WO2011027549A1 - ジエチル亜鉛組成物、熱安定化方法および熱安定化用化合物 - Google Patents

ジエチル亜鉛組成物、熱安定化方法および熱安定化用化合物 Download PDF

Info

Publication number
WO2011027549A1
WO2011027549A1 PCT/JP2010/005379 JP2010005379W WO2011027549A1 WO 2011027549 A1 WO2011027549 A1 WO 2011027549A1 JP 2010005379 W JP2010005379 W JP 2010005379W WO 2011027549 A1 WO2011027549 A1 WO 2011027549A1
Authority
WO
WIPO (PCT)
Prior art keywords
diethylzinc
additive
compound
carbon atoms
composition
Prior art date
Application number
PCT/JP2010/005379
Other languages
English (en)
French (fr)
Inventor
健一 羽賀
静夫 富安
功一 徳留
Original Assignee
東ソー・ファインケム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010006483A external-priority patent/JP5752356B2/ja
Priority claimed from JP2010019853A external-priority patent/JP5775672B2/ja
Application filed by 東ソー・ファインケム株式会社 filed Critical 東ソー・ファインケム株式会社
Priority to KR1020127007704A priority Critical patent/KR101790801B1/ko
Priority to US13/394,129 priority patent/US8722561B2/en
Priority to CN201080046333.8A priority patent/CN102686597B/zh
Publication of WO2011027549A1 publication Critical patent/WO2011027549A1/ja
Priority to US14/231,125 priority patent/US9018125B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/06Zinc compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/47Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with a bicyclo ring system containing ten carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D205/00Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom
    • C07D205/02Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings
    • C07D205/06Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D205/08Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with one oxygen atom directly attached in position 2, e.g. beta-lactams
    • C07D205/085Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with one oxygen atom directly attached in position 2, e.g. beta-lactams with a nitrogen atom directly attached in position 3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/50Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from alkaline earth metals, zinc, cadmium, mercury, copper or silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/01Additive used together with the catalyst, excluding compounds containing Al or B

