WO2011030664A1 - 信号処理装置及び信号処理方法 - Google Patents

信号処理装置及び信号処理方法 Download PDF

Info

Publication number
WO2011030664A1
WO2011030664A1 PCT/JP2010/064270 JP2010064270W WO2011030664A1 WO 2011030664 A1 WO2011030664 A1 WO 2011030664A1 JP 2010064270 W JP2010064270 W JP 2010064270W WO 2011030664 A1 WO2011030664 A1 WO 2011030664A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency
band
signal component
power distribution
Prior art date
Application number
PCT/JP2010/064270
Other languages
English (en)
French (fr)
Inventor
匡信 藤井
亮 北川
公紀 八島
Original Assignee
ミツミ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミツミ電機株式会社 filed Critical ミツミ電機株式会社
Priority to JP2011530798A priority Critical patent/JPWO2011030664A1/ja
Priority to EP10815261A priority patent/EP2477336A1/en
Priority to CN2010800347820A priority patent/CN102474277A/zh
Priority to US13/393,962 priority patent/US20120163438A1/en
Publication of WO2011030664A1 publication Critical patent/WO2011030664A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/0003Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain
    • H04B1/0007Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain wherein the AD/DA conversion occurs at radiofrequency or intermediate frequency stage
    • H04B1/001Channel filtering, i.e. selecting a frequency channel within the SDR system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • H04B1/1036Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal with automatic suppression of narrow band noise or interference, e.g. by using tuneable notch filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • H04B2001/1045Adjacent-channel interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • H04B2001/1072Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal by tuning the receiver frequency

