けられたヒーター99を制御することにより、ステージ86上に載置された処理対象物である基板を所定の温度に加熱又は冷却できるようにされている。
 真空槽89の天部(天井部分)には石英やアルミナ等からなるRF導入窓93が設けられており、真空槽89の外部から内部へ電波を透過できるようにされている。
 プラズマ生成部92は、プラズマ生成手段としてのRFアンテナ83と、マッチングボックス87aと、プラズマ用交流電源84とを有している。RFアンテナ83はRF導入窓93の上方に設置され、マッチングボックス87aを介してプラズマ用交流電源84に電気的に接続されている。プラズマ用交流電源84からRFアンテナ83に交流電圧を印加すると、RFアンテナ83からRF導入窓93を透過して真空槽89内に電波が放射され、真空槽89内に供給されたエッチングガスをプラズマ化できるようにされている。
 またステージ86に設けられた電極97にはマッチングボックス87bを介してスパッタ用交流電源85が電気的に接続されている。スパッタ用交流電源85からステージ86の電極97に交流電圧を印加すると、プラズマ中のイオンが加速されてステージ86上の基板に衝突し、基板をエッチングできるようにされている。
 ガス供給部81と真空排気部82はどちらも真空槽89の外部に配置されている。真空排気部82は調圧バルブ82aと真空ポンプ82bとを有し、真空ポンプ82bは調圧バルブ82aを介して真空槽89内部に接続され、真空槽89内を真空排気可能にされている。ガス供給部81は真空槽89内部に接続され、真空槽89内にエッチングガスを供給可能にされている。
<基板処理装置の運転方法>
 本発明である基板処理装置の運転方法を、上述したエッチング装置80を用いて説明する。
 ここでは、上方を向いた面にIr薄膜が成膜された基板を処理対象物として使用する。
 まず真空槽89内を真空排気部82により真空排気しておく。以降の処理工程では、真空排気部82は真空槽89内を真空排気し続けている。
 基板を、不図示の搬入装置により真空槽89内の真空雰囲気を維持しながら、真空槽89内に搬入し、Ir薄膜が形成された面とは逆の面をステージ86に接触させ、Ir薄膜側を露出させてステージ86上に配置する。ステージ86に設けられた電極95にチャック用直流電源96から直流電圧を印加して、静電吸着により基板をステージ86上に保持する。
 次いでプラズマ着火工程として、ガス供給部81から真空槽89内に希ガスを供給する。
 希ガスは、ここではArガスを使用する。本発明の希ガスは、価格や入手しやすさ等の理由からArガスが望ましいが、これに限定されずHe、Ne、Kr、Xe等のガスを使用してもよい。
 調圧バルブ82aの排気コンダクタンスは制御装置98により制御され、真空層89内は所定の圧力に調圧されている。このときの圧力は、RFアンテナ83の構造や真空槽89の容積、希ガスの供給流量等により変わるが、生成直後のプラズマが最も安定する3Pa~10Paの範囲であることが望ましい(A~BはA以上B以下を示す)。
 真空槽89内の圧力が安定したのち、プラズマ用交流電源84を起動し、RFアンテナ83に交流電流を流し、RFアンテナ83からRF導入窓93を透過して真空槽89内に電波を放射させ、希ガスのプラズマを生成させる。
 後述する反応ガスは多原子分子気体であり、反応ガスのプラズマはプラスイオンとマイナスイオンとを含有するのに対し、希ガスは単原子分子気体であり、希ガスのプラズマはマイナスイオンを含有しない。従って、既にRF導入窓93にエッチング生成物が付着している場合でも、希ガスのプラズマの場合は、マイナスイオンがエッチング生成物と接触して反応し、エッチング生成物をRF導入窓93から剥離させることはなく、パーティクルの発生が抑制される。
 以降、エッチング処理を終えるまでは、プラズマ用交流電源84からRFアンテナ83に電力を印加し続けて、希ガスのプラズマを維持する。
 次いで、調圧バルブ82aの排気コンダクタンスを増加させて、真空槽89内の圧力を低下させ、プラズマ着火工程でのプラズマ生成時の圧力より低い所定の圧力に調圧する。このときの圧力は、基板をエッチングする圧力である0.2Pa~3Paの範囲であることが望ましい。
 温度制御部88を起動し、ステージ86と基板との間にHe等の熱伝導媒体を流しながら、ステージ86に設けられたヒーター99を制御することにより、基板を所定の温度に加熱又は冷却する。
