WO2011027065A1 - Tete de focalisation laser avec des lentilles en zns ayant une epaisseur aux bords d'au moins 5 mm; installation et procede de coupage laser employant une telle tete de focalisation - Google Patents

Tete de focalisation laser avec des lentilles en zns ayant une epaisseur aux bords d'au moins 5 mm; installation et procede de coupage laser employant une telle tete de focalisation Download PDF

Info

Publication number
WO2011027065A1
WO2011027065A1 PCT/FR2010/051723 FR2010051723W WO2011027065A1 WO 2011027065 A1 WO2011027065 A1 WO 2011027065A1 FR 2010051723 W FR2010051723 W FR 2010051723W WO 2011027065 A1 WO2011027065 A1 WO 2011027065A1
Authority
WO
WIPO (PCT)
Prior art keywords
focusing
laser
lens
laser beam
focusing head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/FR2010/051723
Other languages
English (en)
French (fr)
Inventor
Francis Briand
Gaia Ballerini
Isabelle Debecker
Thomas Jouanneau
Hakim Maazaoui
Eric Verna
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Lincoln Electric Company France SA
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Air Liquide Welding France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42105843&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011027065(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to BR112012004680A priority Critical patent/BR112012004680A2/pt
Priority to RU2012112398/02A priority patent/RU2553152C2/ru
Priority to JP2012527368A priority patent/JP2013503751A/ja
Priority to CN201080038783.2A priority patent/CN102481665B/zh
Priority to ES10762988.3T priority patent/ES2457231T3/es
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude, Air Liquide Welding France filed Critical Air Liquide SA
Priority to IN926DEN2012 priority patent/IN2012DN00926A/en
Priority to US13/393,280 priority patent/US20120154922A1/en
Priority to DK10762988.3T priority patent/DK2473315T3/da
Priority to PL10762988T priority patent/PL2473315T3/pl
Priority to EP10762988.3A priority patent/EP2473315B1/fr
Publication of WO2011027065A1 publication Critical patent/WO2011027065A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0052Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • G02B27/0966Cylindrical lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/40Optical focusing aids