Definitions

  • the present invention relates to a signal processing device and a signal processing method for processing a received high-frequency signal.
  • a multiplier that multiplies the intermediate frequency signal (IF signal) and the reference frequency signal, and a low-pass filter that attenuates unnecessary harmonic components from the output signal of the multiplier.
  • An FM receiver is known in which the signal is detected (see, for example, Patent Document 1).
  • the radio tuner IC when the interference noise due to the adjacent channel adjacent to the desired channel enters the broadcast reception band, the audio output signal may be distorted, and the hearing may be adversely affected.
  • the band limiting filter when used, if it cannot be adjusted to an appropriate pass band, not only the interference noise due to the adjacent channel but also the signal component of the desired channel is attenuated, so that the audibility of the audio output is deteriorated.
  • an object of the present invention is to provide a signal processing apparatus and a signal processing method capable of achieving both improvement in reception performance of a desired channel and reduction of interference noise due to adjacent channels.
  • a signal processing apparatus provides: A signal processing device for processing a received high-frequency signal, A frequency conversion unit that converts the frequency of the high-frequency signal into an intermediate-frequency signal that includes an intermediate frequency corresponding to the signal component of the desired channel as a frequency component; An AD converter that AD converts the intermediate frequency signal into a digital signal; A digital demodulator that demodulates the digital signal;
  • the digital demodulation unit is A filter unit having a plurality of passbands having different bandwidths for extracting an output signal including a signal component of the desired channel from the digital signal;
  • a detection unit that detects a power distribution of a signal component of the desired channel and a power distribution of a signal component of an adjacent channel adjacent to the desired channel from the digital signal before being input to the filter unit; A pass band selected from the plurality of pass bands based on the power distribution of the signal component of the desired channel detected by the detection unit and the power distribution of the signal component of the adjacent channel detected by the detection unit
  • a signal processing method includes: A signal processing method for processing a received high-frequency signal, A frequency conversion step of frequency-converting the high-frequency signal into an intermediate-frequency signal including an intermediate frequency corresponding to the signal component of the desired channel as a frequency component; An AD conversion step of AD converting the intermediate frequency signal into a digital signal; A demodulating step for digitally demodulating the digital signal, The demodulation step includes The power of the signal component of the desired channel from the digital signal before being input to the filter unit having a plurality of passbands having different bandwidths for extracting the output signal including the signal component of the desired channel from the digital signal Detecting a distribution and a power distribution of a signal component of an adjacent channel adjacent to the desired channel; Based on the power distribution of the signal component of the desired channel detected in the detection step and the power distribution of the signal component of the adjacent channel detected in the detection step, a pass band selected from the plurality of pass bands, And a switching step of switching the pass band of the filter unit.
  • the present invention it is possible to improve both the reception performance of a desired channel and the reduction of interference noise due to an adjacent channel.
  • FIG. 1 is a configuration diagram of a tuner circuit 100.
  • FIG. It is a block diagram of the monitoring circuit 200 which monitors the signal distribution in a pass band.
  • 2 is a diagram for explaining the principle of a digital mixer 32.
  • FIG. 6 is a diagram showing the relationship between the pass band of the band limiting filter 9 and the power measured by the measurement unit 34.
  • FIG. 3 is a flowchart showing a signal processing method executed by tuner circuit 100. It is a flowchart showing the process performed by power distribution detection step S4. It is a flowchart showing the detailed process performed by power distribution detection step S4.
  • 6 is a filter characteristic diagram of a low-pass filter 33.
  • FIG. 6 is a power distribution diagram of an output signal of the band limiting filter 9.
  • FIG. 1 is a configuration diagram of a tuner circuit 100.
  • FIG. It is a block diagram of the monitoring circuit 200 which monitors the signal distribution in a pass band.
  • 2 is a diagram for explaining the principle of a
  • FIG. 6 is a diagram showing the relationship between the pass band of the band limiting filter 9 and the power measured by the measurement unit 34.
  • FIG. It is a wave form diagram of an audio output signal at the time of selecting pass band BW180 with a bandwidth of 180 kHz. It is a wave form diagram of an audio output signal at the time of selecting pass band BW120 with a bandwidth of 120 kHz.
  • the radio tuner IC 400 is a specific example of the signal processing device. It is a diagram showing selector circuits SL1 to SL4. It is a diagram showing selector circuits SL11 to SL14 and SL21 to SL24.
  • FIG. 1 is a configuration diagram of a tuner circuit 100 according to an embodiment of the present invention.
  • the tuner circuit 100 is a signal processing device that processes a received high-frequency signal.
  • the tuner circuit 100 has a frequency conversion unit, an AD conversion unit, and a digital demodulation unit as main components.
  • the frequency conversion unit converts the received high frequency signal into an intermediate frequency signal including an intermediate frequency corresponding to the signal component of the desired channel desired to be received as a frequency component.
  • an RF bandpass filter 2 to which a high-frequency signal generated by receiving radio waves with an antenna 1 is input, and an LNA (low noise amplifier) 3 that amplifies an output signal of the RF bandpass filter 2 are shown.
  • RF band-pass filter 4 to which the output signal of LNA 3 is input, VCO (local oscillator) 5 for generating a local oscillation frequency signal, mixer 6 for mixing the output signal of RF band-pass filter 4 and the local oscillation frequency signal,
  • An IF bandpass filter 7 to which the output signal of the mixer 6 is input is shown.
  • the local oscillation frequency signal is an oscillation signal for conversion into an intermediate frequency signal having an intermediate frequency corresponding to a desired reception channel.
  • the AD converter converts the intermediate frequency signal (IF signal) output from the IF bandpass filter 7 into a digital signal.
  • FIG. 1 shows an ADC (analog-digital converter) 8 as an AD conversion unit.
  • the digital demodulator demodulates the digital signal output from the AD converter.
  • FIG. 1 shows a digital demodulator 300.
  • the digital demodulator 300 mainly includes a filter unit that limits a band through which a digital signal can pass and a power distribution detector that detects a power distribution of the intermediate frequency signal.
  • the filter unit has a plurality of passbands having different bandwidths for extracting an output signal including a signal component of a desired channel selected by a user or the like from a digital signal.
  • FIG. 1 shows a band limiting filter 9 as a filter unit.
  • the power distribution detection unit detects the power distribution of the signal component of the desired channel and the power distribution of the signal component of the adjacent channel from the digital signal before being input to the filter unit.
  • FIG. 1 shows an IF power detection unit 10 as a power distribution detection unit.
  • tuner circuit 100 based on the power distribution of the signal component of the desired channel detected by IF power detection unit 10 and the power distribution of the signal component of the adjacent channel detected by IF power detection unit 10, the plurality of passbands The pass band of the band limiting filter 9 is switched to the pass band selected from the inside.
  • the pass band of the band limiting filter 9 is switched based on both the power distribution of the signal distribution of the desired channel and the power distribution of the signal component of the adjacent channel. Accordingly, the pass band of the band limiting filter 9 can be switched to a pass band so that the power of the signal component of the desired channel does not become small and the power of the signal component of the adjacent channel does not become large. It is possible to achieve both the improvement of the interference noise and the reduction of the interference noise caused by the adjacent channel.
  • the Hilbert filter 11 performs a Hilbert transform on the output signal after the filtering process output from the band limiting filter 9.
  • the digital mixers 12 and 13 supply the MPX 15 with an output signal generated by multiplying the output signal of the Hilbert filter 11 by a discrete sine wave signal output from an NCO (Numerically Controlled Oscillator) 14.
  • the MPX 15 is a multiplex circuit. The MPX 15 decodes the right stereo signal and the left stereo signal.
  • FIG. 2 is a configuration diagram of a monitoring circuit 200 that monitors the signal distribution in the passband.
  • the IF power detection unit 10 includes a digital mixer 32, a low-pass filter 33, a measurement unit 34, and a control unit 35.
  • the IF power detection unit 10 includes a numerically controlled oscillator (NCO) 31 that outputs a trigonometric function signal such as a sine wave signal input to the digital mixer 32.
  • NCO numerically controlled oscillator
  • the digital mixer 32 outputs the digital signal output from the ADC 8 and the digital signal before being input to the band limiting filter 9 to the intermediate frequency and one or more peripheral frequencies around the intermediate frequency in order. Multiply the changing sine wave signal.
  • the NCO 31 can generate a sine wave signal having an arbitrary frequency according to the CORDIC algorithm, for example. Therefore, the NCO 31 switches the sine wave signal whose frequency matches the intermediate frequency and the sine wave signal whose frequency matches a plurality of peripheral frequencies in the peripheral band of the intermediate frequency in order and supplies them to the digital mixer 32. be able to.
  • the peripheral frequency output from the NCO 31 is a frequency in a band outside each of a plurality of pass bands prepared in advance in the band limiting filter 9.
  • the low pass filter 33 receives the output signal of the digital mixer 32 and attenuates the signal component on the high frequency side.
  • the measuring unit 34 measures the power of the signal component of the intermediate frequency and the power of the signal component of the peripheral frequency from the output signal of the low pass filter 33.
  • the control unit 35 detects the power distribution of the signal component of the desired channel and the power distribution of the signal component of the adjacent channel based on the measurement result of the measurement unit 34.
  • the circuit scale can be reduced. That is, it is necessary to monitor the power distribution in the passband in order to select a band limiting filter having a cutoff frequency that attenuates the interference noise caused by the adjacent channel without attenuating the signal component of the desired channel as much as possible.
  • a large-scale circuit such as an FFT (Fast Fourier Transform) circuit is required to confirm the power distribution in the passband.
  • FFT Fast Fourier Transform
  • FIG. 3 is a diagram for explaining the principle of the digital mixer 32.
  • sin (2 ⁇ f1) ⁇ sin (2 ⁇ f2) 1/2 ⁇ cos2 ⁇ (f1 ⁇ f2) ⁇ cos2 ⁇ (f1 + f2) ⁇
  • the relationship is established.
  • the maximum value of the amplitude of (33 output signals) can be measured as the signal intensity.
  • FIG. 4 is a diagram showing the relationship between the passband of the band limiting filter 9 and the power measured by the measuring unit 34.
  • the measurement unit 34 measures the power (amplitude) IFpow of the signal component of the intermediate frequency fa and the power of the signal components of a plurality of peripheral frequencies that are frequencies in the vicinity of the intermediate frequency (in FIG.
  • the powers pow1p to pow4p corresponding to the peripheral frequencies f1p to f4p and the powers pow1m to pow4m corresponding to the peripheral frequencies f1m to f4m on the low frequency side with respect to the intermediate frequency fa are measured).
  • the digital mixer 32 multiplies the intermediate frequency signal by a sine wave of the frequency to be checked, thereby reducing the power of the frequency to be checked to near DC. Harmonics generated upon multiplication are attenuated by the low-pass filter 33. By periodically switching the frequency of the sine wave input to the digital mixer 32, the power distribution near the frequency of the intermediate frequency signal can be examined.
  • one pass band of a plurality of pass bands prepared in advance in the band limiting filter 9 overlaps with another pass band that includes the one pass band.
  • This is a frequency of a non-overlapping band (non-overlapping band).
  • the peripheral frequency f1p is a frequency in a non-overlapping band in which the wide band pass band BW2 does not overlap with the pass band BW1 and the pass band BW1.
  • the peripheral frequency may be any frequency within the non-overlapping band, but is preferably the center value of the non-overlapping band in that the power of the frequency within the non-overlapping band can be measured without bias.
  • the peripheral frequency f1p is the center value of the bandwidth ( ⁇ f2 ⁇ f1) of the non-overlapping band. The same applies to the other peripheral frequencies f2p, f3p, f1m, f2m, and f3m.
  • peripheral frequencies sequentially output from the NCO 31 may be provided in a band outside the pass band having the maximum bandwidth in the pass band of the band limiting filter 9.
  • the peripheral frequencies f4p and f4m are frequencies in a band outside the passband BW4 having the maximum bandwidth among the passbands that the band limiting filter 9 has.
  • FIG. 5 is a flowchart showing a signal processing method executed by the tuner circuit 100.
  • This signal processing method has a frequency conversion step S1, an AD conversion step S2, and a demodulation step S3.
  • the frequency conversion step S1 the frequency conversion unit frequency-converts a high-frequency signal corresponding to the radio wave received by the antenna 1 into an intermediate frequency signal including an intermediate frequency corresponding to the signal component of the desired channel as a frequency component.
  • the ADC 8 performs AD conversion of the intermediate frequency signal into a digital signal.
  • the digital demodulator 300 demodulates the digital signal in demodulation step S3.
  • the demodulation step S3 includes a power distribution detection step S4 and a passband switching step S5.
  • the IF power detection unit 10 inputs the digital signal to the band limiting filter 9 having a plurality of passbands having different bandwidths for extracting the output signal including the signal component of the desired channel from the digital signal. Before performing, the power distribution of the signal component of the desired channel and the power distribution of the signal component of the adjacent channel adjacent to the desired channel are detected from the digital signal.
  • the control unit 35 selects a plurality of passbands based on the power distribution of the signal component of the desired channel detected in the detection step S4 and the power distribution of the signal component of the adjacent channel detected in the detection step S4.
  • the pass band of the band limiting filter 9 is switched to the pass band selected from the inside. Since the band limiting filter 9 is a digital filter, the control unit 35 switches the bandwidth of the pass band of the band limiting filter 9 by changing a plurality of filter coefficients for determining the characteristics of the pass band of the digital filter. Can do. For example, when setting the pass band of the band limiting filter 9 to the pass band BW1, the control unit 35 may switch to the filter coefficient for setting the pass band BW1. The same applies to the case where other passbands BW2 to BW4 are set.
  • FIG. 6 is a flowchart showing the process performed in the power distribution detection step S4.
  • the detection step S4 includes a multiplication step S11, a filter step S12, and a measurement step S13.
  • the digital mixer 32 digitally multiplies the digital signal before being input to the band limiting filter 9 by a sine wave signal whose frequency sequentially changes between the intermediate frequency and the peripheral frequency of the intermediate frequency.
  • the filter step S12 the multiplication value obtained in the multiplication step S11 is filtered by the low-pass filter 33.
  • the measurement unit 34 measures the power of the signal component of the center frequency and the power of the signal component of the peripheral frequency from the output signal of the low pass filter 33 obtained in the filter step S12.
  • FIG. 7 is a flowchart showing a detailed process performed in the power distribution detection step S4.
  • the measurement unit 34 measures the power of the signal component of the intermediate frequency and the power of the signal component of the peripheral frequency.
  • the control unit 35 sets the minimum one of all the powers measured by the measurement unit 34 as the minimum noise level Npow.
  • the control unit 35 also measures the high frequency side measurement value, which is a measurement value obtained by measuring the power of the signal component of the high frequency side peripheral frequency with respect to the intermediate frequency, and the low frequency side peripheral frequency with respect to the intermediate frequency.