 基板の温度は室温付近でもエッチング可能であるが、ハロゲン化物の蒸気圧が低い導電性材料や強誘電体等をエッチングする場合は、基板を250℃以上、特に300℃前後に加熱又は冷却するのが望ましい。
 真空槽89内の圧力が安定したのち、プラズマ処理工程として、ここでは真空槽89内への希ガスの供給流量を減少させ、反応ガスの供給を開始し、反応ガスを希ガスのプラズマと接触させて、反応ガスをプラズマ化し、反応ガスのイオンやラジカル等の活性種を生成して、基板のIr薄膜に接触させる。
 反応ガスは、ここではCl2ガスとO2ガスとの混合ガスを使用する。
 本発明の反応ガスはこれに限定されず、フッ素と、塩素と、臭素と、ヨウ素とからなる群より選択されるいずれか1種類のハロゲン元素を化学構造中に含むハロゲン系ガス等の、基板をエッチングできるガスを含有してもよい。
 ここでは希ガスの供給流量を減少させたのち、反応ガスの供給を開始したが、反応ガスの供給を開始したのち、希ガスの供給流量を減少させてもよい。
 エッチングに希ガスが不要の場合には、希ガスの供給流量をゼロにしてもよい。
 また、希ガスの供給流量は減少させずに、調圧バルブ82aの排気コンダクタンスを増加させることにより、反応ガスの供給開始後も真空槽89内が所定の圧力になるように制御してもよい。
 ガスの供給流量と真空層内の圧力がそれぞれ安定したのち、スパッタ用交流電源85を起動し、ステージ86に設けられた電極97に交流電圧を印加して、プラズマ中のイオンを基板のIr薄膜に入射させ、エッチング処理を開始する。
 すなわち、プラズマ着火工程でのプラズマ生成時の真空槽89内の圧力は、プラズマ処理工程での基板処理開始時の真空槽89内の圧力より高い。またプラズマ着火工程でのプラズマ生成時の真空槽89内への希ガスの供給流量は、プラズマ処理工程での基板処理開始時の真空槽89内への希ガスの供給流量より大きい。
 Ir薄膜は反応ガスのプラズマと反応し、生成されたエッチング生成物が蒸発し、又は入射したイオンにスパッタされ、ガス化したエッチング生成物が真空排気されて除去される。
 Irのハロゲン化物は蒸気圧が低いため、エッチング生成物の一部はガスとして排気されずに、ステージ86を囲むように設けられたシールド91やRF導入窓93等のチェンバー内に付着する。
 ここではシールド91は、エッチング生成物が真空槽89の内壁に付着するのを防止するために設けられている。
 Ir薄膜を所定の膜厚にエッチングしたのち、プラズマ用交流電源84とスパッタ用交流電源85の出力をそれぞれ停止し、かつガス供給部81からの反応ガスの供給を停止する。また温度制御部88からの希ガスの導入を停止し、ステージ86の真空吸着を解除する。
 次いで、真空槽89内の真空雰囲気を維持しながら、エッチング後の基板を不図示の搬出装置により取り出す。
 ここではIr薄膜が成膜された基板をエッチング処理したが、本発明の処理対象物はこれに限定されず、圧電素子のように、基板上にPt、Ir、IrO2、SrRuO3等のハロゲン化物の蒸気圧が低い導電性材料からなる電極膜と、チタン酸バリウム(BaTiO3)、チタン酸鉛(PbTiO3)、チタン酸ビスマスランタン((Bi,La)4Ti312:BLT)、チタン酸ジルコン酸鉛(Pb(Zr,Ti)O3:PZT)、チタン酸ジルコン酸ランタン鉛((PbLa)(ZrTi)O3:PLZT)、タンタル酸ビスマスストロンチウム(SrBi2Ta23:SBT)等のハロゲン化物の蒸気圧が低い強誘電体からなる強誘電体膜とが順に積層された処理対象物をエッチング処理してもよい。
 すなわち、電極膜又は強誘電体膜のいずれか一方又は両方をエッチング処理してもよい。
 本発明で使用する基板処理装置は、上述したようなエッチング装置に限定されず、プラズマCVD装置、プラズマアッシング装置等の、真空槽内でプラズマを発生させて基板を処理する装置を使用してもよい。
 また本発明で使用する基板処理装置のプラズマ源は、上述の誘導結合型(ICP)に限定されず、容量結合型(CCP)、電子サイクロトロン共鳴型(ECR)、へリコン波励起型等のプラズマ源を使用してもよい。
<実施例1>
  上方を向いた面にIr薄膜が成膜されたφ8インチ基板(直径20cmの基板)を、エッチング装置80の真空排気された真空槽89内に搬入し、Ir薄膜を露出させてステージ86上に配置した。