Definitions

  • the invention relates to a particular optical configuration implemented in a solid-state laser cutting head, in particular to fiber, which makes it possible to control the problems of focal drift and laser damage of the optics of the focusing head, and on a laser installation equipped with such a focusing head, in particular an ytterbium fiber laser installation. .
  • a fiber laser cutting facility comprises a laser source and optical devices for transporting the laser beam to a cutting head, also referred to as a focusing head, which focuses the beam in the thickness of a piece to cut.
  • the laser source is a ytterbium doped fiber laser (Yb), equipped with at least one beam conveying optical fiber, and the cutting head comprises optical collimation, redirection and focusing devices for bring a focused laser beam to a workpiece.
  • Yb ytterbium doped fiber laser
  • Optical devices such as the focusing lens, of a laser cutting head must withstand high surface power densities, typically between 1 and 10 kW / cm 2 depending on the characteristics of the laser source and the beam diameter on the laser beams. optical, and this, while operating in polluted environments that weaken them.
  • optical damage In the continuous laser emission regime, optical damage generally manifests itself in the form of a gradual degradation of optical performance, initially without visible damage, which results essentially from thermal phenomena.
  • Contamination of the optical surface by the environment, ie dust, metallic projections or moisture, and their aging are factors that increase the absorption of the lenses and progressively worsen the phenomenon. warming up, leading to an increase in the amplitude of the focal drift over time.
  • the phenomena described above show that the durability of the performance of a cutting process is strongly related to the resistance of the optical devices ensuring the propagation of the laser beam. Since the positioning of the focal point is an important parameter in the fiber laser cutting process, it is essential that the focal position of the beam is as stable as possible and that the deviations remain within the tolerances allowed.
  • the thermal distortions experienced by high power optical elements must be minimal to avoid damage. All these requirements must be taken into account when choosing the optics constituting the focusing system of a laser cutting head.
  • the focusing head of the invention may comprise one or more of the following features:
  • the reflecting mirror is made of silica.
  • the invention also relates to a laser beam cutting apparatus comprising:
  • a conveying fiber connecting the solid-state laser device to the focusing head so as to convey the laser beam emitted by the solid-state laser device to the focusing head.
  • the installation of the invention may include one or more of the following features:
  • the solid laser device is of fiber type, preferably of ytterbium fibers.
  • the solid laser device emits a laser beam of power between 1 and 5 kW in continuous mode, quasi-continuous or pulse, preferably in continuous mode.
  • the conveying fiber has a diameter of 50 ⁇ and a BPP of between 1.6 and 2.2 mm.mrad
  • the collimating lens has a focal length of between 70 and 120 mm
  • the focusing lens has a focal length of between 200 and 450 mm. More specifically, in the case of a conveying fiber diameter 50 ⁇ , BPP of which is between 1.6 and 2.2 mm.mrad, the focal length of the collimating lens is between 70 and 120 mm, preferably between 70 and 90 mm.
  • the focal focusing distance is advantageously between 200 and 300 mm, preferably between 220 and 280 mm, while for cutting a material whose thickness is greater or equal to 10 mm, the focal length of focus is advantageously between 350 and 450 mm, preferably between 380 and 420 mm.
  • the focal length of focus is advantageously between 200 and 300 mm, preferably between 220 and 280 mm, whereas for cutting a material whose thickness is greater than or equal to 10 mm, the focal length of focusing is advantageously between 350 and 450 mm, preferably between 380 and 420 mm.
  • the focusing lens has a focal length of between 200 and 450 mm.
  • the invention also relates to a laser beam cutting method of a metal part, in which is implemented a focusing head or a laser beam cutting system according to the invention.
  • FIG. 3 schematizes the operating principle of an installation and a method of laser cutting according to the invention
  • FIG. 4 represents a comparison of the evolution of the position of the focal point of the beam during the laser irradiation of a ZnS or fused silica (S) lens system
  • FIG. 5 is a comparison of the evolution of the focal point position of the focused beam by a ZnS lens system comprising a collimation lens with a thickness of 2 or 7 mm.
  • the cutting head 3 comprises, in a conventional manner, optical devices for collimating, redirecting and focusing the laser beam.
  • the laser beam is emitted by a device or solid-state laser generator, preferably an ytterbium doped fiber laser (Yb).
  • a device or solid-state laser generator preferably an ytterbium doped fiber laser (Yb).
  • Yb ytterbium doped fiber laser