  • the power distribution of the signal components of the desired channel and the adjacent channel from the measurement values measured by the measurement unit 34 based on the magnitude relationship with the low frequency side measurement value which is the measurement value measured by the measurement unit 34. Determine the measurement value used to detect.
  • the high-frequency side measured values correspond to powers pow1p to pow4p
  • the low-frequency side measured values correspond to powers pow1m to pow4m.
  • control unit 35 determines the magnitude relationship between the high-frequency side measurement value and the low-frequency side measurement value, the average value of the high-frequency side measurement value measured by the measurement unit 34, and the low-frequency side measurement value measured by the measurement unit 34. What is necessary is just to judge by comparison with an average value. Alternatively, the determination may be made by comparing the maximum value of the high-frequency side measurement value and the maximum value of the low-frequency side measurement value.
  • the control unit 35 detects the band covered by the power distribution of the signal component of the desired channel based on the smaller measurement value of the high frequency side measurement value and the low frequency side measurement value. This is because it is considered that there is no adjacent channel adjacent to the desired channel in the band where the smaller measured value with respect to the intermediate frequency is obtained. Further, since it is considered that there is no adjacent channel, detection based on the smaller measured value can facilitate detection of a band covered by the power distribution of the signal component of the desired channel.
  • control unit 35 detects a band covered by the power distribution of the signal component of the adjacent channel based on the larger measured value of the high frequency side measured value and the low frequency side measured value. This is because it is considered that there is an adjacent channel adjacent to the desired channel in a band where a larger measurement value is obtained with respect to the intermediate frequency. In addition, since it is considered that an adjacent channel exists, detection based on the larger measured value can facilitate detection of a band covered by the power distribution of the signal component of the adjacent channel.
  • control unit 35 detects the power distribution of the signal component of the desired channel and the power distribution of the signal component of the adjacent channel based on a threshold set according to the power measured by the measurement unit 34.
  • the control unit 35 estimates a band where the power distribution of the signal component of the desired channel exists and a band where the power distribution of the signal component of the adjacent channel exists.
  • the control unit 35 determines a band in which the power exceeding the first threshold is present among the smaller measurement values of the high-frequency side measurement value and the low-frequency side measurement value as a band covered by the power distribution of the signal component of the desired channel. To be identified.
  • the control unit 35 sets a band in which the power exceeding the second threshold is present in the larger measured value between the high frequency side measured value and the low frequency side measured value in the power distribution of the signal component of the adjacent channel. It is specified that it is a band that covers.
  • the control unit 35 sets a threshold A that is a first threshold for specifying the signal component of the desired channel based on the power IFpow and the minimum noise level Npow of the signal component of the intermediate frequency.
  • the threshold A may be set to (IFpow + Npow) ⁇ ⁇ , for example.
  • is, for example, a coefficient of 0 or more and 1 or less.
  • may be set to “ ⁇ Npow / (IFpow + Npow) ⁇ or more and ⁇ IFpow / (IFpow + Npow) ⁇ or less”. By setting ⁇ to a coefficient in such a range, the threshold A can be set at a position where the signal component of the desired channel can be easily identified.
  • step S24 the control unit 35 compares the power of the signal component of the peripheral frequency on the high frequency side with respect to the intermediate frequency and the power of the signal component of the peripheral frequency on the low frequency side with respect to the intermediate frequency.
  • a small power band including power is selected as a search range of signal components of the reception channel. That is, in step S24, it is searched to what band the signal component of the desired channel is spread.
  • step S25 the control unit 35 specifies that the power exceeding the threshold A among the power measured by the measurement unit 34 in the small power band is the power of the signal component of the desired channel. On the other hand, the control unit 35 determines that there is no signal component of the desired channel in the power band that does not exceed the threshold A among the power measured in the small power band by the measurement unit 34.
  • the control unit 35 sets a threshold value B, which is a second threshold value for identifying the signal component of the adjacent channel, based on the power IFpow and the minimum noise level Npow of the signal component of the intermediate frequency. (See FIG. 4 and FIG. 10 described later).
  • the threshold B may be set to (IFpow + Npow) ⁇ ⁇ , for example.
  • is, for example, a coefficient of 0 or more and 2 or less. By setting ⁇ to a coefficient greater than 1, it is possible to specify the signal component of the adjacent channel having a higher power than the signal component of the desired channel.
  • may be set to “ ⁇ Npow / (IFpow + Npow) ⁇ or more and ⁇ IFpow / (IFpow + Npow) ⁇ or less”.
  • the threshold B can be set at a position where it is easy to identify the signal component of the adjacent channel.
  • step S27 the control unit 35 compares the power of the signal component of the peripheral frequency on the high frequency side with respect to the intermediate frequency and the power of the signal component of the peripheral frequency on the low frequency side with respect to the intermediate frequency.
  • a large power band including power is selected as a search range of signal components of adjacent channels. That is, in step S27, it is searched to what band the signal component of the adjacent channel has spread.
  • step S28 the control unit 35 specifies that the power exceeding the threshold B among the power measured by the measurement unit 34 in the large power band is the power of the signal component of the adjacent channel. On the other hand, the control unit 35 determines that there is no signal component of the adjacent channel in the power band that does not exceed the threshold B among the power measured in the large power band by the measurement unit 34.
  • step S29 the control unit 35 specifies that the optimum pass band of the band limiting filter 9 includes the band specified when the power distribution of the signal component of the desired channel extends and the power distribution of the signal component of the adjacent channel extends.
  • a band not including the set band is selected from a plurality of pass bands prepared in advance in the band limiting filter 9. That is, the control unit 35 selects a pass band in which the power of the signal component of the desired channel exceeds the threshold A and the power of the signal component of the adjacent channel is less than the threshold B.
  • control unit 35 compares the power of the signal component of the high frequency side compared to the intermediate frequency with the power of the signal component of the low frequency side compared to the intermediate frequency.
  • the bandwidth of the pass band is increased until the power exceeds the threshold B, and the bandwidth of the pass band is decreased until the smaller power falls below the threshold value B.
  • FIG. 8 is a filter characteristic diagram of the low-pass filter 33.
  • the sine wave multiplied by the intermediate frequency signal is switched every 20 ms (changeable) per frequency.
  • a signal having a frequency higher than 50 Hz (one cycle of 20 ms) of the audio signal is included in one or more cycles until the sine wave of the next frequency is switched.
  • the frequency switching interval output from the NCO 31 may be determined in accordance with the specifications and the like.
  • FIG. 9 is a power distribution diagram of the output signal of the ADC 8.
  • FIG. 9 shows a case where the intermediate frequency fa corresponding to the channel frequency of the desired channel is 300 kHz and the frequency corresponding to the channel frequency of the adjacent channel is 200 kHz. Since FIG. 9 shows a waveform before being input to the band limiting filter 9, it shows that the signal component of the adjacent channel is included as an interference wave.
  • FIG. 10 is a diagram showing the relationship between the passband of the band limiting filter 9 and the power measured by the measurement unit 34.
  • the IF power detector 10 detects the power as shown in FIG. 10 at the intermediate frequency and the peripheral frequency.
  • the control unit 35 sequentially compares the power of each peripheral frequency with the threshold B from the low frequency side to the high frequency side, and sets the peripheral frequency of the power exceeding the threshold B to the bandwidth.
  • Passbands ie, BW180 and BW150
  • a passband ie, BW120
  • the signal of the adjacent channel can be appropriately attenuated.
  • control unit 35 sequentially compares the power of each peripheral frequency with the threshold A from the high frequency side to the low frequency side based on the detection result of FIG. 10, and the peripheral frequency of the power not exceeding the threshold A Is excluded from the passband candidates to be set in the band limiting filter 9, and the passband including the peripheral frequency of power exceeding the threshold A in the bandwidth (i.e., BW180 and BW150) is included.
  • BW120 is selected as a passband candidate to be set in the band limiting filter 9.
  • a pass band having a bandwidth of 120 kHz that satisfies each condition is selected. As a result, it is possible to improve both the reception performance of the desired channel and the reduction of interference noise due to the adjacent channel.
  • FIG. 11 is a waveform diagram of an audio output signal when the pass band BW180 having a bandwidth of 180 kHz is selected in the power distribution of FIG.
  • FIG. 12 is a waveform diagram of an audio output signal when the pass band BW120 having a bandwidth of 120 kHz is selected in the power distribution of FIG.
  • the signal component of the adjacent channel is not mixed with the signal component of the desired channel, so that the distortion of the audio signal disappears and the deterioration of the audibility can be prevented.
  • FIG. 13 shows a radio tuner IC 400 which is a specific example of the signal processing apparatus.
  • the radio tuner IC 400 is a receiving device capable of receiving stereo FM broadcasting.
  • 400A and 400C are analog blocks.
  • 400B is a digital block.
  • An RDS (Radio Data System) 18 outputs RDS data extracted from the FM multiplexed signal.
  • the DAC 16 (17) converts the digital stereo audio signal decoded by the MPX 15 into an analog stereo audio signal.
  • LNA3 and VCO5 may be provided outside the IC.
  • the RF band pass filter 2 may be provided inside the IC.
  • one or two or more passbands that can be selected as the passband of the filter unit can be arbitrarily set from the outside of each signal processing device for each signal processing device, so that each signal processing device is used in an environment. Can be selected as the pass band of the filter unit. As a result, the reception performance of the desired channel is effectively improved and the interference noise due to the adjacent channel is effectively reduced.
  • the four selector circuits SL1 to SL4 shown in FIG. 14 can select from eight types of passband candidates BWA to BWH having different bandwidths according to register values set by a command signal from the outside of the signal processing device.
  • Four types of passbands BW1 to BW4 are designated.
  • Four types of passbands BW1 to BW4 designated according to the register value are set as passbands that can be selected as the passband of the band limiting filter 9.
  • the filter coefficients for determining the passband candidates BWA to BWH are stored in advance in a storage device (for example, the memory 20 shown in FIG. 13) built in the signal processing device.
  • a storage device for example, the memory 20 shown in FIG. 13
  • the above register value is stored in, for example, the configuration register 19 shown in FIG.
  • the register value of the configuration register 19 can be changed from the outside of the IC 400 by a command signal input via the communication interface 21.
  • the four selector circuits SL1 to SL4 shown in FIG. 14 use filter coefficients for determining passband candidates BWA to BWH stored in advance according to the register value of the configuration register 19.
  • a filter coefficient for determining passbands BW1 to BW4 that can be selected as the passband of the band limiting filter 9 is designated.
  • the measurement unit Since the passbands BW1 to BW4 designated from the passband candidates BWA to BWH are changed according to the contents of the register values set by the command signal from the outside of the signal processing device, the measurement unit The peripheral frequency such as f1p described above for which the power measurement is to be performed by 34 also needs to be changed according to the designated passbands BW1 to BW4 (see FIG. 4).
  • the peripheral frequency sequentially output from the NCO 31 shown in FIG. 2 may be changed. That is, the NCO 31 may change the peripheral frequencies that are sequentially output to the digital mixer 32 in accordance with the passbands BW1 to BW4 designated from the passband candidates BWA to BWH.
  • four selector circuits SL11 to SL14 shown in FIG. 15 have eight types of low frequency side peripheral frequency candidates fAm to fHm having different frequencies according to register values set by command signals from the outside of the signal processing device. 4 types of low frequency side peripheral frequencies f1m to f4m are designated.
  • the NCO 31 sequentially outputs the four types of low frequency side peripheral frequencies f1m to f4m designated according to the register value to the digital mixer 32.
  • the four selector circuits SL21 to SL24 have four types of high frequency side peripheral frequency candidates fAp to fHp having different frequencies according to the register value set by a command signal from the outside of the signal processing device. Designate high frequency side peripheral frequencies f1p to f4p.
  • the NCO 31 sequentially outputs four types of high frequency side peripheral frequencies f1p to f4p designated according to the register value to the digital mixer 32.
  • the low frequency side peripheral frequency candidates fAm to fHm and the high frequency side peripheral frequency candidates fAp to fHp are stored in advance in a storage device (for example, the memory 20 shown in FIG. 13) built in the signal processing device.
  • the above register values for designating the low frequency side peripheral frequencies f1m to f4m and the high frequency side peripheral frequencies f1p to f4p are stored in, for example, the configuration register 19 shown in FIG.
  • the register value of the configuration register 19 can be changed from the outside of the IC 400 by a command signal input via the communication interface 21.
  • the frequency of the low frequency side peripheral frequency candidate fAm is set to “intermediate frequency fa ⁇ half of the bandwidth of the passband candidate BWA ⁇ offset ⁇ ”, and the frequency of fBm is set to “intermediate frequency fa ⁇ the bandwidth of the passband candidate BWB Is preferably set to “half of ⁇ offset ⁇ ”.
  • the frequency of the high frequency side peripheral frequency candidate fAp is set to “intermediate frequency fa + half of the bandwidth of the passband candidate BWA + offset ⁇ ”, and the frequency of fBp is “intermediate frequency fa + half of the bandwidth of the passband candidate BWB + It may be set to “offset ⁇ ”.
  • fCp to fHp is set to “intermediate frequency fa ⁇ half of the bandwidth of the passband candidate BWA ⁇ offset ⁇ ”.
  • the frequency of the low frequency side peripheral frequency candidate fAm is , (275 ⁇ ) kHz
  • the frequency of fBm is set to (261 ⁇ ) kHz.
  • the same can be set for fCm to fHm.
  • the frequency of the high frequency side peripheral frequency candidate fAp is set to (325 + ⁇ ) kHz
  • the frequency of fBp is set to (339 + ⁇ ) kHz.
  • fCp to fHp when the intermediate frequency fa is 300 kHz and the bandwidths of the passband candidates BWA to BWH are 50, 78, 104, 132, 158, 186, 212, 240 kHz
  • the frequency of the low frequency side peripheral frequency candidate fAm is , (275 ⁇ ) kHz
  • the frequency of fBm is set to (261 ⁇ ) kHz.
  • the same can be set for fCm to fHm.
  • the frequency of the high frequency side peripheral frequency candidate fAp is
  • represents an offset from the band edge of the passband candidates BWA to BWH.
  • the peripheral frequency for detecting the power can be set near or far from the band edge of the passband candidates BWA to BWH. It is preferable that ⁇ is a value that can be set for each signal processing device, as in the above-described passband.
  • the passbands BW1 to BW4 and the peripheral frequencies f1m to f4m and f1p to f4p determined according to the register values set by the command signal from the outside of the signal processing device are used in FIG.
  • the illustrated power distribution detection step S4 and passband switching step S5 are performed.
  • the selector circuit SL5 shown in FIG. 14 can use the filter coefficients for determining the passbands BW1 to BW4 to improve the reception performance of the desired channel and to reduce the interference noise due to the adjacent channel.
  • the coefficient is set as a filter coefficient for determining the pass band of the band limiting filter 9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Noise Elimination (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