 ステージ86に設けられた電極95にチャック用直流電源96から±800Vの直流電圧を印加し、基板をステージ86に静電吸着した。ステージ86と基板との間にHeガスを800Paの圧力で流しながら、基板を300℃の温度に温度制御した。
 次いで、真空槽89内にArガスを供給して、真空槽89内の圧力を7Paにした。真空槽89内の圧力が安定したのち、プラズマ用交流電源84からRFアンテナ83に1600Wの電力を印加し、Arガスのプラズマを生成させた。
 次いで、調圧バルブ82aを制御して、真空槽89内の圧力を0.5Paに低下させた。
 次に、Arガスの供給流量を減少させ、Cl2ガスとO2ガスの供給を開始し、Ar:Cl2:O2ガスのそれぞれの供給流量比が1:4:2になるようにした。真空槽89内に供給されたガスはプラズマと接触して、プラズマ化した。
 次いでステージ86に設けられた電極97にスパッタ用交流電源85から300Wの交流電圧を印加し、プラズマ中のイオンを基板に入射させて、Ir薄膜をエッチングした。
 所定の時間エッチングしたのち、プラズマ用交流電源84とスパッタ用交流電源85の出力をそれぞれ停止し、かつガス供給部81からの反応ガスの供給を停止した。また温度制御部88からのHeガスの導入を停止し、ステージ86の真空吸着を解除した。
 真空槽89内の真空雰囲気を維持しながら、エッチング後の基板を真空槽89から取り出し、次いで、基板上のパーティクル数を計測した。
 上記の処理工程を複数枚の基板を一枚ずつ使用して繰り返した。ただし、一枚目の基板の搬入前には真空槽89内からエッチング生成物を除去したが、二枚目以降は真空槽89内からのエッチング生成物の除去は行わなかった。
<比較例1>
  上方を向いた面にIr薄膜が成膜されたφ8インチ基板(直径20cmの基板)を、エッチング装置80の真空排気された真空槽89内に搬入し、Ir薄膜を露出させてステージ86上に配置した。
 ステージ86に設けられた電極95にチャック用直流電源96から±800Vの直流電圧を印加し、基板をステージ86に静電吸着した。ステージ86の基板との間にHeガスを800Paの圧力で流しながら、基板を300℃の温度に温度制御した。
 次いで、真空槽89内にArガスとCl2ガスとO2ガスとを1:4:2の流量比で供給して、真空槽89内の圧力を7Paにした。真空槽89内の圧力が安定したのち、プラズマ用交流電源84からRFアンテナ83に1600Wの電力を印加し、真空槽89内のガスのプラズマを生成させた。
 次に、調圧バルブ82aを制御して、真空槽89内の圧力を0.5Paに低下させた。
 ステージ86に設けられた電極97にスパッタ用交流電源85から300Wの交流電圧を印加し、プラズマ中のイオンを基板に入射させて、Ir薄膜をエッチングした。
 実施例1と同じ所定の時間エッチングしたのち、プラズマ用交流電源84とスパッタ用交流電源85の出力をそれぞれ停止し、かつガス供給部81からの反応ガスの供給を停止した。また温度制御部88からのHeガスの導入を停止し、ステージ86の真空吸着を解除した。
 真空槽89内の真空雰囲気を維持しながら、エッチング後の基板を真空槽89から取り出し、次いで、基板上のパーティクル数を計測した。
 上記の処理工程を複数枚の基板を一枚ずつ使用して繰り返した。ただし、一枚目の基板の搬入前に真空槽89内からエッチング生成物を除去したが、二枚目以降は真空槽89内からのエッチング生成物の除去は行わなかった。
<パーティクル数の変化>
 図2は実施例1(Arガスでのプラズマ着火)と比較例1(エッチングガスでのプラズマ着火)のそれぞれの場合における、基板の処理枚数に対するエッチング後の基板上のパーティクル数の推移を示している。
 比較例1では基板の処理枚数とともにパーティクル数は増加したが、実施例1では複数枚の基板を処理してもパーティクル数は非常に少ないままであった。
 この理由は、エッチングガスでプラズマを生成させた場合は、生成直後のプラズマ中のCl-やO-といったマイナスイオンがRF導入窓93に付着したエッチング生成物と接触し、反応して、パーティクルを発生させるが、一方、Arガスでプラズマを生成させた場合は、Arガスが単原子分子気体であるため、プラズマがマイナスイオンを含有せず、安定しているからと考えられる。 

