WO2011027803A1 - シード保持部材及びそのシード保持部材を用いた多結晶シリコン製造方法 - Google Patents

シード保持部材及びそのシード保持部材を用いた多結晶シリコン製造方法 Download PDF

Info

Publication number
WO2011027803A1
WO2011027803A1 PCT/JP2010/064986 JP2010064986W WO2011027803A1 WO 2011027803 A1 WO2011027803 A1 WO 2011027803A1 JP 2010064986 W JP2010064986 W JP 2010064986W WO 2011027803 A1 WO2011027803 A1 WO 2011027803A1
Authority
WO
WIPO (PCT)
Prior art keywords
holding member
seed
seed holding
polycrystalline silicon
groove
Prior art date
Application number
PCT/JP2010/064986
Other languages
English (en)
French (fr)
Inventor
淳 石崎
正樹 泉宮
Original Assignee
東洋炭素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋炭素株式会社 filed Critical 東洋炭素株式会社
Priority to IN2514DEN2012 priority Critical patent/IN2012DN02514A/en
Priority to SG2012014882A priority patent/SG178958A1/en
Priority to EP10813751A priority patent/EP2474504A1/en
Priority to CN2010800390661A priority patent/CN102482104A/zh
Priority to US13/392,688 priority patent/US20120186300A1/en
Publication of WO2011027803A1 publication Critical patent/WO2011027803A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/035Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition or reduction of gaseous or vaporised silicon compounds in the presence of heated filaments of silicon, carbon or a refractory metal, e.g. tantalum or tungsten, or in the presence of heated silicon rods on which the formed silicon is deposited, a silicon rod being obtained, e.g. Siemens process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside

Definitions

  • the present invention provides a seed holding member that is installed in a furnace for producing polycrystalline silicon by the Siemens method and holds the lower end portion of a silicon core material (seed) that serves as a seed rod, and polycrystalline silicon production using the seed holding member It is about the method.
  • high-purity polycrystalline silicon used as a semiconductor material has been mainly produced by the Siemens method (see Patent Document 1 below). More specifically, a plurality of inverted U-shaped silicon cores (hereinafter referred to as seeds) serving as seed rods are erected in a reaction furnace for producing polycrystalline silicon, and both end portions of the seeds. Is supported by an electrode at the bottom of the furnace via a seed holding member. Then, the seed is energized through the electrode and the seed holding member. By energizing the seed in this way, the seed becomes high temperature, and chlorosilanes and hydrogen in the furnace react to deposit polycrystalline silicon on the surface of the seed. This reaction proceeds to grow into a polycrystalline silicon rod. Thus, after the polycrystalline silicon is deposited, the seed holding member is broken, the seed to which the polycrystalline silicon is attached is taken out of the furnace, and then the seed holding member and the polycrystalline silicon are separated to remove the polycrystalline silicon. I was taking it out.
  • the present invention has been conceived in view of the above circumstances.
  • the purpose of this is to form a recess for breaking at an arbitrary location on the surface of the seed holding member, causing stress concentration in the recess when a breaking load is applied, and enabling the work to be broken with a smaller load than before.
  • Another object of the present invention is to provide a seed holding member capable of reducing labor and a polycrystalline silicon manufacturing method using the seed holding member.
  • the present invention is a graphite seed holding member which is attached to an electrode portion installed at the bottom of a furnace for producing polycrystalline silicon by the Siemens method and holds the lower end portion of a seed serving as a seed rod.
  • a breaking recess is formed at an arbitrary location on the outer peripheral surface.
  • the “outer peripheral surface” means a side surface of the seed holding member in a state where the seed is held by the seed holding member.
  • the number and size of holes and holes may be arbitrarily determined so as to obtain a desired strength.
  • the strength of the seed holding member can be reduced to a desired value by forming holes or holes.
  • the concave portion is formed by a breaking groove.
  • a breaking groove As described above, by forming a break-off groove on the outer peripheral surface of the seed holding member, when a breaking load is applied, stress concentration occurs in the groove, and the break-off work can be performed with a smaller load than before. It becomes.
  • the shape of the seed holding member is not particularly limited, and the groove depth, groove shape, etc. of the breaking groove are not particularly limited, but are formed to the extent that stress concentration occurs when a load is applied. Need to be.
  • the groove forming position in the height direction is preferably in a range below a portion where polycrystalline silicon deposited on the seed surface grows and covers the tip portion surface of the seed holding member. The main reason for this is that the polycrystalline silicon deposited on the seed surface grows so as to fill the tip of the seed holding member, and thus also the breaking groove, so that stress concentration occurs in the groove when a breaking load is applied. This is because the effect of the invention may not be obtained. More preferably, the breaking groove is formed below 30 mm from the tip of the seed holding member. The reason is that it is rare to perform the precipitation operation until the deposited polycrystalline silicon crystal grows to cover the seed holding member by 30 mm or more.
  • the breaking groove extends in the circumferential direction of the seed holding member (in other words, when the breaking groove exists in a plane inclined with respect to the axis of the seed holding member). More preferably, the breaking groove is present in a plane perpendicular to the axis of the seed holding member. This is because it is easiest to form the breaking groove. This is because, for example, as the breaking groove forming method, the breaking groove can be formed by a simple machining operation in which the cutting tool is applied to the seed holding member and the seed holding member is rotated. In the conventional separation work of the seed holding member, the cracking locations and the propagation directions of the cracks are various.
  • the formation range in the circumferential direction of the breaking groove may be the entire circumferential direction or a part thereof.
  • a breaking load is applied so that the seed holding member is folded in a certain direction. Therefore, when the breaking groove is formed only in a part, it is preferable to install the seed holding member so that the groove exists on the side in which the breaking load is applied (load moment). This is because when a breaking load is applied, the seed holding member can be folded with a smaller load than in the past by utilizing stress concentration to the maximum in the breaking groove. Forming the breaking groove in a part is particularly effective when the outer diameter of the seed holding member is thin.
  • the breaking groove In the case where the breaking groove is partially formed, it is possible to prevent the voltage from being excessively applied in the portion where the breaking groove is formed during energization while maintaining the strength of the seed holding member, and it is possible to prevent overheating problems. If the strength of the seed holding member becomes too weak by forming the groove, the seed holding member may be damaged by an unintended impact. Further, when heating occurs in a part of the seed holding member, the silicon crystal may be melted by the heat.
  • the tip of the seed holding member is formed in a truncated cone shape.
  • the work of piercing the seed holding member from the silicon crystal covering the tip of the seed holding member is easier because the amount of graphite is smaller than when the tip is kept cylindrical.
  • the tip of the seed holding member is thinner than the part where the break-off groove is formed.
  • current flows to the seed when energized there is no overheating problem.
  • this invention may be the following polycrystalline silicon manufacturing methods. That is, in the polycrystalline silicon manufacturing method according to the present invention, a breaking recess is formed in advance at an arbitrary position on the outer peripheral surface of the seed holding member that holds the lower end portion of the seed serving as a seed rod. Attaching the seed holding member to the electrode part installed at the bottom of the furnace for producing polycrystalline silicon, depositing polycrystalline silicon on the seed surface, and depositing polycrystalline silicon on the seed surface Thereafter, the step of breaking the seed holding member from the concave portion and taking out the seed with the polycrystalline silicon attached to the outside of the furnace, and the step of separating the seed holding member and the polycrystalline silicon from the seed taken out of the furnace, , It is characterized by having. It is preferable that the recess is a breaking groove.
  • a breaking recess is formed in advance at any location on the outer peripheral surface of the seed holding member that holds the lower end of the seed serving as a seed rod.
  • Mounting the seed holding member to the electrode part installed at the bottom of the furnace for manufacturing polycrystalline silicon, depositing polycrystalline silicon on the surface of the seed, and holding the seed after depositing polycrystalline silicon The seed holding member is removed from the electrode portion in the state of being removed and taken out of the furnace, and after being taken out of the furnace, the seed holding member in the seed holding state is broken from the recess, and the seed holding member and the polycrystalline silicon are And a step of performing a separation operation.
  • the recess is a breaking groove.
  • the schematic block diagram of the manufacturing apparatus used for the polycrystalline silicon manufacturing method concerning this invention The top view of the seed holding member used for the manufacturing apparatus of FIG. FIG. 3 is a cross-sectional view taken along line A1-A1 in FIG.
  • the schematic diagram which shows the state which the fragment
  • FIG. 1 is a schematic configuration diagram of a manufacturing apparatus used in the method for manufacturing polycrystalline silicon according to the present invention
  • FIG. 2 is a plan view of a seed holding member used in the manufacturing apparatus of FIG. 1, and FIG. It is A1 arrow sectional drawing.
  • the reaction furnace 1 is provided with a pelja 3 so as to cover the furnace bottom 2, and the inside is sealed.
  • a plurality of inverted U-shaped silicon cores (hereinafter referred to as seeds) 4 serving as seed rods are erected in the furnace, and both ends of the seed 4 are connected to electrode parts 5 at the bottom of the furnace and seed holding members 6. Is supported through.