 受信された高周波信号を希望チャネルの信号成分に対応する中間周波信号に周波数変換するミキサ6と、中間周波信号をデジタル信号にAD変換するADC8と、前記デジタル信号を復調するデジタル復調部300とを有し、デジタル復調部300が、通過帯域の切り替えが可能な帯域制限フィルタ9と、帯域制限フィルタ9に入力される前のデジタル信号から、希望チャネルの信号成分のパワー分布と希望チャネルに隣接する隣接チャネルの信号成分のパワー分布とを検出する検出部10とを備え、検出部10によって検出された希望チャネル及び隣接チャネルの信号成分のパワー分布に基づいて選択された通過帯域に、帯域制限フィルタ9の通過帯域が切り替わる、信号処理装置。

Description

信号処理装置及び信号処理方法
 本発明は、受信された高周波信号を処理する信号処理装置及び信号処理方法に関する。
 中間周波信号(IF信号)と基準周波数信号とを乗算する乗算器と、乗算器の出力信号から不要な高調波成分を減衰させるローパスフィルタとを備え、ローパスフィルタの出力信号によって、妨害電波の有無が検出される、FM受信機が知られている(例えば、特許文献1参照)。
 一方、ラジオチューナ用ICにおいて、希望のチャネルに隣接する隣接チャネルによる妨害ノイズが放送受信帯域内に入り込むことによって、オーディオ出力信号が歪んで、聴感に悪影響が起こることがある。このような不具合を解消するため、放送受信帯域内に入り込む隣接チャネルによる妨害ノイズを除去する帯域制限フィルタを使用することによって、オーディオ出力の聴感を良くすることができる。
特開昭59-172833号公報
 ところが、帯域制限フィルタを使用する場合、適切な通過帯域に調整できなければ、隣接チャネルによる妨害ノイズだけでなく希望のチャネルの信号成分も減衰するため、オーディオ出力の聴感が悪化してしまう。
 そこで、本発明は、希望チャネルの受信性能の向上と隣接チャネルによる妨害ノイズの低減とを両立させることができる、信号処理装置及び信号処理方法の提供を目的とする。
 上記目的を達成するため、本発明に係る信号処理装置は、
 受信された高周波信号を処理する信号処理装置であって、
 希望チャネルの信号成分に対応する中間周波数を周波数成分として含む中間周波信号に前記高周波信号を周波数変換する周波数変換部と、
 前記中間周波信号をデジタル信号にAD変換するAD変換部と、
 前記デジタル信号を復調するデジタル復調部とを有し、
 前記デジタル復調部が、
 前記デジタル信号から前記希望チャネルの信号成分を含む出力信号を取り出すための帯域幅が互いに異なる複数の通過帯域を有するフィルタ部と、
 前記フィルタ部に入力される前の前記デジタル信号から、前記希望チャネルの信号成分のパワー分布と前記希望チャネルに隣接する隣接チャネルの信号成分のパワー分布とを検出する検出部とを備え、
 前記検出部によって検出された前記希望チャネルの信号成分のパワー分布と前記検出部によって検出された前記隣接チャネルの信号成分のパワー分布とに基づいて前記複数の通過帯域の中から選択された通過帯域に、前記フィルタ部の通過帯域が切り替わる、ことを特徴とするものである。
 また、上記目的を達成するため、本発明に係る信号処理方法は、
 受信された高周波信号を処理する信号処理方法であって、
 希望チャネルの信号成分に対応する中間周波数を周波数成分として含む中間周波信号に前記高周波信号を周波数変換する周波数変換ステップと、
 前記中間周波信号をデジタル信号にAD変換するAD変換ステップと、
 前記デジタル信号をデジタルで復調する復調ステップとを有し、
 前記復調ステップには、
 前記デジタル信号から前記希望チャネルの信号成分を含む出力信号を取り出すための帯域幅が互いに異なる複数の通過帯域を有するフィルタ部に入力される前の前記デジタル信号から、前記希望チャネルの信号成分のパワー分布と前記希望チャネルに隣接する隣接チャネルの信号成分のパワー分布とを検出する検出ステップと、
 前記検出ステップで検出した前記希望チャネルの信号成分のパワー分布と前記検出ステップで検出した前記隣接チャネルの信号成分のパワー分布とに基づいて前記複数の通過帯域の中から選択された通過帯域に、前記フィルタ部の通過帯域を切り替える切り替えステップとが含まれる、ことを特徴とするものである。
 本発明によれば、希望チャネルの受信性能の向上と隣接チャネルによる妨害ノイズの低減とを両立させることができる。
チューナ回路100の構成図である。 通過帯域内の信号分布を監視する監視回路200の構成図である。 デジタルミキサ32の原理を説明するための図である。 帯域制限フィルタ9の通過帯域と測定部34で測定されたパワーとの関係を示した図である。 チューナ回路100が実行する信号処理方法を表すフローチャートである。 パワー分布検出ステップS4で行われる工程を表すフローチャートである。 パワー分布検出ステップS4で行われる詳細工程を表すフローチャートである。 ローパスフィルタ33のフィルタ特性図である。 帯域制限フィルタ9の出力信号のパワー分布図である。 帯域制限フィルタ9の通過帯域と測定部34で測定されたパワーとの関係を示した図である。 帯域幅が180kHzの通過帯域BW180を選択した場合のオーディオ出力信号の波形図である。 帯域幅が120kHzの通過帯域BW120を選択した場合のオーディオ出力信号の波形図である。 信号処理装置の具体例であるラジオチューナ用IC400である。 セレクタ回路SL1~SL4を示した図である。 セレクタ回路SL11~SL14及びSL21~SL24を示した図である。
 以下、図面を参照しながら、本発明を実施するための形態の説明を行う。図1は、本発明の実施形態であるチューナ回路100の構成図である。チューナ回路100は、受信された高周波信号を処理する信号処理装置である。チューナ回路100は、主な構成として、周波数変換部と、AD変換部と、デジタル復調部とを有している。
 周波数変換部は、受信された高周波信号を、受信が希望されている希望チャネルの信号成分に対応する中間周波数を周波数成分として含む中間周波信号に周波数変換する。図1には、周波数変換部として、アンテナ1で電波を受信することにより生じた高周波信号が入力されるRFバンドパスフィルタ2、RFバンドパスフィルタ2の出力信号を増幅するLNA(ローノイズアンプ)3、LNA3の出力信号が入力されるRFバンドパスフィルタ4、局部発振周波信号を生成するVCO(局部発振器)5と、RFバンドパスフィルタ4の出力信号と局部発振周波信号とを混合するミキサ6、ミキサ6の出力信号が入力されるIFバンドパスフィルタ7が示されている。局部発振周波信号は、希望の受信チャネルに対応する中間周波数の中間周波信号に変換するための発振信号である。
 AD変換部は、IFバンドパスフィルタ7から出力された中間周波信号(IF信号)をデジタル信号にAD変換する。図1には、AD変換部として、ADC(アナログ-デジタルコンバータ)8が示されている。
 デジタル復調部は、AD変換部から出力されたデジタル信号を復調する。図1には、デジタル復調部300が示されている。デジタル復調部300は、主な構成として、デジタル信号が通過可能な帯域を制限するフィルタ部と、中間周波信号のパワー分布を検出するパワー分布検出部とを有している。
 フィルタ部は、デジタル信号から、ユーザ等によって選択された希望チャネルの信号成分を含む出力信号を取り出すための帯域幅が互いに異なる複数の通過帯域を有している。図1には、フィルタ部として、帯域制限フィルタ9が示されている。
 パワー分布検出部は、フィルタ部に入力される前のデジタル信号から、希望チャネルの信号成分のパワー分布と隣接チャネルの信号成分のパワー分布とを検出する。図1には、パワー分布検出部として、IFパワー検出部10が示されている。
 チューナ回路100において、IFパワー検出部10によって検出された希望チャネルの信号成分のパワー分布とIFパワー検出部10によって検出された隣接チャネルの信号成分のパワー分布とに基づいて前記複数の通過帯域の中から選択された通過帯域に、帯域制限フィルタ9の通過帯域が切り替わる。
 つまり、チューナ回路100の場合、希望チャネルの信号分布のパワー分布と隣接チャネルの信号成分のパワー分布の両方のパワー分布に基づいて、帯域制限フィルタ9の通過帯域が切り替えられている。したがって、希望チャネルの信号成分のパワーが小さくならないように且つ隣接チャネルの信号成分のパワーが大きくならないような通過帯域に、帯域制限フィルタ9の通過帯域を切り替えることができるので、希望チャネルの受信性能の向上と隣接チャネルによる妨害ノイズの低減とを両立させることができる。
 なお、図1において、ヒルベルトフィルタ11は、帯域制限フィルタ9から出力されたフィルタ処理後の出力信号をヒルベルト変換する。デジタルミキサ12,13は、ヒルベルトフィルタ11の出力信号に、NCO(数値制御発振器)14から出力された離散的な正弦波信号を乗算することにより生成された出力信号をMPX15に供給する。MPX15は、マルチプレックス回路である。MPX15は、右側ステレオ信号と左側ステレオ信号に復号する。
 図2は、通過帯域内の信号分布を監視する監視回路200の構成図である。IFパワー検出部10は、デジタルミキサ32と、ローパスフィルタ33と、測定部34と、制御部35とを備える。また、IFパワー検出部10は、デジタルミキサ32に入力される正弦波信号等の三角関数信号を出力する数値制御発振器(NCO)31を備える。
 デジタルミキサ32は、ADC8から出力されたデジタル信号であって且つ帯域制限フィルタ9に入力される前のデジタル信号に、中間周波数と中間周波数の周辺の一又は二以上の周辺周波数に周波数が順番に変化する正弦波信号を乗算する。
 NCO31は、例えばCORDICアルゴリズムに従って、任意の周波数の正弦波信号を生成可能である。したがって、NCO31は、周波数が中間周波数に一致する正弦波信号と、周波数が中間周波数の周辺帯域にある複数の周辺周波数に一致する正弦波信号とを、順番に切り替えて、デジタルミキサ32に供給することができる。NCO31から出力される周辺周波数は、帯域制限フィルタ9に予め準備されている複数の通過帯域それぞれの外側の帯域内の周波数である。
 ローパスフィルタ33は、デジタルミキサ32の出力信号が入力されて、高周波側の信号成分を減衰させる。
 測定部34は、ローパスフィルタ33の出力信号から、中間周波数の信号成分のパワーと周辺周波数の信号成分のパワーとを測定する。
 制御部35は、希望チャネルの信号成分のパワー分布と隣接チャネルの信号成分のパワー分布とを、測定部34の測定結果に基づいて検出する。
 このように、デジタルミキサ32の出力信号に基づいて通過帯域内のパワー分布を監視しているので、回路規模を縮小することができる。つまり、希望チャネルの信号成分をできるだけ減衰させずに隣接チャネルによる妨害ノイズを減衰させるカットオフ周波数を有する帯域制限フィルタを選択するためには、通過帯域内のパワー分布を監視する必要がある。従来の技術では、通過帯域内のパワー分布を確認するには、FFT(高速フーリエ変換)回路等の大規模回路が必要となる。これに対して、本発明の場合、デジタルミキサ32の原理を利用することによって、通過帯域内のパワー分布の監視を小規模回路で実現できる。
 図3は、デジタルミキサ32の原理を説明するための図である。積和の公式により、
    sin(2πf1)×sin(2πf2)
         =1/2{cos2π(f1-f2)-cos2π(f1+f2)}