  • the laser effect that is to say the phenomenon of amplification of the light used to generate the laser radiation, is obtained by means of an amplifying medium preferably pumped by laser diodes and consisting of one or more typically doped optical fibers, preferably silica doped with ytterbium.
  • the wavelength of the radiation emitted at the output of the laser device is between 1.06 and 1.10 ⁇ , and the laser power is between 0.1 and 25 kW, typically between 1 and 5 kW.
  • the laser can operate in continuous, quasi-continuous or pulsed mode, but the present invention is particularly advantageous when working in continuous mode because it is the most severe irradiation mode for the optics of a laser head. cutting.
  • BPP Beam Parameter Product
  • the BPP is determined by the characteristics of the laser source SL and the diameter of the FDC conveying fiber. It is expressed as the product of the wo ray at the neck of the laser beam focused by its divergence half-angle ⁇ , as shown in Figure 2.
  • the BPP is also defined by the product of the radius w > of the optical conveying fiber emitting the laser beam by the divergence half-angle of the beam at the fiber exit ⁇ 3 ⁇ 4.
  • the BPP of the beam is typically between 1.6 and 2 mm.mrad
  • the BPP is typically between 2.7 and 4 mm.mrad.
  • the focussing system of the laser cutting head is successively composed, in the direction of circulation of the laser beam, of at least one collimation lens LC making it possible to obtain a collimated beam FC from FIG. a divergent beam FD, and at least one focusing lens LF making it possible to obtain a focused beam FF and to concentrate the energy of the laser on the piece to be cut.
  • the focal lengths of collimation and focusing are chosen so as to obtain a focal spot, also called a focal spot, having a suitable diameter to have the power density necessary for cutting the part.
  • the diameter of the beam 2wo in the plane of focus is defined as the product of the diameter 2wm of the fiber by the optical magnification G of the focusing system and is expressed:
  • G is given by the ratio between the focal length F foc of the focusing lens FC and the focal length F co i of the collimation lens LC.
  • the characteristic radius w is the distance from the optical axis where the intensity drops to 1 / e 2 (about 13.5%) of its maximum value, which means 86.5% of the beam power is included in the radius disc w. All beam parameters are defined according to this criterion.
  • the beam radius radiating the collimation and focusing optics is given by the following relation:
  • This type of source is characterized by low BPP and therefore by beams having a divergence ⁇ 3 ⁇ 4 lower output fiber.
  • This parameter reflects the far-field expansion velocity of the beam emitted by the conveying fiber and determines the beam diameter on the system optics.
  • Table 1 below gives a comparison of the typical beam characteristics for different lasers, as well as the power densities obtained on the optics for a power of 2 kW and a focal length of the collimating lens equal to 100. mm.
  • optical system of the invention combines the specificities described below, according to the diagram presented in FIG.
  • the cutting head 3 consists of optical devices working in transmission, that is to say here lenses 13, 14, used for collimation operations (in 13) and focusing (in 14) of the laser beam FL from of the conveying fiber and generated by the solid laser source SL.
  • Zinc sulphide is advantageously used as a substrate for the collimating and focussing lenses 14.
  • the amplitude of the thermal gradient established in the lenses under laser irradiation is inversely proportional to the thermal conductivity of the material. constituting the lenses.
  • the thermal conductivity of ZnS (0.272 W / cm / ° C) is of the order of 20 times that of fused silica (0.0138 W / cm / ° C). This higher thermal conductivity reflects a greater ability of ZnS to remove heat, and limits the magnitude of gradients and thermal distortions induced at the lens by high power irradiation.
  • the thickness and the diameter of the lenses 13, 14 also have an influence on their thermal behavior.
  • thick lenses i.e., having a thickness at the edges of at least 5 mm, are used solely to carry out the focusing operations. Indeed, the assist gas is injected directly after the focusing lens, which exposes them to high pressures.
  • the focusing lenses must therefore be thick to have good mechanical strength.
  • thick lenses are used for both collimation and focusing of the beam.
  • the cutting head 3 is made of lenses whose thickness at the edges is at least 5 mm, and preferably between 6 and 8 mm. Just as greater thickness provides better thermal behavior, larger diameter optics better dissipate heat to their edges. Whatever the size of the beam impacting on the optics of the cutting head, the cutting head 3 therefore implements lenses whose diameter is between 35 and 55 mm.
  • a reflective component 15 is placed in the path of the laser beam 10 between the collimating lens 13 and the focusing lens 14. This component is a plane mirror and does not modify the propagation parameters of the beam.
  • the mirror substrate is made of fused silica.
  • At least one side of the mirror is coated with a reflective treatment.
