WO2011027462A1 - 水素吸蔵ユニット - Google Patents

水素吸蔵ユニット Download PDF

Info

Publication number
WO2011027462A1
WO2011027462A1 PCT/JP2009/065505 JP2009065505W WO2011027462A1 WO 2011027462 A1 WO2011027462 A1 WO 2011027462A1 JP 2009065505 W JP2009065505 W JP 2009065505W WO 2011027462 A1 WO2011027462 A1 WO 2011027462A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
hydrogen storage
alloy
storage unit
magnesium
Prior art date
Application number
PCT/JP2009/065505
Other languages
English (en)
French (fr)
Inventor
内山直樹
金井友美
原田和美
Original Assignee
株式会社アツミテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アツミテック filed Critical 株式会社アツミテック
Priority to CN2009801623079A priority Critical patent/CN102596452A/zh
Priority to US13/393,792 priority patent/US8871671B2/en
Priority to CA 2771363 priority patent/CA2771363A1/en
Priority to EP09848993.3A priority patent/EP2474377A4/en
Priority to JP2011529752A priority patent/JPWO2011027462A1/ja
Priority to PCT/JP2009/065505 priority patent/WO2011027462A1/ja
Priority to KR20127004567A priority patent/KR20120083291A/ko
Publication of WO2011027462A1 publication Critical patent/WO2011027462A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/18Non-metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/002Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • C01B3/0042Intermetallic compounds; Metal alloys; Treatment thereof only containing magnesium and nickel; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0078Composite solid storage mediums, i.e. coherent or loose mixtures of different solid constituents, chemically or structurally heterogeneous solid masses, coated solids or solids having a chemically modified surface region
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/02Pretreatment of the fibres or filaments
    • C22C47/06Pretreatment of the fibres or filaments by forming the fibres or filaments into a preformed structure, e.g. using a temporary binder to form a mat-like element
    • C22C47/062Pretreatment of the fibres or filaments by forming the fibres or filaments into a preformed structure, e.g. using a temporary binder to form a mat-like element from wires or filaments only
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • C22C49/04Light metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/08Metallic powder characterised by particles having an amorphous microstructure
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/04Hydrogen absorbing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]