という関係が成立する。この公式によれば、2信号を乗算すると、 2信号それぞれの周波数の和と差の信号に変換することができる。つまり、パワーを観測したい周波数faの信号を中間周波信号に乗算すると、中間周波信号内の周波数faの信号成分はDC近傍(=fa-fa=0)と2fa(=fa+fa)に移動する。そして、デジタルミキサから出力される乗算後の信号をローパスフィルタ(図2の場合、ローパスフィルタ33)に通すことによって、DC近傍(周波数の差の信号)以外の周波数成分が減衰した信号(ローパスフィルタ33の出力信号)の振幅の最大値を信号強度として測定することができる。
 図4は、帯域制限フィルタ9の通過帯域と測定部34で測定されたパワーとの関係を示した図である。測定部34は、中間周波数faの信号成分のパワー(振幅)IFpow及びその中間周波数近傍の周波数である複数の周辺周波数の信号成分のパワー(図4には、中間周波数faに対して高周波側の各周辺周波数f1p~f4pに対応するパワーpow1p~pow4pと、中間周波数faに対して低周波側の各周辺周波数f1m~f4mに対応するパワーpow1m~pow4mとが示されている)を測定する。そのために、中間周波信号に調べたい周波数の正弦波をデジタルミキサ32で乗算することによって、その調べたい周波数のパワーをDC近傍まで落とす。乗算した際に発生する高調波は、ローパスフィルタ33で減衰される。デジタルミキサ32に入力される正弦波の周波数を周期的に切り替えることによって、中間周波信号の周波数近傍のパワー分布を調べることができる。
 NCO31から順次出力される周辺周波数は、帯域制限フィルタ9に予め準備されている複数の通過帯域のうちの一の通過帯域と該一の通過帯域を包含する広帯域の他の通過帯域とが重複していない帯域(非重複帯域)の周波数である。例えば、周辺周波数f1pは、通過帯域BW1と通過帯域BW1に比べて広帯域の通過帯域BW2とが重複していない非重複帯域内の周波数である。他の周辺周波数f2p,f3p,f1m,f2m,f3mについても同様である。
 また、周辺周波数は、非重複帯域内の任意の周波数であればよいが、非重複帯域内の周波数のパワーを偏り無く測定できるという点で非重複帯域の中心値であることが好ましい。例えば、周辺周波数f1pは、非重複帯域の帯域幅(△f2-△f1)の中心値である。他の周辺周波数f2p,f3p,f1m,f2m,f3mについても同様である。
 また、NCO31から順次出力される周辺周波数は、帯域制限フィルタ9が有している通過帯域の中で帯域幅が最大の通過帯域の外側の帯域に設けられていてもよい。周辺周波数f4p,f4mは、帯域制限フィルタ9が有している通過帯域の中で帯域幅が最大の通過帯域BW4の外側の帯域の周波数である。
 図5は、チューナ回路100が実行する信号処理方法を表すフローチャートである。本信号処理方法は、周波数変換ステップS1と、AD変換ステップS2と、復調ステップS3とを有している。周波数変換部は、周波数変換ステップS1で、希望チャネルの信号成分に対応する中間周波数を周波数成分として含む中間周波信号に、アンテナ1で受信した電波に応じた高周波信号を周波数変換する。ADC8は、AD変換ステップS2で、中間周波信号をデジタル信号にAD変換する。デジタル復調部300は、復調ステップS3で、デジタル信号を復調する。
 復調ステップS3には、パワー分布検出ステップS4と、通過帯域切り替えステップS5が含まれている。
 IFパワー検出部10は、パワー分布検出ステップS4で、デジタル信号から希望チャネルの信号成分を含む出力信号を取り出すための帯域幅が互いに異なる複数の通過帯域を有する帯域制限フィルタ9にデジタル信号を入力する前に、該デジタル信号から、希望チャネルの信号成分のパワー分布と希望チャネルに隣接する隣接チャネルの信号成分のパワー分布とを検出する。
 制御部35は、通過帯域切り替えステップS5で、検出ステップS4で検出した希望チャネルの信号成分のパワー分布と検出ステップS4で検出した隣接チャネルの信号成分のパワー分布とに基づいて複数の通過帯域の中から選択された通過帯域に、帯域制限フィルタ9の通過帯域を切り替える。制御部35は、帯域制限フィルタ9はデジタルフィルタであるので、デジタルフィルタの通過帯域の特性を定めるための複数のフィルタ係数を変更することによって、帯域制限フィルタ9の通過帯域の帯域幅を切り替えることができる。例えば、制御部35は、帯域制限フィルタ9の通過帯域を通過帯域BW1に設定する場合、通過帯域BW1に設定するためのフィルタ係数に切り替えればよい。他の通過帯域BW2~BW4に設定する場合についても同様である。
 図6は、パワー分布検出ステップS4で行われる工程を表すフローチャートである。検出ステップS4は、乗算ステップS11と、フィルタステップS12と、測定ステップS13とを含んでいる。
 デジタルミキサ32は、乗算ステップS11で、帯域制限フィルタ9に入力される前のデジタル信号に、中間周波数と中間周波数の周辺周波数に周波数が順番に変化する正弦波信号をデジタルで乗算する。フィルタステップS12で、乗算ステップS11で得られた乗算値をローパスフィルタ33でフィルタをかける。測定部34は、測定ステップS13で、フィルタステップS12で得られたローパスフィルタ33の出力信号から、中心周波数の信号成分のパワーと周辺周波数の信号成分のパワーとを測定する。
 図7は、パワー分布検出ステップS4で行われる詳細工程を表すフローチャートである。ステップS21で、測定部34は、中間周波数の信号成分のパワーと周辺周波数の信号成分のパワーとを測定する。ステップS22で、制御部35は、測定部34が測定した全てのパワーの中で最小のものを最小ノイズレベルNpowと設定する。
 また、制御部35は、中間周波数に対して高周波側の周辺周波数の信号成分のパワーを測定部34が測定した測定値である高周波側測定値と、中間周波数に対して低周波側の周辺周波数の信号成分を測定部34が測定した測定値である低周波側測定値との大小関係に基づいて、測定部34が測定した測定値の中から、希望チャネル及び隣接チャネルの信号成分のパワー分布の検出に使用される測定値を決定する。例えば、図4の場合、高周波側測定値は、パワーpow1p~pow4pに相当し、低周波側測定値は、パワーpow1m~pow4mに相当する。制御部35は、例えば、高周波側測定値と低周波側測定値との大小関係を、測定部34が測定した高周波側測定値の平均値と、測定部34が測定した低周波側測定値の平均値との比較によって判断すればよい。また、高周波側測定値の最大値と低周波側測定値の最大値との比較によって判断してもよい。
 制御部35は、高周波側測定値と低周波側測定値のうちで小さい方の測定値に基づいて、希望チャネルの信号成分のパワー分布の及ぶ帯域を検出する。中間周波数に対して小さい方の測定値が得られる帯域には、希望チャネルに隣接する隣接チャネルが存在しないと考えられるからである。また、隣接チャネルが存在しないと考えられるため、小さい方の測定値に基づいて検出することによって、希望チャネルの信号成分のパワー分布の及ぶ帯域の検出を容易にすることができる。
 また、制御部35は、高周波側測定値と低周波側測定値のうちで大きい方の測定値に基づいて、隣接チャネルの信号成分のパワー分布の及ぶ帯域を検出する。中間周波数に対して大きい方の測定値が得られる帯域には、希望チャネルに隣接する隣接チャネルが存在すると考えられるからである。また、隣接チャネルが存在すると考えられるため、大きい方の測定値に基づいて検出することによって、隣接チャネルの信号成分のパワー分布の及ぶ帯域の検出を容易にすることができる。
 例えば、制御部35によって、希望チャネルの信号成分のパワー分布と隣接チャネルの信号成分のパワー分布とが、測定部34が測定したパワーに応じて設定された閾値に基づいて検出される。
 制御部35によって、希望チャネルの信号成分のパワー分布が存在する帯域と隣接チャネルの信号成分のパワー分布が存在する帯域とが推定される。制御部35は、高周波側測定値と低周波側測定値のうちで小さい方の測定値の中で第1の閾値を超えるパワーが存在する帯域を、希望チャネルの信号成分のパワー分布の及ぶ帯域であると特定する。また、制御部35は、高周波側測定値と低周波側測定値のうちで大きい方の測定値の中で第2の閾値を超えるパワーが存在する帯域を、隣接チャネルの信号成分のパワー分布の及ぶ帯域であると特定する。
 そこで、ステップS23で、制御部35は、中間周波数の信号成分のパワーIFpowと最小ノイズレベルNpowとに基づいて、希望チャネルの信号成分を特定するための第1の閾値である閾値Aを設定する(図4及び後述の図10参照)。閾値Aは、例えば、(IFpow+Npow)×αに設定されるとよい。αは、例えば、0以上1以下の係数である。また、αを「{Npow/(IFpow+Npow)}以上{IFpow/(IFpow+Npow)}以下」に設定してもよい。αをこのような範囲の係数に設定することによって、閾値Aを希望チャネルの信号成分を特定しやすい位置に設定することができる。
 ステップS24で、制御部35は、中間周波数に対して高周波側の周辺周波数の信号成分のパワーと中間周波数に対して低周波側の周辺周波数の信号成分のパワーとを比較して、小さい方のパワーが含まれる小パワー帯域を受信チャネルの信号成分の探索範囲として選択する。つまり、ステップS24では、希望チャネルの信号成分がどのくらいの帯域まで広がっているのかを探索している。
 ステップS25で、制御部35は、測定部34が小パワー帯域で測定したパワーの中で閾値Aを超えるパワーが希望チャネルの信号成分のパワーであると特定する。一方、制御部35は、測定部34によって小パワー帯域で測定されたパワーのうち閾値Aを超えていないパワーの帯域には、希望チャネルの信号成分がないと判断する。
 一方、ステップS26で、制御部35は、中間周波数の信号成分のパワーIFpowと最小ノイズレベルNpowとに基づいて、隣接チャネルの信号成分を特定するための第2の閾値である閾値Bを設定する(図4及び後述の図10参照)。閾値Bは、例えば、(IFpow+Npow)×βに設定されるとよい。βは、例えば、0以上2以下の係数である。βを1を超える係数に設定することによって、希望チャネルの信号成分よりパワーが大きい隣接チャネルの信号成分を特定することができる。また、βを「{Npow/(IFpow+Npow)}以上{IFpow/(IFpow+Npow)}以下」に設定してもよい。βをこのような範囲の係数に設定することによって、閾値Bを隣接チャネルの信号成分を特定しやすい位置に設定することができる。
 ステップS27で、制御部35は、中間周波数に対して高周波側の周辺周波数の信号成分のパワーと中間周波数に対して低周波側の周辺周波数の信号成分のパワーとを比較して、大きい方のパワーが含まれる大パワー帯域を隣接チャネルの信号成分の探索範囲として選択する。つまり、ステップS27では、隣接チャネルの信号成分がどのくらいの帯域まで広がっているのかを探索している。
 ステップS28で、制御部35は、測定部34が大パワー帯域で測定したパワーの中で閾値Bを超えるパワーが隣接チャネルの信号成分のパワーであると特定する。一方、制御部35は、測定部34によって大パワー帯域で測定されたパワーのうち閾値Bを超えていないパワーの帯域には、隣接チャネルの信号成分がないと判断する。
 ステップS29で、制御部35は、帯域制限フィルタ9の最適な通過帯域として、希望チャネルの信号成分のパワー分布が及ぶと特定された帯域を含み且つ隣接チャネルの信号成分のパワー分布が及ぶと特定された帯域を含まない帯域を、帯域制限フィルタ9に予め用意されている複数の通過帯域の中から選択する。つまり、制御部35は、希望チャネルの信号成分のパワーが閾値Aを超え且つ隣接チャネルの信号成分のパワーが閾値B未満になる通過帯域を選択している。