  • a seed holding member 6 made of graphite (which may be either isotropic graphite or anisotropic graphite) is attached to the tip of the electrode portion 5, and the seed holding member 6 has the seed 4.
  • the lower end is inserted.
  • the furnace bottom 2 is provided with a nozzle 7 for supplying the raw material gas toward the seed 4 in the furnace and an exhaust port 8 for discharging the exhaust gas in the furnace.
  • reference numeral 20 denotes a silicon deposited portion where silicon is deposited on the surface of the seed 4.
  • the shape of the seed holding member 6 is as shown in FIG. 3 where the electrode mounting portion (corresponding to a pedestal portion 6a described later) is thick, or the same cylindrical shape as shown in FIG. 5 used in the experiment described later. There are various types. In this embodiment, the shape shown in FIG. 3 is illustrated. That is, the seed holding member 6 includes a pedestal portion 6a having a first fitting hole 10 into which the electrode portion 5 is inserted, a trunk portion 6b continuous with the pedestal portion 6a, and a distal end portion 6c continuous with the trunk portion 6b. ing.
  • the pedestal 6a, body 6b, and tip 6c are preferably cylinders rather than polygonal columns for reasons such as overall strength. More preferably, the shortest distance from the axis of the trunk portion 6b of the seed holding member 6 to the outer peripheral surface is 1.5 cm or more, and the longest distance is within 5 cm.
  • the tip portion 6c is more preferably a truncated cone shape. This is because, in the work of separating the seed holding member 6 and the polycrystalline silicon, the amount of graphite is easily reduced in the work of drilling the seed holding member from the silicon crystal covering the tip of the seed holding member.
  • a vent hole 11 is formed in the base portion 6a.
  • a second fitting hole 13 into which the lower end portion of the seed 4 is inserted is formed in the distal end portion 6c.
  • the second fitting hole 13 has an opening at the distal end surface and extends along the axial direction of the seed holding member 6. Further, a through hole 14 is formed in the distal end portion 6c, and a fixing screw 15 for fixing the seed 4 inserted into the second fitting hole 13 is screwed into the through hole 14.
  • the seed holding member 6 has a breaking groove 16 formed on the outer peripheral surface thereof.
  • the breaking groove 16 By forming the breaking groove 16 in this way, there is a weak point in strength. Therefore, when the seed holding member 6 is broken, stress concentration occurs in the breaking groove 16 due to the breaking load, and the breaking work with a smaller load than before can be performed. Further, the generated crack propagates in a certain direction along the breaking groove 16. As a result, it can be cracked while preventing the propagation of cracks in unintended directions. Since it can prevent that the seed holding member and the fragment containing a polycrystalline silicon generate
  • the cracking state as shown in FIG. Become.
  • the breaking groove 16 is above the lower end of the seed 4 inserted into the seed holding member 6 (in the case of an experimental example to be described later)
  • a cracked state as shown in FIG. 4 (1) and 4 (2) the crack propagates to the place where the polycrystalline silicon crystal deposited on the seed surface grows so as to cover the seed holding member as shown in FIG. Therefore, it is possible to prevent a piece containing graphite and silicon, and the labor for separating the seed holding member and the polycrystalline silicon can be greatly reduced.
  • the groove depth is not particularly limited, and the depth of the groove is calculated so as to match the outer diameter of the seed holding member 6 by calculating a load based on the stress concentration at the time of folding. Just decide.
  • the groove shape may be any shape.
  • any of a round groove, a rectangular groove, a V groove, and the like may be used.
  • the breaking groove 16 is formed below the silicon crystal growth portion deposited on the surface of the seed holding member 6 from the seed surface. Is preferred. In other words, the formation position in the height direction of the breaking groove 16 is preferably in a range below the portion where the silicon crystal deposited on the seed surface grows and covers the tip of the seed holding member 6. More preferably, the breaking groove 16 is formed below 30 mm from the tip of the seed holding member 6. The reason is that it is rare to perform the precipitation operation until the deposited polycrystalline silicon crystal grows in a state of covering the seed holding member 6 by 30 mm or more from the tip. Furthermore, the operation is easier when the seed holding member 6 is pierced from the silicon crystal than the through hole 14 into which the fixing screw 15 is inserted.
  • the outer peripheral surface of the seed holding member 6 may be either the entire circumferential direction or a part thereof.
  • the breaking groove 16 extends in the circumferential direction of the seed holding member 6 (in other words, the breaking groove 16 exists in a plane inclined with respect to the axis of the seed holding member 6). And preferably the case where the breaking groove 16 exists in a plane perpendicular to the axis of the seed holding member 6.
  • the method for producing polycrystalline silicon is basically the same as the conventional example. That is, the seed 4 is energized through the electrode 5 and the seed holding member 6, and the surface is red-heated to 1000 ° C. or higher. The source gas supplied into the furnace contacts the surface of the red-hot seed 4 and is pyrolyzed or hydrogen-reduced to deposit polycrystalline silicon on the surface of the seed 4. This reaction proceeds to grow into a polycrystalline silicon rod.
  • the seed holding member 6 is broken from the breaking groove 16, and the seed 4 to which the polycrystalline silicon adheres is taken out of the furnace.
  • stress concentration occurs in the breaking groove 16, and the breaking work can be performed with a smaller load than in the past.
  • the crack propagates along the groove. For this reason, cracks propagate to the place where the silicon crystal grows and adheres on the surface of the seed holding member, and it is possible to prevent the generation of debris containing graphite and silicon. Remarkably reduce.
  • the seed holding member 6 was broken from the breaking groove 16, and the seed 4 to which the polycrystalline silicon adhered was taken out of the furnace. After silicon deposition, the seed holding member 6 is removed from the electrode portion 5 while holding the seed 4 and taken out of the furnace. Thereafter, the seed holding member 6 holding the seed 4 is broken from the breaking groove 16. Then, the seed holding member and the polycrystalline silicon may be separated.
  • the load span is 1 m
  • the breaking grooves 16 are formed over the entire circumference
  • the groove depths of the three types of seed holding members 6 are 0 cm, 1.0 cm, and 1.5 cm. Since the load was applied to each and the breaking load was measured, the results are shown in Table 1 and FIG.
  • the seed holding member 6 was an experiment using the same cylindrical type without the pedestal portion 6a shown in FIG.
  • the results are also shown in Table 1 and FIG.
  • a triangular mark indicates a measured value of the breaking load when the through hole 14 is present
  • a square mark indicates a measured value of the breaking load when the through hole 14 is not present.
  • the groove for breaking 16 having a groove depth is formed so that the outer diameter of the seed holding member 6 in the place where the groove is formed is extremely small (for example, the groove depth in the above experiment is 1.5 cm).
  • the strength of the seed holding member 6 becomes too weak, and there is a possibility that it will be broken by an unintended impact.
  • the voltage is excessively applied at the portion where the groove is formed during energization, and there is a high risk of overheating. If heating occurs in a part of the seed holding member 6, the silicon crystal may be melted by the heat.
  • the groove depth is preferably set within a certain range. For example, in the case of the above experiment in which the outer diameter of the seed holding member 6 is 5 cm, the groove depth is preferably around 1.0 cm. More preferably, the depth of the groove is around 0.7 to 1.5 cm.
  • the seed holding member 6 was comprised from the base part 6a, the trunk
  • the shape of the seed holding member 6 is limited to this. is not.
  • a structure in which the front end portion 6c is not formed into a truncated cone shape and the body portion 6b is extended upward as it is may be employed.
  • the present invention by forming a breaking groove at an arbitrary position, stress concentration occurs in the groove, and a breaking work with a smaller load than before can be performed. Further, the crack is propagated along the groove, and the separation work can be performed while preventing unintentional cracks at the seed holding member, and the seed holding member and the polycrystalline silicon manufacturing using the seed holding member Can be applied to the method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Silicon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