Claims (10)

  1.  真空槽と、前記真空槽内を真空排気する真空排気部と、前記真空槽内にガスを供給するガス供給部と、プラズマ生成手段に電圧を印加して前記真空槽内のガスのプラズマを生成させるプラズマ生成部と、を有し、
     前記真空槽内に配置された基板にプラズマを接触させて、前記基板を処理する基板処理装置の運転方法であって、
     前記真空槽内に希ガスを供給し、前記プラズマ生成手段に電圧を印加して前記希ガスのプラズマを生成させるプラズマ着火工程と、
     前記真空槽内に反応ガスを供給し、前記反応ガスを前記希ガスのプラズマに接触させて、前記反応ガスのプラズマを生成させ、前記反応ガスのプラズマを基板に接触させて、前記基板を処理するプラズマ処理工程と、
     を有する基板処理装置の運転方法。
  2.  前記プラズマ着火工程でのプラズマ生成時の前記真空槽内の圧力は、前記プラズマ処理工程での基板処理開始時の前記真空槽内の圧力より高い請求項1記載の基板処理装置の運転方法。
  3.  前記プラズマ着火工程でのプラズマ生成時の前記真空槽内への前記希ガスの供給流量は、前記プラズマ処理工程での基板処理開始時の前記真空槽内への前記希ガスの供給流量より大きい請求項1又は請求項2のいずれか1項記載の基板処理装置の運転方法。
  4.  前記希ガスは、Heと、Neと、Arと、Krと、Xeとからなる群より選択されるいずれか1種類のガスを含有する請求項1乃至請求項3のいずれか1項記載の基板処理装置の運転方法。
  5.  前記プラズマ処理工程では、前記反応ガスのプラズマを前記基板に接触させて、前記基板をエッチングする請求項1乃至請求項4のいずれか1項記載の基板処理装置の運転方法。
  6.  前記基板は導電性材料からなる電極膜と、強誘電体からなる強誘電体膜とを有し、
     前記プラズマ処理工程では、前記反応ガスのプラズマを前記基板に接触させて、前記電極膜又は前記強誘電体膜のいずれか一方又は両方をエッチングする請求項5記載の基板処理装置の運転方法。
  7.  前記電極膜は、Ptと、Irと、IrO2と、SrRuO3とからなる導電性材料の群のうち少なくとも1種類の導電性材料を含有する請求項6記載の基板処理装置の運転方法。
  8.  前記強誘電体膜は、チタン酸バリウム(BaTiO3)と、チタン酸鉛(PbTiO3)と、チタン酸ビスマスランタン((Bi,La)4Ti312:BLT)と、チタン酸ジルコン酸鉛(Pb(Zr,Ti)O3:PZT)と、チタン酸ジルコン酸ランタン鉛((PbLa)(ZrTi)O3:PLZT)と、タンタル酸ビスマスストロンチウム(SrBi2Ta23:SBT)とからなる群より選択されるいずれか1種類の強誘電体を含有する請求項6又は請求項7のいずれか1項記載の基板処理装置の運転方法。
  9.  前記反応ガスは、フッ素と、塩素と、臭素と、ヨウ素とからなる群より選択されるいずれか1種類のハロゲン元素を化学構造中に含むガスを含有する請求項5乃至請求項8のいずれか1項記載の基板処理装置の運転方法。
  10.  前記プラズマ処理工程での前記基板処理中は前記基板を250℃以上の温度に加熱又は冷却する請求項5乃至請求項9のいずれか1項記載の基板処理装置の運転方法。
PCT/JP2010/065132 2009-09-09 2010-09-03 基板処理装置の運転方法 WO2011030721A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020127006040A KR101338771B1 (ko) 2009-09-09 2010-09-03 기판 처리 장치의 운전 방법
DE112010003598T DE112010003598T5 (de) 2009-09-09 2010-09-03 Verfahren zum Betreiben einer Substratbearbeitungsvorrichtung
JP2011530822A JPWO2011030721A1 (ja) 2009-09-09 2010-09-03 基板処理装置の運転方法
CN201080039989.7A CN102484065B (zh) 2009-09-09 2010-09-03 基板处理装置的运行方法
US13/414,953 US9305752B2 (en) 2009-09-09 2012-03-08 Method for operating substrate processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009208393 2009-09-09
JP2009-208393 2009-09-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/414,953 Continuation US9305752B2 (en) 2009-09-09 2012-03-08 Method for operating substrate processing apparatus

Publications (1)

Publication Number Publication Date
WO2011030721A1 true WO2011030721A1 (ja) 2011-03-17

Family

ID=43732393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065132 WO2011030721A1 (ja) 2009-09-09 2010-09-03 基板処理装置の運転方法

Country Status (7)

Country Link
US (1) US9305752B2 (ja)
JP (1) JPWO2011030721A1 (ja)
KR (1) KR101338771B1 (ja)
CN (1) CN102484065B (ja)
DE (1) DE112010003598T5 (ja)
TW (1) TWI496515B (ja)
WO (1) WO2011030721A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106575616A (zh) * 2014-08-14 2017-04-19 罗伯特·博世有限公司 用于各向异性蚀刻衬底的装置和用于运行用于各向异性蚀刻衬底的装置的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012836A (ja) * 1996-06-18 1998-01-16 Matsushita Electron Corp 容量素子の製造方法
JP2004363316A (ja) * 2003-06-04 2004-12-24 Tokyo Electron Ltd プラズマ処理方法
JP2009194194A (ja) * 2008-02-15 2009-08-27 Sumitomo Precision Prod Co Ltd プラズマ処理方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4680085A (en) * 1986-04-14 1987-07-14 Ovonic Imaging Systems, Inc. Method of forming thin film semiconductor devices
JPH088232A (ja) * 1994-06-22 1996-01-12 Sony Corp プラズマ処理方法
US5776356A (en) * 1994-07-27 1998-07-07 Sharp Kabushiki Kaisha Method for etching ferroelectric film
JP3482729B2 (ja) 1995-04-04 2004-01-06 三菱化学株式会社 有機電界発光素子
JP2003059906A (ja) * 2001-07-31 2003-02-28 Applied Materials Inc エッチング方法およびキャパシタを形成する方法
JP4504061B2 (ja) * 2004-03-29 2010-07-14 東京エレクトロン株式会社 プラズマ処理方法
US8993055B2 (en) * 2005-10-27 2015-03-31 Asm International N.V. Enhanced thin film deposition
TWI345809B (en) * 2006-06-13 2011-07-21 Applied Materials Inc Etching high-k dielectric materials with good high-k foot control and silicon recess control
CN101385129B (zh) 2006-07-28 2011-12-28 东京毅力科创株式会社 微波等离子体源和等离子体处理装置
JP2009021584A (ja) * 2007-06-27 2009-01-29 Applied Materials Inc 高k材料ゲート構造の高温エッチング方法
EP2599506B1 (en) * 2007-11-06 2018-07-11 Creo Medical Limited Applicator for microwave plasma sterilisation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012836A (ja) * 1996-06-18 1998-01-16 Matsushita Electron Corp 容量素子の製造方法
JP2004363316A (ja) * 2003-06-04 2004-12-24 Tokyo Electron Ltd プラズマ処理方法
JP2009194194A (ja) * 2008-02-15 2009-08-27 Sumitomo Precision Prod Co Ltd プラズマ処理方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106575616A (zh) * 2014-08-14 2017-04-19 罗伯特·博世有限公司 用于各向异性蚀刻衬底的装置和用于运行用于各向异性蚀刻衬底的装置的方法
US10497543B2 (en) 2014-08-14 2019-12-03 Robert Bosch Gmbh Device for anisotropically etching a substrate, and method for operating a device for anisotropically etching a substrate
CN106575616B (zh) * 2014-08-14 2020-02-14 罗伯特·博世有限公司 用于各向异性蚀刻衬底的装置和用于运行用于各向异性蚀刻衬底的装置的方法