 例えば、制御部35は、中間周波数に比べて高周波側の周波数の信号成分のパワーと中間周波数に比べて低周波側の周波数の信号成分のパワーとを比較して、大きい方のパワーが閾値Aを超えるまで通過帯域の帯域幅が広げ、小さい方のパワーが閾値Bを下回るまで通過帯域の帯域幅を狭める。
 次に、本発明の実施形態のシミュレーション結果を示す。
 図8は、ローパスフィルタ33のフィルタ特性図である。中間周波信号に乗算する正弦波は1つの周波数につき20ms(変更可能)毎に切り替える。これにより、次の周波数の正弦波に切り替わるまでの間に、オーディオ信号の50Hz(1周期20ms)より高い周波数の信号は1周期以上含まれるようにしている。この時間は延ばすことで低い周波数まで検出できるが、時間を延ばすと最適なフィルタを決定するまでの時間が延びてしまうためバランスをとる必要がある。したがって、仕様等に応じて、NCO31から出力される周波数の切り替え間隔は決めればよい。
 図9は、ADC8の出力信号のパワー分布図である。図9は、希望チャネルのチャネル周波数に対応する中間周波数faが300kHzであり、隣接チャネルのチャネル周波数に対応する周波数が200kHzにある場合を示している。図9は、帯域制限フィルタ9に入力される前の波形であるため、隣接チャネルの信号成分が妨害波として含まれていることを示す。
 図10は、帯域制限フィルタ9の通過帯域と測定部34で測定されたパワーとの関係を示した図である。図9のパワー分布の場合、IFパワー検出部10によって、図10に示されるようなパワーが、中間周波数及び周辺周波数で検出される。
 制御部35は、図10の検出結果に基づいて、各周辺周波数のパワーと閾値Bとの比較を低周波側から高周波側に向けて順番に行い、閾値Bを超えるパワーの周辺周波数を帯域幅に含む通過帯域(すなわち、BW180及びBW150)を、帯域制限フィルタ9に設定すべき通過帯域の候補から除外し、閾値Bを超えないパワーの周辺周波数を帯域幅に含む通過帯域(すなわち、BW120)を、帯域制限フィルタ9に設定すべき通過帯域の候補として選択する。このように選択した通過帯域を帯域制限フィルタ9に設定することで、隣接チャネルの信号を適切に減衰することができる。
 また、制御部35は、図10の検出結果に基づいて、各周辺周波数のパワーと閾値Aとの比較を高周波側から低周波側に向けて順番に行い、閾値Aを超えないパワーの周辺周波数を帯域幅に含む通過帯域(すなわち、BW180及びBW150)を、帯域制限フィルタ9に設定すべき通過帯域の候補から除外し、閾値Aを超えるパワーの周辺周波数を帯域幅に含む通過帯域(すなわち、BW120)を、帯域制限フィルタ9に設定すべき通過帯域の候補として選択する。このように選択した通過帯域を帯域制限フィルタ9に設定することで、希望チャネルの信号が減衰することを抑制することができる。
 その結果、それぞれの条件を満たす帯域幅120kHzの通過帯域が選択される。これにより、希望チャネルの受信性能の向上と隣接チャネルによる妨害ノイズの低減とを両立させることができる。
 図11は、図9のパワー分布において、帯域幅が180kHzの通過帯域BW180を選択した場合のオーディオ出力信号の波形図である。図12は、図9のパワー分布において、帯域幅が120kHzの通過帯域BW120を選択した場合のオーディオ出力信号の波形図である。図11の場合、希望チャネルの信号成分に隣接チャネルの信号成分が混ざることにより、オーディオ信号が歪むため、聴感が悪化してしまう。一方、図12の場合、希望チャネルの信号成分に隣接チャネルの信号成分が混ざらないため、オーディオ信号の歪みが消えて、聴感の低下を防止できる。
 図13は、信号処理装置の具体例であるラジオチューナ用IC400である。ラジオチューナ用IC400は、ステレオFM放送を受信可能な受信装置である。400A,400Cは、アナログブロックである。400Bは、デジタルブロックである。RDS(Radio Data System)18は、FM多重信号から抽出したRDSデータを出力する。DAC16(17)は、MPX15によって復号されたデジタル形式のステレオ音声信号を、アナログ形式のステレオ音声信号に変換する。
 以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはなく、本発明の範囲を逸脱することなく、上述した実施例に種々の変形、改良及び置換を加えることができる。
 例えば、図1において、LNA3,VCO5がICの外部に設けられていてもよい。また、RFバンドパスフィルタ2がICの内部に設けられていてもよい。
 また、本発明に係る信号処理装置が使用される環境によっては、通過帯域が狭いフィルタを使用しても隣接チャネルによる妨害ノイズの影響を受けたり、通過帯域が狭いフィルタを使用しなくても隣接チャネルによる妨害ノイズの影響を受けなかったりすることがある。そこで、フィルタ部の通過帯域として選択可能な一又は二以上の通過帯域を、信号処理装置毎に、各信号処理装置外部から任意に設定可能にすることによって、各信号処理装置が使用される環境に適した通過帯域をフィルタ部の通過帯域として選択することができる。その結果、希望チャネルの受信性能が効果的に向上するとともに、隣接チャネルによる妨害ノイズが効果的に低減する。
 例えば、図14に示される4つのセレクタ回路SL1~SL4が、信号処理装置外部からの指令信号によって設定されたレジスタ値に従って、帯域幅が互いに異なる8種類の通過帯域候補BWA~BWHの中から、4種類の通過帯域BW1~BW4を指定する。そのレジスタ値に従って指定された4種類の通過帯域BW1~BW4が、帯域制限フィルタ9の通過帯域として選択可能な通過帯域に設定される。
 通過帯域候補BWA~BWHを決定するためのフィルタ係数は、信号処理装置に内蔵される記憶装置(例えば、図13に示されるメモリ20)に予め記憶されている。通過帯域候補BWA~BWHを決定するためのフィルタ係数を記憶装置に予め記憶させておくことによって、回路面積を増やすことなく、帯域制限フィルタ9の通過帯域として選択可能な通過帯域の種類を、記憶装置の記憶容量の範囲内で、容易に増やすことができる。
 また、上記のレジスタ値は、例えば図13に示されるコンフィギュレーションレジスタ19に格納されている。コンフィギュレーションレジスタ19のレジスタ値は、通信インターフェース21を介して入力される指令信号によって、IC400の外部から変更可能である。
 したがって、図13の構成の場合、図14に示される4つのセレクタ回路SL1~SL4は、コンフィギュレーションレジスタ19のレジスタ値に従って、予め記憶された通過帯域候補BWA~BWHを決定するためのフィルタ係数の中から、帯域制限フィルタ9の通過帯域として選択可能な通過帯域BW1~BW4を決定するためのフィルタ係数を指定する。
 また、通過帯域候補BWA~BWHの中から指定される通過帯域BW1~BW4は、信号処理装置外部からの指令信号によって設定されたレジスタ値の内容に応じて変更されるものであるため、測定部34がパワー測定をすべき上述のf1p等の周辺周波数も、その指定された通過帯域BW1~BW4に応じて変更する必要がある(図4参照)。
 測定部34によってパワー測定がされる周辺周波数を変更するためには、図2に示したNCO31から順次出力される周辺周波数を変更すればよい。つまり、NCO31は、通過帯域候補BWA~BWHの中から指定された通過帯域BW1~BW4に応じて、デジタルミキサ32に順次出力する周辺周波数を変更すればよい。
 例えば、図15に示される4つのセレクタ回路SL11~SL14が、信号処理装置外部からの指令信号によって設定されたレジスタ値に従って、周波数が互いに異なる8種類の低周波側周辺周波数候補fAm~fHmの中から、4種類の低周波側周辺周波数f1m~f4mを指定する。NCO31は、そのレジスタ値に従って指定された4種類の低周波側周辺周波数f1m~f4mを、デジタルミキサ32に順次出力する。同様に、4つのセレクタ回路SL21~SL24が、信号処理装置外部からの指令信号によって設定されたレジスタ値に従って、周波数が互いに異なる8種類の高周波側周辺周波数候補fAp~fHpの中から、4種類の高周波側周辺周波数f1p~f4pを指定する。NCO31は、そのレジスタ値に従って指定された4種類の高周波側周辺周波数f1p~f4pを、デジタルミキサ32に順次出力する。
 低周波側周辺周波数候補fAm~fHm及び高周波側周辺周波数候補fAp~fHpは、信号処理装置に内蔵される記憶装置(例えば、図13に示されるメモリ20)に予め記憶されている。また、低周波側周辺周波数f1m~f4m及び高周波側周辺周波数f1p~f4pを指定するための上記のレジスタ値は、例えば図13に示されるコンフィギュレーションレジスタ19に格納されている。コンフィギュレーションレジスタ19のレジスタ値は、通信インターフェース21を介して入力される指令信号によって、IC400の外部から変更可能である。
 低周波側周辺周波数候補fAmの周波数は、「中間周波数fa-通過帯域候補BWAの帯域幅の半分-オフセットγ」に設定され、fBmの周波数は、「中間周波数fa-通過帯域候補BWBの帯域幅の半分-オフセットγ」に設定されるとよい。fCm~fHmも同様である。高周波側周辺周波数候補fApの周波数は、「中間周波数fa+通過帯域候補BWAの帯域幅の半分+オフセットγ」に設定され、fBpの周波数は、「中間周波数fa+通過帯域候補BWBの帯域幅の半分+オフセットγ」に設定されるとよい。fCp~fHpも同様である。
 例えば、中間周波数faが300kHzであって、通過帯域候補BWA~BWHの帯域幅が50,78,104,132,158,186,212,240kHzである場合、低周波側周辺周波数候補fAmの周波数は、(275-γ)kHzに設定され、fBmの周波数は、(261-γ)kHzに設定される。fCm~fHmについても、同様に設定可能である。また、高周波側周辺周波数候補fApの周波数は、(325+γ)kHzに設定され、fBpの周波数は、(339+γ)kHzに設定される。fCp~fHpについても、同様に設定可能である。
 γは、通過帯域候補BWA~BWHの帯域端からのオフセットを表す。オフセットγを変更することによって、パワーを検出する周辺周波数を、通過帯域候補BWA~BWHの帯域端から近いところにも遠いところにも設定することができる。γは信号処理装置毎に設定可能な値であると、上述の通過帯域と同様に好適である。
 このように、信号処理装置外部からの指令信号によって設定されたレジスタ値に従って定められた、通過帯域BW1~BW4と周辺周波数f1m~f4m及びf1p~f4pを用いて、上述と同様に、図5に示されるパワー分布検出ステップS4及び通過帯域切り替えステップS5が実施される。これにより、図14に示されるセレクタ回路SL5によって、通過帯域BW1~BW4を決定するためのフィルタ係数の中から、希望チャネルの受信性能の向上と隣接チャネルによる妨害ノイズの低減とを両立可能なフィルタ係数が、帯域制限フィルタ9の通過帯域を決定するためのフィルタ係数として設定される。
 本国際出願は、2009年9月11日に出願した日本国特許出願第2009-210210号に基づく優先権を主張するものであり、日本国特許出願第2009-210210号の全内容を本国際出願に援用する。
 1 アンテナ
 2 RFバンドパスフィルタ
 3 低雑音増幅器
 4 RFバンドパスフィルタ
 5 電圧発生器
 6 ミキサ
 7 IFバンドパスフィルタ
 8 ADコンバータ
 9 帯域制限フィルタ
 10 IFパワー検出部
 31 NCO
 32 デジタルミキサ
 33 ローパスフィルタ
 34 測定部
 35 制御部
 100 チューナ回路
 200 監視回路
 300 デジタル復調部
 400 ラジオチューナ用IC
 SL* セレクタ回路