Definitions

  • the present invention relates to a diethylzinc composition excellent in thermal stability, a method for thermal stabilization of a diethylzinc composition, and a compound for thermal stabilization.
  • Diethyl zinc is conventionally used as a reaction reagent for organic synthesis in polymerization catalyst applications such as polyethylene oxide and polypropylene oxide, and in the production of intermediates such as pharmaceuticals and functional materials, and is known as an extremely useful industrial material. ing.
  • MOCVD Metal Organic Chemical Vapor Deposition
  • the zinc oxide thin film obtained by this MOCVD method has various functions in solar cells such as CIGS solar cell buffer layer, transparent conductive film, dye-sensitized solar cell electrode film, thin-film Si solar cell intermediate layer, and transparent conductive film. It is used in various functional films such as films, photocatalytic films, ultraviolet cut films, infrared reflective films, and antistatic films, compound semiconductor light emitting devices, electronic devices such as thin film transistors, etc., and has a wide range of uses.
  • Diethyl zinc is known to be gradually decomposed when heat is applied to deposit metal zinc particles (see Non-Patent Document 1, for example). Therefore, handling of diethyl zinc has problems such as a decrease in product purity due to precipitation of metal zinc particles generated by pyrolysis, contamination of storage containers, and blockage of manufacturing equipment piping.
  • anthracene, acenaphthene, and acenaphthylene are compounds that are solid at room temperature, and there is a problem that operations such as charging powder are required in the preparation of the diethylzinc composition.
  • anthracene, acenaphthene, and acenaphthylene are solid compounds at room temperature of about 25 ° C., which is a general handling temperature, and there is a problem that operations such as powder charging are required in the preparation of a diethylzinc composition. .
  • a substance with a high melting point has a low vapor pressure, and in the use of diethyl zinc in CVD film formation etc., vaporization occurs when diethyl zinc is supplied as a saturated gas in the carrier gas by bubbling with the carrier gas. There is a risk of remaining without.
  • the additives are transferred using a solid charging machine or the like, but in the case of troubles such as blocking of the additives during the transfer. Therefore, it is necessary to take measures to prevent contamination of diethyl zinc with impurities.
  • the compound has a lower melting point. From this point, it is desirable that the diethylzinc additive is a compound having a lower melting point.
  • the first invention improves the thermal stability of diethyl zinc used as a raw material for producing a zinc oxide thin film by a polymerization catalyst, an organic synthesis reagent, MOCVD method, etc., and does not precipitate metal zinc particles even when handled for a long time.
  • an aromatic compound having an isopropenyl group in the side chain is used as an additive.
  • the second invention improves the thermal stability of diethyl zinc used as a raw material for producing a zinc oxide thin film by a polymerization catalyst, an organic synthesis reagent, MOCVD method, etc., and does not precipitate metallic zinc particles even when handled for a long time.
  • a liquid compound at a temperature of 25 ° C. that is easy to handle as an additive that is, the melting point or freezing point of the additive is 25 ° C. or less.
  • the third invention improves the thermal stability of diethyl zinc used as a raw material for producing a zinc oxide thin film by a polymerization catalyst, an organic synthesis reagent, MOCVD method, etc., and does not precipitate metallic zinc particles even when handled for a long time. It is an object of the present invention to provide a diethylzinc composition and a method for thermal stabilization of diethylzinc that are excellent in reducing the residual problem when using diethylzinc, and the melting point of the additive is the aforementioned known additive. Lower than that of the additive, that is, a compound having a melting point or freezing point of the additive of 85 ° C. or lower.
  • 4th invention improves the thermal stability of diethyl zinc used for a raw material for zinc oxide thin film production by a polymerization catalyst, an organic synthesis reagent, MOCVD method, etc.
  • a compound having an azulene structure is used as an additive for the purpose of providing a diethylzinc composition having excellent properties.
  • the present inventor made a composition in which an aromatic compound having an isopropenyl group in the side chain coexists in diethyl zinc (CAS No. 557-20-0). As a result, it was found that the thermal stability was remarkably improved, and the first invention was completed.
  • the diethyl zinc composition according to the first invention of the present application is a diethyl zinc composition obtained by adding an aromatic compound having an isopropenyl group in the side chain as an additive to diethyl zinc.
  • the diethyl zinc composition which concerns on 1st invention of this application is a group which consists of an aromatic compound which has the isopropenyl group represented by following General formula (1), General formula (2), General formula (3) in a side chain. 1 or 2 or more compounds selected from.
  • each R is independently hydrogen, a linear or branched alkyl group having 1 to 8 carbon atoms, or a linear or branched group having 1 to 8 carbon atoms.
  • An alkenyl group (an alkenyl group includes an isopropenyl group) and an allyl group having 6 to 14 carbon atoms.
  • R which is a substituent bonded to the side chain of the aromatic compound having the isopropenyl group represented by the above general formula (1), general formula (2), or general formula (3) in the side chain,
  • isopropenyl group characterized in the present invention but also a linear or branched alkyl group having 1 to 8 carbon atoms such as hydrogen, methyl group, and isopropyl group, and 1 carbon atom such as vinyl group and propenyl group.
  • alkenyl group includes an isopropenyl group characterized in the present invention as described above
  • an allyl group having 6 to 14 carbon atoms such as a phenyl group and a toluyl group, etc. It may have a substituent different from the isopropenyl group.
  • the number of isopropenyl groups present in the side chain may be one or more than two. For example, in the case of benzene as the aromatic compound, 1,3-diisopropenyl having two isopropenyl groups Benzene and 1,4-diisopropenylbenzene have a high thermal stability effect.
  • Examples of the aromatic compound having the above-mentioned isopropenyl group in the side chain include mono-substituted products of isopropenyl groups such as ⁇ -methylstyrene, 4-isopropenyltoluene, 1-isopropenylnaphthalene, 2-isopropenylnaphthalene, and the like.
  • ⁇ -methylstyrene, 4-isopropenyltoluene, 1,3-dithiol is an additive that has a simple structure, is easily available industrially, and has a high effect.
  • Isopropenylbenzene, 1,4-diisopropenylbenzene, and 2-isopropenylnaphthalene can be preferably used.
  • ⁇ -methylstyrene, 4-isopropenyltoluene, and 1,3-diisopropenylbenzene are liquid at a temperature of about 20 ° C., and the diethylzinc composition can be easily adjusted.
  • the diethyl zinc composition according to the first invention of the present application is excellent in thermal stability at a low temperature of 180 ° C. or lower from the measured value of ARC measurement (Accelerating Rate Calorimetry) generally used as an accelerated test of thermal stability. It has sex. From the temperature dependency of the measured value of the ARC test, the effect of the thermal stability of the diethylzinc composition is more manifested as the temperature decreases.
  • ARC measurement Accelelerating Rate Calorimetry
  • a liquid compound at a temperature of 25 ° C. that is, a compound having a melting point or a freezing point of an additive of 25 ° C. or less, is 1) A specific aromatic compound having a side chain, 2) a specific compound having a fulvene skeleton, 3) squalene, and 4) 2,4-diphenyl-4-methyl-1-pentene are converted into diethyl zinc (CAS No. 557-20). It was found that the thermal stability was remarkably improved by using the composition coexisting with -0), and the second invention of the present application was completed.
  • the diethylzinc composition according to the second invention of the present application is a compound in which the melting point of the additive is 25 ° C. or less as an additive to diethylzinc, that is, a liquid compound at a temperature of 25 ° C. 2) a specific compound having a fulvene skeleton, 3) squalene, and 4) diethyl to which one or more of 2,4-diphenyl-4-methyl-1-pentene is added It is a zinc composition.
  • each R is independently hydrogen, a linear or branched alkyl group having 1 to 8 carbon atoms (alkyl Group includes an isopropyl group), a linear or branched alkenyl group having 1 to 8 carbon atoms, and an allyl group having 6 to 14 carbon atoms.
  • R which is a substituent, is not only an isopropyl group characterized in the present invention, but also a linear or branched alkyl group having 1 to 8 carbon atoms such as hydrogen, methyl group, propyl group ( As described above, the alkyl group includes an isopropyl group characterized in the present invention), a linear or branched alkenyl group having 1 to 8 carbon atoms such as a vinyl group or a propenyl group, and a carbon such as a phenyl group or a toluyl group.
  • the number of isopropyl groups present in the side chain may be one or a plurality of two or more.
  • 1,3-diisopropylbenzene particularly having two or more isopropyl groups 1,4-diisopropylbenzene and 1,3,5-diisopropylbenzene have a high thermal stability effect.
  • aromatic compound having an isopropyl group in the side chain examples include, for example, monosubstituted isopropyl groups such as 1-isopropylnaphthalene and 2-isopropylnaphthalene, 1,3-diisopropylbenzene, 1,4-diisopropylbenzene, 1, Examples thereof include compounds having two or more isopropyl groups such as 3,5-triisopropylbenzene.
  • 1-isopropylnaphthalene, 2-isopropylnaphthalene, 1,3-diisopropylbenzene are those that have a simple structure and can be easily obtained industrially and have high effects.
  • 1,4-diisopropylbenzene and 1,3,5-triisopropylbenzene can be preferably used.
  • aromatic compounds having an isopropyl group in the side chain are liquid at a temperature of 25 ° C., and the diethylzinc composition can be easily adjusted.
  • examples of the specific compound having the above-mentioned 2) fulvene skeleton include compounds represented by the following general formula (9).
  • each R independently represents hydrogen, a linear or branched alkyl group having 1 to 8 carbon atoms, a linear or branched alkenyl group having 1 to 8 carbon atoms, or an allyl group having 6 to 14 carbon atoms. It is a group.
  • Dimethylfulvene (CAS No. 2175-91-9) can be preferably used.
  • the above-mentioned 3) squalene (CAS No. 111-02-4) and 4) 2,4-diphenyl-4-methyl-1-pentene (CAS No. 5) are used. 6362-80-7) can be used.
  • These compounds 3) and 4) are liquid at a temperature of 25 ° C., and the diethylzinc composition can be easily adjusted.
  • the present inventors have determined that a naphthalene compound having a melting point or freezing point of 85 ° C. or lower as diethyl zinc (CAS No. .557-20-0) was found to significantly improve the thermal stability, and the third invention of the present application was completed.
  • the diethyl zinc composition according to the third invention of the present application is diethyl zinc in which a naphthalene compound having a melting point or freezing point of 85 ° C. or lower is added to diethyl zinc as a compound having a melting point or freezing point of 85 ° C. or lower added as an additive. It is a composition.
  • the naphthalene compound is selected from the group consisting of compounds represented by the following general formula (1), general formula (2) and general formula (3). One or more compounds.
  • each R is independently hydrogen, a linear or branched alkyl group having 1 to 8 carbon atoms (the alkyl group includes an isopropyl group), A straight-chain or branched alkenyl group having 1 to 8 carbon atoms and an allyl group having 6 to 14 carbon atoms).
  • naphthalene compound having a melting point or freezing point of 85 ° C. or lower as described above examples include, for example, naphthalene itself and those having an alkyl group in the side chain as examples of formula (10) and formula (11), for example, 2-methylnaphthalene 2,6-diisopropylnaphthalene, alkenyl groups, etc., those having an allyl group, 1-styrylnaphthalene, etc., examples of formula (3) which are oxygen-containing naphthalene compounds, for example, compounds such as 2-methoxynaphthalene Can be mentioned.
  • naphthalene 2-methylnaphthalene, 2,6-diisopropylnaphthalene, and the like, which are simple in structure and can be easily obtained industrially, have high effects.
  • 1-styrylnaphthalene and 2-methoxynaphthalene can be preferably used.
  • These naphthalene compounds have a melting point of 85 ° C. or lower.
  • the diethyl zinc composition according to the fourth invention of the present application is a diethyl zinc composition obtained by adding a compound having an azulene structure as an additive to diethyl zinc.
  • the azulene structure is generally widely known as a structure in which a structure composed of carbon having a cyclic structure of 7 carbon atoms and a structure composed of carbon having a cyclic structure of 5 carbon atoms in the following general formula (13) are connected.
  • the diethylzinc composition according to the present invention includes the following general formula (14) and a compound having an azulene structure.
  • each R independently represents hydrogen, a linear or branched alkyl group having 1 to 8 carbon atoms, a linear or branched alkenyl group having 1 to 8 carbon atoms, or an allyl group having 6 to 14 carbon atoms. It is a group.
  • R which is a substituent bonded to the side chain of the compound having an azulene structure represented by the above general formula (14), is independently of 1 to 8 carbon atoms such as hydrogen, methyl group, isopropyl group and the like.
  • Linear or branched alkenyl groups having 1 to 8 carbon atoms such as linear or branched alkyl groups, vinyl groups, propenyl groups, isopropenyl groups, etc. (as described above, alkenyl groups include isopropenyls characterized by the present invention)
  • substituents such as phenyl groups, toluyl groups, and the like and allyl groups having 6 to 14 carbon atoms.
  • the number of substituents present in the side chain may be different from each other, and may be one or two or more.
  • Examples of the compound having the above-described azulene structure include various substituted azulene compounds such as azulene, guaiazulene, and lactalazulene.
  • azulene (CAS No.275-51-4), guaiazulene (CAS No.489-84-9), and lactal azulene (CAS No.489-85-0) have the structure.
  • the additive used in the present invention can provide a sufficient effect when added alone, but a plurality of additives may be used in combination.
  • the addition amount of the additives of the first to fourth inventions is not particularly limited as long as the performance of diethyl zinc is maintained and a thermal stabilization effect can be obtained. If it is 100 ppm to 20 wt%, preferably 200 ppm to 10 wt%, more preferably 500 ppm to 5 wt%, a diethylzinc composition having excellent thermal stability can be obtained.
  • the added amount of these additives is too small, there may be cases where a sufficient effect of improving the thermal stability may not be obtained, and if it is too large, the effect of increasing the added amount may not be obtained. It is desirable to add an appropriate amount for obtaining a desired effect.
  • Diethyl zinc used in the present invention is generally known as an industrial material used as a reaction reagent for organic synthesis in polymerization catalyst applications such as polyethylene oxide and polypropylene oxide, and in the production of intermediates such as pharmaceuticals and functional materials. What is being used can be used.
  • a buffer layer of CIGS solar cell a transparent conductive film
  • an electrode film of a dye-sensitized solar cell an intermediate layer of a thin film Si solar cell
  • Various functional films in solar cells such as transparent conductive films, photocatalytic films, ultraviolet cut films, infrared reflective films, various functional films such as antistatic films, compound semiconductor light emitting devices, electronic devices such as thin film transistors, etc. Diethyl zinc having a purity higher than that of industrial materials can also be used.
  • diethylzinc composition of the present application it is only necessary to mix diethylzinc and the additives according to the first to third inventions.
  • addition method such as adding the above-mentioned additive to diethylzinc, There is no particular limitation.
  • a method of adding an additive to diethyl zinc in advance can be used. Further, for example, when used for a reaction or the like, an additive can be added to diethyl zinc immediately before use.
  • the temperature for preparing the diethylzinc composition of the present invention is preferably 70 ° C. or less, which is less affected by the thermal decomposition of diethylzinc.
  • the composition of the present invention can be prepared at -20 ° C to 35 ° C.
  • the pressure is not particularly limited. Except for special cases such as reaction, diethylzinc and the composition of the present invention can be usually prepared near atmospheric pressure, such as 0.1013 MPa.
  • the equipment used in the equipment such as storage / transport containers, storage tanks, pipes, etc. for the diethyl zinc composition of the present invention can be used as it is for diethyl zinc.
  • the material of the above-mentioned equipment can be a metal such as SUS, carbon steel, titanium, or Hastelloy, or a resin such as Teflon (registered trademark) or fluorine rubber.
  • an inert gas such as nitrogen, helium, or argon can be used in the same manner as diethyl zinc.
  • the diethylzinc composition of the present invention can be used by dissolving it in a known solvent that can be used when diethylzinc is used.
  • the solvent include, for example, saturated hydrocarbons such as pentane, hexane, heptane and octane, hydrocarbon compounds such as aromatic hydrocarbons such as benzene, toluene and xylene, diethyl ether, diisopropyl ether, tetrahydrofuran, dioxane and diglyme.
  • ether compounds such as
  • Examples of the use of the diethylzinc composition of the present invention include use as a polymerization catalyst such as polyethylene oxide and polypropylene oxide, use as a reaction reagent for organic synthesis in the production of intermediates such as pharmaceuticals and functional materials, , Used in a method of forming a zinc oxide thin film by MOCVD method, etc., and CIGS solar cell buffer layer, transparent conductive film, dye-sensitized solar cell electrode film, thin film Si solar cell intermediate layer, transparent conductive film, etc.
  • Various functional films such as various functional films, photocatalytic films, ultraviolet cut films, infrared reflective films, antistatic films, etc.
  • oxide forming applications such as compound semiconductor light emitting devices, electronic devices such as thin film transistors, etc.
  • ZnS listed are the same applications where diethyl zinc has been used so far, such as thin film forming applications for II-VI electronic devices. Door can be.
  • the diethyl zinc composition to which the additive of the present invention is added is excellent in thermal stability, and there is very little precipitation of metal zinc particles generated by the thermal decomposition of diethyl zinc. As a result, it is possible to prevent problems such as a decrease in product purity, contamination of storage containers, and blockage of manufacturing equipment piping.
  • DSC measurement was performed using DSC6200 (manufactured by Seiko Instruments Inc.).
  • ARC measurement was performed using ARC2000 (manufactured by ADL (Authur D Little)).
  • diethyl zinc (manufactured by Tosoh Finechem Co., Ltd.) and additives such as aromatic compounds having various isopropenyl groups in the side chain (commercial reagents) were weighed in glass containers at a predetermined concentration at room temperature in a nitrogen atmosphere. The additive was dissolved in diethyl zinc to prepare a diethyl zinc composition.
  • Addition rate (% by weight) of additive (additive weight / (additive weight + diethyl zinc weight)) ⁇ 100
  • the initial exothermic temperature of the sample of the diethylzinc composition to which the aromatic compound having an isopropenyl group in the side chain of the present invention is added is higher than the initial exothermic temperature of the sample of only diethylzinc obtained in the reference example.
  • This composition has a higher decomposition onset temperature than the diethylzinc-only sample. From this result, the high thermal stability of the diethyl zinc composition to which the additive was added was confirmed.
  • Examples 6 to 20 The thermal analysis measurement was performed in the same manner as in Examples 1 to 5 while changing the addition rate of the additive.
  • Table 3 shows the initial heat generation temperature of each sample.
  • the initial exothermic temperature of the sample of the diethylzinc composition to which the aromatic compound having an isopropenyl group in the side chain of the present invention is added is only that of diethylzinc obtained in the reference example, even if the addition rate of the additive is changed. Beyond the initial exothermic temperature of the sample, the composition of the present invention has a higher decomposition initiation temperature than the sample of diethyl zinc alone. From the results of Examples 6 to 19, high thermal stability of the diethylzinc composition to which the additive of the present invention was added was confirmed even when the additive addition rate was changed.
  • the initial exothermic temperature of the sample of the diethylzinc composition obtained by adding an oxygen compound such as a methoxy group to the side chain R of the aromatic compound is higher than the initial exothermic temperature of the sample of only diethylzinc obtained in the reference example.
  • the decomposition start temperature of the composition of the present invention is higher than that of the diethylzinc-only sample. From the results of Example 20, an additive containing oxygen such as a methoxy group in the side chain of the aromatic compound is added. Even in this case, high thermal stability of the diethylzinc composition to which the additive of the present invention was added was confirmed.
  • Example 21 to 23 [Thermal stability test by ARC measurement of diethyl zinc composition]
  • a diethyl zinc composition to which an aromatic compound having an isopropenyl group in the side chain of the present invention was added was examined in the same manner as in Reference Example 2.
  • the initial heat generation temperature of the sample is shown in Examples 21 to 23 in Table 4.
  • the initial exothermic temperature of the diethylzinc composition to which the aromatic compound having an isopropenyl group in the side chain of the present invention is added is higher than the initial exothermic temperature of the sample of only diethylzinc, and the diethylzinc composition of the present invention is thermally stable. It was confirmed that the properties were excellent.
  • Examples 24 to 50 and Reference Examples 3 to 11 Using the ARC measurement data obtained in Examples 21 to 23 and Reference Example 2, the maximum exothermic rate arrival time (TMR) at each temperature was calculated for diethyl zinc and various diethyl zinc compositions.
  • TMR maximum exothermic rate arrival time
  • J. E. Using the Huff method, an equation for extrapolating the self-heating rate and TMR to the low temperature side was obtained, and the method for calculating the self-heating rate and TMR obtained after ( ⁇ ) correction at each temperature was used.
  • TMR was calculated using an approximate expression obtained from each of the four data of 50 ° C., 60 ° C., 70 ° C., and 80 ° C.
  • the TMR value of the diethylzinc composition to which the aromatic compound having an isopropenyl group in the side chain of the present invention was added was compared with that of the diethylzinc composition to which the additive was not added and the TMR value was set to 1. It calculated in each temperature as a relative value with respect to a value. That is, the higher the relative value of TMR of the diethyl zinc composition to which the additive is added, the longer it takes to reach the maximum heat generation rate, and the diethyl zinc composition is more stable against diethyl zinc to which no additive is added. It shows having sex.
  • Examples 24-26 and Reference Example 3 The relative value of the maximum heat release rate arrival time (TMR) at 120 ° C. of each diethyl zinc composition when the TMR value of diethyl zinc at 120 ° C. with no additive added is 1 (Reference Example 3). Table 5 shows. From Examples 24 to 26 in Table 5, each diethyl zinc composition has a relative value of maximum exothermic rate arrival time (TMR) greater than 1, and thus diethyl zinc obtained by adding the additive of the present invention. The composition was confirmed to have high thermal stability.
  • TMR maximum heat release rate arrival time
  • Example 27 to 29 and Reference Example 4 The relative value of the maximum heat generation rate arrival time (TMR) at 100 ° C of each diethylzinc composition when the TMR value of diethylzinc with no additive at 100 ° C is set to 1 (Reference Example 4). Table 6 shows. From Examples 27 to 29 in Table 6, each diethyl zinc composition had a relative value of maximum exothermic rate arrival time (TMR) greater than 1, and thus diethyl zinc obtained by adding the additive of the present invention. The composition was confirmed to have high thermal stability.
  • TMR maximum heat generation rate arrival time
  • Examples 30 to 32 and Reference Example 5 The relative value of the maximum heat release rate arrival time (TMR) of each diethyl zinc composition at 80 ° C. when the TMR value of diethyl zinc at 80 ° C. with no additive added is 1 (Reference Example 5). It is shown in Table 7. From Examples 30 to 32 in Table 7, each diethyl zinc composition has a relative value of maximum exothermic rate arrival time (TMR) larger than 1, and thus diethyl zinc obtained by adding the additive of the present invention. The composition was confirmed to have high thermal stability.
  • TMR maximum heat release rate arrival time
  • Example 33 to 35 and Reference Example 6 The relative value of the maximum heat release rate arrival time (TMR) at 60 ° C of each diethylzinc composition when the TMR value of diethylzinc with no additive at 60 ° C is 1 (Reference Example 6). Table 8 shows. From Examples 33 to 35 in Table 8, each diethyl zinc composition had a relative value of maximum exothermic rate arrival time (TMR) greater than 1, and thus diethyl zinc obtained by adding the additive of the present invention. The composition was confirmed to have high thermal stability.
  • TMR maximum heat release rate arrival time
  • Example 39 to 41 and Reference Example 8 The relative value of the maximum heat release rate arrival time (TMR) at 30 ° C. of each diethyl zinc composition when the TMR value of diethyl zinc at 30 ° C. with no additive added is 1 (Reference Example 8). Table 10 shows. From Examples 39 to 41 in Table 10, each diethyl zinc composition has a relative value of maximum exothermic rate arrival time (TMR) greater than 1, and thus diethyl zinc obtained by adding the additive of the present invention. The composition was confirmed to have high thermal stability.
  • TMR maximum heat release rate arrival time
  • Example 45 to 47 and Reference Example 10 The relative value of the maximum heat release rate arrival time (TMR) at 20 ° C of each diethylzinc composition when the TMR value of diethylzinc with no additive at 20 ° C is 1 (Reference Example 10). It is shown in Table 12. From Examples 45 to 47 in Table 12, each diethyl zinc composition has a relative value of maximum exothermic rate arrival time (TMR) greater than 1, and thus the diethyl zinc composition obtained by adding the additive of the present invention. The product was confirmed to have high thermal stability.
  • TMR maximum heat release rate arrival time
  • Example 48 to 50 and Reference Example 11 The relative value of the maximum heat release rate arrival time (TMR) at 10 ° C of each diethylzinc composition when the TMR value of diethylzinc with no additive at 10 ° C is 1 (Reference Example 11). Table 13 shows. From Examples 48 to 50 in Table 13, each of the zinc zinc compositions had a relative value of maximum exothermic rate arrival time (TMR) greater than 1, so that diethyl zinc obtained by adding the additive of the present invention was obtained. The composition was confirmed to have high thermal stability.
  • TMR maximum heat release rate arrival time
  • the amount of precipitates generated by pyrolysis of the diethylzinc composition to which the additive was added was compared with the amount of precipitates generated by pyrolysis of diethylzinc to which the additive was not added was set to 1. Calculated as a relative amount to the value. That is, the amount of precipitates generated by thermal decomposition of the diethylzinc composition to which the additive is added is smaller than 1 relative to the above-mentioned value, and the diethylzinc composition is less than diethylzinc to which no additive is added. It shows that it has thermal stability.
  • Table 14 shows the relative amount of zinc deposited in each sample. From Examples 51 to 52 in Table 14, the amount of precipitate generated by pyrolysis of the diethylzinc composition to which the additive was added is the amount of precipitate generated by pyrolysis of diethylzinc to which no additive was added. Of less than 1/50. From this result, it was confirmed that the diethyl zinc composition obtained by adding the additive of the present invention has high thermal stability over a long period of time.
  • Examples 53 to 55 and Comparative Examples 12 to 14 [Examples 53 to 55]
  • an aromatic compound having an isopropenyl group in the side chain of the present invention a kind of hydrocarbon different from an additive that further improves the thermal stability of diethyl zinc to diethyl zinc added with 1,3-diisopropenylbenzene
  • Samples coexisting with hexane as an aromatic compound and toluene as an aromatic hydrocarbon compound were prepared as shown in Table 15 and subjected to the same thermal analysis measurement as in Examples 1 to 5.
  • Table 15 shows the initial heat generation temperature of each sample.
  • the aromatic compound having an isopropenyl group in the side chain of the present invention is a different kind of hydrocarbon from the additive that improves the thermal stability of diethylzinc. It is effective as an additive to improve the thermal stability of diethyl zinc even when certain hexane or aromatic hydrocarbon compound toluene coexists, and the high thermal stability of the diethyl zinc composition to which the additive of the present invention is added It was confirmed even when hexane, which is a different kind of hydrocarbon from the additive that improves the thermal stability of diethyl zinc, and toluene, which is an aromatic hydrocarbon compound, coexist.
  • the obtained sample was subjected to DSC measurement, and the same thermal analysis measurement as in Reference Example 1 was carried out at a temperature increase rate of 10 ° C./min with a temperature range of 30 to 450 ° C.
  • Table 16 shows the initial heat generation temperature of each sample.
  • the initial exothermic temperature of the sample of diethyl zinc composition to which various additives of the present invention were added was higher than the initial exothermic temperature of the sample of only diethyl zinc obtained in the reference example, and the composition of the present invention
  • the decomposition start temperature is higher than that of the sample alone. From this result, the high thermal stability of the diethyl zinc composition to which the additive was added was confirmed.
  • the melting points of these additives of the present invention are all liquid at a temperature of 25 ° C., and the diethylzinc composition can be easily adjusted.
  • anthracene and acenaphthene are lower than the initial exothermic temperature of the sample of the diethyl zinc composition to which the additive of the present invention is added, and the composition to which the existing additive is added is more than the composition of the present invention.
  • Thermal stability was poor.
  • the thermal stability effect is slightly higher than that of the additive of the present invention, but these known compounds have a melting point of 25 ° C. or higher and a general handling temperature such as 25 ° C. In the environment, both are solid, and complicated devices such as a solid charging machine maintaining a nitrogen atmosphere are required for mixing with diethyl zinc, which is ignitable in the air.
  • the additive of the present invention is liquid at room temperature, it can be easily added to diethyl zinc by installing a tank and a charging line that can be easily replaced with a nitrogen atmosphere.
  • Example 63 For Example 63, the thermal analysis measurement was performed in the same manner as in Examples 56 to 62, except that the additive addition rate was changed. Table 17 shows the initial heat generation temperature of the sample.
  • the initial exothermic temperature of the sample of the diethylzinc composition to which the additive of the present invention is added is higher than the initial exothermic temperature of the sample of only diethylzinc obtained in the reference example, even if the addition rate of the additive is changed.
  • the composition of the present invention has a higher decomposition initiation temperature than the diethylzinc-only sample. From this result, even when the addition rate of the additive was changed, high thermal stability of the diethylzinc composition to which the additive of the present invention was added was confirmed.
  • Example 64 to 68 [Thermal stability test by DSC measurement of diethyl zinc composition]
  • naphthalene, 2-methylnaphthalene, 2,6-diisopropylnaphthalene, 1-styrylnaphthalene and 2-methoxynaphthalene are used as naphthalene compounds having a melting point or freezing point of 85 ° C. or lower in a nitrogen atmosphere.
  • Each of the added diethylzinc compositions was weighed and sealed in a SUS DSC cell.
  • the obtained sample was subjected to DSC measurement, and the same thermal analysis measurement as in Reference Example 1 was carried out at a temperature increase rate of 10 ° C./min with a temperature range of 30 to 450 ° C.
  • Table 19 shows the initial heat generation temperature of each sample.
  • the initial exothermic temperature of the sample of diethyl zinc composition to which various additives of the present invention were added was higher than the initial exothermic temperature of the sample of only diethyl zinc obtained in the reference example, and the composition of the present invention
  • the decomposition start temperature is higher than that of the sample alone. From this result, the high thermal stability of the diethyl zinc composition to which the additive was added was confirmed.
  • the melting points of these additives are known as naphthalene: 80 ° C., 2-methylnaphthalene: 31 ° C., 2,6-diisopropylnaphthalene: 70 ° C., 1-styrylnaphthalene: 70 ° C. and 2-methoxynaphthalene: 73 ° C. Lower than the melting point of the additive.
  • anthracene and acenaphthene are lower than the initial exothermic temperature of the sample of the diethyl zinc composition to which the additive of the present invention is added, and the composition to which the existing additive is added is more than the composition of the present invention.
  • Thermal stability was poor.
  • the diethylzinc composition added with acenaphthylene has a slightly higher thermal stability effect than the additive of the present invention.
  • the melting points of these known additives are anthracene: 216 ° C., acenaphthene: 93 ° C., acenaphthylene. 90-95 ° C. is higher than the additive of the present invention.
  • Example 69 to 70 [Thermal stability test of diethyl zinc composition by DSC measurement]
  • a diethylzinc composition to which various compounds having the azulene structure of the present invention were added in a nitrogen atmosphere was weighed and sealed in a SUS DSC cell.
  • the obtained sample was subjected to DSC measurement, and the same thermal analysis measurement as in Reference Example 1 was carried out at a temperature increase rate of 10 ° C./min with a temperature range of 30 to 450 ° C.
  • Table 20 shows the initial heat generation temperature of each sample.
  • the initial exothermic temperature of the sample of the diethylzinc composition to which the compound having an azulene structure of the present invention was added was higher than the initial exothermic temperature of the sample of only diethylzinc obtained in the Reference Example.
  • the decomposition start temperature is higher than that of the zinc-only sample. From this result, the high thermal stability of the diethyl zinc composition to which the additive was added was confirmed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

【課題】重合触媒や有機合成試薬およびMOCVD法等による酸化亜鉛薄膜製造原料や等に使用されるジエチル亜鉛の熱安定性を向上させ,長期間取り扱っても金属亜鉛粒子が析出しない熱安定性に優れたジエチル亜鉛組成物を提供する。 【解決の手段】ジエチル亜鉛に添加物としてイソプロペニル基を側鎖に有する芳香族化合物などの添加物が添加されたジエチル亜鉛組成物を用いる。

Description

ジエチル亜鉛組成物、熱安定化方法および熱安定化用化合物
本発明は、熱安定性に優れたジエチル亜鉛組成物、ジエチル亜鉛組成物の熱安定化方法および熱安定化用化合物に関する。
 ジエチル亜鉛は、従来、ポリエチレンオキシド、ポリプロピレンオキシド等の重合触媒用途や、医薬、機能性材料等の中間体等の製造において有機合成の反応試薬として用いられており、極めて有用な工業材料として知られている。
また近年、原料にジエチル亜鉛と酸化剤として水蒸気を使用してMOCVD(Metal Organic Chemical Vapor Deposition)法と呼ばれる手法等により酸化亜鉛薄膜を形成する方法が検討されている。このMOCVD法により得られた酸化亜鉛薄膜は、CIGS太陽電池のバッファ層、透明導電膜、色素増感太陽電池の電極膜、薄膜Si太陽電池の中間層、透明導電膜等の太陽電池における各種機能膜、光触媒膜、紫外線カット膜、赤外線反射膜、帯電防止膜等の各種機能膜、化合物半導体発光素子、薄膜トランジスタ等の電子デバイス等に使用され、幅広い用途を持つ。
 ジエチル亜鉛は、熱を加えると徐々に分解して金属亜鉛粒子が析出することが知られている(例えば非特許文献1参照)。そのため、ジエチル亜鉛の取り扱い等においては、熱分解で生成した金属亜鉛粒子の析出による製品純度の低下、貯蔵容器の汚染、製造設備配管の閉塞等の問題があった。
 上記の熱分解で生成した金属亜鉛粒子の析出に関する問題を解決する方法として、例えば、アントラセン、アセナフテン、アセナフチレン等の化合物を添加してジエチル亜鉛を安定化した組成物とするような方法が知られている(例えば特許文献1~3参照)。
米国特許第4385003号明細書 米国特許第4402880号明細書 米国特許第4407758号明細書
Yasuo Kuniya et Al.,Applied Organometallic Chemistry、5巻,337~347頁,1991年発行
特許文献1~3に開示されるように、アントラセン、アセナフテン、アセナフチレンを添加してもジエチル亜鉛を十分に安定化することができず、より熱安定性に優れたジエチル亜鉛が求められる。
 また、アントラセン、アセナフテン、アセナフチレンは、室温で固体の化合物であり、ジエチル亜鉛組成物の調製において、粉体投入等の操作が必要になるという課題もある。
 また、アントラセン、アセナフテン、アセナフチレンは、一般的な取扱温度である25℃前後の室温では固体の化合物であり、ジエチル亜鉛組成物の調製において、粉体投入等の操作が必要になるという課題もある。また、一般的に、融点の高い物質はその蒸気圧が低く、CVD成膜等におけるジエチル亜鉛の使用においては、キャリアガスによるバブリングによってジエチル亜鉛をキャリアガス中の飽和ガスとして供給する際に、気化せずに残存する恐れがある。
 さらに、これら固体の化合物を添加物として用いてジエチル亜鉛組成物を調整する際には、固体投入機等を用いて添加物の移送を行なうが、移送時の添加物の閉塞等のトラブルの際には、ジエチル亜鉛への不純物の汚染がないように対応が必要である。
 この移送に際するトラブルの際の添加物の除去に際して、ジエチル亜鉛への不純物の汚染がないように対応として、添加物自身を加熱して融解するなどの対応を行う場合には、添加物は、より融点の低い化合物であることが望ましい。
 このような点から、ジエチル亜鉛の添加物は、より融点の低い化合物であることが望ましい。
即ち第1発明は、重合触媒や有機合成試薬およびMOCVD法等による酸化亜鉛薄膜製造原料等に使用されるジエチル亜鉛の熱安定性を向上させ、長期間取り扱っても金属亜鉛粒子が析出しない熱安定性に優れたジエチル亜鉛組成物を提供することを目的とし、添加物としてイソプロペニル基を側鎖に有する芳香族化合物を使用する。
 第2発明は、重合触媒や有機合成試薬およびMOCVD法等による酸化亜鉛薄膜製造原料等に使用されるジエチル亜鉛の熱安定性を向上させ、長期間取り扱っても金属亜鉛粒子が析出しない熱安定性に優れたジエチル亜鉛組成物およびその安定化方法を提供することを目的とし、添加物として取扱が容易な、25℃の温度において液体状の化合物、即ち、添加物の融点または凝固点が25℃以下の化合物を使用する。
 第3発明は、重合触媒や有機合成試薬およびMOCVD法等による酸化亜鉛薄膜製造原料等に使用されるジエチル亜鉛の熱安定性を向上させ、長期間取り扱っても金属亜鉛粒子が析出しない熱安定性に優れ、またジエチル亜鉛の使用時の残存の問題を軽減するジエチル亜鉛組成物及びジエチル亜鉛の熱安定化の方法を提供することを目的とし、添加物として、その融点が前述の公知の添加物よりもより低いもの、即ち、添加物の融点または凝固点が85℃以下の化合物を使用する。
第4発明は、重合触媒や有機合成試薬およびMOCVD法等による酸化亜鉛薄膜製造原料や等に使用されるジエチル亜鉛の熱安定性を向上させ、長期間取り扱っても金属亜鉛粒子が析出しない熱安定性に優れたジエチル亜鉛組成物を提供することを目的とし、添加物として、アズレン構造を有する化合物を使用する。
本発明者は上記課題を解決すべく鋭意研究開発を行った結果、イソプロペニル基を側鎖に有する芳香族化合物をジエチル亜鉛(CAS No.557-20-0)に共存させた組成物とすることで熱安定性が著しく向上することを見出し、第1発明を完成させた。
 本願の第1発明に係るジエチル亜鉛組成物は、ジエチル亜鉛に添加物としてイソプロペニル基を側鎖に有する芳香族化合物が添加されたジエチル亜鉛組成物である。
 また本願の第1発明に係るジエチル亜鉛組成物は、下記一般式(1)、一般式(2)、一般式(3)で表されるイソプロペニル基を側鎖に有する芳香族化合物からなる群より選ばれる1つまたは2以上の化合物を含む。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
式(1)、式(2)、式(3)中、Rはそれぞれ独立して、水素、炭素数1~8の直鎖もしくは分岐したアルキル基、炭素数1~8の直鎖もしくは分岐したアルケニル基(アルケニル基にはイソプロペニル基も含む)、炭素数6~14のアリル基である。
前述の一般式(1)、一般式(2)、一般式(3)で表されるイソプロペニル基を側鎖に有する芳香族化合物の側鎖に結合している置換基であるRは、それぞれ独立に、本発明で特徴とされるイソプロペニル基だけでなく、水素やメチル基、イソプロピル基等の炭素数1~8の直鎖もしくは分岐したアルキル基やビニル基やプロペニル基等の炭素数1~8の直鎖もしくは分岐したアルケニル基(前述のようにアルケニル基には本発明で特徴とされるイソプロペニル基を含む)およびフェニル基、トルイル基等の炭素数6~14のアリル基等、イソプロペニル基とは異なる置換基を有していてもよい。側鎖に存在するイソプロペニル基の数は、1つでも2つ以上の複数であってもよく、例えば、芳香族化合物としてベンゼンの場合、2つのイソプロペニル基を有する1,3-ジイソプロペニルベンゼン、1、4―ジイソプロペニルベンゼンは熱安定性の効果が高い。
 前述のイソプロペニル基を側鎖に有する芳香族化合物として、例えば、α―メチルスチレン、4-イソプロペニルトルエン、1-イソプロペニルナフタレン、2-イソプロペニルナフタレン等のイソプロペニル基の1置換体、1,3-ジイソプロペニルベンゼン、1、4―ジイソプロペニルベンゼン、1,3,5-トリイソプロペニルベンゼン、2,4-ジイソプロペニルナフタレン等のイソプロペニル基の2置換体以上の化合物を挙げることが出来る。
 これらの芳香族化合物のなかでも、構造が単純であり、工業的に容易に入手可能なもので高い効果が得られる添加物として、α―メチルスチレン、4-イソプロペニルトルエン、1,3-ジイソプロペニルベンゼン、1、4―ジイソプロペニルベンゼン、2-イソプロペニルナフタレンを好ましく用いることが出来る。
 特に、α―メチルスチレン、4-イソプロペニルトルエン、1,3-ジイソプロペニルベンゼンは20℃前後の温度において液体であり、ジエチル亜鉛組成物の調整を容易に行なうことが出来る。
本願の第1発明のジエチル亜鉛組成物は、熱安定性の加速試験として一般に用いられるARC測定(加速速度熱量測定:Accelerating Rate Calorimetry)結果の測定値から、180℃以下の低温において優れた熱安定性を有している。ARCテストの測定値の温度依存性より、温度が下がるほどよりジエチル亜鉛組成物の熱安定性の効果が発現される。
 また本発明者は上記課題を解決すべく鋭意研究開発を行った結果、25℃の温度において液体状の化合物、即ち、添加物の融点または凝固点が25℃以下の化合物として、1)イソプロピル基を側鎖に有する特定の芳香族化合物、2)フルベン骨格を有する特定の化合物、3)スクアレン、および4)2,4-ジフェニル-4-メチル-1-ペンテンをジエチル亜鉛(CAS No.557-20-0)に共存させた組成物とすることで熱安定性が著しく向上することを見出し、本願の第2発明を完成させた。
 本願の第2発明に係るジエチル亜鉛組成物は、ジエチル亜鉛に添加物として添加物の融点が25℃以下の化合物、即ち、25℃の温度において液体状の化合物として、1)イソプロピル基を側鎖に有する特定の芳香族化合物、2)フルベン骨格を有する特定の化合物、3)スクアレン、および4)2,4-ジフェニル-4-メチル-1-ペンテンのうちの1または2以上が添加されたジエチル亜鉛組成物である。
 また本願の第2発明に係るジエチル亜鉛組成物において、前述の、1)イソプロピル基を側鎖に有する特定の芳香族化合物としては、下記一般式(4)、一般式(5)、一般式(6)、一般式(7)および一般式(8)で表される化合物からなる群より選ばれる1つまたは2以上の化合物を含む。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
式(4)、式(5)、式(6)、式(7)および式(8)中、Rはそれぞれ独立して、水素、炭素数1~8の直鎖もしくは分岐したアルキル基(アルキル基にはイソプロピル基も含む)、炭素数1~8の直鎖もしくは分岐したアルケニル基、炭素数6~14のアリル基である。
 前述の一般式(4)、一般式(5)、一般式(6)、一般式(7)および一般式(8)で表されるイソプロピル基を側鎖に有する芳香族化合物の側鎖に結合している置換基であるRは、それぞれ独立に、本発明で特徴とされるイソプロピル基だけでなく、水素やメチル基、プロピル基等の炭素数1~8の直鎖もしくは分岐したアルキル基(前述のようにアルキル基には本発明で特徴とされるイソプロピル基も含む)やビニル基やプロペニル基等の炭素数1~8の直鎖もしくは分岐したアルケニル基およびフェニル基、トルイル基等の炭素数6~14のアリル基等、イソプロピル基とは異なる置換基を有していてもよい。側鎖に存在するイソプロピル基の数は、1つでも2つ以上の複数であってもよく、例えば、芳香族化合物としてベンゼンの場合、特に2つ以上のイソプロピル基を有する1,3-ジイソプロピルベンゼン、1、4―ジイソプロピルベンゼン、1、3,5―ジイソプロピルベンゼンは熱安定性の効果が高い。
 前述のイソプロピル基を側鎖に有する芳香族化合物として、例えば、1-イソプロピルナフタレン、2-イソプロピルナフタレン等のイソプロピル基の1置換体、1,3-ジイソプロピルベンゼン、1、4―ジイソプロピルベンゼン、1,3,5-トリイソプロピルベンゼン等のイソプロピル基の2置換体以上の化合物を挙げることが出来る。
 これらの芳香族化合物のなかでも、構造が単純であり、工業的に容易に入手可能なもので高い効果が得られる添加物として、1-イソプロピルナフタレン、2-イソプロピルナフタレン、1,3-ジイソプロピルベンゼン、1、4―ジイソプロピルベンゼン、1,3,5-トリイソプロピルベンゼンを好ましく用いることが出来る。
 これらのイソプロピル基を側鎖に有する芳香族化合物は、25℃の温度において液体であり、ジエチル亜鉛組成物の調整を容易に行なうことが出来る。
 また本願の第2発明に係るジエチル亜鉛組成物において、前述の、2)フルベン骨格を有する特定の化合物としては、例えば、下記一般式(9)で表される化合物を例示することができる。
Figure JPOXMLDOC01-appb-C000009
 式(9)中、Rはそれぞれ独立して、水素、炭素数1~8の直鎖もしくは分岐したアルキル基、炭素数1~8の直鎖もしくは分岐したアルケニル基、炭素数6~14のアリル基である。
 これらのフルベン骨格を有する特定の化合物のなかでも、25℃の温度において液体で、構造が単純であり、工業的に容易に入手可能なもので高い効果が得られる添加物として、6,6-ジメチルフルベン(CAS No.2175-91-9)を好ましく用いることが出来る。
 これらのフルベン骨格を有する特定の化合物は、25℃の温度において液体であり、ジエチル亜鉛組成物の調整を容易に行なうことが出来る。
 さらに、本願の第2発明に係るジエチル亜鉛組成物において、前述の3)スクアレン(CAS No.111-02-4)および4)2,4-ジフェニル-4-メチル-1-ペンテン(CAS No.6362-80-7)を使用することが出来る。
 これらの3)および4)の化合物は、25℃の温度において液体であり、ジエチル亜鉛組成物の調整を容易に行なうことが出来る。
 また本発明者は上記課題を解決すべく鋭意研究開発を行った結果、添加物の融点または凝固点が85℃以下の化合物として、融点または凝固点が85℃以下であるナフタレン化合物をジエチル亜鉛(CAS No.557-20-0)に共存させた組成物とすることで熱安定性が著しく向上することを見出し、本願の第3発明を完成させた。
 本願の第3発明に係るジエチル亜鉛組成物は、ジエチル亜鉛に、添加物として添加する融点または凝固点が85℃以下の化合物として、融点または凝固点が85℃以下であるナフタレン化合物が添加されたジエチル亜鉛組成物である。
 また本願の第3発明に係るジエチル亜鉛組成物において、前述の、ナフタレン化合物としては、下記一般式(1)、一般式(2)および一般式(3)で表される化合物からなる群より選ばれる1つまたは2以上の化合物を含む。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
(式(10)、式(11)および式(12)中、Rはそれぞれ独立して、水素、炭素数1~8の直鎖もしくは分岐したアルキル基(アルキル基にはイソプロピル基も含む)、炭素数1~8の直鎖もしくは分岐したアルケニル基、炭素数6~14のアリル基である)。
 前述の融点または凝固点が85℃以下であるナフタレン化合物として、例えば、式(10)および式(11)の例として、ナフタレン自身や、側鎖にアルキル基を有するものとして、例えば、2-メチルナフタレン、2,6-ジイソプロピルナフタレン、アルケニル基等や、アリル基を有するものとして、1-スチリルナフタレン等、酸素を有するナフタレン化合物である式(3)の例として、例えば、2-メトキシナフタレン等の化合物を挙げることが出来る。