Definitions

  • the present invention relates to a hydrogen storage unit that stores hydrogen.
  • Gaseous hydrogen is used as hydrogen used in fuel cells for vehicles and the like. Hydrogen has a very large volume in the gaseous state. For this reason, gaseous hydrogen is compressed and used. However, it still has a large volume and a space problem for practical use. On the other hand, liquid hydrogen has a smaller volume than gaseous hydrogen. However, it is difficult to hold hydrogen in a liquid state, which is not suitable for practical use. Therefore, research and development has been conducted on the use of solid hydrogen having a small volume and improved handleability. Solid hydrogen is used in a state where hydrogen is occluded in the alloy. This alloy is called a hydrogen storage alloy. Hydrogen repeatedly occludes and releases from this hydrogen storage alloy.
  • Patent Document 1 A hydrogen gas sensor using such a hydrogen storage alloy is disclosed in Patent Document 1.
  • a Pd—Ag alloy layer is formed on the surface of a substrate by a vapor deposition method, and a Pd or Pt thin film is further laminated thereon.
  • Patent Document 1 the substrate shown in Patent Document 1 is plate-shaped. Since the alloy layer that occludes hydrogen is deposited on this substrate, the contact area between the alloy layer and hydrogen is almost the same as the surface area of the substrate. In recent years, since it is desired to store more hydrogen, it is necessary to further increase the amount of hydrogen stored.
  • the present invention has been made in consideration of the above-described prior art, and an object thereof is to provide a hydrogen storage unit capable of efficiently storing a large amount of hydrogen by increasing the contact area with hydrogen.
  • the invention of claim 1 comprises a porous body having a large number of holes through which hydrogen molecules can pass, and a hydrogen storage alloy that covers the surface of the porous body including the holes,
  • the hydrogen storage alloy provides a hydrogen storage unit comprising a hydrogen storage base formed of a material that stores hydrogen, and a catalyst layer covering the surface of the hydrogen storage base.
  • the invention of claim 2 is characterized in that, in the invention of claim 1, the porous body is an aggregate of nanofibers.
  • the invention of claim 3 is characterized in that, in the invention of claim 2, the orientation of the individual nanofibers in the aggregate is random.
  • the invention of claim 4 is characterized in that, in the invention of claim 2, the aggregate is in the form of a nonwoven fabric.
  • the hydrogen storage base is formed in a layered manner on the surface of the porous body by vapor deposition.
  • the hydrogen storage base includes magnesium, a magnesium-nickel alloy, a magnesium-titanium alloy, a magnesium-niobium alloy, a magnesium-manganese alloy, or a magnesium-cobalt. It is formed from a mixture with an alloy.
  • the invention of claim 7 is characterized in that, in the invention of claim 6, the catalyst layer is made of Pd.
  • the hydrogen storage alloy covers the surface of the porous body having many holes through which hydrogen atoms can pass, the surface area of the hydrogen storage layer is increased and the contact area with hydrogen is increased. For this reason, more rapid hydrogen storage can be realized.
  • the pores are formed even in the naturally formed aggregate without particularly limiting the arrangement of the nanofibers. By using this hole, quick hydrogen storage can be performed.
  • the nanofiber aggregate is formed in a non-woven fabric. For this reason, it can be used as a porous body excellent in handleability.
  • the hydrogen storage alloy is formed in a layer form by vapor deposition on the porous body, it is easy to manufacture and can realize quick hydrogen storage.
  • a hydrogen storage alloy having both the high hydrogen storage performance of Mg and the high solid diffusion performance of other alloys (especially Mg 2 Ni is preferable).
  • the hydrogen occluded in Mg is transferred to another Mg (or Mg 2 Ni) by, for example, Mg 2 Ni. This transfer of hydrogen does not require heat or pressure. For this reason, hydrogen can be occluded at room temperature and atmospheric pressure.
  • hydrogen is dissociated from molecules to atoms by Pd (H 2 ⁇ 2H). Hydrogen is occluded by Mg most rapidly in the atomic state. Unlike Pt, Pd does not have the ability to protonate hydrogen atoms. Therefore, hydrogen can be kept in an atomic state by using Pd as a catalyst. For this reason, hydrogen occlusion quicker than using a platinum catalyst is realizable.
  • FIG. 1 is a schematic view of a hydrogen storage unit according to the present invention.
  • the hydrogen storage unit 7 according to the present invention is an aggregate of hydrogen storage fibers 8 in which a hydrogen storage alloy 1 (see FIGS. 2 to 5) is deposited on nanofibers.
  • a gap 9 is formed when a large number of hydrogen storage fibers 8 intersect. The orientation of the individual nanofibers may be random. The size of the gap 9 is formed such that hydrogen molecules can pass through. Since the hydrogen storage alloy 1 is deposited on such a nanofiber, the surface area of the hydrogen storage base 2 (see FIGS. 2 to 5) increases, and the contact area with hydrogen increases.