Claims (17)

  1.  受信された高周波信号を処理する信号処理装置であって、
     希望チャネルの信号成分に対応する中間周波数を周波数成分として含む中間周波信号に前記高周波信号を周波数変換する周波数変換部と、
     前記中間周波信号をデジタル信号にAD変換するAD変換部と、
     前記デジタル信号を復調するデジタル復調部とを有し、
     前記デジタル復調部が、
     前記デジタル信号から前記希望チャネルの信号成分を含む出力信号を取り出すための帯域幅が互いに異なる複数の通過帯域を有するフィルタ部と、
     前記フィルタ部に入力される前の前記デジタル信号から、前記希望チャネルの信号成分のパワー分布と前記希望チャネルに隣接する隣接チャネルの信号成分のパワー分布とを検出する検出部とを備え、
     前記検出部によって検出された前記希望チャネルの信号成分のパワー分布と前記検出部によって検出された前記隣接チャネルの信号成分のパワー分布とに基づいて前記複数の通過帯域の中から選択された通過帯域に、前記フィルタ部の通過帯域が切り替わる、ことを特徴とする、信号処理装置。
  2.  前記検出部が、
     前記フィルタ部に入力される前の前記デジタル信号に、前記中間周波数と前記中間周波数の周辺周波数に周波数が順番に変化する正弦波信号を乗算するデジタルミキサと、
     前記デジタルミキサの出力信号が入力されるローパスフィルタと、
     前記ローパスフィルタの出力信号から、前記中間周波数の信号成分のパワーと前記周辺周波数の信号成分のパワーとを測定する測定部とを備え、
     前記希望チャネルの信号成分のパワー分布と前記隣接チャネルの信号成分のパワー分布とが、前記測定部の測定結果に基づいて検出される、請求項1に記載の信号処理装置。
  3.  前記中間周波数に対して高周波側の前記周辺周波数の信号成分のパワーを前記測定部が測定した測定値である高周波側測定値と、前記中間周波数に対して低周波側の前記周辺周波数の信号成分を前記測定部が測定した測定値である低周波側測定値との大小関係に基づいて、前記測定部が測定した測定値の中から、前記希望チャネル及び前記隣接チャネルの信号成分のパワー分布の検出に使用される測定値が決定される、請求項2に記載の信号処理装置。
  4.  前記高周波側測定値と前記低周波側測定値のうちで小さい方の測定値に基づいて、前記希望チャネルの信号成分のパワー分布の及ぶ帯域が検出され、
     前記高周波側測定値と前記低周波側測定値のうちで大きい方の測定値に基づいて、前記隣接チャネルの信号成分のパワー分布の及ぶ帯域が検出される、請求項3に記載の信号処理装置。
  5.  前記小さい方の測定値の中で第1の閾値を超えるパワーが存在する帯域が、前記希望チャネルの信号成分のパワー分布の及ぶ帯域であると特定され、
     前記大きい方の測定値の中で第2の閾値を超えるパワーが存在する帯域が、前記隣接チャネルの信号成分のパワー分布の及ぶ帯域であると特定される、請求項4に記載の信号処理装置。
  6.  前記フィルタ部の通過帯域として、前記希望チャネルの信号成分のパワー分布が及ぶと特定された帯域を含み且つ前記隣接チャネルの信号成分のパワー分布が及ぶと特定された帯域を含まない帯域が、前記複数の通過帯域の中から選択される、請求項5に記載の信号処理装置。
  7.  前記第1の閾値及び前記第2の閾値が、前記測定部が測定した測定値に応じて設定された設定値である、請求項5又は6に記載の信号処理装置。
  8.  前記設定値が、前記測定部が測定した測定値の中で最も小さい測定値に比べて大きな値である、請求項7に記載の信号処理装置。
  9.  前記周辺周波数が、前記複数の通過帯域のうちの一の通過帯域と該一の通過帯域に比べて広帯域の他の通過帯域とが重複していない帯域の周波数である、請求項2から8のいずれか一項に記載の信号処理装置。
  10.  前記フィルタ部の通過帯域が、前記フィルタ部の通過帯域の特性を定めるためのフィルタ係数の変更によって切り替わる、請求項1から9のいずれか一項に記載の信号処理装置。
  11.  前記高周波信号が、ステレオFM放送波をアンテナが受信することにより生じた信号である、請求項1から10のいずれか一項に記載の信号処理装置。
  12.  受信された高周波信号を処理する信号処理方法であって、
     希望チャネルの信号成分に対応する中間周波数を周波数成分として含む中間周波信号に前記高周波信号を周波数変換する周波数変換ステップと、
     前記中間周波信号をデジタル信号にAD変換するAD変換ステップと、
     前記デジタル信号をデジタルで復調する復調ステップとを有し、
     前記復調ステップには、
     前記デジタル信号から前記希望チャネルの信号成分を含む出力信号を取り出すための帯域幅が互いに異なる複数の通過帯域を有するフィルタ部に入力される前の前記デジタル信号から、前記希望チャネルの信号成分のパワー分布と前記希望チャネルに隣接する隣接チャネルの信号成分のパワー分布とを検出する検出ステップと、
     前記検出ステップで検出した前記希望チャネルの信号成分のパワー分布と前記検出ステップで検出した前記隣接チャネルの信号成分のパワー分布とに基づいて前記複数の通過帯域の中から選択された通過帯域に、前記フィルタ部の通過帯域を切り替える切り替えステップとが含まれる、ことを特徴とする、信号処理方法。
  13.  前記フィルタ部に入力される前の前記デジタル信号に、前記中間周波数と前記中間周波数の周辺周波数に周波数が順番に変化する正弦波信号をデジタルで乗算する乗算ステップと、
     前記乗算ステップで得られた乗算値をローパスフィルタでフィルタをかけるフィルタステップと、
     前記フィルタステップで得られた前記ローパスフィルタの出力信号から、前記中間周波数の信号成分のパワーと前記周辺周波数の信号成分のパワーとを測定する測定ステップとを有し、
     前記検出ステップでは、前記測定ステップでの測定結果に基づいて、前記希望チャネルの信号成分のパワー分布と前記隣接チャネルの信号成分のパワー分布とを検出する、請求項12に記載の信号処理方法。
  14.  前記中間周波数に対して高周波側の前記周辺周波数の信号成分のパワーを前記測定部が測定した測定値である高周波側測定値と、前記中間周波数に対して低周波側の前記周辺周波数の信号成分を前記測定部が測定した測定値である低周波側測定値との大小関係に基づいて、前記測定部が測定した測定値の中から、前記希望チャネル及び前記隣接チャネルの信号成分のパワー分布の検出に使用される測定値を決定する、請求項13に記載の信号処理方法。
  15.  前記高周波側測定値と前記低周波側測定値のうちで小さい方の測定値に基づいて、前記希望チャネルの信号成分のパワー分布の及ぶ帯域を検出し、
     前記高周波側測定値と前記低周波側測定値のうちで大きい方の測定値に基づいて、前記隣接チャネルの信号成分のパワー分布の及ぶ帯域が検出する、請求項14に記載の信号処理方法。
  16.  前記小さい方の測定値の中で第1の閾値を超えるパワーが存在する帯域を、前記希望チャネルの信号成分のパワー分布の及ぶ帯域であると特定し、
     前記大きい方の測定値の中で第2の閾値を超えるパワーが存在する帯域を、前記隣接チャネルの信号成分のパワー分布の及ぶ帯域であると特定する、請求項15に記載の信号処理方法。
  17.  前記フィルタ部の通過帯域として、前記希望チャネルの信号成分のパワー分布が及ぶと特定された帯域を含み且つ前記隣接チャネルの信号成分のパワー分布が及ぶと特定された帯域を含まない帯域を、前記複数の通過帯域の中から選択する、請求項16に記載の信号処理方法。
PCT/JP2010/064270 2009-09-11 2010-08-24 信号処理装置及び信号処理方法 WO2011030664A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011530798A JPWO2011030664A1 (ja) 2009-09-11 2010-08-24 信号処理装置及び信号処理方法
EP10815261A EP2477336A1 (en) 2009-09-11 2010-08-24 Signal processing device and signal processing method
CN2010800347820A CN102474277A (zh) 2009-09-11 2010-08-24 信号处理装置以及信号处理方法
US13/393,962 US20120163438A1 (en) 2009-09-11 2010-08-24 Signal processing device and signal processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-210210 2009-09-11
JP2009210210 2009-09-11