Also Published As

Publication number Publication date
US20120193323A1 (en) 2012-08-02
CN102484065B (zh) 2015-04-01
JPWO2011030721A1 (ja) 2013-02-07
US9305752B2 (en) 2016-04-05
CN102484065A (zh) 2012-05-30
TW201132245A (en) 2011-09-16
KR20120043076A (ko) 2012-05-03
TWI496515B (zh) 2015-08-11
DE112010003598T5 (de) 2013-01-24
KR101338771B1 (ko) 2013-12-06

Similar Documents

Publication Publication Date Title
JP4421609B2 (ja) 基板処理装置および半導体装置の製造方法、エッチング装置
US6943039B2 (en) Method of etching ferroelectric layers
JP2007005381A (ja) プラズマエッチング方法、及びプラズマエッチング装置
US20060009040A1 (en) Method for manufacturing semiconductor device
TWI453816B (zh) 電漿處理裝置之乾洗方法
JP4999185B2 (ja) ドライエッチング方法及びドライエッチング装置
WO2011030721A1 (ja) 基板処理装置の運転方法
JP4260590B2 (ja) 基板処理装置のクリーニング方法
JP4132898B2 (ja) ドライクリーニング方法
JP5766027B2 (ja) ドライエッチング方法及びデバイス製造方法
JP4346919B2 (ja) 強誘電体膜,半導体装置及び強誘電体膜の製造装置
US6071828A (en) Semiconductor device manufacturing method including plasma etching step
US20090314635A1 (en) Plasma processing apparatus, plasma processing method, and organic electron device
JP5800710B2 (ja) 圧電素子の製造方法
JP2011100865A (ja) プラズマ処理方法
JP3924183B2 (ja) プラズマcvd成膜方法
JP2006261159A (ja) 強誘電体膜、金属酸化物、半導体装置、及びそれらの製造方法
JP2002299332A (ja) プラズマ成膜方法及びプラズマcvd装置
JP2013030696A (ja) プラズマエッチング装置、及びプラズマクリーニング方法
JP7479207B2 (ja) エッチング方法及び基板処理装置
JP2012114156A (ja) 圧電素子の製造方法
KR100791532B1 (ko) 기판처리 장치 및 반도체 장치의 제조방법
JP2003007981A (ja) コンタクトホール形成方法
JP2002110633A (ja) エッチング方法及び真空処理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080039989.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10815318

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011530822

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127006040

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112010003598

Country of ref document: DE

Ref document number: 1120100035989

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10815318

Country of ref document: EP

Kind code of ref document: A1