  • This coating consists of thin optical layers and reflects the wavelength of the cutting laser beam as well as wavelengths between 630 and 670 nm.
  • the processing is transparent for part of the visible or infrared spectrum, including the wavelength of a lighting system, for example a laser diode. In this way, it allows the connection of a process control device (camera or photodiode type) to the back of the mirror. It operates at an angle of incidence of between 40 and 50 °, preferably equal to 45 °.
  • the thickness of the mirror is between 3 and 15 mm, preferably between 8 and 12 mm. This mirror firstly reduces the vertical size of the head to gain mechanical stability.
  • the conveying fiber is maintained horizontally, which reduces the risk of dust introduction during assembly and disassembly of the fiber or collimator.
  • the integration of a reflective component in the path of the beam compensates for a portion of the focal drift induced by the lenses. Indeed, the longitudinal displacement of the focal point induced by a reflective component takes place in the opposite direction to the focal drift induced by a transmissive component.
  • the lenses of the cutting head 3 are also characterized by specific focal lengths, adapted to the BPP of the conveyor fiber used. These focal lengths are necessary to obtain the appropriate focal spot diameter 2wo for cutting the treated material.
  • the BPP of the beam is typically between 1.6 and 2.2 mm.mrad.
  • the focal length of the collimating lens is between 70 and 120 mm, preferably between 70 and 90 mm. The choice of the focal length of collimation then conditions that of the focal length of focusing, depending on the desired optical magnification to cut the thickness of the treated material.
  • the focal length of focus is between 200 and 300 mm, preferably between 220 and 280 mm.
  • the focal length of focus is between 350 and 450 mm, preferably between 380 and 420 mm.
  • the focusing head 3 is supplied with assist gas via a gas inlet 5 arranged in the wall of said focusing head 3, whereby a gas or gas mixture under pressure from a gas source, for example a or a plurality of gas cylinders, a storage capacity or one or more gas pipes, such as a gas distribution network, is introduced upstream of the nozzle 4 and is evacuated by this nozzle 4 in the direction of the part 30 to be cut by laser beam.
  • a gas or gas mixture under pressure from a gas source for example a or a plurality of gas cylinders, a storage capacity or one or more gas pipes, such as a gas distribution network
  • the assist gas serves to drive the molten metal out of the cutting groove 12 obtained by melting the metal by means of the laser beam FL which is focused at the position 11 relative to the surface of the workpiece 10 to be cut.
  • gas is based on the characteristics of the material to be cut, including its composition, its shade, its thickness.
  • air, oxygen, nitrogen / oxygen or helium / nitrogen mixtures can be used for steel cutting, while nitrogen, nitrogen / hydrogen, or argon / nitrogen mixtures can be used. be used to cut aluminum or stainless steel.
  • the piece 10 to be laser cut can be formed of different metallic materials, such as steel, stainless steel, mild steel or light alloys, such as aluminum and its alloys, or even titanium and its alloys, and have a thickness typically between 0.1 mm and 30 mm.
  • the laser beam can be focused (in 11) in the thickness, or on or in the immediate vicinity of one of the surfaces of the part 10, that is to say outside and a few mm above or below the upper surface 10a or lower 10b of the part 10, or on the upper face 10a or lower 10b.
  • the position 11 of the focal point is between 5 mm above the upper surface 10a and 5 mm below the lower surface 10b of the part 10.
  • the caustic of the laser beam focused by each system could be recorded using a beam analyzer.
  • This device measures the radius of the beam for which 86% of the power of the laser is contained in a disk of this ray and this in successive propagation planes lying on a distance of about 10 mm on either side of the neck focused beam.
  • each optical system was exposed for about 30 minutes.
  • the beam had a diameter of 9.6 mm on the lens, leading to a power density of the order of 2.8 kW / cm 2 to 2 kW.
  • Figure 4 presents a comparison of the evolution of the focal point position of the focused beam by a ZnS or fused silica (S) lens system.
  • the first point corresponds to the position taken during a first beam analysis performed at 200 W.
  • the focal shift induced by the thermal lens effect is negligible. It can be considered that the measured position corresponds to the position where the focal point of the beam is located instantaneously after the ignition of the laser.
  • Figure 5 shows a comparison of the evolution of the focal point position of the focused beam by the two systems, according to the method described above.
  • the combination of the optical devices of the invention makes it possible to guarantee the durability of the performances of the laser cutting process, in particular in the case of a laser cutting method obtained with a solid-state laser, in particular a fiber laser, thanks to a control of the amplitude of the phenomenon of focal drift and the problems of damage of the optics

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Lenses (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Lasers (AREA)
  • Optical Couplings Of Light Guides (AREA)
PCT/FR2010/051723 2009-09-01 2010-08-17 Tete de focalisation laser avec des lentilles en zns ayant une epaisseur aux bords d'au moins 5 mm; installation et procede de coupage laser employant une telle tete de focalisation Ceased WO2011027065A1 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP10762988.3A EP2473315B1 (fr) 2009-09-01 2010-08-17 Tete de focalisation laser avec des lentilles en zns ayant une epaisseur aux bords d'au moins 5 mm ; installation et procede de coupage laser employant une telle tete de focalisation
US13/393,280 US20120154922A1 (en) 2009-09-01 2010-08-17 LASER-FOCUSING HEAD WITH ZnS LENSES HAVING A PERIPHERAL THICKNESS OF AT LEAST 5 MM AND LASER CUTTING UNIT AND METHOD USING ONE SUCH FOCUSING HEAD
JP2012527368A JP2013503751A (ja) 2009-09-01 2010-08-17 少なくとも5mmの周辺厚さを有するZnSレンズを備えるレーザー集束ヘッド、およびそのような集束ヘッドを用いた方法およびレーザー切削ユニット
CN201080038783.2A CN102481665B (zh) 2009-09-01 2010-08-17 采用具有至少5mm的边缘厚度的ZnS透镜的激光聚焦头和激光切割装置以及使用这样的聚焦头的方法
ES10762988.3T ES2457231T3 (es) 2009-09-01 2010-08-17 Cabezal de focalización láser con lentes de ZnS que tienen un espesor en los bordes de al menos 5 mm; instalación y proceso de corte láser que emplean un cabezal de focalización de ese tipo
BR112012004680A BR112012004680A2 (pt) 2009-09-01 2010-08-17 cabeçote de focalização do laser com lentes zns tendo uma espessura peridérica de pelo menos 5mm e unidade de corte a lazer e método usando um tal de cabeçote de focalização.
IN926DEN2012 IN2012DN00926A (enExample) 2009-09-01 2010-08-17
RU2012112398/02A RU2553152C2 (ru) 2009-09-01 2010-08-17 ЛАЗЕРНАЯ ФОКУСИРУЮЩАЯ ГОЛОВКА С ЛИНЗАМИ ИЗ ZnS, ИМЕЮЩИМИ ТОЛЩИНУ ПО КРАЯМ, ПО МЕНЬШЕЙ МЕРЕ, 5 мм, И УСТАНОВКА И СПОСОБ ЛАЗЕРНОЙ РЕЗКИ С ИСПОЛЬЗОВАНИЕМ ОДНОЙ ТАКОЙ ФОКУСИРУЮЩЕЙ ГОЛОВКИ
DK10762988.3T DK2473315T3 (da) 2009-09-01 2010-08-17 LASER-FOKUSERENDE HOVED MED ZnS-LINSER SOM HAR EN PERIFÆR TYKKELSE PÅ MINDST 5 MM OG LASER-SKÆRENDE ENHED OG FREMGANGSMÅDE TIL ANVENDELSE AF ET AF SÅDAN FOKUSERINGSHOVED
PL10762988T PL2473315T3 (pl) 2009-09-01 2010-08-17 Laserowa głowica ogniskująca z soczewkami z zns mającymi grubość na brzegach wynoszącą co najmniej 5 mm; zespół i proces laserowego cięcia wykorzystujący taką głowicę ogniskującą