Publications (1)

Publication Number Publication Date
WO2011030664A1 true WO2011030664A1 (ja) 2011-03-17

Family

ID=43732338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064270 WO2011030664A1 (ja) 2009-09-11 2010-08-24 信号処理装置及び信号処理方法

Country Status (5)

Country Link
US (1) US20120163438A1 (ja)
EP (1) EP2477336A1 (ja)
JP (1) JPWO2011030664A1 (ja)
CN (1) CN102474277A (ja)
WO (1) WO2011030664A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102832955A (zh) * 2011-06-17 2012-12-19 富士通天株式会社 接收装置以及信号处理方法
WO2014132310A1 (ja) * 2013-03-01 2014-09-04 パナソニック株式会社 受信装置および復調方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9198143B2 (en) * 2012-03-30 2015-11-24 Alcatel Lucent Method and apparatus for improved management of service-impacting events

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06188765A (ja) * 1992-07-08 1994-07-08 Blaupunkt Werke Gmbh 隣接チャネルの妨害の検出および抑圧回路装置
JP2005057745A (ja) * 2003-07-22 2005-03-03 Matsushita Electric Ind Co Ltd 高周波可変利得増幅装置、制御装置、高周波可変利得周波数変換装置、および通信機器
JP2006050333A (ja) * 2004-08-05 2006-02-16 Sony Corp 無線受信装置
JP2006253886A (ja) * 2005-03-09 2006-09-21 Matsushita Electric Ind Co Ltd 受信装置
JP2009005151A (ja) * 2007-06-22 2009-01-08 Seiko Epson Corp ベースバンド信号処理回路、受信システム及びベースバンド信号処理方法
JP2009105558A (ja) * 2007-10-22 2009-05-14 Sony Corp 信号処理装置、信号処理装置の制御方法、デジタル放送受信装置、及び、デジタル放送受信装置の制御方法
JP2009210210A (ja) 2008-03-05 2009-09-17 Taiyo Nippon Sanso Corp 排ガス分解装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5507024A (en) * 1994-05-16 1996-04-09 Allegro Microsystems, Inc. FM data-system radio receiver
US5615227A (en) * 1994-11-21 1997-03-25 Pole Zero Corporation Transmitting spread spectrum data with commercial radio
US5926513A (en) * 1997-01-27 1999-07-20 Alcatel Alsthom Compagnie Generale D'electricite Receiver with analog and digital channel selectivity
US6603826B1 (en) * 1999-09-15 2003-08-05 Lucent Technologies Inc. Method and receiver for dynamically compensating for interference to a frequency division multiplex signal
WO2003071673A2 (en) * 2002-02-25 2003-08-28 Sirific Wireless Corporation Frequency down converter using a multitone local oscillator
EP1501189B1 (en) * 2003-07-22 2009-08-12 Panasonic Corporation High frequency variable gain amplification device, control device, high frequency variable gain frequency-conversion device, and communication device
US7272375B2 (en) * 2004-06-30 2007-09-18 Silicon Laboratories Inc. Integrated low-IF terrestrial audio broadcast receiver and associated method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06188765A (ja) * 1992-07-08 1994-07-08 Blaupunkt Werke Gmbh 隣接チャネルの妨害の検出および抑圧回路装置
JP2005057745A (ja) * 2003-07-22 2005-03-03 Matsushita Electric Ind Co Ltd 高周波可変利得増幅装置、制御装置、高周波可変利得周波数変換装置、および通信機器
JP2006050333A (ja) * 2004-08-05 2006-02-16 Sony Corp 無線受信装置
JP2006253886A (ja) * 2005-03-09 2006-09-21 Matsushita Electric Ind Co Ltd 受信装置
JP2009005151A (ja) * 2007-06-22 2009-01-08 Seiko Epson Corp ベースバンド信号処理回路、受信システム及びベースバンド信号処理方法
JP2009105558A (ja) * 2007-10-22 2009-05-14 Sony Corp 信号処理装置、信号処理装置の制御方法、デジタル放送受信装置、及び、デジタル放送受信装置の制御方法
JP2009210210A (ja) 2008-03-05 2009-09-17 Taiyo Nippon Sanso Corp 排ガス分解装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102832955A (zh) * 2011-06-17 2012-12-19 富士通天株式会社 接收装置以及信号处理方法
CN102832955B (zh) * 2011-06-17 2016-06-22 富士通天株式会社 接收装置以及信号处理方法
WO2014132310A1 (ja) * 2013-03-01 2014-09-04 パナソニック株式会社 受信装置および復調方法

Also Published As

Publication number Publication date
US20120163438A1 (en) 2012-06-28
EP2477336A1 (en) 2012-07-18
JPWO2011030664A1 (ja) 2013-02-07
CN102474277A (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
JP5331130B2 (ja) 無線受信機における局検出及び探索のためのシステム及び方法
JP3906792B2 (ja) 高周波信号受信装置とその製造方法
US8095095B2 (en) Band switch control apparatus for intermediate frequency filter
US7565112B2 (en) Reduced adjacent channel interference in a radio receiver
US8515372B2 (en) Receiver configurable in a plurality of modes
JP2004040367A (ja) 隣接妨害波除去機能付き受信機
US7072424B2 (en) Adaptive direct conversion receiver
JP2009081839A (ja) Fmチューナ
KR100988448B1 (ko) 가변 대역폭 중간 주파수 필터를 가진 무선 수신기
US20110111714A1 (en) Method and system for false frequency lock free autonomous scan in a receiver
WO2011030664A1 (ja) 信号処理装置及び信号処理方法
US7903763B2 (en) Bandwidth selection for FM applications
US8750817B2 (en) Controlling filter bandwidth based on blocking signals
JP2012191266A (ja) 受信装置、および、プログラム
US9178733B2 (en) Intermediate frequency receiver with dynamic selection of the intermediate frequency used
JP5907680B2 (ja) Fm信号の品質測定
CN109787649B (zh) 直接变频接收机
JP2009273093A (ja) Fm受信機
JP2008236664A (ja) 伝送装置
WO2015008802A1 (ja) 無線受信回路、無線受信方法および無線受信プログラム
WO2007066528A1 (ja) 受信感度検出装置及び受信装置
JP2005318111A (ja) 受信装置
JP2009152874A (ja) Fmデータ放送用チューナ
JP2008227751A (ja) 車両用受信装置
JP2000312156A (ja) Fm受信装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080034782.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10815261

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13393962

Country of ref document: US

Ref document number: 2011530798

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010815261

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE