WO2011030639A1 - Bi2223酸化物超電導体及びその製造方法 - Google Patents

Bi2223酸化物超電導体及びその製造方法 Download PDF

Info

Publication number
WO2011030639A1
WO2011030639A1 PCT/JP2010/063242 JP2010063242W WO2011030639A1 WO 2011030639 A1 WO2011030639 A1 WO 2011030639A1 JP 2010063242 W JP2010063242 W JP 2010063242W WO 2011030639 A1 WO2011030639 A1 WO 2011030639A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide superconductor
critical current
current density
magnetic field
solution
Prior art date
Application number
PCT/JP2010/063242
Other languages
English (en)
French (fr)
Inventor
和晃 畳谷
直樹 綾井
淳一 下山
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to DE112010003576T priority Critical patent/DE112010003576T8/de
Priority to US13/394,617 priority patent/US20120172230A1/en
Priority to CN2010800398184A priority patent/CN102482112A/zh
Publication of WO2011030639A1 publication Critical patent/WO2011030639A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • C01G29/006Compounds containing, besides bismuth, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties

Definitions

  • the present invention relates to a Bi2223 oxide superconductor and a method for producing the same. More specifically, the present invention has a high critical current density in a low-temperature magnetic field and maintains the high critical current density even in a self-magnetic field at a liquid nitrogen temperature (77 K).
  • the present invention relates to a Bi2223 oxide superconductor that can be manufactured and a method for manufacturing the same.
  • Bi (bismuth) -based oxide superconductors are known as materials having a high critical current density.
  • Bi-based oxide superconductors (Bi, Pb) 2
  • Bi2223 oxide superconductor composed of —Sr 2 —Ca 2 —Cu 3 has attracted attention because a wire with a particularly high critical current density can be obtained by high orientation.
  • this Bi2223 oxide superconductor has a problem that the critical current density rapidly decreases when a magnetic field is applied in the c-axis direction.
  • an attempt is made to improve the critical current density in a magnetic field by performing element substitution with Ln (lanthanoid) such as La.
  • Patent Document 1 a Bi2223 oxide superconductor obtained by replacing 10% or more of a rare earth element with a Bi-based oxide is disclosed, and by adopting such a configuration, The critical current density in a magnetic field is improved.
  • this Bi2223 oxide superconductor has a new problem of reducing the critical current density in a 77K self-magnetic field.
  • Patent Document 2 also discloses a technology of a Bi-based oxide superconductor in which Ln is substituted with an element.
  • the Bi-based oxide superconductor targeted by this Patent Document 2 is a Bi2212 oxide superconductor, so that a sufficient critical current density cannot be obtained.
  • the present invention provides a Bi2223 oxide superconductor that has a high critical current density in a low-temperature magnetic field and can maintain a high critical current density even in a 77 K self-magnetic field, and a method for manufacturing the same.
  • the issue is to provide.
  • the present inventor conducted various studies on the Bi2223 oxide superconductor in which Ln is substituted.
  • the Bi2223 oxide superconductor substituted with the conventional Ln has a substitution amount as large as 10% or more, and thus tends to cause heterogeneous aggregation, which reduces the critical current density in the 77K self-magnetic field. I found out.
  • the first invention of the present application is a Bi2223 oxide superconductor made of Bi, Pb, Sr, Ln, Ca, Cu, O, and the Ln is La, Ce, Pr, Nd, Pm, Sm, Eu. Bi2223 oxide characterized in that it is at least one selected from Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, and the composition ratio of Sr and Ln is the following composition ratio: It is a superconductor.
  • Sr: Ln (1-x): x (where 0.002 ⁇ x ⁇ 0.015)
  • the substitution amount of Ln is smaller than the conventional amount, it is possible to suppress the aggregation of heterogeneous phases. As a result, it is possible to provide a Bi2223 oxide superconductor having a high critical current density in a low temperature magnetic field and capable of maintaining the high critical current density even in a 77K self magnetic field.
  • the present inventor has further studied diligently, and as a result, as a method for producing an Ln-substituted Bi2223 oxide superconductor, a step of ionizing a material containing an element constituting the Bi2223 oxide superconductor in a solution; By injecting the solution into a high-temperature atmosphere to remove the solvent and performing a thermal decomposition reaction, the production method including the step of producing the powder containing the atoms constituting the oxide superconductor is used to completely eliminate the aggregation of the different phases.
  • the present inventors have found that a Bi2223 oxide superconductor that has a high critical current density in a low temperature magnetic field and can maintain a high critical current density even in a 77 K self magnetic field can be provided.