 これらの芳香族化合物のなかでも、構造が単純であり、工業的に容易に入手可能なもので高い効果が得られる添加物として、前述のナフタレン、2-メチルナフタレン、2,6-ジイソプロピルナフタレン、1-スチリルナフタレンおよび2―メトキシナフタレンを好ましく用いることが出来る。
 これらのナフタレン化合物は、85℃以下の融点である。
 本願の第4発明に係るジエチル亜鉛組成物は、ジエチル亜鉛に添加物としてアズレン構造を有する化合物が添加されたジエチル亜鉛組成物である。ここでアズレン構造とは、下記一般式(13)の炭素数7の環状構造の炭素からなる構造と炭素数5の環状構造の炭素からなる構造がつながった構造として、一般に広く知られている。
Figure JPOXMLDOC01-appb-C000013
 また本発明に係るジエチル亜鉛組成物は、下記一般式(14)、アズレン構造を有する化合物を含む。
Figure JPOXMLDOC01-appb-C000014
式(14)中、Rはそれぞれ独立して、水素、炭素数1~8の直鎖もしくは分岐したアルキル基、炭素数1~8の直鎖もしくは分岐したアルケニル基、炭素数6~14のアリル基である。
前述の一般式(14)で表されるアズレン構造を有する化合物の側鎖に結合している置換基であるRは、それぞれ独立に、水素やメチル基、イソプロピル基等の炭素数1~8の直鎖もしくは分岐したアルキル基やビニル基やプロペニル基、イソプロペニル基等の炭素数1~8の直鎖もしくは分岐したアルケニル基(前述のようにアルケニル基には本発明で特徴とされるイソプロペニル基を含む)およびフェニル基、トルイル基等の炭素数6~14のアリル基等、の種々の置換基を有していてもよい。側鎖に存在する置換基の数はそれぞれ異なっていてもよく、1つでも2つ以上の複数であってもよい。
 前述のアズレン構造を有する化合物として、例えば、アズレン、グアイアズレン、ラクタルアズレン等の各種置換アズレン化合物を挙げることが出来る。
 これらのアズレン構造を有する化合物のなかでも、アズレン(CAS No.275-51-4)、グアイアズレン(CAS No.489-84-9)、ラクタルアズレン(CAS No.489-85-0)は、構造が単純であり、工業的に容易に入手可能なもので高い効果が得られる添加物であり、好ましく用いることが出来る。
 本発明に用いられる添加物は、単独の添加で充分な効果が得られるが、複数を混合して用いても差し支えない。
 ここで、第1~第4発明の添加物の添加量は、ジエチル亜鉛の性能が維持され、熱安定化効果が得られる範囲であれば、特に制限は無いが、通常、ジエチル亜鉛に対して、100ppm~20wt%、好ましくは200ppm~10wt%,より好ましくは 500ppm~5wt%であれば,熱安定性に優れたジエチル亜鉛組成物を得ることができる。
これら添加物の添加量が、少なすぎると熱安定性向上の充分な効果が得られない場合があったり、多すぎると添加量を増加した効果が得られない場合もあるので、熱安定性の所望の効果を得るための適量を添加することが望ましい。
 本願発明に使用されるジエチル亜鉛は、ポリエチレンオキシド、ポリプロピレンオキシド等の重合触媒用途や、医薬、機能性材料等の中間体等の製造において有機合成の反応試薬として用いられている一般に工業材料として知られているものを用いることが出来る。
 また、本願発明においては、MOCVD法等により酸化亜鉛薄膜を形成する方法で使用され、CIGS太陽電池のバッファ層、透明導電膜、色素増感太陽電池の電極膜、薄膜Si太陽電池の中間層、透明導電膜等の太陽電池における各種機能膜、光触媒膜、紫外線カット膜、赤外線反射膜、帯電防止膜等の各種機能膜、化合物半導体発光素子、薄膜トランジスタ等の電子デバイス等に使用されるような、工業材料よりも高純度のジエチル亜鉛も用いることが出来る。
 本願のジエチル亜鉛組成物の調製においては、ジエチル亜鉛と第1~第3発明に係る添加物とを混合すればよく、例えば、ジエチル亜鉛に前述の添加物を添加する等、添加の方法においては特に制限は無い。
例えば、保存安定性の向上を目的する場合においては、あらかじめ、ジエチル亜鉛に添加物を添加する方法を用いることが出来る。
また、例えば、反応等に使用する場合、使用の直前にジエチル亜鉛に添加物を添加することも可能である。
 また、本願発明のジエチル亜鉛組成物の調製の温度においては、ジエチル亜鉛の熱分解の影響が少ない70℃以下が望ましい。通常、-20℃~35℃で本発明の組成物の調製を行なうことが出来る。また、圧力についても、特に制限は無いが、反応等、特殊な場合を除いては、通常、0.1013MPaなど、大気圧付近でジエチル亜鉛と本発明の組成物の調製を行なうことが出来る。
 本願発明のジエチル亜鉛組成物の保管・運搬容器、貯蔵タンク、配管等の設備における使用機材、使用雰囲気はジエチル亜鉛に用いているものをそのまま転用可能である。例えば、前述の使用機材の材質はSUS、炭素鋼、チタン、ハステロイ等の金属や、テフロン(登録商標)、フッ素系ゴム等の樹脂等を用いることができる。また、使用雰囲気は、窒素、ヘリウム、アルゴン等の不活性ガス等がジエチル亜鉛と同様に用いることができる。
 また、本願発明のジエチル亜鉛組成物は、ジエチル亜鉛の使用に際して用いることが出来る公知の溶媒に溶解して使用することが出来る。前記溶媒の例として、例えば、ペンタン、ヘキサン、ヘプタン、オクタン等の飽和炭化水素や、ベンゼン、トルエン、キシレン等の芳香族炭化水素等の炭化水素化合物、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジグライム等のエーテル系化合物等を挙げることが出来る。
 本願発明のジエチル亜鉛組成物の用途としては、例えば、ポリエチレンオキシド、ポリプロピレンオキシド等の重合触媒用途や、医薬、機能性材料等の中間体等の製造において有機合成の反応試薬としての用途や、また、MOCVD法等により酸化亜鉛薄膜を形成する方法で使用され、CIGS太陽電池のバッファ層、透明導電膜、色素増感太陽電池の電極膜、薄膜Si太陽電池の中間層、透明導電膜等の太陽電池における各種機能膜、光触媒膜、紫外線カット膜、赤外線反射膜、帯電防止膜等の各種機能膜、化合物半導体発光素子、薄膜トランジスタ等の電子デバイス等に使用されるような酸化物形成用途や、ZnS等、II-VI族の電子デバイス用薄膜形成用途等、これまでジエチル亜鉛が使用されている用途と同様のものを挙げることが出来る。
 本発明の添加物を添加したジエチル亜鉛組成物は、熱安定性に優れ、ジエチル亜鉛が熱分解することにより発生する金属亜鉛粒子の析出が極めて少ない。その結果、製品純度の低下、貯蔵容器の汚染、製造設備配管の閉塞等の問題を防ぐことが可能となる。
 以下に本発明を実施例によってさらに詳細に説明するが、これらの実施例は本発明を限定するものではない。
[測定機器]
DSC測定は、DSC6200(セイコーインスツルメンツ株式会社製)を用いて行なった。
ARC測定は、ARC2000(ADL社製(Authur D Little))を用いて行なった。
[ジエチル亜鉛組成物の調製]
 ジエチル亜鉛(東ソー・ファインケム株式会社製)と種々のイソプロペニル基を側鎖に有する芳香族化合物などの添加物(市販試薬)とを窒素雰囲気下、室温において所定の濃度でガラス容器に秤量した。添加物をジエチル亜鉛に溶解して、ジエチル亜鉛組成物を調製した。
 ジエチル亜鉛への添加物の添加率(重量%)は、以下の式で定義したものを用いた。
 添加物の添加率(重量%)=(添加物重量/(添加物重量+ジエチル亜鉛重量))×100
 前述の方法で調製したジエチル亜鉛組成物について、DSC測定(示差走査熱量測定:Differential Scanning Calorimetry)、ARC測定(加速速度熱量測定:Accelerating Rate Calorimetry)および長期熱安定性試験を行ない、添加物の熱安定性効果を評価した。初期発熱温度が高いほど、ジエチル亜鉛に対する添加物の熱安定化の効果が高いことを示す。
[参考例1]
[ジエチル亜鉛のDSC測定による熱安定性試験]
 窒素雰囲気下、ジエチル亜鉛を、SUS製DSCセルに秤収して密閉した。得られたサンプルについてDSC測定を、30~450℃を測定温度範囲として10℃/分の昇温速度で熱分析測定を行なった。それぞれのサンプルの分解温度は、DSC測定の初期発熱温度で観測される。添加物を添加していないジエチル亜鉛のみのサンプルの初期発熱温度を表1に示す。
[実施例1~5]
[ジエチル亜鉛組成物のDSC測定による熱安定性試験]
参考例1と同様にして、窒素雰囲気下、種々の本発明のイソプロペニル基を側鎖に有する芳香族化合物を添加したジエチル亜鉛組成物を、SUS製DSCセルに秤収して密閉した。得られたサンプルについてDSC測定を、30~450℃を測定温度範囲として10℃/分の昇温速度で参考例1と同様の熱分析測定を行なった。各サンプルの初期発熱温度を表1に示す。
本発明のイソプロペニル基を側鎖に有する芳香族化合物を添加したジエチル亜鉛組成物のサンプルの初期発熱温度は、参考例で得られたジエチル亜鉛のみのサンプルの初期発熱温度よりも高く、本発明の組成物は、ジエチル亜鉛のみのサンプルよりも分解の開始温度が高い。本結果より添加物を添加したジエチル亜鉛組成物の高い熱安定性が確認された。
[比較例1~2]
 実施例1~5と同様にして、イソプロペニル基を側鎖に有していない芳香族化合物として、実施例1から5の化合物からイソプロペニル基を水素に置き換えたベンゼン、トルエンを添加したジエチル亜鉛組成物について同様の検討を行った。それぞれのサンプルの初期発熱温度を表1に示す。
比較例1~2の結果より、これらのサンプルは、いずれも本発明のイソプロペニル基を側鎖に有する芳香族化合物を添加したジエチル亜鉛組成物のサンプルの初期発熱温度よりも低く、本発明の組成物よりも熱安定性が劣っていた。この結果より、イソプロペニル基を側鎖に有していることが熱安定性に対して極めて高い効果があることが確認された。
[比較例3~5]
 実施例1~5と同様にして、特許文献1~3に記載の化合物であるアントラセン、アセナフテン、アセナフチレンを添加したジエチル亜鉛組成物について同様の検討を行った。それぞれのサンプルの初期発熱温度を表1に示す。
 これらのサンプルは、本発明のイソプロペニル基を側鎖に有する芳香族化合物を添加したジエチル亜鉛組成物のサンプルの初期発熱温度よりも低く、既存の添加物の添加した組成物は本発明の組成物よりも熱安定性が劣っていた。
Figure JPOXMLDOC01-appb-T000001
[比較例6~11]
 特許文献1~3に記載の化合物であるアントラセン、アセナフテン、アセナフチレンを添加したジエチル亜鉛組成物について添加物の添加率を変えて、実施例1~5と同様の熱分析測定を行なった。各サンプルの初期発熱温度を表2に示す。
 これらのサンプルは、本発明のイソプロペニル基を側鎖に有する芳香族化合物を添加したジエチル亜鉛組成物のサンプルの初期発熱温度よりも低く、既存の添加物の添加した組成物は、添加物の添加率が低くなっても、本発明の組成物よりも熱安定性が劣っていることが確認された。
Figure JPOXMLDOC01-appb-T000002
 [実施例6~20]
 添加物の添加率を変えて、実施例1~5と同様の熱分析測定を行なった。各サンプルの初期発熱温度を表3に示す。
本発明のイソプロペニル基を側鎖に有する芳香族化合物を添加したジエチル亜鉛組成物のサンプルの初期発熱温度は、添加物の添加率を変化させても、参考例で得られたジエチル亜鉛のみのサンプルの初期発熱温度よりも高く、本発明の組成物は、ジエチル亜鉛のみのサンプルよりも分解の開始温度が高い。
実施例6~19の結果より、添加物の添加率を変化させた場合においても、本発明の添加物を添加したジエチル亜鉛組成物の高い熱安定性が確認された。
また、芳香族化合物の側鎖Rにメトキシ基のような酸素を含むものを添加したジエチル亜鉛組成物のサンプルの初期発熱温度は、参考例で得られたジエチル亜鉛のみのサンプルの初期発熱温度よりも高く、本発明の組成物は、ジエチル亜鉛のみのサンプルよりも分解の開始温度が高く、実施例20の結果より、芳香族化合物の側鎖にメトキシ基のような酸素を含むものを添加物とした場合においても、本発明の添加物を添加したジエチル亜鉛組成物の高い熱安定性が確認された。
Figure JPOXMLDOC01-appb-T000003
[参考例2]
[ジエチル亜鉛のARC測定による熱安定性試験]
 窒素雰囲気下、ジエチル亜鉛をハステロイC製ARCボンベに秤収し、密閉した。得られたサンプルについてARC測定を、測定開始温度50℃、測定終了温度350℃、昇温ステップ温度5℃、待機時間10分、検索検出感度0.02℃/分、データ出力間隔0.2℃、測定最大圧力170bar、窒素雰囲気で行なった。得られたARC測定データにおいて、サンプルの初期発熱温度を表3の参考例2に示す。
[実施例21~23]
[ジエチル亜鉛組成物のARC測定による熱安定性試験]
 参考例2と同様にして、本発明のイソプロペニル基を側鎖に有する芳香族化合物を添加したジエチル亜鉛組成物について参考例2と同様の検討を行った。得られたARC測定データにおいて、サンプルの初期発熱温度を表4の実施例21~23に示す。
本発明のイソプロペニル基を側鎖に有する芳香族化合物を添加したジエチル亜鉛組成物の初期発熱温度は、ジエチル亜鉛のみのサンプルの初期発熱温度よりも高く、本発明のジエチル亜鉛組成物は熱安定性が優れていることが確認された。
Figure JPOXMLDOC01-appb-T000004
[実施例24~50および参考例3~11]
実施例21~23および参考例2で得られたARC測定データを用いて、各温度における最大発熱速度到達時間(TMR:Time to Maximum Rate)をジエチル亜鉛および種々のジエチル亜鉛組成物について算出した。TMRの算出においては、J.E。Huffの方法を用い、自己発熱速度とTMRを低温側に外挿する場合の式を求め、各温度における(Φ)補正後に得られた自己発熱速度とTMRを算出する方法を用いた。
ARC測定温度の範囲外(50℃未満)の値は、50℃、60℃、70℃、80℃の4点の各データから得られた近似式を用いてTMRを算出した。
添加物を添加していないジエチル亜鉛のTMRの値を1としたものに対して、本発明のイソプロペニル基を側鎖に有する芳香族化合物を添加したジエチル亜鉛組成物のTMRの値を前述の値に対する相対値として各温度において算出した。即ち、添加物を添加したジエチル亜鉛組成物のTMRの相対値が1よりも大きいほど、最大発熱速度到達時間がかかることとなり、ジエチル亜鉛組成物が添加物を添加しないジエチル亜鉛に対して熱安定性を有することを示す。
[実施例24~26および参考例3]
 120℃における添加物を添加していないジエチル亜鉛のTMRの値を1とした(参考例3)場合の、各ジエチル亜鉛組成物の120℃での最大発熱速度到達時間(TMR)の相対値を表5に示した。
表5の実施例24~26より、各ジエチル亜鉛組成物では最大発熱速度到達時間(TMR)の相対値が1よりも大きいことより、本発明の添加物を添加することによって得られたジエチル亜鉛組成物は高い熱安定性があることが確認された。
Figure JPOXMLDOC01-appb-T000005
[実施例27~29および参考例4]
100℃における添加物を添加していないジエチル亜鉛のTMRの値を1とした(参考例4)場合の、各ジエチル亜鉛組成物の100℃での最大発熱速度到達時間(TMR)の相対値を表6に示した。
表6の実施例27~29より、各ジエチル亜鉛組成物では最大発熱速度到達時間(TMR)の相対値が1よりも大きいことより、本発明の添加物を添加することによって得られたジエチル亜鉛組成物は高い熱安定性があることが確認された。
Figure JPOXMLDOC01-appb-T000006
[実施例30~32および参考例5]
80℃における添加物を添加していないジエチル亜鉛のTMRの値を1とした(参考例5)場合の、各ジエチル亜鉛組成物の80℃での最大発熱速度到達時間(TMR)の相対値を表7に示した。
表7の実施例30~32より、各ジエチル亜鉛組成物では最大発熱速度到達時間(TMR)の相対値が1よりも大きいことより、本発明の添加物を添加することによって得られたジエチル亜鉛組成物は高い熱安定性があることが確認された。
Figure JPOXMLDOC01-appb-T000007
[実施例33~35および参考例6]
 60℃における添加物を添加していないジエチル亜鉛のTMRの値を1とした(参考例6)場合の、各ジエチル亜鉛組成物の60℃での最大発熱速度到達時間(TMR)の相対値を表8に示した。
表8の実施例33~35より、各ジエチル亜鉛組成物では最大発熱速度到達時間(TMR)の相対値が1よりも大きいことより、本発明の添加物を添加することによって得られたジエチル亜鉛組成物は高い熱安定性があることが確認された。
Figure JPOXMLDOC01-appb-T000008
[実施例36~38および参考例7]
 40℃における添加物を添加していないジエチル亜鉛のTMRの値を1とした(参考例7)場合の、各ジエチル亜鉛組成物の40℃での最大発熱速度到達時間(TMR)の相対値を表9に示した。
表9の実施例36~38より、各ジエチル亜鉛組成物では最大発熱速度到達時間(TMR)の相対値が1よりも大きいことより、本発明の添加物を添加することによって得られたジエチル亜鉛組成物は高い熱安定があることが確認された。
Figure JPOXMLDOC01-appb-T000009
[実施例39~41および参考例8]
 30℃における添加物を添加していないジエチル亜鉛のTMRの値を1とした(参考例8)場合の、各ジエチル亜鉛組成物の30℃での最大発熱速度到達時間(TMR)の相対値を表10に示した。
表10の実施例39~41より、各ジエチル亜鉛組成物では最大発熱速度到達時間(TMR)の相対値が1よりも大きいことより、本発明の添加物を添加することによって得られたジエチル亜鉛組成物は高い熱安定性があることが確認された。
Figure JPOXMLDOC01-appb-T000010
[実施例42~44および参考例9]
 25℃における添加物を添加していないジエチル亜鉛のTMRの値を1とした(参考例9)場合の、各ジエチル亜鉛組成物の25℃での最大発熱速度到達時間(TMR)の相対値を表11に示した。
表11の実施例42~44より、各ジエチル亜鉛組成物では最大発熱速度到達時間(TMR)の相対値が1よりも大きいことより、本発明の添加物を添加することによって得られたジエチル亜鉛組成物は高い熱安定性があることが確認された。
Figure JPOXMLDOC01-appb-T000011
[実施例45~47および参考例10]
 20℃における添加物を添加していないジエチル亜鉛のTMRの値を1とした(参考例10)場合の、各ジエチル亜鉛組成物の20℃での最大発熱速度到達時間(TMR)の相対値を表12に示した。
表12の実施例45~47より各ジエチル亜鉛組成物では最大発熱速度到達時間(TMR)の相対値が1よりも大きいことより、本発明の添加物を添加することによって得られたジエチル亜鉛組成物は高い熱安定性があることが確認された。
Figure JPOXMLDOC01-appb-T000012
[実施例48~50および参考例11]
 10℃における添加物を添加していないジエチル亜鉛のTMRの値を1とした(参考例11)場合の、各ジエチル亜鉛組成物の10℃での最大発熱速度到達時間(TMR)の相対値を表13に示した。
表13の実施例48~50より、各ジエチル亜鉛組成物では最大発熱速度到達時間(TMR)の相対値が1よりも大きいことより、本発明の添加物を添加することによって得られたジエチル亜鉛組成物は高い熱安定性があることが確認された。
Figure JPOXMLDOC01-appb-T000013
[実施例51~52および参考例12]
[ジエチル亜鉛組成物の長期熱安定性試験]
ガラス内挿容器を備えた200ml耐圧オートクレーブに、ジエチル亜鉛組成物の調製に記載の方法で調製したサンプルを約40g仕込み、70℃で32日間加熱貯蔵する加速試験を行なった。参考例として添加物を添加していないジエチル亜鉛についても同様のサンプルを200ml耐圧オートクレーブに仕込んで同様の加速試験を行なった(参考例12)。試験終了後、窒素雰囲気下で開封し、各サンプルにおいて生成した析出物の析出状態を目視で確認した。さらに、窒素雰囲気下、ジエチル亜鉛を除去し、析出物をヘキサンで洗浄し、残存する析出物を乾燥した。残存する析出物は、ICP分析より亜鉛金属であることを確認した。析出した亜鉛が回収可能な場合は秤量により、回収不可能なほど微量な場合は、10%硝酸水溶液で容器を洗浄し、硝酸溶液中の亜鉛の絶対量を定量した。
 添加物を添加していないジエチル亜鉛の熱分解によって生成した析出物の量を1としたものに対して、添加物を添加したジエチル亜鉛組成物の熱分解によって生成した析出物の量を前述の値に対する相対量として算出した。即ち、添加物を添加したジエチル亜鉛組成物の熱分解によって生成した析出物の量を前述の値に対する相対量が1よりも小さいほど、ジエチル亜鉛組成物が添加物を添加しないジエチル亜鉛に対して熱安定性を有することを示す。
 各サンプルの析出した亜鉛の相対量を表14に示した。表14の実施例51~52より、添加物を添加したジエチル亜鉛組成物の熱分解によって生成した析出物の量は、添加物を添加していないジエチル亜鉛の熱分解によって生成した析出物の量の50分の1未満であった。この結果より、本発明の添加物を添加することによって得られたジエチル亜鉛組成物は、長期間において高い熱安定性があることが確認された。
Figure JPOXMLDOC01-appb-T000014
[実施例53~55および比較例12~14]
[実施例53~55] 
 本発明のイソプロペニル基を側鎖に有する芳香族化合物として、1、3-ジイソプロペニルベンゼンを添加したジエチル亜鉛に、さらにジエチル亜鉛の熱安定性を向上させる添加物とは異なる種類の炭化水素であるヘキサンや、芳香族炭化水素化合物であるトルエンが共存させたサンプルを、それぞれ表15のように調整して、実施例1~5と同様の熱分析測定を行なった。各サンプルの初期発熱温度を表15に合わせて示す。
[比較例12~14]
実施例53~55において、本発明の1、3-ジイソプロペニルベンゼンを添加していないこと以外は、実施例53~55と同様のサンプルを表15のように調整し、実施例1~5と同様の熱分析測定を行なった。各サンプルの初期発熱温度を表15に合わせて示す。
実施例53~55および比較例12~14の結果より、本発明のイソプロペニル基を側鎖に有する芳香族化合物は、ジエチル亜鉛の熱安定性を向上させる添加物とは異なる種類の炭化水素であるヘキサンや、芳香族炭化水素化合物であるトルエンが共存する場合においてもジエチル亜鉛の熱安定性を向上させる添加物として効果があり、本発明の添加物を添加したジエチル亜鉛組成物の高い熱安定性がジエチル亜鉛の熱安定性を向上させる添加物とは異なる種類の炭化水素であるヘキサンや、芳香族炭化水素化合物であるトルエンが共存する場合においても確認された。
Figure JPOXMLDOC01-appb-T000015
[実施例56~62]
[ジエチル亜鉛組成物のDSC測定による熱安定性試験]
 前記した参考例1と同様にして、窒素雰囲気下、25℃の温度において液体状の化合物として、1)イソプロピル基を側鎖に有する特定の芳香族化合物、2)フルベン骨格を有する特定の化合物、3)スクアレン、および4)2,4-ジフェニル-4-メチル-1-ペンテンをそれぞれ添加したジエチル亜鉛組成物を、SUS製DSCセルに秤収して密閉した。得られたサンプルについてDSC測定を、30~450℃を測定温度範囲として10℃/分の昇温速度で参考例1と同様の熱分析測定を行なった。各サンプルの初期発熱温度を表16に示す。
 本発明の種々の添加物を添加したジエチル亜鉛組成物のサンプルの初期発熱温度は、参考例で得られたジエチル亜鉛のみのサンプルの初期発熱温度よりも高く、本発明の組成物は、ジエチル亜鉛のみのサンプルよりも分解の開始温度が高い。本結果より添加物を添加したジエチル亜鉛組成物の高い熱安定性が確認された。
 また、これらの本発明の添加物の融点はいずれも25℃の温度において液体であり、ジエチル亜鉛組成物の調整を容易に行なうことが出来る。
[比較例15~21]
 実施例56~62と同様にして、本発明のイソプロピル基を側鎖に有していない芳香族化合物として、実施例56から62の化合物からイソプロピル基を水素に置き換えたベンゼン、トルエンを添加したジエチル亜鉛組成物について同様の検討を行った。それぞれのサンプルの初期発熱温度を表16に示す。
 比較例15~21の結果より、これらのサンプルは、いずれも本発明のイソプロピル基を側鎖に有する芳香族化合物を添加したジエチル亜鉛組成物のサンプルの初期発熱温度よりも低く、本発明の組成物よりも熱安定性が劣っていた。この結果より、イソプロピル基を側鎖に有していることが熱安定性に対して極めて高い効果があることが確認された。
[比較例22~24]
 実施例56~62と同様にして、特許文献1~3に記載の化合物であるアントラセン、アセナフテン、アセナフチレンを添加したジエチル亜鉛組成物について同様の検討を行った。それぞれのサンプルの初期発熱温度を表16に示す。
 これらのサンプルのうち、アントラセン、アセナフテンは、本発明の添加物を添加したジエチル亜鉛組成物のサンプルの初期発熱温度よりも低く、既存の添加物の添加した組成物は本発明の組成物よりも熱安定性が劣っていた。アセナフチレンを添加したジエチル亜鉛組成物については、熱安定性効果は本発明の添加物よりも若干高いが、これら、公知の化合物は、融点が25℃以上で、25℃等の一般的な取扱温度環境ではいずれも固体であり、空気中で発火性のあるジエチル亜鉛との混合において、窒素雰囲気を維持した固体投入機等、煩雑な装置が必要である。一方、本発明の添加物は室温で液体のため、窒素雰囲気に置換が容易なタンクと投入ラインの設置等で容易にジエチル亜鉛に添加することが可能である。
Figure JPOXMLDOC01-appb-T000016
 [実施例63]
 実施例63について、添加物の添加率を変えて、実施例56~62と同様の熱分析測定を行なった。サンプルの初期発熱温度を表17に示す。
Figure JPOXMLDOC01-appb-T000017
 本発明の添加物を添加したジエチル亜鉛組成物のサンプルの初期発熱温度は、添加物の添加率を変化させても、参考例で得られたジエチル亜鉛のみのサンプルの初期発熱温度よりも高く、本発明の組成物は、ジエチル亜鉛のみのサンプルよりも分解の開始温度が高い。
 本結果より、添加物の添加率を変化させた場合においても、本発明の添加物を添加したジエチル亜鉛組成物の高い熱安定性が確認された。
[比較例25~27]
 特許文献1~3に記載の化合物であるアントラセン、アセナフテン、アセナフチレンを添加したジエチル亜鉛組成物について、添加物の添加率を変えて、実施例56~60と同様の熱分析測定を行なった。各サンプルの初期発熱温度を表18に示す。既存の添加物を添加した組成物は、添加物の添加率が低くなると、本発明の組成物よりも熱安定性が劣っていた。
Figure JPOXMLDOC01-appb-T000018
 [実施例64~68]
 [ジエチル亜鉛組成物のDSC測定による熱安定性試験]
 前記参考例1と同様にして、窒素雰囲気下、融点または凝固点が85℃以下であるナフタレン化合物として、ナフタレン、2-メチルナフタレン、2,6-ジイソプロピルナフタレン、1-スチリルナフタレンおよび2―メトキシナフタレンをそれぞれ添加したジエチル亜鉛組成物を、SUS製DSCセルに秤収して密閉した。得られたサンプルについてDSC測定を、30~450℃を測定温度範囲として10℃/分の昇温速度で参考例1と同様の熱分析測定を行なった。各サンプルの初期発熱温度を表19に示す。
 本発明の種々の添加物を添加したジエチル亜鉛組成物のサンプルの初期発熱温度は、参考例で得られたジエチル亜鉛のみのサンプルの初期発熱温度よりも高く、本発明の組成物は、ジエチル亜鉛のみのサンプルよりも分解の開始温度が高い。本結果より添加物を添加したジエチル亜鉛組成物の高い熱安定性が確認された。これらの添加物のそれぞれの融点は、ナフタレン:80℃、2-メチルナフタレン:31℃、2,6-ジイソプロピルナフタレン:70℃、1-スチリルナフタレン:70℃および2―メトキシナフタレン:73℃と公知の添加物の融点よりも低い。
 [比較例28~30]
 実施例64~68と同様にして、特許文献1~3に記載の化合物であるアントラセン、アセナフテン、アセナフチレンを添加したジエチル亜鉛組成物について同様の検討を行った。それぞれのサンプルの初期発熱温度を表19に示す。
 これらのサンプルのうち、アントラセン、アセナフテンは、本発明の添加物を添加したジエチル亜鉛組成物のサンプルの初期発熱温度よりも低く、既存の添加物の添加した組成物は本発明の組成物よりも熱安定性が劣っていた。アセナフチレンを添加したジエチル亜鉛組成物については、熱安定性効果は本発明の添加物よりも若干高いが、これら、公知の添加物のそれぞれの融点は、アントラセン:216℃、アセナフテン:93℃、アセナフチレン90~95℃といずれも本発明の添加物よりも高い。
Figure JPOXMLDOC01-appb-T000019
[実施例69~70]
[ジエチル亜鉛組成物のDSC測定による熱安定性試験]
参考例1と同様にして、窒素雰囲気下、種々の本発明のアズレン構造を有する化合物を添加したジエチル亜鉛組成物を、SUS製DSCセルに秤収して密閉した。得られたサンプルについてDSC測定を、30~450℃を測定温度範囲として10℃/分の昇温速度で参考例1と同様の熱分析測定を行なった。各サンプルの初期発熱温度を表20に示す。
本発明のアズレン構造を有する化合物を添加したジエチル亜鉛組成物のサンプルの初期発熱温度は、参考例で得られたジエチル亜鉛のみのサンプルの初期発熱温度よりも高く、本発明の組成物は、ジエチル亜鉛のみのサンプルよりも分解の開始温度が高い。本結果より添加物を添加したジエチル亜鉛組成物の高い熱安定性が確認された。
[比較例31~33]
 実施例69~70と同様にして、特許文献1~3に記載の化合物であるアントラセン、アセナフテン、アセナフチレンを添加したジエチル亜鉛組成物について同様の検討を行った。それぞれのサンプルの初期発熱温度を表20に示す。
 これらのサンプルは、本発明のアズレン構造を有する化合物を添加したジエチル亜鉛組成物のサンプルの初期発熱温度よりも低く、既存の添加物の添加した組成物は本発明の組成物よりも熱安定性が劣っていた。
Figure JPOXMLDOC01-appb-T000020

Claims (36)

  1. ジエチル亜鉛に添加物としてイソプロペニル基を側鎖に有する芳香族化合物が添加されたジエチル亜鉛組成物。
  2. 添加物が、下記一般式(1)、一般式(2)、一般式(3)で表されるイソプロペニル基を側鎖に有する芳香族化合物からなる群より選ばれる1つまたは2以上の化合物である、請求項1記載のジエチル亜鉛組成物。
    Figure JPOXMLDOC01-appb-C000015
    Figure JPOXMLDOC01-appb-C000016
    Figure JPOXMLDOC01-appb-C000017
     (式(1)、式(2)、式(3)中、Rはそれぞれ独立して、水素、炭素数1~8の直鎖もしくは分岐したアルキル基、炭素数1~8の直鎖もしくは分岐したアルケニル基(アルケニル基にはイソプロペニル基も含む)、炭素数6~14のアリル基である)
  3. 添加物が、α―メチルスチレン、4-イソプロペニルトルエン、1,3-ジイソプロペニルベンゼン、1、4―ジイソプロペニルベンゼンおよび2-イソプロペニルナフタレンからなる群より選ばれる1つまたは2以上の化合物である、請求項1または請求項2に記載のジエチル亜鉛組成物。
  4. ジエチル亜鉛への添加物の添加率が100ppm~20wt%である、請求項1~請求項3のいずれかに記載のジエチル亜鉛組成物。
  5. ジエチル亜鉛の熱安定性を向上させる方法とて、添加物として請求項1~3のいずれかに記載の化合物を用い、請求項4の添加率で添加することを特徴とする、ジエチル亜鉛の熱安定化の方法。
  6. ジエチル亜鉛の熱安定性を向上させる添加物として、請求項1~3のいずれかに記載の構造を有することを特徴とする化合物。
  7. 請求項1~4のいずれかに記載のジエチル亜鉛組成物において、ジエチル亜鉛組成物を構成する添加物とは異なる種類の炭素数5~25の飽和及び/または不飽和炭化水素及び炭素数6~30の芳香族炭化水素化合物あるいはエーテル系化合物が共存する、請求項1~4のいずれかに記載のジエチル亜鉛組成物。
  8. 請求項5記載のジエチル亜鉛の安定化方法において、ジエチル亜鉛に熱安定性に効果のある添加物とは異なる種類の炭素数5~25の飽和及び/または不飽和炭化水素及び炭素数6~30の芳香族炭化水素化合物あるいはエーテル系化合物がジエチル亜鉛に共存する、請求項5記載のジエチル亜鉛の熱安定化の方法。
  9. 請求項6記載のジエチル亜鉛において、ジエチル亜鉛の熱安定性を向上させる添加物とは異なる種類の炭素数5~25の飽和及び/または不飽和炭化水素及び炭素数6~30の芳香族炭化水素化合物あるいはエーテル系化合物が共存する場合におけるジエチル亜鉛の熱安定性を向上させる添加物として、請求項6記載の構造を有することを特徴とする化合物。
  10. ジエチル亜鉛に添加物として、融点または凝固点が25℃以下である、1)イソプロピル基を側鎖に有する特定の芳香族化合物、2)フルベン骨格を有する特定の化合物、3)スクアレン、および4)2,4-ジフェニル-4-メチル-1-ペンテンのうちの1または2以上が添加されたジエチル亜鉛組成物。
  11. 前記1)イソプロピル基を側鎖に有する特定の芳香族化合物として、下記一般式(4)、一般式(5)、一般式(6)、一般式(7)および一般式(8)で表される化合物からなる群より選ばれる1つまたは2以上の化合物であり、また前記2)フルベン骨格を有する特定の化合物として、下記一般式(9)で表される化合物である、請求項10記載のジエチル亜鉛組成物。
    Figure JPOXMLDOC01-appb-C000018
    Figure JPOXMLDOC01-appb-C000019
    Figure JPOXMLDOC01-appb-C000020
    Figure JPOXMLDOC01-appb-C000021
    Figure JPOXMLDOC01-appb-C000022
    Figure JPOXMLDOC01-appb-C000023
    (式(4)、式(5)、式(6)、式(7)、式(8)および式(9)中、Rはそれぞれ独立して、水素、炭素数1~8の直鎖もしくは分岐したアルキル基(アルキル基にはイソプロピル基も含む)、炭素数1~8の直鎖もしくは分岐したアルケニル基、炭素数6~14のアリル基である)。
  12. 前記添加物が、1-イソプロピルナフタレン、2-イソプロピルナフタレン、1,3-ジイソプロピルベンゼン、1,4―ジイソプロピルベンゼン、1,3,5-トリイソプロピルベンゼンおよび6,6-ジメチルフルベンからなる群より選ばれる1つまたは2以上の化合物である、請求項10または請求項11に記載のジエチル亜鉛組成物。
  13. 前記添加物の添加率が100ppm~20wt%である、請求項10~請求項12のいずれかに記載のジエチル亜鉛組成物。
  14. ジエチル亜鉛の熱安定性を向上させる方法として請求項10~12のいずれかに記載の化合物を100ppm~20wt%の割合で添加する、ジエチル亜鉛の熱安定化方法。
  15. ジエチル亜鉛の熱安定性を向上させる添加物として、請求項10~12のいずれかに記載の構造を有する化合物。
  16. 請求項10~14のいずれかに記載のジエチル亜鉛組成物において、ジエチル亜鉛組成物を構成する添加物とは異なる種類の炭素数5~25の飽和及び/または不飽和炭化水素及び炭素数6~30の芳香族炭化水素化合物あるいはエーテル系化合物が共存するジエチル亜鉛組成物。
  17. 請求項14記載のジエチル亜鉛の安定化方法において、ジエチル亜鉛に熱安定性に効果のある添加物とは異なる種類の炭素数5~25の飽和及び/または不飽和炭化水素及び炭素数6~30の芳香族炭化水素化合物あるいはエーテル系化合物がジエチル亜鉛に共存するジエチル亜鉛の熱安定化の方法。
  18. ジエチル亜鉛の熱安定性を向上させる添加物とは異なる種類の炭素数5~25の飽和及び/または不飽和炭化水素及び炭素数6~30の芳香族炭化水素化合物あるいはエーテル系化合物が共存する場合におけるジエチル亜鉛の熱安定性を向上させる添加物として、請求項15記載の構造を有する、化合物。
  19. ジエチル亜鉛に添加物として、融点または凝固点が85℃以下であるナフタレン化合物が添加されたジエチル亜鉛組成物。
  20. 請求項19記載のジエチル亜鉛組成物において、前記融点または凝固点が85℃以下であるナフタレン化合物として、下記一般式(10)、一般式(11)および一般式(12)で表される化合物からなる群より選ばれる1つまたは2以上の化合物であることを特徴とするジエチル亜鉛組成物。
    Figure JPOXMLDOC01-appb-C000024
    Figure JPOXMLDOC01-appb-C000025
    Figure JPOXMLDOC01-appb-C000026
     (式(10)、式(11)および式(12)中、Rはそれぞれ独立して、水素、炭素数1~8の直鎖もしくは分岐したアルキル基(アルキル基にはイソプロピル基も含む)、炭素数1~8の直鎖もしくは分岐したアルケニル基、炭素数6~14のアリル基である)。
  21. 請求項19または請求項20に記載のジエチル亜鉛組成物において、前記添加物が、ナフタレン、2-メチルナフタレン、2,6-ジイソプロピルナフタレン、1-スチリルナフタレンおよび2―メトキシナフタレンからなる群より選ばれる1つまたは2以上の化合物であることを特徴とするジエチル亜鉛組成物。
  22. ジエチル亜鉛への添加物の添加率が100ppm~20wt%である、請求項19~請求項21のいずれかに記載のジエチル亜鉛組成物。
  23. 請求項19~22のいずれかに記載のジエチル亜鉛組成物において、前記ジエチル亜鉛組成物を構成する添加物とは異なる種類の炭素数5~25の飽和及び/または不飽和炭化水素及び炭素数6~30の芳香族炭化水素化合物あるいはエーテル系化合物が共存することを特徴とするジエチル亜鉛組成物。
  24. ジエチル亜鉛の熱安定性を向上させる方法であって、添加物として請求項19~21のいずれかに記載の化合物を用い、請求項22に記載した添加率で添加することを特徴とするジエチル亜鉛の熱安定化方法。
  25. 請求項24記載のジエチル亜鉛の安定化方法において、前記ジエチル亜鉛組成物を構成する添加物とは異なる種類の炭素数5~25の飽和及び/または不飽和炭化水素及び炭素数6~30の芳香族炭化水素化合物あるいはエーテル系化合物をジエチル亜鉛に共存させることを特徴とするジエチル亜鉛の熱安定化方法。
  26. ジエチル亜鉛の熱安定性を向上させるために添加する化合物であって、請求項19~21のいずれかに記載の構造を有することを特徴とする熱安定化用化合物。
  27. 請求項26記載の熱安定化用化合物において、前記ジエチル亜鉛組成物を構成する添加物とは異なる種類の炭素数5~25の飽和及び/または不飽和炭化水素及び炭素数6~30の芳香族炭化水素化合物あるいはエーテル系化合物が共存することを特徴とする熱安定化用化合物。
  28. ジエチル亜鉛に添加物として下記一般式(13)のアズレン構造を有する化合物が添加されたジエチル亜鉛組成物。
    Figure JPOXMLDOC01-appb-C000027
  29. 添加物が、下記一般式(14)で表されるアズレン構造を有する化合物である、請求項28記載のジエチル亜鉛組成物。
    Figure JPOXMLDOC01-appb-C000028
    (式(14)中、Rはそれぞれ独立して、水素、炭素数1~8の直鎖もしくは分岐したアルキル基、炭素数1~8の直鎖もしくは分岐したアルケニル基、炭素数6~14のアリル基である)
  30. 添加物が、アズレン、グアイアズレンおよびラクタルアズレンからなる群より選ばれる1つまたは2以上の化合物である、請求項28または請求項29に記載のジエチル亜鉛組成物。
  31. ジエチル亜鉛への添加物の添加率が100ppm~20wt%である、請求項28~請求項30のいずれかに記載のジエチル亜鉛組成物。
  32. ジエチル亜鉛の熱安定性を向上させる方法とて、添加物として請求項28~30記載のいずれかに記載の化合物を用い、請求項31の添加率で添加することを特徴とする、ジエチル亜鉛の熱安定化の方法。
  33. ジエチル亜鉛の熱安定性を向上させる添加物として、請求項28~30記載のいずれかに記載の構造を有することを特徴とする化合物。
  34. 請求項28~31記載のいずれかに記載のジエチル亜鉛組成物において、ジエチル亜鉛組成物を構成する添加物とは異なる種類の炭素数5~25の飽和及び/または不飽和炭化水素及び炭素数6~30の芳香族炭化水素化合物あるいはエーテル系化合物が共存する、請求項28~31記載のジエチル亜鉛組成物。
  35. 請求項32記載のジエチル亜鉛の安定化方法において、ジエチル亜鉛に熱安定性に効果のある添加物とは異なる種類の炭素数5~25の飽和及び/または不飽和炭化水素及び炭素数6~30の芳香族炭化水素化合物あるいはエーテル系化合物がジエチル亜鉛に共存する、請求項32記載のジエチル亜鉛の熱安定化の方法。
  36. 請求項33記載のジエチル亜鉛において、ジエチル亜鉛の熱安定性を向上させる添加物とは異なる種類の炭素数5~25の飽和及び/または不飽和炭化水素及び炭素数6~30の芳香族炭化水素化合物あるいはエーテル系化合物が共存する場合におけるジエチル亜鉛の熱安定性を向上させる添加物として、請求項33記載の構造を有することを特徴とする化合物。
PCT/JP2010/005379 2009-09-02 2010-09-01 ジエチル亜鉛組成物、熱安定化方法および熱安定化用化合物 WO2011027549A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020127007704A KR101790801B1 (ko) 2009-09-02 2010-09-01 디에틸 아연 조성물, 열안정화 방법 및 열안정화용 화합물
US13/394,129 US8722561B2 (en) 2009-09-02 2010-09-01 Diethylzinc composition, method for heat stabilization, and compound for heat stabilization
CN201080046333.8A CN102686597B (zh) 2009-09-02 2010-09-01 二乙基锌组合物、热稳定化方法和热稳定化用化合物
US14/231,125 US9018125B2 (en) 2009-09-02 2014-03-31 Diethylzinc composition, method for heat stabilization, and compound for heat stabilization

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009-202294 2009-09-02
JP2009202294 2009-09-02
JP2010-006483 2010-01-15
JP2010006483A JP5752356B2 (ja) 2010-01-15 2010-01-15 ジエチル亜鉛の熱安定化方法およびジエチル亜鉛組成物
JP2010-019853 2010-02-01
JP2010019853A JP5775672B2 (ja) 2010-02-01 2010-02-01 ジエチル亜鉛組成物、熱安定化方法および熱安定化用化合物

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/394,129 A-371-Of-International US8722561B2 (en) 2009-09-02 2010-09-01 Diethylzinc composition, method for heat stabilization, and compound for heat stabilization
US14/231,125 Division US9018125B2 (en) 2009-09-02 2014-03-31 Diethylzinc composition, method for heat stabilization, and compound for heat stabilization

Publications (1)

Publication Number Publication Date
WO2011027549A1 true WO2011027549A1 (ja) 2011-03-10

Family

ID=43649104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005379 WO2011027549A1 (ja) 2009-09-02 2010-09-01 ジエチル亜鉛組成物、熱安定化方法および熱安定化用化合物

Country Status (5)

Country Link
US (2) US8722561B2 (ja)
KR (1) KR101790801B1 (ja)
CN (1) CN102686597B (ja)
TW (1) TWI490222B (ja)
WO (1) WO2011027549A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9543537B2 (en) 2010-11-19 2017-01-10 Alliance For Sustainable Energy, Llc Solution processed metal oxide thin film hole transport layers for high performance organic solar cells

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2998582B1 (fr) * 2012-11-23 2015-10-02 Air Liquide Amelioration de la vitesse de croissance des films d'oxyde de zinc par utilisation de diethylzinc stabilise par de l'acenaphtylene
FR2998581B1 (fr) * 2012-11-23 2015-10-23 Air Liquide Amelioration de la vitesse de croissance des films d'oxyde de zinc par utilisation de diethylzinc stabilise par de l'anthracene
FR2998583B1 (fr) * 2012-11-23 2015-10-02 Air Liquide Amelioration de la vitesse de croissance des films d'oxyde de zinc par utilisation de diethylzinc stabilise par de l'acenaphtene

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3394118A (en) * 1963-09-26 1968-07-23 Shell Oil Co Polymerization catalyst and process
US3400082A (en) * 1965-07-19 1968-09-03 Ethyl Corp Smoke generating compositions and method of use thereof
US4385003A (en) 1981-10-30 1983-05-24 Stauffer Chemical Company Dialkylzinc composition having improved thermal stability
US4402880A (en) 1981-10-30 1983-09-06 Stauffer Chemical Company Dialkylzinc compositions having improved thermal stability
US4407758A (en) 1981-10-30 1983-10-04 Stauffer Chemical Company Dialkylzinc compositions having improved thermal stability
JPS60237091A (ja) * 1984-05-07 1985-11-25 Seitetsu Kagaku Co Ltd ジアルキル亜鉛の製造方法
JP2008007766A (ja) * 2006-06-02 2008-01-17 Nippon Soda Co Ltd 重合体の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000327596A (ja) * 1999-05-17 2000-11-28 Mitsui Chemicals Inc ジイソプロピルベンゼンの脱水素方法
JP5189746B2 (ja) * 2005-09-06 2013-04-24 日本曹達株式会社 スチレン系重合体の製造方法
CA2705141C (en) * 2007-11-09 2016-05-17 University Of Maryland, College Park Process for preparation of polyolefins via living coordinative chain transfer polymerization

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3394118A (en) * 1963-09-26 1968-07-23 Shell Oil Co Polymerization catalyst and process
US3400082A (en) * 1965-07-19 1968-09-03 Ethyl Corp Smoke generating compositions and method of use thereof
US4385003A (en) 1981-10-30 1983-05-24 Stauffer Chemical Company Dialkylzinc composition having improved thermal stability
US4402880A (en) 1981-10-30 1983-09-06 Stauffer Chemical Company Dialkylzinc compositions having improved thermal stability
US4407758A (en) 1981-10-30 1983-10-04 Stauffer Chemical Company Dialkylzinc compositions having improved thermal stability
JPS60237091A (ja) * 1984-05-07 1985-11-25 Seitetsu Kagaku Co Ltd ジアルキル亜鉛の製造方法
JP2008007766A (ja) * 2006-06-02 2008-01-17 Nippon Soda Co Ltd 重合体の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MATSUBARA ET AL.: "Cyclopropanation of alkenes with CH2I2/Et3Al by the phase-vanishing method based on fluorous phase screen", JOURNAL OF FLUORINE CHEMISTRY, vol. 129, no. 10, 2008, pages 951 - 954, XP025468238 *
YASUO KUNIYA ET AL., APPLIED ORGANOMETALLIC CHEMISTRY, vol. 5, 1991, pages 337 - 347
YUKI KAGAKU?SEIKAGAKU MEIMEIHO, vol. FIRST, no. 2ND ED, 20 May 1992 (1992-05-20), pages 20 - 21, 40, XP008155394 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9543537B2 (en) 2010-11-19 2017-01-10 Alliance For Sustainable Energy, Llc Solution processed metal oxide thin film hole transport layers for high performance organic solar cells

Also Published As

Publication number Publication date
TWI490222B (zh) 2015-07-01
US20120184432A1 (en) 2012-07-19
KR20120046317A (ko) 2012-05-09
US8722561B2 (en) 2014-05-13
CN102686597B (zh) 2015-08-26
US20140228207A1 (en) 2014-08-14
TW201124423A (en) 2011-07-16
KR101790801B1 (ko) 2017-10-26
US9018125B2 (en) 2015-04-28
CN102686597A (zh) 2012-09-19

Similar Documents

Publication Publication Date Title
CN101304964B (zh) 钛络合物、其制备方法,含钛薄膜及其形成方法
TW200914123A (en) Method of preparing organometallic compounds
EP2431330B1 (en) Composition for forming doped or non-doped zinc oxide thin film, and method for producing zinc oxide thin film using same
EP3384065B1 (en) Process for the generation of metallic films
WO2011027549A1 (ja) ジエチル亜鉛組成物、熱安定化方法および熱安定化用化合物
JP7240903B2 (ja) インジウム化合物および該インジウム化合物を用いたインジウム含有膜の成膜方法
JP5752356B2 (ja) ジエチル亜鉛の熱安定化方法およびジエチル亜鉛組成物
JP5603711B2 (ja) ジエチル亜鉛組成物、ジエチル亜鉛の熱安定化方法、ジエチル亜鉛の熱安定性を向上させる化合物
US10570514B2 (en) Process for the generation of metallic films
JP5775672B2 (ja) ジエチル亜鉛組成物、熱安定化方法および熱安定化用化合物
TWI403606B (zh) Raw material, and a method of manufacturing a thin film of film-forming zinc compound
JP5752369B2 (ja) ジエチル亜鉛組成物、ジエチル亜鉛の熱安定化方法、ジエチル亜鉛の熱安定性を向上させる化合物
JP5828646B2 (ja) ジエチル亜鉛の熱安定化の方法及びジエチル亜鉛組成物
JP5828647B2 (ja) ジエチル亜鉛の熱安定化の方法及びジエチル亜鉛組成物
WO2012081254A1 (ja) ジエチル亜鉛組成物、熱安定化方法および熱安定化用化合物
CN105503928B (zh) 用于薄膜沉积的铝前驱体及其制备方法
Filatov et al. Crystal structure of lithium (i) 1, 1, 1,-trifluoro-5, 5-dimethyl-2, 4-hexanedionate
Jayakodiarachchi Atomic Layer Deposition (ALD) of Lanthanide Oxide Films: Synthesis, Characterization, and Precursor Property Evaluation of New Classes of Lanthanide Complexes and Thermal Ald of Erbium Oxide Thin Films
JP2012087015A (ja) 酸化亜鉛薄膜製造用組成物およびドープ酸化亜鉛薄膜製造用組成物を用いた酸化亜鉛薄膜製造方法、およびこの方法で製造した帯電防止薄膜、紫外線カット薄膜、透明電極薄膜

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080046333.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10813500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010813500

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127007704

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2794/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13394129

Country of ref document: US