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0955949A FR2949618B1 (fr) 2009-09-01 2009-09-01 Tete de focalisation laser pour installation laser solide
FR0955949 2009-09-01

Publications (1)

Publication Number Publication Date
WO2011027065A1 true WO2011027065A1 (fr) 2011-03-10

Family

ID=42105843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/051723 Ceased WO2011027065A1 (fr) 2009-09-01 2010-08-17 Tete de focalisation laser avec des lentilles en zns ayant une epaisseur aux bords d'au moins 5 mm; installation et procede de coupage laser employant une telle tete de focalisation

Country Status (13)

Country Link
US (1) US20120154922A1 (enExample)
EP (1) EP2473315B1 (enExample)
JP (1) JP2013503751A (enExample)
CN (1) CN102481665B (enExample)
BR (1) BR112012004680A2 (enExample)
DK (1) DK2473315T3 (enExample)
ES (1) ES2457231T3 (enExample)
FR (1) FR2949618B1 (enExample)
IN (1) IN2012DN00926A (enExample)
PL (1) PL2473315T3 (enExample)
PT (1) PT2473315E (enExample)
RU (1) RU2553152C2 (enExample)
WO (1) WO2011027065A1 (enExample)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130170515A1 (en) * 2010-10-15 2013-07-04 Masao Watanabe Laser processing apparatus and laser processing method
US11154948B2 (en) 2010-12-16 2021-10-26 Bystronic Laser Ag Laser beam machining device and a process of laser machining comprising a single lens for light focussing
EP4017674B1 (de) 2019-08-19 2023-11-22 TRUMPF Werkzeugmaschinen SE + Co. KG Verfahren zum brennschneiden mittels eines laserstrahls

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5766423B2 (ja) * 2010-10-15 2015-08-19 三菱重工業株式会社 レーザ切断装置及びレーザ切断方法
US8881553B2 (en) * 2011-06-01 2014-11-11 US Conec, Ltd Assembly for precision datum alignment and method of use
DE102013102442B4 (de) * 2013-03-12 2014-11-27 Highyag Lasertechnologie Gmbh Optische Vorrichtung zur Strahlformung
JP5805256B1 (ja) * 2014-04-07 2015-11-04 ハイヤグ レーザーテクノロジー ゲーエムベーハーHIGHYAG Lasertechnologie GmbH ビーム整形のための光学デバイス
US9678281B2 (en) 2014-04-25 2017-06-13 US Conec, Ltd Apparatus for and method of terminating a multi-fiber ferrule
CN103962731B (zh) * 2014-04-30 2016-04-27 武汉锐科光纤激光器技术有限责任公司 光纤激光负压切割8mm以上厚金属材料的方法
JP5919356B2 (ja) * 2014-10-15 2016-05-18 株式会社アマダホールディングス レーザ光による板金の加工方法及びこれを実行するレーザ加工装置
JP6025917B1 (ja) * 2015-06-10 2016-11-16 株式会社アマダホールディングス レーザ切断方法
IT201600070259A1 (it) * 2016-07-06 2018-01-06 Adige Spa Procedimento di lavorazione laser di un materiale metallico con controllo della posizione dell'asse ottico del laser rispetto ad un flusso di gas di assistenza, nonché macchina e programma per elaboratore per l'attuazione di un tale procedimento.
DE112018004574T5 (de) * 2017-10-17 2020-06-25 Mitsubishi Electric Corporation Laserbearbeitungsmaschine
GB201801796D0 (en) * 2018-02-02 2018-03-21 Spi Lasers Uk Ltd Apparatus and method for laser processing a material
DE102018218006A1 (de) * 2018-10-22 2020-04-23 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren und Vorrichtung zur Überwachung eines Schneidprozesses
KR102324548B1 (ko) * 2019-12-31 2021-11-10 (주)미래컴퍼니 레이저 가공 시스템 및 레이저 가공 방법
DE102020121440B4 (de) * 2020-08-14 2025-01-09 TRUMPF Laser- und Systemtechnik SE Vorrichtung zum Erzeugen einer definierten Laserlinie auf einer Arbeitsebene
RU2760443C1 (ru) * 2020-12-07 2021-11-25 Общество с Ограниченной Ответственностью Научно Исследовательский Центр «Астрофизика» Устройство фокусировки для лазерной обработки
US20220203481A1 (en) * 2020-12-29 2022-06-30 American Air Liquide, Inc. Donut keyhole laser cutting
US12265207B2 (en) * 2021-03-04 2025-04-01 Ii-Vi Delaware, Inc. Dynamic focus for laser processing head
DE102022101322A1 (de) 2022-01-20 2023-07-20 TRUMPF Werkzeugmaschinen SE + Co. KG Laserschneideverfahren mit Fokuslage innerhalb einer Schneiddüse mit kleinem Mündungsdurchmesser