  • each element can be uniformly dispersed without separating and agglomerating, and Ln can be present in the Bi2223 oxide crystal grains produced from the calcined powder.
  • Ln existing in the Bi2223 oxide crystal grains can function as a pin in the Bi2223 oxide crystal grains, it has a high critical current density in a low temperature magnetic field, and also has a high critical current even in a 77K self magnetic field. The current density can be maintained.
  • the second invention of the present application claims the above invention, It is a manufacturing method of Bi2223 oxide superconductor of Claim 1, Comprising: The process which ionizes the material containing the element which comprises the said Bi2223 oxide superconductor in a solution, and a solvent removal by injecting a solution to a high temperature atmosphere And a step of producing a powder containing atoms constituting the oxide superconductor by performing a thermal decomposition reaction with the Bi2223 oxide superconductor.
  • Bi2223 oxide superconductor having a high critical current density in a low temperature magnetic field and capable of maintaining the high critical current density even in a 77K self magnetic field, and a method for manufacturing the same. it can.
  • FIG. 1 is a diagram schematically showing the configuration of an oxide superconductor precursor powder manufacturing apparatus according to the present invention.
  • FIG. 2 is a diagram showing critical current densities in a self-magnetic field and a low-temperature magnetic field of a Bi2223 oxide superconducting wire and a standard composition wire according to the present invention.
  • FIG. 3 is a diagram showing the relationship between the La addition concentration and the rate of increase of the critical current value in the Bi2223 oxide superconducting wire according to the present invention.
  • FIG. 4A is an X-ray diffraction diagram of an oxide superconductor precursor powder (La-added composition) according to the present invention.
  • FIG. 4B is an X-ray diffraction pattern of an oxide superconductor precursor powder (without addition of La) having a standard composition.
  • a material containing the elements constituting the Bi2223 oxide superconductor is prepared. That is, it contains an element contained in a lanthanoid (Ln) such as lanthanum (La) that substitutes a part of bismuth (Bi), lead (Pb), strontium (Sr), calcium (Ca), copper (Cu), and Sr.
  • Ln lanthanoid
  • La bismuth
  • Pb lead
  • Ca calcium
  • Cu copper
  • Sr calcium
  • Sr calcium
  • Sr calcium
  • Cu copper
  • Sr calcium
  • Sr calcium
  • Bi 2 O 3 , PbO, SrCO 3 , CaCO 3 , CuO, and La 2 O 3 powders may be used.
  • Bi, Pb, Sr, Ca, Cu, La solid metal may be used.
  • nitric acid is preferable because each material can be completely dissolved without forming a passive state of the material, and the carbon component can theoretically be zero.
  • the solvent is not limited to nitric acid, and may be other inorganic acids such as sulfuric acid and hydrochloric acid, or organic acids such as oxalic acid and acetic acid. Furthermore, as long as it is a component which can dissolve not only an acid but a material, an alkaline solution may be sufficient.
  • the material is dissolved in, for example, nitric acid and ionized.
  • the temperature of the solution at this time is not particularly limited, and may be any temperature that can sufficiently dissolve an element serving as a material such as Bi. Furthermore, in order to obtain sufficient solubility, it is preferable to provide a stirrer and stir.
  • each element (Bi, Pb, Sr, Ca, Cu, Ln) constituting the oxide superconductor is finely mixed at the ion level.
  • the solution 11 is injected from the injection port 21 together with the atomizing gas.
  • the injection of the solution 11 and the atomizing gas is indicated by an arrow A.
  • the spray 12 is formed.
  • the carrier gas is introduced from the injection port 21 in the direction indicated by the arrow B.
  • the spray 12 is transferred to the electric furnace 13 by the transfer gas. And in the electric furnace 13, the solvent of the solution 11 contained in the spray 12 is heated and evaporated.
  • the solution is sprayed onto the high-temperature atmosphere 14 constituted by the atomizing gas and the carrier gas, and the solvent is removed.
  • the raw material powder 1a containing the atoms constituting the oxide superconductor is obtained.
  • the atmosphere 15 at the outlet of the electric furnace 13 contains the removed solvent component.
  • the temperature of the electric furnace 13 is not particularly limited, the temperature of the electric furnace 13 can be set to 700 ° C. or higher and 850 ° C. or lower, for example, when nitrate is thermally decomposed in the electric furnace 13.
  • the length of the region having a temperature of 700 ° C. or higher and 850 ° C. or lower can be set to, for example, 300 mm.
  • the powder is cooled in an atmosphere 16 introduced with a cooling gas.
  • the cooling gas is introduced from the cooling gas inlet 22 in the direction indicated by the arrow C.
  • This cooling gas is mixed with the atmosphere 15 to form the atmosphere 16.
  • the raw material powder 1 a is transported to the powder collector 17 by the transporting gas and stored in a container 17 a disposed at the bottom of the powder collector 17. Thereby, the raw material powder 1 is obtained.
  • the carrier gas passes through the filter 18 and is discharged from the discharge port 23.
  • the atomizing gas in this embodiment dry air, nitrogen, or the like can be used. Moreover, dry air etc. can be used as gas for conveyance.
  • the atomizing gas and the conveying gas may be different gases or the same kind of gas. Further, the flow rate ratio between the atomizing gas and the conveying gas can be changed as appropriate.
  • the cooling gas a gas capable of reducing the concentrations of carbon dioxide, nitrogen, and water vapor as compared with the atmosphere 15 and a gas having a temperature lower than that of the atmosphere 15 is used.
  • a high-temperature furnace is a furnace that can be heated to a temperature necessary for completely pyrolyzing a salt such as nitrate, specifically, a decomposition temperature of all nitrates contained in a solid powder, such as 600 ° C. or higher and 850 ° C. or lower.
  • a furnace that can be heated as described above, for example, an electric furnace including a heat source around it can be used.
  • the inside of the high-temperature furnace is preferably maintained in an atmosphere in which an oxidation reaction is likely to occur. For example, it is preferable to maintain a low oxygen atmosphere (for example, an oxygen concentration of more than 0% by volume and 21% by volume or less).
  • a precursor powder comprising a complex oxide powder containing each element in a predetermined ratio and having each element uniformly dispersed without separation and aggregation of the heterogeneous phase of the oxide of each element, particularly the Ln oxide. Can be produced.
  • Bi, Pb, Sr, Ca, Cu and Ln constituting the Bi2223 oxide superconductor are finely mixed in an ion level of each element in a solution. Then, the solvent is removed from the solution to produce a solid powder mixed at the ionic level. By processing the generated solid powder in a high-temperature furnace, a precursor powder is generated instantly. For this reason, the precursor powder of Bi2223 oxide superconductor in which each element is uniformly dispersed can be produced without separation and aggregation of each element.
  • a Bi2223 oxide superconducting wire is prepared using La as Ln, nitrate aqueous solution of each element constituting the oxide superconductor as a material, and precursor powder prepared by spray heat treatment after acid dissolution. This is an example.
  • Table 1 The measurement results are shown in Table 1, FIG. 2 and FIG.
  • the Bi2223 oxide superconductor wire obtained by the present invention has a higher up rate than the standard composition wire, that is, the critical current density Jc (20K, ⁇ 4T) in a low temperature magnetic field. You can see that it ’s big.
  • the added La is uniformly dispersed at the ion level, so that La present in the Bi2223 phase crystal grains exhibits a pinning effect, and the additive concentration of La It is considered that the critical current density in a low-temperature magnetic field could be improved in this way, despite the low concentration.
  • the critical current density Jc (77K, sf) in the self magnetic field of the Bi2223 oxide superconductor wire obtained by the present invention is the Jc (77K, s.f) of the standard composition wire. It can be seen that this is equivalent to f). That is, it can be seen that a decrease in critical current density in the self magnetic field due to La addition is suppressed.
  • FIGS. 4A and 4B The diffraction pattern of the precursor powder prepared according to the present invention shown in FIG. 4A is substantially the same as the diffraction angle and diffraction intensity of the diffraction peak of the standard composition (without addition of La) shown in FIG. 4B.
  • a diffraction peak of La different phase was not observed, and it was confirmed that no La different phase was generated.
  • the i2223 oxide superconductor of the present invention is suitably used in a superconducting application field that requires a high critical current density in a low temperature magnetic field and needs to maintain a high critical current density even in a 77 K self-magnetic field. it can.
  • the manufacturing method of the Bi2223 oxide superconductor of this invention can be utilized suitably for manufacture of the superconducting wire which has the said characteristic.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Bi、Pb、Sr、Ln、Ca、Cu、OからなるBi2223酸化物超電導体であって、Lnは、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luから選ばれた1種以上であり、SrとLnとの組成比が以下の組成比である、低温磁場中で高臨界電流密度を有すると共に、77Kの自己磁場中においても、高臨界電流密度を維持することができるBi2223酸化物超電導体を提供する。 Sr:Ln=(1-x):x (但し、0.002≦x≦0.015) また、前記Bi2223酸化物超電導体を構成する元素を含む材料を溶液中でイオン化する工程と、高温雰囲気に溶液を噴射して溶媒除去と熱分解反応を行うことにより、酸化物超電導体を構成する原子を含む粉末を製造する工程とを備える、Bi2223酸化物超電導体の製造方法を提供する。

Description

Bi2223酸化物超電導体及びその製造方法
 本発明は、Bi2223酸化物超電導体及びその製造方法に関し、詳しくは、低温磁場中で高臨界電流密度を有すると共に、液体窒素温度(77K)の自己磁場中においても、高臨界電流密度を維持することができるBi2223酸化物超電導体及びその製造方法に関する。
 近年、酸化物の焼結体が高い臨界温度で超電導特性を示すことが報告され、この超電導体を利用した超電導技術の実用化が促進されている。このような酸化物超電導体の中でも、高臨界電流密度を有する材料として、Bi(ビスマス)系酸化物超電導体が知られており、Bi系酸化物超電導体の内でも、(Bi,Pb)-Sr-Ca-Cuから構成されるBi2223酸化物超電導体が、高配向化により特に高臨界電流密度の線材が得られることから注目されている。
 しかし、このBi2223酸化物超電導体は、c軸方向への磁場印加により臨界電流密度が急激に低下するという問題があった。この問題に対し、LaなどのLn(ランタノイド)と元素置換を行うことにより、磁場中での臨界電流密度の向上を図ることが行われている。
 具体的には、特許文献1に示される通り、Bi系酸化物に10%以上の希土類元素を置換して得られたBi2223酸化物超電導体が開示されており、このような構成とすることにより磁場中での臨界電流密度の向上が図られている。しかし、このBi2223酸化物超電導体には、77K自己磁場中の臨界電流密度を低下させるという新たな問題がある。
 特許文献2にも、Lnと元素置換したBi系酸化物超電導体の技術が開示されている。しかし、この特許文献2が対象としているBi系酸化物超電導体は、Bi2212酸化物超電導体であるため、充分な臨界電流密度を得ることができない。
特許第2749194号公報 特開平05-319827号公報
 本発明は、上記の問題に鑑み、低温磁場中で高臨界電流密度を有すると共に、77Kの自己磁場中においても、高臨界電流密度を維持することができるBi2223酸化物超電導体及びその製造方法を提供することを課題とする。
 本発明者は、上記課題を解決するために、Lnと置換を行ったBi2223酸化物超電導体につき、種々の検討を行った。その結果、従来のLnと置換したBi2223酸化物超電導体は、置換量が10%以上と多いため、異相の凝集を招き易く、この異相の凝集が77K自己磁場中の臨界電流密度を低下させていることが分かった。
 そこで、さらに、適切なLnの置換量につき検討を行い、その結果、Lnの置換量を0.2~1.5%とすることにより、低温磁場中で高臨界電流密度を有すると共に、77Kの自己磁場中においても、高臨界電流密度を維持することができるBi2223酸化物超電導体が得られることを見出し、本発明を完成するに至った。
 即ち、本願第1の発明は、Bi、Pb、Sr、Ln、Ca、Cu、OからなるBi2223酸化物超電導体であって、前記Lnは、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luから選ばれた1種以上であり、前記Srと前記Lnとの組成比が以下の組成比であることを特徴とするBi2223酸化物超電導体である。
     Sr:Ln=(1-x):x  (但し、0.002≦x≦0.015)
 本願第1の発明においては、上記の通り、Lnの置換量が従来よりも少ないため、異相の凝集を招くことが抑制される。この結果、低温磁場中で高臨界電流密度を有すると共に、77Kの自己磁場中においても、高臨界電流密度を維持することができるBi2223酸化物超電導体を提供することができる。
 しかし、上記のBi2223酸化物超電導体においては、一定の効果を有するものの、異相の凝集を完全に防止することはできない。
 そこで、本発明者は、さらに鋭意検討を行い、その結果、Ln置換のBi2223酸化物超電導体の製造方法として、Bi2223酸化物超電導体を構成する元素を含む材料を溶液中でイオン化する工程と、高温雰囲気に溶液を噴射して溶媒除去と熱分解反応を行うことにより、酸化物超電導体を構成する原子を含む粉末を製造する工程とを備える製造方法を採用することにより、異相の凝集を完全に防止することができ、低温磁場中で高臨界電流密度を有すると共に、77Kの自己磁場中においても、高臨界電流密度を維持することができるBi2223酸化物超電導体を提供できることを見出した。
 即ち、Bi2223酸化物超電導体を構成する元素を含む材料を溶液中でイオン化することにより、溶液中で各元素のイオンレベルの微細混合を行なうことができる。そして、高温雰囲気に溶液を噴射して溶媒除去と熱分解反応を行うことにより、酸化物超電導体を構成する原子を含む粉末を製造することができる。この結果、各元素が分離凝集することなく均一に分散して、仮焼粉末で作製するBi2223酸化物結晶粒内にLnを存在させることができる。このBi2223酸化物結晶粒内に存在するLnは、Bi2223酸化物結晶粒内ピンとして機能させることができるため、低温磁場中で高臨界電流密度を有すると共に、77Kの自己磁場中においても、高臨界電流密度を維持することができる。
 本願第2の発明は、以上の発明を請求するものであり、
 請求項1に記載のBi2223酸化物超電導体の製造方法であって、前記Bi2223酸化物超電導体を構成する元素を含む材料を溶液中でイオン化する工程と、高温雰囲気に溶液を噴射して溶媒除去と熱分解反応を行うことにより、酸化物超電導体を構成する原子を含む粉末を製造する工程とを備えることを特徴とするBi2223酸化物超電導体の製造方法である。
 本発明によれば、低温磁場中で高臨界電流密度を有すると共に、77Kの自己磁場中においても、高臨界電流密度を維持することができるBi2223酸化物超電導体及びその製造方法を提供することができる。
図1は、本発明に係る酸化物超電導体の前駆体粉末製造装置の構成を模式的に示す図である。 図2は、本発明に係るBi2223酸化物超電導線材および標準組成線材の自己磁場および低温磁場中での臨界電流密度を示す図である。 図3は、本発明に係るBi2223酸化物超電導線材のLa添加濃度と臨界電流値の上昇率の関係を示す図である。 図4Aは、本発明に係る酸化物超電導体の前駆体粉末(La添加組成)X線回析図である。 図4Bは、標準組成の酸化物超電導体の前駆体粉末(La無添加)のX線回析図である。
 以下、本発明を実施の形態に基づいて説明する。なお、本発明は、以下の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、以下の実施の形態に対して種々の変更を加えることが可能である。
1.前駆体粉末の製造方法
 はじめに、前駆体粉末の製造方法について説明する。
(1)材料準備
 まず、Bi2223酸化物超電導体を構成する元素を含む材料を準備する。即ち、ビスマス(Bi)、鉛(Pb)、ストロンチウム(Sr)、カルシウム(Ca)、銅(Cu)およびSrの一部を置換するランタン(La)等のランタノイド(Ln)に含まれる元素を含む材料であり、具体的にはたとえばBi、PbO、SrCO、CaCO、CuO、Laの各材料粉末であってもよい。また、Bi、Pb、Sr、Ca、Cu、Laの固体金属でもよい。また、Bi(NO、Pb(NO、Sr(NO、Ca(NO、Cu(NO、La(NO、またはこれらの水和物であってもよい。
 そして、前記の材料を(Bi、Pb):(Sr、Ln):Ca:Cuの比率が2:2:2:3となるように秤量する。
(2)溶液の作製
 次に、準備した材料を溶解し、溶液を作成する。溶媒としては、材料の不動態を形成せず各材料を完全に溶解することができ、理論上炭素成分をゼロにできる、硝酸が好ましい。ただし溶媒は硝酸に限られるものではなく、硫酸、塩酸などの他の無機酸でもよいし、シュウ酸、酢酸などの有機酸であってもよい。さらに、酸だけでなく、材料を溶解させることが可能な成分であれば、アルカリ溶液であってもよい。
 そして、材料をたとえば硝酸に溶解させてイオン化させる。このときの溶液の温度は特に制限されず、Bi等の材料となる元素を十分に溶解させることができる温度であればよい。さらに、十分な溶解度を得るためには、攪拌装置を設けて、攪拌することが好ましい。
 このように、各材料を溶液中で完全に溶解させることによって、酸化物超電導体を構成する各元素(Bi、Pb、Sr、Ca、Cu、Ln)は、イオンレベルで微細に混合される。
(3)前駆体粉末の作製
 次に、図1に示す前駆体粉末製造装置を用いて、上記溶液より前駆体粉末を作製する。具体的には、まず、溶液11を噴霧用気体と共に噴射口21から噴射する。溶液11および噴霧用気体の噴射を矢印Aで示す。これによって噴霧12が形成される。一方、噴射口21から矢印Bで示す方向に搬送用気体を導入する。この搬送用気体によって噴霧12は電気炉13へ搬送される。そして、電気炉13内において、噴霧12に含まれる溶液11の溶媒は加熱されて蒸発する。
 このようにして、噴霧用気体と搬送用気体とによって構成される高温の雰囲気14に溶液を噴射し、溶媒を除去する。その結果、酸化物超電導体を構成する原子を含む原料粉末1aが得られる。電気炉13の出口における雰囲気15は、除去された溶媒の成分を含んでいる。
 電気炉13の温度は特に限定されるものではないが、電気炉13内で硝酸塩の熱分解を起こさせる場合には、電気炉13の温度を例えば700℃以上850℃以下とすることができる。また、電気炉13のうち、温度が700℃以上850℃以下の領域の長さを、例えば300mmとすることができる。
 続いて、冷却用気体を導入した雰囲気16で、粉末を冷却する。具体的には、冷却用気体導入口22から矢印Cで示す方向に冷却用気体を導入する。この冷却用気体が雰囲気15と混合されて雰囲気16を構成する。雰囲気16で原料粉末1aは冷却されながら、搬送用気体によって粉末回収器17へ搬送され、粉末回収器17の底部に配置された容器17aに収納される。これによって、原料粉末1が得られる。搬送用気体は、フィルタ18を通過し、排出口23から排出される。
 本実施の形態における噴霧用気体としては、乾燥した空気や、窒素などを用いることができる。また、搬送用気体としては、乾燥した空気などを用いることができる。噴霧用気体および搬送用気体は異なる気体であってもよく、同種の気体であってもよい。また、噴霧用気体および搬送用気体の流量比は適宜変更することが可能である。さらに、冷却用気体としては、二酸化炭素、窒素および水蒸気の濃度を雰囲気15よりも低減できる気体であって、雰囲気15よりも低温の気体が用いられる。
(4)仮焼
 次に、固体粉末の熱処理を行なう。具体的には、固体粉末を高温炉内に飛散させることによって酸化させ、Bi2223酸化物超電導体の前駆体粉末(仮焼粉末)を作製する。
 高温炉には、硝酸塩等の塩を完全に熱分解させるために必要な温度に加熱できる炉、具体的には、600℃以上850℃以下などの、固体粉末に含まれる全ての硝酸塩の分解温度以上に加熱することができる炉であって、たとえば周囲に熱源を備える電気炉などを用いることができる。高温炉内は、酸化反応の起こりやすい雰囲気に保つことが好ましく、たとえば低酸素雰囲気(たとえば、酸素濃度0体積%超21体積%以下)に保つことが好ましい。
 高温炉内を硝酸塩の分解温度以上に維持することで、硝酸塩の熱分解反応、および酸化反応を瞬時に起こさせる。このようにして、前記各元素を所定の比率で含有し、各元素の酸化物、特にLn酸化物の異相が分離凝集せず各元素が均一に分散した複合酸化物粉末からなる前駆体粉末を作製することができる。