  • the gap 9 becomes a hole through which hydrogen molecules pass, and hydrogen is occluded after entering not only the surface of the hydrogen occlusion unit 7 but also the inside of the hydrogen occlusion unit 7, so that more rapid hydrogen occlusion is realized. be able to.
  • the nanofiber itself is made of a porous material, for example, a porous nanofiber
  • the surface area of the hydrogen storage base 2 can be further increased, the contact area with hydrogen can be increased, and rapid hydrogen storage can be realized. Can do.
  • Nanofibers may be bundled to form a nonwoven fabric.
  • the hydrogen storage unit 7 may be manufactured by reacting, for example, the hydrogen storage alloy 1 and the nanofibers simultaneously from the respective solutions, or may be manufactured separately and the hydrogen storage alloy 1 may be deposited on the nanofibers later by sputtering or the like. May be.
  • FIG. 2 is a longitudinal sectional view of the hydrogen storage fiber.
  • FIG. 3 is a cross-sectional view of the hydrogen storage fiber of FIG.
  • the hydrogen storage fiber 8 is formed of a nanofiber 10, a hydrogen storage base (hydrogen storage layer) 2, and a catalyst layer 3. More specifically, the hydrogen storage alloy 1 is deposited on the surface of the nanofiber 10 in a layered manner. A large number of such hydrogen storage fibers 8 are crossed and intertwined to form an aggregate, thereby forming the hydrogen storage unit 7. When the surface of the nanofiber 10 is smooth, it is uniformly deposited as shown in the figure.
  • the nanofiber can be produced using an electrospinning method or the like.
  • FeTi FeTiH 1.7 after hydrogen storage
  • LaNi 5 LaNi 5 H 6 after hydrogen storage
  • BaRe BaReH 9 after hydrogen storage
  • MgNi MgNiH 4 after hydrogen occlusion
  • MgFe MgFeH 6 after hydrogen occlusion
  • Mg MgH 2 after hydrogen occlusion
  • Mg 2 Ni Mg 2 NiH 4 after hydrogen occlusion
  • GdMgNi 4 Mg 0.7 GdNi 2
  • Mg 50 Co 50 Mg 70 Al 30
  • Mg 9 Ti 0.5 Ni 0.5 , MgPd 0.08 and the like.
  • non-metallic NaAl (after hydrogen occlusion is NaAlH 4), KB (after hydrogen occlusion is KBH 4), LiAl (after hydrogen occlusion is LiAlH 4), Li (after hydrogen occlusion is LiH), NaB (hydrogen storage Thereafter, there are NaBH 4 ), ALB 3 (AL (BH 4 ) 3 after hydrogen occlusion), LIB (LIBH 4 after hydrogen occlusion) and the like.
  • Other hydrogen storage materials include Mg 3 N 2 -4Li 3 N, C—Li 2 Mg (NH) 2 , Mg 100 —xLi x Ti 100 , Ti—Cr—V, Ti—Mo—V, Mg -Si, Mg-Co, Mg-Sm-Ni, Mg-Nd-Ni, Mg-Pr-Ni, Mg-La-Ni, etc.
  • the catalyst layer 3 include Pd (palladium), Pt (platinum), Nb (niobium), and ZrNi (zirconia / nickel).
  • FIG. 4 is a longitudinal sectional view of another hydrogen storage fiber.
  • FIG. 5 is a cross-sectional view of the hydrogen storage fiber of FIG.
  • the hydrogen storage base (hydrogen storage core) 2 made of a material that stores hydrogen is spherical
  • the catalyst layer 3 is spherical and covers the periphery. . That is, the hydrogen storage core 2 and the catalyst layer 3 form a colloid.
  • Such nanoalloy particles adhere to the periphery of the nanofiber 10 to form the hydrogen storage fiber 8.
  • the hydrogen storage alloy 1 can be obtained in various forms by appropriately changing the manufacturing method of the alloy 1.
  • FIG. 6 is a schematic view showing an example of the hydrogen storage alloy according to the present invention.
  • the hydrogen storage alloy 1 according to the present invention includes a hydrogen storage base 2 and a catalyst layer 3.
  • the hydrogen storage base 2 is a thin film formed by mixing Mg metal 4 and another alloy (Mg 2 Ni 5 in the figure).
  • the mixing ratio of Mg4 and Mg 2 Ni5 is 0 to 10 (excluding 0) molecules of Mg with respect to one molecule of Mg 2 Ni. More preferably, 4 to 8 molecules of Mg per 1 molecule of Mg 2 Ni.
  • the chemical formula after mixing is preferably Mg 6 Ni.
  • the hydrogen storage base 2 is preferably in an amorphous state. The thinning of the hydrogen storage base 2 also contributes to speeding up of hydrogen storage.
  • the catalyst layer 3 is made of Pd (palladium).
  • the catalyst layer 3 is formed so as to cover the entire surface of the hydrogen storage base 2. However, it may be partially covered.
  • Pd palladium
  • hydrogen is dissociated from molecules to atoms (H 2 ⁇ 2H). Hydrogen is occluded by Mg most rapidly in the atomic state. Unlike Pt, Pd does not have the ability to protonate hydrogen atoms. Therefore, hydrogen can be kept in an atomic state by using Pd as a catalyst. For this reason, hydrogen occlusion quicker than using a platinum catalyst is realizable.
  • magnesium / nickel alloy magnesium / titanium alloy, magnesium / niobium alloy, magnesium / manganese alloy, or magnesium / cobalt alloy may be used.
  • Pd palladium
  • Pt platinum
  • Nb niobium
  • ZrNi zirconia / nickel
  • FIG. 7 is a graph showing the relationship between time and pressure when hydrogen is stored using the hydrogen storage unit according to the present invention.
  • the pressure increases while hydrogen storage by the hydrogen storage alloy is started.
  • the hydrogen occlusion by the hydrogen occlusion alloy further proceeds, and the pressure decreases at a stretch.
  • the decrease in pressure indicates a decrease in the pressure of the supplied gaseous hydrogen, indicating that hydrogen is occluded. Therefore, it can be confirmed that rapid hydrogen storage is performed.
  • Hydrogen Storage Alloy Hydrogen Storage Layer 3 Catalyst Layer 4 Mg 5 Mg 2 Ni 6 Hydrogen 7 Hydrogen storage unit 8 Hydrogen storage fiber 9 Gap 10 Nanofiber

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)
  • Powder Metallurgy (AREA)

Abstract

 水素原子が通過可能な孔(隙間)9を多数備えた多孔質体7と、前記孔を含む前記多孔質体7の表面を覆う水素吸蔵合金とを備え、前記水素吸蔵合金は、水素を吸蔵する材料で形成された水素吸蔵ベースと、該水素吸蔵ベースの表面を覆う触媒層とを有する。多孔質体7は、ナノファイバに水素吸蔵合金を蒸着させた水素吸蔵繊維8の集合体である。

Description

水素吸蔵ユニット
 本発明は、水素を吸蔵する水素吸蔵ユニットに関するものである。
 車両等の燃料電池に用いる水素として、気体水素が用いられている。水素は、気体の状態では、体積が非常に大きい。このため、気体の水素は、圧縮して用いられている。しかし、それでも実用するには体積が大きく、スペース的な問題点がある。一方、液体水素は、気体水素よりも体積が小さい。しかし、水素を液体の状態で保持することが困難であり、実用化に適していない。したがって、体積が小さく、取扱い性が向上した固体水素を用いることが研究・開発されている。固体水素は、水素を合金内に吸蔵した状態で用いられる。この合金は、水素吸蔵合金と呼ばれている。この水素吸蔵合金に対して水素が吸蔵・放出を繰り返す。
 このような水素吸蔵合金を用いた水素ガスセンサが、特許文献1に開示されている。特許文献1の水素ガスセンサは、基板の表面にPd-Ag合金層を蒸着法で形成し、その上にさらにPd又はPt薄膜を積層したものである。
 しかしながら、特許文献1に示される基板は、板状である。水素を吸蔵する合金層は、この基板上に蒸着されるため、合金層と水素との接触面積は、ほぼ基板の表面積と同じである。近年では、より多くの水素を吸蔵することが望まれているため、さらなる水素吸蔵量の増加が必要である。
特開2001-296238号公報
 本発明は、上記従来技術を考慮したものであって、水素との接触面積を増やして効率よく大量の水素を吸蔵することができる水素吸蔵ユニットを提供することを目的とする。
 前記目的を達成するため、請求項1の発明では、水素分子が通過可能な孔を多数備えた多孔質体と、前記孔を含む前記多孔質体の表面を覆う水素吸蔵合金とを備え、前記水素吸蔵合金は、水素を吸蔵する材料で形成された水素吸蔵ベースと、該水素吸蔵ベースの表面を覆う触媒層とを有することを特徴とする水素吸蔵ユニットを提供する。
 また、請求項2の発明では、請求項1の発明において、前記多孔質体は、ナノファイバの集合体であることを特徴としている。
 また、請求項3の発明では、請求項2の発明において、前記集合体内の個々のナノファイバの向きはランダムであることを特徴としている。
 請求項4の発明では、請求項2の発明において、前記集合体は、不織布状をなしていることを特徴としている。
 請求項5の発明では、請求項1の発明において、前記水素吸蔵ベースは、前記多孔質体の前記表面に蒸着によって層状に形成されていることを特徴としている。
 請求項6の発明では、請求項1の発明において、前記水素吸蔵ベースは、マグネシウムと、マグネシウム・ニッケル合金、又はマグネシウム・チタン合金、又はマグネシウム・ニオブ合金、又はマグネシウム・マンガン合金、又はマグネシウム・コバルト合金との混合物から形成されていることを特徴としている。
 また、請求項7の発明では、請求項6の発明において、前記触媒層は、Pdで形成されていることを特徴としている。
 請求項1の発明によれば、水素原子が通過可能な孔を多数有する多孔質体の表面を水素吸蔵合金が覆うので、水素吸蔵層の表面積が大きくなり、水素との接触面積が広がる。このため、より迅速な水素吸蔵を実現することができる。
 請求項2の発明によれば、ナノファイバを集合体としたときに、ファイバー同士が絡み合ってできる隙間が水素通過可能な孔となる。このため、容易に多孔質体を形成することができる。
 請求項3の発明によれば、特にナノファイバの配置を限定せずに、自然に形成された集合体であっても、孔が形成される。この孔を利用して、迅速な水素吸蔵を行うことができる。
 請求項4の発明によれば、ナノファイバの集合体が不織布状に形成されている。このため、取扱い性に優れた多孔質体として使用することができる。
 請求項5の発明によれば、多孔質体に対し、蒸着により層状に水素吸蔵合金を形成するため、製造が容易で、迅速な水素吸蔵を実現することができる。
 請求項6の発明によれば、Mgが有する水素吸蔵性能の高さと、その他の合金(特にMgNiが好ましい)が有する固体拡散性能の高さを兼ね備えた水素吸蔵合金を得ることができる。Mgに吸蔵された水素は、例えばMgNiによって他のMg(又はMgNi)に渡される。この水素の移動は、熱や圧力を必要としない。このため、室温・大気圧下で水素を吸蔵することができる。
 請求項7の発明によれば、水素はPdにより分子から原子に解離される(H→2H)。水素は、原子状態で最も迅速にMgに吸蔵される。PdはPtと異なり、水素原子をプロトン化する能力はない。したがって、Pdを触媒に用いることにより、水素を原子状態にとどめておくことができる。このため、白金触媒を用いるよりも迅速な水素吸蔵を実現することができる。
本発明に係る水素吸蔵ユニットの概略図である。 水素吸蔵繊維の縦断面図である。 図3の水素吸蔵繊維の横断面図である。 別の水素吸蔵繊維の縦断面図である。 図5の水素吸蔵繊維の横断面図である。 本発明に係る水素吸蔵合金の一例を示す概略図である。 本発明に係る水素吸蔵ユニットを用いて水素を吸蔵したときの時間と圧力の関係を示したグラフである。
 図1は本発明に係る水素吸蔵ユニットの概略図である。
 図示したように、本発明に係る水素吸蔵ユニット7は、ナノファイバに水素吸蔵合金1(図2~図5参照)が蒸着した水素吸蔵繊維8の集合体である。水素吸蔵繊維8が多数交差することにより、隙間9が形成される。個々のナノファイバの向きはランダムでよい。この隙間9の大きさは、水素分子が通過可能な大きさに形成されている。このようなナノファイバに水素吸蔵合金1が蒸着されているので、水素吸蔵ベース2(図2~図5参照)の表面積が大きくなり、水素との接触面積が広がる。すなわち、隙間9が水素分子を通過させる孔となって、水素吸蔵ユニット7の表面だけではなく、水素吸蔵ユニット7の内側まで入り込んでから水素が吸蔵されるため、より迅速な水素吸蔵を実現することができる。
 また、ナノファイバ自体を多孔質なもの、例えば多孔ナノファイバで形成すれば、さらに水素吸蔵ベース2の表面積を大きくすることができ、水素との接触面積を広げ、迅速な水素吸蔵を実現することができる。なお、水素が通過する孔を有する他の多孔質体(例えば不織布)を用いて水素吸蔵ユニットを形成してもよい。ナノファイバを束ねて、不織布状としてもよい。水素吸蔵ユニット7は、水素吸蔵合金1とナノファイバを例えばそれぞれの溶液から同時に反応させて製造してもよいし、それぞれを別に製造して水素吸蔵合金1をスパッタ等により後からナノファイバに蒸着してもよい。
 図2は水素吸蔵繊維の縦断面図である。また、図3は図2の水素吸蔵繊維の横断面図である。
 図示したように、水素吸蔵繊維8は、ナノファイバ10と、水素吸蔵ベース(水素吸蔵層)2と、触媒層3で形成されている。より詳しくは、ナノファイバ10の表面に水素吸蔵合金1が層状に蒸着されて形成されている。このような水素吸蔵繊維8が多数交差して絡み合って集合体となることで、水素吸蔵ユニット7を形成している。ナノファイバ10の表面が平滑である場合、図のように均一に蒸着される。ナノファイバは、エレクトロスピニング法等を用いて作成することができる。
 水素吸蔵ベースに用いられる水素吸蔵材料としては、金属系では、FeTi(水素吸蔵後はFeTiH1.7),LaNi(水素吸蔵後はLaNi),BaRe(水素吸蔵後はBaReH),MgNi(水素吸蔵後はMgNiH),MgFe(水素吸蔵後はMgFeH),Mg(水素吸蔵後はMgH),MgNi(水素吸蔵後はMgNiH)や、GdMgNi,Mg0.7GdNi,Mg50Co50,Mg70Al30,MgTi0.5Ni0.5,MgPd0.08等がある。
 また、非金属系では、NaAl(水素吸蔵後はNaAlH),KB(水素吸蔵後はKBH),LiAl(水素吸蔵後はLiAlH),Li(水素吸蔵後はLiH),NaB(水素吸蔵後はNaBH),ALB(水素吸蔵後はAL(BH),LIB(水素吸蔵後はLIBH)等がある。その他の水素吸蔵材料としては、Mg-4LiN,C-LiMg(NH),Mg100-xLiTi100,Ti-Cr-V系,Ti-Mo-V系,Mg-Si系,Mg-Co系,Mg-Sm-Ni系,Mg-Nd-Ni系,Mg-Pr-Ni系,Mg-La-Ni系等がある。
 触媒層3に用いるものとしては、Pd(パラジウム)やPt(白金)、Nb(ニオブ)あるいはZrNi(ジルコニア・ニッケル)等がある。
 図4は別の水素吸蔵繊維の縦断面図である。また、図5は図4の水素吸蔵繊維の横断面図である。
 図示したように、水素吸蔵合金1がナノ合金粒子となった場合、水素を吸蔵する材料からなる水素吸蔵ベース(水素吸蔵コア)2が球状となり、その周りを触媒層3が球状となって覆う。すなわち、水素吸蔵コア2と触媒層3でコロイドを形成している。このようなナノ合金粒子が、ナノファイバ10の周囲に付着して水素吸蔵繊維8が形成される。
 このように、水素吸蔵合金1は、合金1の製法を適宜変更することにより、様々な形態で得られることができる。
 図6は本発明に係る水素吸蔵合金の一例を示す概略図である。
 図示したように、本発明に係る水素吸蔵合金1は、水素吸蔵ベース2と、触媒層3からなる。水素吸蔵ベース2は、Mg金属4と、他の合金(図ではMgNi5)とを混合して薄膜化したものである。このMg4とMgNi5の混合割合は、1分子のMgNiに対し、0~10(0を含まない)分子のMgである。より好ましくは、1分子のMgNiに対し、4~8分子のMgである。特に、混合後の化学式がMgNiであることが好ましい。このようにMg4とMgNi5とを混合することにより、以下の化学反応がおこり、図の矢印で示すように、水素原子Hが内側のMg(又はMgNi)に渡され、水素の固体拡散性能が高まる。したがって、迅速な水素吸蔵を実現できる。なお、水素吸蔵ベース2は、アモルファス状態であることが好ましい。また、水素吸蔵ベース2を薄膜化したことも水素吸蔵の迅速化に寄与している。
Mg+H→MgH
MgNi+4H→MgNiH
 このように、Mg4とMgNi5とを混合することにより、Mg4が有する水素吸蔵性能の高さと、MgNi5が有する固体拡散性能の高さを兼ね備えた水素吸蔵合金を得ることができる。この水素の移動には、熱や圧力を必要としない。このため、室温・大気圧下で水素を吸蔵することができる。
 触媒層3は、Pd(パラジウム)で形成されている。触媒層3は、水素吸蔵ベース2の表面全域を覆って形成されている。ただし、一部を覆っていてもよい。Pdを用いることにより、水素は分子から原子に解離される(H→2H)。水素は、原子状態で最も迅速にMgに吸蔵される。PdはPtと異なり、水素原子をプロトン化する能力はない。したがって、Pdを触媒に用いることにより、水素を原子状態にとどめておくことができる。このため、白金触媒を用いるよりも迅速な水素吸蔵を実現することができる。
 このような水素吸蔵合金1を用いて水素を吸蔵すると、気体中の水素6がPd触媒層3に接触して水素原子に解離される。この後、水素原子が水素吸蔵ベース2の表面に存するMg4やMgNi5に吸蔵される。この吸蔵された水素原子は、MgNi5の働きにより、内側のMg4やMgNi5に吸蔵されていく。
 なお、上述したMgNiの代わりに、その他のマグネシウム・ニッケル合金、又はマグネシウム・チタン合金、又はマグネシウム・ニオブ合金、又はマグネシウム・マンガン合金、又はマグネシウム・コバルト合金を用いてもよい。また、触媒層3には、Pd(パラジウム)の他に、Pt(白金)、Nb(ニオブ)あるいはZrNi(ジルコニア・ニッケル)等を用いてもよい。
 図7は本発明に係る水素吸蔵ユニットを用いて水素を吸蔵したときの時間と圧力の関係を示したグラフである。
 グラフに示されるように、真空状態で水素を供給すると、水素吸蔵合金による水素吸蔵が開始されつつ圧力が増加していく。時間Tで水素の供給を止めると、水素吸蔵合金による水素吸蔵がさらに進み、圧力が一気に低下している。圧力の低下は、供給された気体水素の圧力の低下を示し、水素が吸蔵されていることを示している。したがって、迅速な水素吸蔵が行われていることが確認できる。
 この試験は、水素吸蔵ユニットを収容した四方管の三方にバルブを設置し、一方に圧力計、もう一方に真空ポンプ、他方に水素ボンベを接続した装置を用いて行った。まず、真空ポンプにて四方管内の圧が安定するまで減圧する(約20Pa)。次に、真空ポンプ側のバルブを閉じて水素側バルブを開く。目標圧まで水素が注入されると、水素ボンベ側バルブを閉じて圧力変化を圧力計にて確認する。今回の試験では、107190Paが、320Paまで減圧された。水素吸蔵合金としては、MgNi+Pdを用い、水素の注入は100%Hを6(ml/min)で行った。
1 水素吸蔵合金
2 水素吸蔵層
3 触媒層
4 Mg
5 MgNi
6 水素
7 水素吸蔵ユニット
8 水素吸蔵繊維
9 隙間
10 ナノファイバ