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6289155B1 (en) * 1997-12-13 2001-09-11 Lightchip, Inc. Wavelength division multiplexing/demultiplexing devices using dual high index of refraction crystalline lenses
FR2897007A1 (fr) * 2006-02-03 2007-08-10 Air Liquide Procede de coupage avec un laser a fibre avec controle des parametres du faisceau
US20090067040A1 (en) * 2007-09-10 2009-03-12 Sumitomo Electric Industries, Ltd. Far-infrared camera lens, lens unit, and imaging apparatus
JP2009226473A (ja) * 2008-03-25 2009-10-08 Amada Co Ltd ファイバレーザ加工機における集光直径の変換制御方法及びその装置
WO2010029243A1 (fr) * 2008-09-12 2010-03-18 Air Liquide Welding France Procede et installation de coupage laser avec modification du facteur de qualite du faisceau laser par un composant optique diffractant

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3435363A (en) * 1965-03-23 1969-03-25 Bell Telephone Labor Inc Self-focusing laser
JPH0716067B2 (ja) * 1988-12-22 1995-02-22 富士電機株式会社 レーザ加工装置
JPH0957479A (ja) * 1995-08-28 1997-03-04 Amada Co Ltd レーザ加工ヘッド
JPH1058181A (ja) * 1996-08-23 1998-03-03 Amada Eng Center:Kk レーザビームの遮光装置
RU12887U1 (ru) * 1998-04-15 2000-02-20 Экспериментальное научно-производственное объединение "Специализированные электронные системы" Лазерная установка
US6325794B1 (en) * 1998-05-13 2001-12-04 Samsung Electronics Co., Ltd. Laser handpiece
JP2001009580A (ja) * 1999-06-28 2001-01-16 Amada Eng Center Co Ltd レーザ光集光装置
JP2002006122A (ja) * 2000-06-19 2002-01-09 Ishikawajima Harima Heavy Ind Co Ltd レーザミラー
JP3608504B2 (ja) * 2000-11-14 2005-01-12 住友電気工業株式会社 赤外線レーザ用光学部品の製造方法
RU2226183C2 (ru) * 2002-02-21 2004-03-27 Алексеев Андрей Михайлович Способ резки прозрачных неметаллических материалов
JP4357944B2 (ja) * 2003-12-05 2009-11-04 トヨタ自動車株式会社 固体レーザ加工装置およびレーザ溶接方法
JP4182034B2 (ja) * 2004-08-05 2008-11-19 ファナック株式会社 切断加工用レーザ装置
RU86129U1 (ru) * 2008-04-15 2009-08-27 Открытое акционерное общество Национальный институт авиационных технологий (ОАО НИАТ) Лазерная режущая установка
CN101323053A (zh) * 2008-07-16 2008-12-17 上海大学 飞秒激光微球打孔方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6289155B1 (en) * 1997-12-13 2001-09-11 Lightchip, Inc. Wavelength division multiplexing/demultiplexing devices using dual high index of refraction crystalline lenses
FR2897007A1 (fr) * 2006-02-03 2007-08-10 Air Liquide Procede de coupage avec un laser a fibre avec controle des parametres du faisceau
US20090067040A1 (en) * 2007-09-10 2009-03-12 Sumitomo Electric Industries, Ltd. Far-infrared camera lens, lens unit, and imaging apparatus
JP2009226473A (ja) * 2008-03-25 2009-10-08 Amada Co Ltd ファイバレーザ加工機における集光直径の変換制御方法及びその装置
WO2010029243A1 (fr) * 2008-09-12 2010-03-18 Air Liquide Welding France Procede et installation de coupage laser avec modification du facteur de qualite du faisceau laser par un composant optique diffractant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"MELLES GRIOT CATALOGUE,CO2 LASER OPTICS", MELLES-GRIOT CATALOG, 1 January 1995 (1995-01-01), pages 16 - 1, XP002220903 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130170515A1 (en) * 2010-10-15 2013-07-04 Masao Watanabe Laser processing apparatus and laser processing method
US11154948B2 (en) 2010-12-16 2021-10-26 Bystronic Laser Ag Laser beam machining device and a process of laser machining comprising a single lens for light focussing
EP4017674B1 (de) 2019-08-19 2023-11-22 TRUMPF Werkzeugmaschinen SE + Co. KG Verfahren zum brennschneiden mittels eines laserstrahls

Also Published As

Publication number Publication date
FR2949618B1 (fr) 2011-10-28
IN2012DN00926A (enExample) 2015-04-03
EP2473315B1 (fr) 2014-01-15
ES2457231T3 (es) 2014-04-25
FR2949618A1 (fr) 2011-03-04
PT2473315E (pt) 2014-04-15
DK2473315T3 (da) 2014-04-07
JP2013503751A (ja) 2013-02-04
EP2473315A1 (fr) 2012-07-11
CN102481665A (zh) 2012-05-30
RU2012112398A (ru) 2013-10-10
BR112012004680A2 (pt) 2019-09-24
US20120154922A1 (en) 2012-06-21
RU2553152C2 (ru) 2015-06-10
CN102481665B (zh) 2015-07-01
PL2473315T3 (pl) 2014-06-30

Similar Documents

Publication Publication Date Title
EP2473315B1 (fr) Tete de focalisation laser avec des lentilles en zns ayant une epaisseur aux bords d'au moins 5 mm ; installation et procede de coupage laser employant une telle tete de focalisation
EP2334465B1 (fr) Procede et installation de coupage laser avec modification du facteur de qualite du faisceau laser par un composant optique diffractant
EP2004360B1 (fr) Procédé de coupage avec un laser ayant au moins une fibre à base d'ytterbium avec contrôle d'au moins de la puissance de la source laser, du diamètre du faisceau focalisé et du facteur qualité du faisceau
EP1800188B1 (fr) Dispositif de generation de lumiere dans l' extreme ultraviolet et application a une source de lithographie par rayonnement dans l'extreme ultraviolet
EP1790427B1 (fr) Procédé de coupage d'une pièce en acier C-Mn à l'aide d'une fibre contenant de l'ytterbium
EP2472305B1 (fr) Système optique de focalisation pour installation de coupage avec laser solide
FR2977513A1 (fr) Procede de coupage laser a fibre ou disque avec distribution d'intensite du faisceau laser en anneau
EP2615486B1 (fr) Dispositif de mise en forme des rayons lumineux d'un faisceau laser
Hobbs et al. Laser testing of anti-reflection micro-structures fabricated in ZnSe and chromium-ion doped ZnSe laser gain media
FR2880567A1 (fr) Coupage laser avec lentille a double focale de pieces metalliques de faible epaisseur
FR2961731A1 (fr) Procede et installation de coupage laser a fibre ou disque avec distribution d'intensite du faisceau laser en anneau
FR2830478A1 (fr) Dispositif de decoupe laser
WO2023118759A1 (fr) Dispositif de surveillance et/ou de controle de puissance d'un faisceau laser pour fabrication additive
BE1027475B1 (fr) Procédé de traitement thermique en volume et système associé
EP1212814B1 (fr) Laser pompe et milieu laser optimise
EP1927425A1 (fr) Machine laser à fibres d'ytterbium et fibre de convoyage de faisceau de faible diamètre
EP4003635A1 (fr) Systeme et procede de traitement par laser
FR2969520A1 (fr) Systeme de decoupe d'une piece par un rayonnement, et procede de commande correspondant
WO2022128931A1 (fr) Dispositif d'amplification d'un faisceau laser
EP1317033A2 (fr) Amplificateur d'un faisceau laser par pompage d'un matériau non linéaire et dispositif d'émission laser comportant un tel amplificateur
FR2861223A1 (fr) Dispositif de pompage optique par diodes laser et procede de pompage optique associe.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080038783.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10762988

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010762988

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 926/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012527368

Country of ref document: JP

Ref document number: 13393280

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012112398

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012004680

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012004680

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120301