 以上説明したように、酸化物超電導体の製造に際し、Bi2223酸化物超電導体を構成するBi、Pb、Sr、Ca、CuおよびLnを溶液中で各元素のイオンレベルの微細混合を行なう。そして、その溶液から溶媒を除去して、イオンレベルで混合された固体粉末を生成させる。生成させた固体粉末を高温炉で処理することによって、一瞬で前駆体粉末生成させる。このため、前記各元素の分離凝集のなく、各元素が均一に分散したBi2223酸化物超電導体の前駆体粉末を作製することができる。
 以下、実施例に基づき本発明を具体的に説明する。本実施例は、LnとしてLaを用いて、材料として酸化物超電導体を構成する各元素の硝酸塩水溶液を用い、酸溶解後に噴霧熱処理により作製した前駆体粉末を用いてBi2223酸化物超電導線材を作製した例である。
1.前駆体粉末の作製
(1)材料
 (Bi、Pb)、(Sr1-x、La)、Ca、Cuをモル比で2:2:2:3の比率で含有し、xが異なる5種類の材料を準備した。具体的には、x=0.002、0.005、0.0075、0.01、0.01、0.015の材料を準備し、それぞれ順に実施例1、実施例2、実施例3、実施例4、実施例5、実施例6とした。なお、実施例4と実施例5は同じ組成比であるが、以降の超電導線材の作製工程において相違があるため、別の実施例とした。
(2)溶解および溶媒の除去
 上記6種類の材料をそれぞれ硝酸に溶解して、硝酸塩水溶液を調整した。この6種類の硝酸塩水溶液をそれぞれ噴霧して、固体粉末を得た。
(3)仮焼
 次いで、温度800℃、酸素分圧0.008MPaの雰囲気で10時間の熱処理を行い、前駆体粉末を得た。
2.Bi2223酸化物超電導線材の作製
(1)単芯線の作製
 上記のようにして得た6種類の前駆体粉末を、それぞれ銀パイプに充填し、真空中において600℃の温度で10時間の熱処理を行なってガスを抜いた。そして、金属管の端末をロウ付けすることで前駆体粉末を真空封入した後、両端を封入したまま線引き加工して単芯線を作製した。
(2)テープ線(テープ状多芯線)の作製
 次に、作製した6種類の単芯線をそれぞれ121本束ねて銀パイプに挿入し、再度真空中において600℃の温度で10時間の熱処理を行なってガスを抜いた。そして、銀パイプの端末をロウ付けすることで原料粉末を真空封入して多芯線を作製した。続いて、この多芯線の両端をロウ付けしたまま伸線加工および圧延加工を行ない、幅4mm、厚さ0.2mmのテープ線を作製した。
(3)Bi2223酸化物超電導線材の作製
 次に、作製した6種類のテープ線を820~830℃、酸素分圧0.008MPaの雰囲気で30時間の熱処理を行なった。次に、中間圧延を行なった後で、さらに810~820℃、酸素分圧0.008MPaの雰囲気で50時間の熱処理を行ない、Bi2223酸化物超電導体線材を製造した。
3.Bi2223酸化物超電導体線材の性能テスト
(1)測定方法
 作製したBi2223酸化物超電導体線材の臨界電流密度(kA/cm)を、77Kの自己磁場中、及び20Kでテープに垂直(c軸方向に垂直)に4Tの磁場を印加する2種類の条件の下で測定し、それぞれの測定値をJc(77K,s.f)、即ち自己磁場中での臨界電流密度とJc(20K,⊥4T)、即ち低温磁場中での臨界電流密度で表記した。また、それぞれの測定値に基づいてJc(20K,⊥4T)/Jc(77K,s.f)を算定し、up率とした。
(2)測定結果
 測定結果を表1、図2、図3に示す。また、Laを添加していない、即ちx=0のBi2223の複数種類の標準組成線材についての測定データを併せて表1、図2、図3に示す。なお、図3では臨界電流Icで表記した。
Figure JPOXMLDOC01-appb-T000001
 表1、図3より、本発明により得られたBi2223酸化物超電導体線材は、標準組成線材に比べてup率が高い、すなわち、低温磁場中での臨界電流密度Jc(20K,⊥4T)が大きいことが分かる。
 本発明により得られたBi2223酸化物超電導体線材の場合は、添加したLaがイオンレベルで均一に分散されたため、Bi2223相結晶粒内に存在するLaがピン止め効果を発揮し、Laの添加濃度が低濃度であるにも拘わらず、このように、低温磁場中での臨界電流密度を向上させることができたものと考えられる。
 また、表1、図2より、本発明により得られたBi2223酸化物超電導体線材の自己磁場中での臨界電流密度Jc(77K,s.f)は、標準組成線材のJc(77K,s.f)と同等であることが分かる。即ち、La添加による自己磁場中における臨界電流密度の低下が抑制されていることが分かる。
 本発明により得られたBi2223酸化物超電導体線材の場合は、添加されたLaがBi2223粒子間に凝集してLa異相が生成することが抑制されたため、自己磁場中での高い臨界電流密度Jc(77K,s.f)が維持されたものと考えられる。
 La異相が生成していないことを確認するため、本発明により作製した前駆体粉末とLaを加えない前駆体粉末のX線回折測定を行なった。測定結果を図4Aおよび図4Bに示す。図4Aに示す本発明により作製した前駆体粉末の回折図は、図4Bに示す標準組成(La無添加)の回折図と回折ピークの回折角、回折強度がほぼ一致していて、本発明により作製した前駆体粉末の回折図にはLa異相の回折ピークが認められず、La異相が生成していないことが確認された。
本発明のi2223酸化物超電導体は、低温磁場中で高臨界電流密度を必要とすると共に、77Kの自己磁場中においても、高臨界電流密度を維持することが必要な超電導応用分野で好適に利用できる。また、本発明のBi2223酸化物超電導体の製造方法は、前記特性を有する超電導線材の製造に好適に利用できる。
1、1a     原料粉末
11       溶液
12       噴霧
13       電気炉
14,15,16 雰囲気
17       粉末回収器
17a      容器
18       フィルタ
21       噴射口
22       冷却用気体導入口
23       排出口

Claims (2)

  1.  Bi、Pb、Sr、Ln、Ca、Cu、OからなるBi2223酸化物超電導体であって、
     前記Lnは、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luから選ばれた1種以上であり、
     前記Srと前記Lnとの組成比が以下の組成比であることを特徴とするBi2223酸化物超電導体。
         Sr:Ln=(1-x):x  (但し、0.002≦x≦0.015)
  2.  請求項1に記載のBi2223酸化物超電導体の製造方法であって、
     前記Bi2223酸化物超電導体を構成する元素を含む材料を溶液中でイオン化する工程と、
     高温雰囲気に溶液を噴射して溶媒除去と熱分解反応を行うことにより、酸化物超電導体を構成する原子を含む粉末を製造する工程と
    を備えることを特徴とするBi2223酸化物超電導体の製造方法。
PCT/JP2010/063242 2009-09-08 2010-08-05 Bi2223酸化物超電導体及びその製造方法 WO2011030639A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112010003576T DE112010003576T8 (de) 2009-09-08 2010-08-05 BI2223-Oxidsupraleiter und Verfahren zu seiner Herstellung
US13/394,617 US20120172230A1 (en) 2009-09-08 2010-08-05 Bi2223 OXIDE SUPERCONDUCTOR AND METHOD FOR PRODUCING SAME
CN2010800398184A CN102482112A (zh) 2009-09-08 2010-08-05 Bi2223氧化物超导体及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-207024 2009-09-08
JP2009207024A JP2011057484A (ja) 2009-09-08 2009-09-08 Bi2223酸化物超電導体

Publications (1)

Publication Number Publication Date
WO2011030639A1 true WO2011030639A1 (ja) 2011-03-17

Family

ID=43732313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063242 WO2011030639A1 (ja) 2009-09-08 2010-08-05 Bi2223酸化物超電導体及びその製造方法

Country Status (5)

Country Link
US (1) US20120172230A1 (ja)
JP (1) JP2011057484A (ja)
CN (1) CN102482112A (ja)
DE (1) DE112010003576T8 (ja)
WO (1) WO2011030639A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102701728A (zh) * 2012-05-15 2012-10-03 西南交通大学 一种高温超导涂层导体缓冲层Gd1-xPbxBiO3及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8637433B2 (en) * 2010-10-04 2014-01-28 Florida State University Technology Transfer Office Method for making a composite high-temperature superconductor
CN104129985B (zh) * 2014-07-08 2016-04-06 西南交通大学 表面具有纳米颗粒析出相的高温超导涂层导体Eu0.6Sr0.4BiO3缓冲层及其制备方法
CN105575545A (zh) * 2015-12-29 2016-05-11 北京英纳超导技术有限公司 一种Bi2223氧化物薄膜及其工业化制备方法
CN107935041A (zh) * 2017-12-14 2018-04-20 西北有色金属研究院 一种铋系超导前驱粉末的制备方法
CN109942290A (zh) * 2019-03-12 2019-06-28 西北工业大学 拓扑发光体异质相掺杂的Bi(Pb)-Sr-Ca-Cu-O系超构超导体及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648733A (ja) * 1992-03-27 1994-02-22 Hitachi Ltd 酸化物超電導物質
JP2003532614A (ja) * 2000-05-08 2003-11-05 チョイ,ジン,ホ 超伝導体コロイド、これから製造した超伝導体薄膜及びこれらの製造方法
WO2006082767A1 (ja) * 2005-02-02 2006-08-10 Sumitomo Electric Industries, Ltd. 酸化物超電導体の原料の製造方法、酸化物超電導線材の製造方法、および超電導機器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05319827A (ja) * 1991-06-21 1993-12-03 Asahi Glass Co Ltd ビスマス系酸化物超電導体およびその製造方法
EP0562601A1 (en) * 1992-03-27 1993-09-29 Hitachi, Ltd. Oxide superconductors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648733A (ja) * 1992-03-27 1994-02-22 Hitachi Ltd 酸化物超電導物質
JP2003532614A (ja) * 2000-05-08 2003-11-05 チョイ,ジン,ホ 超伝導体コロイド、これから製造した超伝導体薄膜及びこれらの製造方法
WO2006082767A1 (ja) * 2005-02-02 2006-08-10 Sumitomo Electric Industries, Ltd. 酸化物超電導体の原料の製造方法、酸化物超電導線材の製造方法、および超電導機器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A. SEDKY: "The impact of Y substitution on the 110K high Tc phase in a Bi(Pb):2223 superconductor", JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, vol. 70, no. 2, February 2009 (2009-02-01), pages 483 - 488 *
M.I. ADAM: "Effect of magnetic element ions on collective pinning behaviour in Bi-2223 quadrilateral bars", ADVANCES IN SUPERCONDUCTIVITY, vol. 19TH, 2007, pages 439 - 444 *
O. OZTURK ET AL.: "Substitution of Sm at Ca site in Bil.6Pb0.4Sr2Ca2-xSmxCu20y superconductors", PHYSICA B. CONDENSED MATTER, vol. 399, no. 2, 1 November 2007 (2007-11-01), pages 94 - 100 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102701728A (zh) * 2012-05-15 2012-10-03 西南交通大学 一种高温超导涂层导体缓冲层Gd1-xPbxBiO3及其制备方法

Also Published As

Publication number Publication date
DE112010003576T8 (de) 2012-11-08
JP2011057484A (ja) 2011-03-24
CN102482112A (zh) 2012-05-30
DE112010003576T5 (de) 2012-09-06
US20120172230A1 (en) 2012-07-05

Similar Documents

Publication Publication Date Title
WO2011030639A1 (ja) Bi2223酸化物超電導体及びその製造方法
JP4470880B2 (ja) 酸化物超電導体の原料の製造方法、および酸化物超電導線材の製造方法
US5882536A (en) Method and etchant to join ag-clad BSSCO superconducting tape
JP2009023860A (ja) 酸化物超電導体原料粉末の製造方法
JP2011510171A (ja) 高温超伝導体を製造するための湿式化学的方法
JP2013235766A (ja) 酸化物超電導薄膜とその形成方法
Liu et al. Spin gap in the normal state of Pr-doped and oxygen-deficient R Ba 2 Cu 3 O 7 superconductors
US6677278B1 (en) Pb-Bi-Sr-Ca-Cu-oxide powder mix with enhanced reactivity and process for its manufacture
JP2011253764A (ja) 酸化物超電導薄膜製造用の原料溶液
JP5599045B2 (ja) 酸化物超電導薄膜製造用の原料溶液及びその製造方法
US11767266B2 (en) Method for producing solid composition and method for producing functional ceramic
Liu et al. Phase Diagram and Quantum Critical Point in Newly Discovered Superconductors: SmO_ {1-x} F_xFeAs
Voitenko et al. Effect of partial lanthanide substitutions of Gd123 submicronic powder
JP2009217967A (ja) 超電導線材用前駆体粉末および超電導線材前駆体粉末の製造方法、超電導線材
EP0408258A2 (en) Aqueous coprecipitation methods for producing high temperature superconducting materials
RAYCHEVA et al. INVESTIGATION ON THE EFFECT OF Ce ADDITION ON PHASE-FORMATION AND MORPHOLOGY OF Bi-Sr-Ca-Cu-O POWDERS.
MXPA06012908A (en) Method for manufacturing material for oxide superconductor, method for manufacturing oxide superconducting wire rod, and superconducting device
JPWO2004038816A1 (ja) 酸化物超伝導体薄膜素子
JPS63252925A (ja) 超伝導性材料の製造方法
JP2008147078A (ja) 酸化物超電導線材の製造方法
JPH01138124A (ja) 超電導体用ペースト材
JPH01133937A (ja) 高温超電導セラミックスの原料粉末の製法
JPH01179749A (ja) 酸化物超電導体薄膜製造用ターゲット材の製造方法
JPH01224226A (ja) Bi−アルカリ土類元素−Cu酸化物系超電導セラミックスの原料粉末の製法
JPH01160825A (ja) 酸化物超電導体の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080039818.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10815236

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13394617

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120100035768

Country of ref document: DE

Ref document number: 112010003576

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10815236

Country of ref document: EP

Kind code of ref document: A1