Claims (7)

  1.  水素分子が通過可能な孔を多数備えた多孔質体と、
     前記孔を含む前記多孔質体の表面を覆う水素吸蔵合金とを備え、
     前記水素吸蔵合金は、
     水素を吸蔵する材料で形成された水素吸蔵ベースと、
     該水素吸蔵ベースの表面を覆う触媒層とを有することを特徴とする水素吸蔵ユニット。
  2.  前記多孔質体は、ナノファイバの集合体であることを特徴とする請求項1に記載の水素吸蔵ユニット。
  3.  前記集合体内の個々のナノファイバの向きはランダムであることを特徴とする請求項2に記載の水素吸蔵ユニット。
  4.  前記集合体は、不織布状をなしていることを特徴とする請求項2に記載の水素吸蔵ユニット。
  5.  前記水素吸蔵ベースは、前記多孔質体の前記表面に蒸着によって層状に形成されていることを特徴とする請求項1に記載の水素吸蔵ユニット。
  6.  前記水素吸蔵ベースは、マグネシウムと、マグネシウム・ニッケル合金、又はマグネシウム・チタン合金、又はマグネシウム・ニオブ合金、又はマグネシウム・マンガン合金、又はマグネシウム・コバルト合金との混合物から形成されていることを特徴とする請求項1に記載の水素吸蔵ユニット。
  7.  前記触媒層は、Pdで形成されていることを特徴とする請求項6に記載の水素吸蔵ユニット。
PCT/JP2009/065505 2009-09-04 2009-09-04 水素吸蔵ユニット WO2011027462A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN2009801623079A CN102596452A (zh) 2009-09-04 2009-09-04 储氢单元
US13/393,792 US8871671B2 (en) 2009-09-04 2009-09-04 Hydrogen storage unit
CA 2771363 CA2771363A1 (en) 2009-09-04 2009-09-04 Hydrogen storage unit
EP09848993.3A EP2474377A4 (en) 2009-09-04 2009-09-04 HYDROGEN STORAGE UNIT
JP2011529752A JPWO2011027462A1 (ja) 2009-09-04 2009-09-04 水素吸蔵ユニット
PCT/JP2009/065505 WO2011027462A1 (ja) 2009-09-04 2009-09-04 水素吸蔵ユニット
KR20127004567A KR20120083291A (ko) 2009-09-04 2009-09-04 수소흡장 유닛

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/065505 WO2011027462A1 (ja) 2009-09-04 2009-09-04 水素吸蔵ユニット

Publications (1)

Publication Number Publication Date
WO2011027462A1 true WO2011027462A1 (ja) 2011-03-10

Family

ID=43649024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065505 WO2011027462A1 (ja) 2009-09-04 2009-09-04 水素吸蔵ユニット

Country Status (7)

Country Link
US (1) US8871671B2 (ja)
EP (1) EP2474377A4 (ja)
JP (1) JPWO2011027462A1 (ja)
KR (1) KR20120083291A (ja)
CN (1) CN102596452A (ja)
CA (1) CA2771363A1 (ja)
WO (1) WO2011027462A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015096806A (ja) * 2013-11-15 2015-05-21 株式会社日立製作所 伝送装置
JP2015096805A (ja) * 2013-11-15 2015-05-21 株式会社日立製作所 伝送装置
WO2018230447A1 (ja) * 2017-06-15 2018-12-20 株式会社クリーンプラネット 発熱装置および発熱方法
JP2019149343A (ja) * 2018-02-28 2019-09-05 古河電気工業株式会社 高温超電導ケーブル、中間接続部及び終端接続部

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102652192B (zh) * 2009-12-09 2014-12-24 日清纺控股株式会社 柔性碳纤维非织造布
US9045335B2 (en) * 2010-08-18 2015-06-02 The Governors Of The University Of Alberta Kinetic stabilization of magnesium hydride
US9533884B1 (en) 2016-05-24 2017-01-03 Kuwait Institute For Scientific Research Composition for hydrogen storage

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6372849A (ja) * 1986-09-12 1988-04-02 Mazda Motor Corp 水素吸蔵合金
JPS63177397U (ja) * 1987-05-08 1988-11-17
JPH11503489A (ja) * 1995-02-02 1999-03-26 ハイドロ−ケベック ナノ結晶Mg基−材料及びその水素輸送と水素貯蔵への利用
JP2004256860A (ja) * 2003-02-25 2004-09-16 Tdk Corp 水素吸蔵体
JP2007520629A (ja) * 2003-12-11 2007-07-26 テキサコ オヴォニック ハイドロゲン システムズ エルエルシー 高い貯蔵容量および優れた室温反応速度を有するMg−Ni水素吸蔵複合体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946881B2 (ja) * 1979-05-10 1984-11-15 精二郎 須田 新規な水素吸収剤
JPS63177397A (ja) 1987-01-19 1988-07-21 Mitsubishi Electric Corp 半導体集積回路装置
JP4456712B2 (ja) * 2000-02-04 2010-04-28 株式会社アルバック 水素ガス貯蔵材料及び貯蔵方法
JP3866001B2 (ja) 2000-04-17 2007-01-10 独立行政法人科学技術振興機構 水素ガスセンサ
JP2004261675A (ja) * 2003-02-28 2004-09-24 Furukawa Electric Co Ltd:The ガス貯蔵材料
WO2005090486A2 (en) * 2004-03-15 2005-09-29 Cabot Corporation Surface modified carbon products and their applications
JP2006095389A (ja) * 2004-09-28 2006-04-13 Kurita Water Ind Ltd 水素水の製造方法および電子部品の洗浄方法
JP2007248367A (ja) * 2006-03-17 2007-09-27 Atsumi Tec:Kk 水素ガス検知装置
JP4735485B2 (ja) * 2006-09-07 2011-07-27 トヨタ自動車株式会社 水素吸着材料の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6372849A (ja) * 1986-09-12 1988-04-02 Mazda Motor Corp 水素吸蔵合金
JPS63177397U (ja) * 1987-05-08 1988-11-17
JPH11503489A (ja) * 1995-02-02 1999-03-26 ハイドロ−ケベック ナノ結晶Mg基−材料及びその水素輸送と水素貯蔵への利用
JP2004256860A (ja) * 2003-02-25 2004-09-16 Tdk Corp 水素吸蔵体
JP2007520629A (ja) * 2003-12-11 2007-07-26 テキサコ オヴォニック ハイドロゲン システムズ エルエルシー 高い貯蔵容量および優れた室温反応速度を有するMg−Ni水素吸蔵複合体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2474377A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015096806A (ja) * 2013-11-15 2015-05-21 株式会社日立製作所 伝送装置
JP2015096805A (ja) * 2013-11-15 2015-05-21 株式会社日立製作所 伝送装置
WO2018230447A1 (ja) * 2017-06-15 2018-12-20 株式会社クリーンプラネット 発熱装置および発熱方法
JPWO2018230447A1 (ja) * 2017-06-15 2019-06-27 株式会社クリーンプラネット 発熱装置および発熱方法
JP2019168221A (ja) * 2017-06-15 2019-10-03 株式会社クリーンプラネット 発熱装置および発熱方法
US11971199B2 (en) 2017-06-15 2024-04-30 Clean Planet Inc. Heat generating device and method for generating heat
JP2019149343A (ja) * 2018-02-28 2019-09-05 古河電気工業株式会社 高温超電導ケーブル、中間接続部及び終端接続部
JP7007947B2 (ja) 2018-02-28 2022-01-25 古河電気工業株式会社 高温超電導ケーブル、中間接続部及び終端接続部