任意の箇所に折離用凹部を形成することにより、破壊荷重を掛けた際に該凹部において応力集中を起こし、従来よりも小さな負荷で折ることを可能にする。また、該凹部に沿って割れを伝播させることにより、意図せぬシード保持部材の箇所に割れが伝播することの防止を図り、シード保持部材と多結晶シリコンの分離作業の手間の軽減を図ることができるシード保持部材及びそのシード保持部材を用いた多結晶シリコン製造方法を提供する。 シーメンス法で多結晶シリコンを製造する炉の底部に設置され、種棒となるシード4の下端部を保持する黒鉛製シード保持部材6の外周面に、折離用溝16が形成されている。シード保持部材6は、電極部5が差し込まれる第1の嵌合孔10を有する円柱状台座部6a、台座部6aよりも小径な円柱状胴部6b、胴部6bに連なりシード4の下端部が差し込まれる第2の嵌合孔13を有する截頭円錐台状先端部6cを有する。

Description

シード保持部材及びそのシード保持部材を用いた多結晶シリコン製造方法
 本発明は、シーメンス法で多結晶シリコンを製造する炉内に設置され、種棒となるシリコン芯材(シード)の下端部を保持するシード保持部材及びそのシード保持部材を用いた多結晶シリコン製造方法に関するものである。
 半導体材料となる高純度の多結晶シリコンは従来から主にシーメンス法によって製造されている(下記の特許文献1参照)。具体的に説明すると、多結晶シリコンを製造する反応炉内には、種棒となる逆U字型のシリコン芯材(以下、シードと称する)が複数本立設されており、該シードの両端部は炉底部の電極にシード保持部材を介して支えられている。そして、電極及びシード保持部材を通じて、シードに通電する。このようにシードに通電することで、シードが高温になり、炉内のクロロシラン類及び水素が反応してシードの表面に多結晶シリコンを析出する。この反応が進行して多結晶シリコン棒に成長する。
 こうして、多結晶シリコン析出後は、シード保持部材を折損して、多結晶シリコンが付着したシードを炉外に取り出し、その後、シード保持部材と多結晶シリコンの分別作業を行って、多結晶シリコンを取り出していた。
特許2867306号公報
 上記のように多結晶シリコンが付着した後にシード保持部材を折る作業が必要となるが、折る際の破壊荷重はシード保持部材の強度が高いためとても大きい。加えて、析出した多結晶シリコンへの汚染の恐れから、例えば何かを叩きつける衝撃による折離作業は行なえず、一つ一つ手作業で行なっている。そのため、製造者にとってシード保持部材の折離作業は大きな負担となっていた。
 本発明は、上記の実情を鑑みて考え出されたものである。その目的は、シード保持部材表面の任意の箇所に折離用凹部を形成することによって、破壊荷重を掛けた際に該凹部において応力集中を引き起こし、従来よりも小さな負荷で折離作業を可能にし、手間の軽減を図ることができるシード保持部材及びそのシード保持部材を用いた多結晶シリコン製造方法を提供することである。
 上記目的を達成するため本発明は、シーメンス法で多結晶シリコンを製造する炉の底部に設置された電極部に装着され、種棒となるシードの下端部を保持する黒鉛製のシード保持部材であって、外周面の任意の箇所に折離用凹部を形成したことを特徴とする。ここで、「外周面」とはシードがシード保持部材に保持されている状況下において、シード保持部材の側面を意味する。該凹部を形成することにより、任意の箇所に意図的に低強度となる部分を形成することができる。ここで、「凹部」は、穴、孔、溝などを含む概念を意味する。所望の強度になるよう穴や孔の個数や大きさなどは任意に決定してよい。シード保持部材の強度は、穴や孔などを形成することで求める値まで低下させることができる。これにより、破壊荷重を掛けた際に該凹部において応力集中を引き起こし、従来よりも小さな負荷で折離作業を行うことが可能となる。   
 より好ましくは、当該凹部が折離用溝によって形成されている場合である。
 上記の如く、シード保持部材の外周面に折離用溝を形成することにより、破壊荷重を掛けた際に該溝において応力集中を引き起こし、従来よりも小さな負荷で折離作業を行うことが可能となる。
 なお、シード保持部材の形状は特に限定されるものではなく、また、折離用溝の溝深さ、溝形状等は特に限定されないが、負荷を掛けた際に応力集中を引き起こす程度には形成されている必要がある。高さ方向に関する該溝形成位置はシード表面上に析出した多結晶シリコンが成長し、シード保持部材の先端部表面を覆い隠す部分より下の範囲であることが好ましい。その主な理由として、シード表面に析出した多結晶シリコンがシード保持部材の先端部、ひいては折離用溝をも埋めるように成長することによって、破壊荷重を掛けた際に該溝に応力集中が掛からず発明の効果が得られない可能性があることによる。より好ましくは、折離用溝がシード保持部材先端から30mmより下に形成することである。その理由は、析出した多結晶シリコンの結晶がシード保持部材を30mm以上覆う状態に成長するまで析出作業を行うことは稀であることに起因する。
 更に、折離用溝はシード保持部材の周方向に延在している場合(換言すれば、折離用溝がシード保持部材の軸芯に対して傾斜した平面内に存在している場合)であってもよく、また、より好ましくは折離用溝がシード保持部材の軸芯に対して垂直な平面内に存在している場合である。折離用溝の形成加工が最も容易だからである。例えば、折離用溝形成加工法として、シード保持部材に切削工具を当ててシード保持部材を回転するという簡単な加工作業で折離用溝を形成することができるからである。
 従来のシード保持部材の折離作業では、割れる箇所、割れの伝播方向が千差万別であった。そのため、往々にしてシード表面に析出した多結晶シリコンの結晶がシード保持部材表面を覆うように成長した場所に割れが伝播することがあった。シード保持部材とシリコン結晶が付着した破片が生じると、該破片についても別途多結晶シリコンとシード保持部材の分別作業を行わねばならず作業負担の増加となっていた。シード保持部材の表面に折離用溝を形成することにより、破壊荷重を掛けると該溝に応力集中を引き起こし割れが生じる。そして、割れは該溝に沿って伝播していく。個々の状況に合う折離用溝の位置と延在させる方向を設計することにより、従来の不具合を緩和できる。
 前記折離用溝の周方向に関する形成範囲は、周方向全周又はその一部のいずれであってもよい。一般的にシード保持部材は一定の方向に折られるように、破壊荷重がかけられる。そのため、一部にしか折離用溝を形成しない場合には、破壊荷重が掛けられる方向(負荷モーメント)の側に溝が存在するようにシード保持部材を設置することが好ましい。破壊荷重を掛けた際に折離用溝において応力集中を最大限に利用し従来より小さな負荷でシード保持部材を折ることができるからである。一部に折離用溝を形成することは、シード保持部材の外径が細い場合に特に有効になる。一部に折離用溝を形成する場合には、シード保持部材の強度を保ちつつ通電時に電圧が折離用溝を形成した部分において過度にかかるのを防止でき、過熱の不具合を防止できる。該溝を形成することによってシード保持部材の強度が弱くなり過ぎると、意図しない衝撃で破損する虞がある。また、シード保持部材の一部で加熱が起こると、該熱によってシリコン結晶が溶け出す虞がある。
 前記シード保持部材の先端が截頭円錐台状に形成されているのが好ましい。このような構成であると、シード保持部材先端を覆ったシリコン結晶からシード保持部材を穿り出す作業が、先端が円柱状を保っている場合よりも黒鉛の量が少なくなり容易になる。シード保持部材先端部は折離用溝を形成した箇所よりも細くなる可能性があるが、通電時はシードへ電流が流れるために過熱の不具合は生じない。
また、上記目的を達成するため本発明は、以下の多結晶シリコン製造方法の場合もある。即ち、本発明に係る多結晶シリコン製造方法は、種棒となるシードの下端部を保持するシード保持部材の外周面の任意の箇所に折離用凹部を予め形成しておき、この凹部が形成されたシード保持部材を、多結晶シリコンを製造する炉の底部に設置された電極部に装着するステップと、シードの表面に多結晶シリコンを析出するステップと、シードの表面に多結晶シリコンが析出後、シード保持部材を凹部より折損して、多結晶シリコンが付着したシードを炉外に取り出すステップと、炉外に取り出されたシードから、シード保持部材と多結晶シリコンの分離作業を行うステップと、を有することを特徴する。該凹部が折離用溝であることが好ましい。
 また、本発明に係る多結晶シリコン製造方法は、種棒となるシードの下端部を保持するシード保持部材の外周面の任意の箇所に折離用凹部を予め形成しておき、この凹部が形成されたシード保持部材を、多結晶シリコンを製造する炉の底部に設置された電極部に装着するステップと、シードの表面に多結晶シリコンを析出するステップと、多結晶シリコン析出後、シードを保持した状態のままシード保持部材を電極部から取り外して、炉外に取り出すステップと、炉外に取り出した後、シード保持状態のシード保持部材を凹部より折損して、シード保持部材と多結晶シリコンの分離作業を行うステップと、を有することを特徴する場合もある。該凹部が折離用溝であることが好ましい。
 本発明によれば、シード保持部材の外周面の任意の箇所に折離用凹部を形成することにより、破壊荷重を掛けた際に該凹部において応力集中を引き起こし、従来よりも小さな負荷で折離作業を行うことが可能となる。
本発明にかかる多結晶シリコン製造方法に使用される製造装置の概略構成図。 図1の製造装置に使用されるシード保持部材の平面図。 図2のA1-A1線矢視断面図。 シード保持部材の折損の際の割れ状態を示す図。 実験例の構成を示す図。 溝深さと破壊荷重との関係を示すグラフ。 従来例のシード保持部材の折損の際のシード保持部材とシリコン結晶を含む破片が生じた状態を示す模式図。
 以下、本発明を実施の形態に基づいて詳述する。なお、本発明は、以下の実施の形態に限定されるものではない。
(実施の形態1)
 図1は本発明にかかる多結晶シリコン製造方法に使用される製造装置の概略構成図、図2は図1の製造装置に使用されるシード保持部材の平面図、図3は図2のA1-A1線矢視断面図である。図1に示すように、反応炉1は炉底2を覆うようにペルジャ3が設けられており、内部が密閉されている。炉内には種棒となる逆U字型のシリコン芯材(以下、シードと称する)4が複数本立設されており、該シード4の両端部は炉底部の電極部5にシード保持部材6を介して支えられている。即ち、電極部5の先端には黒鉛(等方性黒鉛、異方性黒鉛のいずれであってもよい)から成るシード保持部材6が装着されており、該シード保持部材6にはシード4の下端部が差し込まれている。炉底2には、炉内のシード4に向かって原料ガスを供給するノズル7と、炉内の排ガスを排出する排出口8が設けられている。なお、図1において、20は、シード4の表面にシリコンが析出したシリコン析出部を示している。   
 シード保持部材6の形状は、電極載置部(後述する台座部6aに相当)が太くなっている図3のようなものや、後述する実験に使用した図5のような同一円柱状のものなど種々存在する。本実施の形態では、図3に示す形状のものを例示する。即ち、シード保持部材6は、電極部5が差し込まれる第1の嵌合孔10を有する台座部6aと、台座部6aに連なる胴部6bと、胴部6bに連なる先端部6cとから構成されている。シード保持部材6は通電されるために全体に均一に電圧をかけられることに加え、全体の強度などの理由から台座部6a、胴部6bと先端部6cは多角柱等よりも円柱が好ましい。シード保持部材6の胴部6bの軸芯から外周面までの最短距離が1.5cm以上であり、最長距離が5cm以内の範囲内であることがより好ましい。先端部6cは截頭円錐台状がより好ましい。なぜならば、シード保持部材6と多結晶シリコンの分離作業においてシード保持部材先端を覆ったシリコン結晶からシード保持部材を穿り出す作業において黒鉛の量が少なくなり容易になるためである。
 台座部6aにはガス抜き用孔11が形成されている。先端部6cには、シード4の下端部が差し込まれる第2の嵌合孔13が形成されている。この第2の嵌合孔13は、先端面に開口を有し、シード保持部材6の軸芯方向に沿って延在している。また、先端部6cには貫通孔14が形成されており、この貫通孔14には、第2の嵌合孔13に差し込まれたシード4を固定するための固定ネジ15が螺入される。
 ここで注目すべきは、シード保持部材6には、その外周面に折離用溝16が形成されていることである。このように折離用溝16を形成することにより、強度上のウイークポイントが存在することになる。そのため、シード保持部材6の折損時に、破壊荷重によって折離用溝16に応力集中が起こり、従来よりも小さい負荷での折離作業が可能となる。また、発生した割れは折離用溝16に沿って一定方向へ伝播していくことになる。この結果、意図しない方向への割れの伝播を防止しながら割ることができる。シード保持部材と多結晶シリコンを含んだ破片が生じることを防止することができるため、折離作業の軽減が図れる。
 なお、折離用溝16がシード保持部材6に差し込まれているシード4の下端よりも下側に形成されている本実施の形態の場合には、図4(1)のような割れ状態となる。折離用溝16がシード保持部材6に差し込まれているシード4の下端よりも上側にある場合(後述する実験例の場合)には、図4(2)のような割れ状態となる。図4(1)、(2)のいずれの割れ状態であっても、図7のようにシード表面に析出した多結晶シリコンの結晶がシード保持部材を覆うように成長した場所に割れが伝播し、黒鉛とシリコンを含んだ破片になることを防止でき、シード保持部材と多結晶シリコンの分離作業の手間を格段に軽減することができる。
 次いで、折離用溝16についての具体的な、溝深さ、溝形状、高さ方向に関する溝形成位置、円周方向に関する溝形成位置について説明する。
 (1)折離用溝16の溝深さ
 溝深さは特に限定されるものではなく、折る際の応力集中を踏まえた負荷を計算しシード保持部材6の外径に合うように溝の深さを決めればよい。
 (2)折離用溝16の溝形状
 溝形状はどのような形状であってもよい。例えば、円丸溝、矩形溝、V溝等のいずれであってもよい。
 (3)折離用溝16の高さ方向に関する溝形成位置 折離用溝16は、シード保持部材6の表面にシード表面より析出したシリコン結晶の成長部よりも下側に形成されているのが好ましい。換言すれば、折離用溝16の高さ方向に関する形成位置は、シード表面上に析出したシリコン結晶が成長し、シード保持部材6の先端部を覆い隠す部分よりも下の範囲が好ましい。
 より好ましくは、折離用溝16がシード保持部材6の先端から30mmより下に形成することである。その理由は、析出した多結晶シリコンの結晶がシード保持部材6を先端から30mm以上の覆う状態に成長するまで析出作業を行うことは稀であることに起因する。
 さらには、固定ネジ15を差し込む貫通孔14よりも上側にあるほうが、シリコン結晶からシード保持部材6を穿り出す際に作業が容易になる。
 (4)折離用溝16の円周方向に関する溝形成位置
 シード保持部材6外周面において周方向全周又はその一部のいずれであってもよい。
 なお、折離用溝16はシード保持部材6の周方向に延在している場合(換言すれば、折離用溝16がシード保持部材6の軸芯に対して傾斜した平面内に存在している場合)であってもよく、好ましくは折離用溝16がシード保持部材6の軸芯に対して垂直な平面内に存在している場合である。
 次いで、上記構成の製造装置を用いて多結晶シリコンを製造する方法について説明する。多結晶シリコンを製造する方法は、基本的には従来例と同様である。即ち、シード4は電極5及びシード保持部材6を通じて通電され、表面が1000℃以上に赤熱される。炉内に供給された原料ガスは、赤熱したシード4の表面に接触して熱分解ないし水素還元され、シード4の表面に多結晶シリコンを析出する。この反応が進行して多結晶シリコン棒に成長する。
 こうして、多結晶シリコン析出後は、シード保持部材6を折離用溝16より折損して、多結晶シリコンが付着したシード4を炉外に取り出す。このシード保持部材6の破壊荷重を掛けた折損時に、折離用溝16において応力集中が起こり、従来に比べ小さな負荷で折離作業を行える。また、割れは該溝に沿って伝播していく。このため、シード保持部材表面上にシリコン結晶が成長し付着した場所にまで割れが伝播し、黒鉛とシリコンを含んだ破片の発生を防止でき、シード保持部材と多結晶シリコンの分離作業の手間が格段に軽減する。
 なお、上記の製造例としては、多結晶シリコン析出後は、シード保持部材6を折離用溝16より折損して、多結晶シリコンが付着したシード4を炉外に取り出していたが、多結晶シリコン析出後、シード4を保持した状態のままシード保持部材6を電極部5から取り外して、炉外に取り出し、その後、シード4を保持した状態のシード保持部材6を折離用溝16より折損して、シード保持部材と多結晶シリコンの分離作業を行うようにしてもよい。
 (実験例)
 図5に示すように荷重スパンを1mとし、折離用溝16が全周に亘って形成され、且つ、溝深さは0cm、1.0cm、1.5cmの3種類のシード保持部材6の各々について荷重を作用させ破壊荷重を測定したので、その結果を表1及び図6に示す。
 なお、本実験においては、シード保持部材6としては、図5に示す、台座部6aの無い、同一円柱状タイプのものを用いて実験を行った。また、本実験においては、貫通孔14が無い場合についても、貫通孔14が有る場合と同様の実験を行ったので、その結果も併せて、表1及び図6に記載している。なお、図6において、三角印は貫通孔14の有る場合の破壊荷重の測定値を示し、四角印は貫通孔14の無い場合の破壊荷重の測定値を示している。
Figure JPOXMLDOC01-appb-T000001
 [実験結果]
 表1及び図6に明らかに示すように、貫通孔14が有る場合においては、溝深さが0cmの場合(折離用溝16を形成していない場合)は破壊荷重が40kgf、溝深さが1.0cmの場合は破壊荷重が12kgf、溝深さが1.5cmの場合は破壊荷重が4kgfである。貫通孔14が無い場合においては、溝深さが0cmの場合(折離用溝16を形成していない場合)は破壊荷重が35kgf、溝深さが1.0cmの場合は破壊荷重が15kgf、溝深さが1.5cmの場合は破壊荷重が5kgfである。但し、溝深さが0cmの場合は、先端部にクラックが発生した。溝深さが1.0cm、1.5cmの場合は、折離用溝16を形成しない状態よりも小さい負荷で、折離用溝16から割れが生じた。
 [実験結果の検討]
 (1)上記実験結果より、折離用溝16を形成することにより破壊荷重を掛けた際に該溝において応力集中が起こり従来よりも小さな負荷で割れが生じた。さらに、該溝に沿って一定方向に割れが伝播し、シード保持部材の意図せぬ方向への割れの伝播を防止した状態で折離作業が行えるという本願の効果が得られることが認められる。
 (2)折離用溝16を形成した場所のシード保持部材6の外径が小さくなると、破壊荷重が小さくなることが認められる。従って、溝を形成した場所のシード保持部材6の外径が極端に小さくなるような、溝深さの折離用溝16を形成した場合(例えば、上記実験における溝深さが1.5cmを越えるような場合)は、シード保持部材6の強度が弱くなり過ぎて、意図しない衝撃で折損する虞がある。加えて、通電時に電圧が溝を形成した部分において過度にかかり、過熱の不具合が生じる虞が高い。シード保持部材6の一部で加熱が起こると、該熱によってシリコン結晶が溶け出す虞がある。そこで、折離用溝16を形成した箇所で従来よりも小さな負荷で割れることに加え、該溝に沿って割れが伝播され、意図せぬシード保持部材6の箇所に割れの伝播を防止しながら折離作業が行えるという本願の効果に加えて、少なくとも意図しない衝撃で折損しない程度の強度を備えていること及び通電時に電圧が溝を形成した部分において過度にかかることに起因した過熱の不具合を防止することも考慮するのであれば、該溝深さは一定の範囲とするのが好ましい。例えば、シード保持部材6の外径を5cmとした上記実験の場合、溝深さは1.0cm付近が好ましい。より好ましくは該溝の深さは0.7~1.5cm付近である。
 なお、表1及び図6より、貫通孔14の有る場合と無い場合とでは、破壊荷重の値に殆ど差はないことが認められる。このことから、貫通孔14は破壊強度に影響しないと考えられる。
 (その他の事項)
 上記実施の形態では、シード保持部材6は、台座部6aと胴部6bと截頭円錐台状の先端部6cとから構成されていたが、シード保持部材6の形状はこれに限定されるものではない。例えば、先端部6cを截頭円錐台状とせず、胴部6bをそのまま上方に延ばした構造であってもよい。
 本発明は、任意の箇所に折離用溝を形成することにより、該溝において応力集中を起し、従来よりも小さな負荷の折離作業を可能とする。また、該溝に沿って割れが伝播され、意図せぬシード保持部材箇所での割れを防止しながら折離作業を行うことができ、シード保持部材及びそのシード保持部材を用いた多結晶シリコン製造方法に適用することができる。
   1:反応炉               4:シード
   5:電極部               6:シード保持部材
  6a:台座部              6b:胴部
  6c:先端部              10:第1の嵌合孔
  13:第2の嵌合孔           14:貫通孔
  15:固定ネジ             16:折離用溝
  20:シリコン析出部

Claims (9)

  1.  シーメンス法で多結晶シリコンを製造する炉の底部に設置された電極部に装着され、種棒となるシードの下端部を保持する黒鉛製のシード保持部材であって、
     外周面の任意の箇所に折離用凹部を形成したことを特徴とするシード保持部材。
  2.  前記凹部は折離用溝である、請求項1記載のシード保持部材。
  3.  前記折離用溝の周方向に関する形成範囲が、周方向全周又はその一部である、請求項2記載のシード保持部材。
  4.  前記折離用溝はシード保持部材外周面の周方向に延在している、請求項2又は3記載のシード保持部材。
  5.  前記折離用溝は、シード保持部材の表面にシード表面より析出したシリコン結晶の成長部よりも下側に形成されている、請求項2~4のいずれかに記載のシード保持部材。
  6.  前記シード保持部材の先端が截頭円錐台状に形成されている、請求項1~5のいずれかに記載のシード保持部材。
  7.  シーメンス法により多結晶シリコンを製造する方法であって、
     種棒となるシードの下端部を保持するシード保持部材の外周面の任意の箇所に折離用凹部を予め形成しておき、この凹部が形成されたシード保持部材を、多結晶シリコンを製造する炉の底部に設置された電極部に装着するステップと、
     シードの表面に多結晶シリコンを析出するステップと、
     シードの表面に多結晶シリコンが析出後、シード保持部材を凹部より折損して、多結晶シリコンが付着したシードを炉外に取り出すステップと、
     炉外に取り出されたシードから、シード保持部材と多結晶シリコンの分離作業を行うステップと、
     を有することを特徴する多結晶シリコン製造方法。
  8.  シーメンス法により多結晶シリコンを製造する方法であって、
     種棒となるシードの下端部を保持するシード保持部材の外周面の任意の箇所に折離用凹部を予め形成しておき、この凹部が形成されたシード保持部材を、多結晶シリコンを製造する炉の底部に設置された電極部に装着するステップと、
     シードの表面に多結晶シリコンを析出するステップと、
     多結晶シリコン析出後、シードを保持した状態のままシード保持部材を電極部から取り外して、炉外に取り出すステップと、
     炉外に取り出した後、シード保持状態のシード保持部材を凹部より折損して、シード保持部材と多結晶シリコンの分離作業を行うステップと、
     を有することを特徴する多結晶シリコン製造方法。
  9.  前記凹部は折離用溝である、請求項7又は8記載の多結晶シリコン製造方法。
PCT/JP2010/064986 2009-09-02 2010-09-02 シード保持部材及びそのシード保持部材を用いた多結晶シリコン製造方法 WO2011027803A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
IN2514DEN2012 IN2012DN02514A (ja) 2009-09-02 2010-09-02
SG2012014882A SG178958A1 (en) 2009-09-02 2010-09-02 Seed retaining member and method of manufacturing polycrystalline silicon using the seed retaining member
EP10813751A EP2474504A1 (en) 2009-09-02 2010-09-02 Seed holding member and method for producing polycrystalline silicon using the seed holding member
CN2010800390661A CN102482104A (zh) 2009-09-02 2010-09-02 晶种保持构件及使用该晶种保持构件的多结晶硅制造方法
US13/392,688 US20120186300A1 (en) 2009-09-02 2010-09-02 Seed retaining member and method of manufacturing polhycrystalline silicon using the seed retaining member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009202389A JP5431074B2 (ja) 2009-09-02 2009-09-02 シード保持部材及びそのシード保持部材を用いた多結晶シリコン製造方法
JP2009-202389 2009-09-02

Publications (1)

Publication Number Publication Date
WO2011027803A1 true WO2011027803A1 (ja) 2011-03-10

Family

ID=43649337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064986 WO2011027803A1 (ja) 2009-09-02 2010-09-02 シード保持部材及びそのシード保持部材を用いた多結晶シリコン製造方法

Country Status (9)

Country Link
US (1) US20120186300A1 (ja)
EP (1) EP2474504A1 (ja)
JP (1) JP5431074B2 (ja)
KR (1) KR20120091034A (ja)
CN (1) CN102482104A (ja)
IN (1) IN2012DN02514A (ja)
SG (1) SG178958A1 (ja)
TW (1) TW201129500A (ja)
WO (1) WO2011027803A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101435875B1 (ko) 2012-03-12 2014-09-01 (주)아폴로테크 폴리실리콘 제조용 흑연척 재활용 방법
JP2017503747A (ja) * 2014-01-22 2017-02-02 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG 多結晶シリコンの製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010003064A1 (de) * 2010-03-19 2011-09-22 Wacker Chemie Ag Graphitelektrode
JP5507493B2 (ja) * 2011-05-09 2014-05-28 信越化学工業株式会社 シリコン芯線ホルダおよび多結晶シリコンの製造方法
JP2013006747A (ja) * 2011-06-27 2013-01-10 Toyo Tanso Kk シード保持部材、多結晶シリコン製造装置、及びシード保持部材の製造方法
JP5761099B2 (ja) * 2012-03-28 2015-08-12 三菱マテリアル株式会社 多結晶シリコン反応炉
JP6373724B2 (ja) * 2014-11-04 2018-08-15 株式会社トクヤマ 芯線ホルダ及びシリコンの製造方法
CN110352177B (zh) * 2017-03-08 2023-08-01 株式会社德山 多晶硅加工品的制造方法
CN111646475B (zh) * 2020-06-03 2024-06-11 洛阳中硅高科技有限公司 一体式石墨底座和电子级多晶硅生产系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06157195A (ja) * 1990-06-27 1994-06-03 Union Carbide Coatings Service Technol Corp 多結晶ケイ素の製造における始動フィラメント用黒鉛チャック及びその保護方法
JP2867306B2 (ja) 1991-11-15 1999-03-08 三菱マテリアルポリシリコン株式会社 半導体級多結晶シリコンの製造方法とその装置
JPH11163403A (ja) * 1997-11-28 1999-06-18 Nichia Chem Ind Ltd 窒化物半導体素子の製造方法
JP2002210355A (ja) * 2001-01-18 2002-07-30 Sumitomo Titanium Corp ロッド解体機
JP2002260915A (ja) * 2001-02-28 2002-09-13 Matsushita Electric Ind Co Ltd プラスチック磁石
JP2009174235A (ja) * 2008-01-28 2009-08-06 Panasonic Electric Works Co Ltd 軒樋支持具装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06157195A (ja) * 1990-06-27 1994-06-03 Union Carbide Coatings Service Technol Corp 多結晶ケイ素の製造における始動フィラメント用黒鉛チャック及びその保護方法
JP2867306B2 (ja) 1991-11-15 1999-03-08 三菱マテリアルポリシリコン株式会社 半導体級多結晶シリコンの製造方法とその装置
JPH11163403A (ja) * 1997-11-28 1999-06-18 Nichia Chem Ind Ltd 窒化物半導体素子の製造方法
JP2002210355A (ja) * 2001-01-18 2002-07-30 Sumitomo Titanium Corp ロッド解体機
JP2002260915A (ja) * 2001-02-28 2002-09-13 Matsushita Electric Ind Co Ltd プラスチック磁石
JP2009174235A (ja) * 2008-01-28 2009-08-06 Panasonic Electric Works Co Ltd 軒樋支持具装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101435875B1 (ko) 2012-03-12 2014-09-01 (주)아폴로테크 폴리실리콘 제조용 흑연척 재활용 방법
JP2017503747A (ja) * 2014-01-22 2017-02-02 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG 多結晶シリコンの製造方法

Also Published As

Publication number Publication date
EP2474504A1 (en) 2012-07-11
KR20120091034A (ko) 2012-08-17
TW201129500A (en) 2011-09-01
CN102482104A (zh) 2012-05-30
JP5431074B2 (ja) 2014-03-05
JP2011051837A (ja) 2011-03-17
SG178958A1 (en) 2012-04-27
US20120186300A1 (en) 2012-07-26
IN2012DN02514A (ja) 2015-08-28

Similar Documents

Publication Publication Date Title
WO2011027803A1 (ja) シード保持部材及びそのシード保持部材を用いた多結晶シリコン製造方法
JP5476693B2 (ja) 多結晶シリコン反応炉
JP5485210B2 (ja) 亀裂のない多結晶シリコンロッドの製造方法
US9090962B2 (en) Silicon seed rod assembly of polycrystalline silicon, method of forming the same, polycrystalline silicon producing apparatus, and method of producing polycrystalline silicon
DE112010001773T5 (de) Spann- und Kontaktierungsvorrichtung für Silizium-Dünnstäbe
CN102912425B (zh) 一种导流筒及其制备方法
JP2016108240A (ja) 坩堝
JP3206953U (ja) 多結晶シリコンの折損したシリコン芯棒の連接構成
JP5061038B2 (ja) 炭化ケイ素単結晶の研削方法
EP2220668A1 (de) Verfahren und anordnung zum tempern von sic-wafern
JP4924291B2 (ja) 炭化珪素単結晶の製造方法
JP2009102196A (ja) 炭化珪素単結晶基板の製造方法
TWI588289B (zh) 用於沉積物質之製造設備及使用於其中之托座
JP2020176034A (ja) シリコン芯線
JP6843301B2 (ja) 芯線ホルダ、シリコン製造装置及びシリコン製造方法
JP2009227547A (ja) 多結晶シリコンのシリコン芯棒組立体
JP2018030734A (ja) 坩堝
JP4061984B2 (ja) 単結晶引き上げ用シードチャック
WO2001094669A1 (fr) Tige de silicium polycristallin et procede de traitement de cette tige
JP3206950U (ja) 多結晶シリコンの折損したシリコン芯棒の連接構造
CN217921498U (zh) 一种用于生产多晶硅的夹持机构及组件
CN203065628U (zh) 单晶炉承托坩埚用碳/碳复合材料碳布垫
WO2014073163A1 (ja) 単結晶製造装置
TWI605160B (zh) 單結晶拉引裝置具備之加熱器關連元件之選擇方法
JP2010006657A (ja) シリコン単結晶の製造装置およびシリコン単結晶の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080039066.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10813751

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2514/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010813751

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127008185

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13392688

Country of ref document: US