Also Published As

Publication number Publication date
US8871671B2 (en) 2014-10-28
US20120171461A1 (en) 2012-07-05
JPWO2011027462A1 (ja) 2013-01-31
EP2474377A1 (en) 2012-07-11
CA2771363A1 (en) 2011-03-10
EP2474377A4 (en) 2013-08-28
KR20120083291A (ko) 2012-07-25
CN102596452A (zh) 2012-07-18

Similar Documents

Publication Publication Date Title
WO2011027462A1 (ja) 水素吸蔵ユニット
WO2011027461A1 (ja) 水素吸蔵合金及びこれを用いた水素吸蔵ユニット
Chen et al. Synergy between metallic components of MoNi alloy for catalyzing highly efficient hydrogen storage of MgH 2
Yao et al. Synergetic catalysis of non-noble bimetallic Cu–Co nanoparticles embedded in SiO2 nanospheres in hydrolytic dehydrogenation of ammonia borane
Sakintuna et al. Metal hydride materials for solid hydrogen storage: a review
EP0815273B1 (en) NANOCRYSTALLINE Mg-BASED MATERIALS AND USE THEREOF FOR THE TRANSPORTATION AND STORAGE OF HYDROGEN
Liu et al. Mg-based nanocomposites with improved hydrogen storage performances
US20090068051A1 (en) Methods of forming nano-structured materials including compounds capable of storing and releasing hydrogen
Wang et al. Effect of catalytic Pd coating on the hydrogen storage performances of ZrCo alloy by electroless plating method
Yamaura et al. Effect of surface coating element on hydrogen permeability of melt-spun Ni40Nb20Ta5Zr30Co5 amorphous alloy
US20100247424A1 (en) Hydrogen storage in nanoporous inorganic networks
Meduri et al. Materials for hydrogen storage at room temperature–An overview
Ulmer et al. Performance improvement of V–Fe–Cr–Ti solid state hydrogen storage materials in impure hydrogen gas
Zhang et al. Chemisorption solid materials for hydrogen storage near ambient temperature: a review
Sankir et al. Hydrogen generation from chemical hydrides
Mukherjee Carbon nanofiber for hydrogen storage
KR20140123218A (ko) 수소 분리막 및 상기 수소 분리막을 포함하는 수소 분리 장치
JP4951882B2 (ja) 細孔体の製造方法
JP2007000856A (ja) 水素貯蔵材料、水素貯蔵材料の製造方法、水素貯蔵体、水素貯蔵装置及び燃料電池自動車
LIANG et al. Research progress on magnesium-based solid hydrogen storage nanomaterials
Williams et al. Surface-modified AB 5 alloys with enhanced hydrogen absorption kinetics
JP2004018973A (ja) 水素吸蔵炭素材料の製造方法および水素吸蔵方法
Nowak et al. Solid-State Hydrides
Jurczyk et al. Types of hydrogen storage materials
Xin Gaseous and Electrochemical Hydrogen Storage Properties of Mg-Based Thin Films

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980162307.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009848993

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09848993

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011529752

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2771363

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20127004567

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13393792

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE