EP4003635A1 - Systeme et procede de traitement par laser - Google Patents

Systeme et procede de traitement par laser

Info

Publication number
EP4003635A1
EP4003635A1 EP20740344.5A EP20740344A EP4003635A1 EP 4003635 A1 EP4003635 A1 EP 4003635A1 EP 20740344 A EP20740344 A EP 20740344A EP 4003635 A1 EP4003635 A1 EP 4003635A1
Authority
EP
European Patent Office
Prior art keywords
substrate
laser beam
region
optical device
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20740344.5A
Other languages
German (de)
English (en)
Inventor
Laure LAVOUTE
Dmitriy GAPONOV
Marc CASTAING
Nicolas DUCROS
Olivier JEANNIN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LEUKOS
Aledia
Original Assignee
Novae
Aledia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novae, Aledia filed Critical Novae
Publication of EP4003635A1 publication Critical patent/EP4003635A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/57Working by transmitting the laser beam through or within the workpiece the laser beam entering a face of the workpiece from which it is transmitted through the workpiece material to work on a different workpiece face, e.g. for effecting removal, fusion splicing, modifying or reforming
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/04Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere, e.g. so called "aspheric" lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/56Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer

Definitions

  • TITLE Laser treatment system and method
  • the present description relates generally to the systems and methods for laser treatment of an object comprising a semiconductor substrate.
  • One drawback is that silicon does not substantially transmit electromagnetic radiation, the wavelength of which is less than 1100 nm, which prevents the use of infrared lasers which are the most widely used on the market. Further, even using a laser at a wavelength at which the silicon is substantially transparent, it may be difficult to focus the laser beam effectively on the region to be removed, especially due to non-linear interactions between the laser and silicon. Furthermore, it may be difficult to prevent deterioration of regions neighboring the region to be treated.
  • an object of one embodiment is to at least partially overcome the drawbacks of the systems and methods for laser treatment of an object comprising a semiconductor substrate described above.
  • An object of an embodiment is that the laser beam is focused on the region to be treated through the semiconductor substrate.
  • Another object of an embodiment is that the regions of the object neighboring the region to be treated are not damaged by the treatment.
  • One embodiment provides a system configured for processing a region of an object adjacent to a substrate, the system comprising:
  • a source of an incident laser beam configured to provide a focused laser beam, said configuration being such that the wavelength of the incident laser beam is greater than the sum of 500 nm and the wavelength associated with the band deviation of the material composing the substrate and less than the sum of 2500 nm and the wavelength associated with the band deviation of the material composing the substrate;
  • an optical device associating a numerical aperture greater than 0.3 and means for correcting spherical aberrations appearing when passing through the substrate for a given thickness of the substrate and a given distance between the substrate and the optical device
  • said treatment being carried out on said region adjacent to the substrate and opposite to the optical device, either through said substrate, and comprising the physical, chemical or physico-chemical modification or the ablation of said region.
  • the material making up the substrate is a semiconductor.
  • the source is adapted to supply at least one pulse of the incident laser beam, the duration of said at least one pulse being between 0.1 ps and 1000 ps.
  • the source is adapted to supply said at least one pulse of the incident laser beam with a peak power of between 300 kW and 100 MW.
  • the optical device comprises at least one aspherical lens.
  • An embodiment also provides a method of treating a region of an object further comprising a substrate adjacent to the region to be treated comprising the exposure of the region to be treated to the focused laser beam supplied by the system such as defined above through the substrate.
  • the substrate is a semiconductor.
  • the method comprises supplying at least one pulse of the incident laser beam, the duration of said at least one pulse being between 0.1 ps and 1000 ps.
  • the method comprises providing said at least one pulse with a peak power of between 300 kW and 100 MW.
  • the substrate comprises a face oriented towards the side of the system, the method comprising the formation of an antireflection layer on said face.
  • the substrate is made of silicon, germanium, or a mixture or alloy of at least two of these compounds.
  • the object comprises a dielectric layer covering the substrate, the region to be treated being interposed between the substrate and the dielectric layer.
  • the object comprises at least one electronic circuit covering the substrate, the region to be treated being interposed between the substrate and the electronic circuit.
  • the method comprises destroying the region of interest by the focused laser beam.
  • FIG. 1 illustrates an embodiment of a system for processing a laser object
  • FIG. 2 represents a converging lens exhibiting spherical aberrations
  • Figure 3 is a sectional view, partial and schematic, of an embodiment of the optical device of the processing system shown in Figure 1;
  • FIG. 4 represents a curve of the evolution of the irradiance of the laser beam supplied by the processing system shown in FIG. 1 as a function of the distance of the laser beam relative to the focal plane of the optical device of the processing system;
  • FIG. 5 represents an evolution curve of the diameter of the laser beam supplied by the processing system shown in FIG. 1 as a function of the distance of the beam laser relative to the focal plane of the optical device of the treatment system.
  • Figure 1 is a sectional view, partial and schematic, of an embodiment of a processing system 10 of an object 20.
  • the processing system 10 comprises a laser source 12 and an optical focusing device 14 having an optical axis D.
  • the source 12 is adapted to provide an incident laser beam 16 to the collimation device 14 which provides a converging laser beam 18 .
  • the optical device of focusing 14 may comprise an optical component, two optical components or more than two optical components, an optical component corresponding for example to a lens.
  • the incident laser beam 16 is substantially collimated along the optical axis D of the optical device 14.
  • the object 20 comprises a substrate 22 made of a semiconductor material.
  • the semiconductor material can be silicon, germanium or a mixture of at least two of these compounds.
  • the substrate 22 is made of silicon, more preferably of monocrystalline silicon.
  • the semiconductor substrate 22 comprises two opposite faces 24, 26, the laser beam 18 penetrating into the substrate 22 through the face 24.
  • the faces 24 and 26 are parallel.
  • the faces 24 and 26 are flat.
  • the thickness of the substrate 22 is between 50 ⁇ m and 3 mm.
  • an antireflection layer is provided on the front face 24 of the substrate 22.
  • the substrate 22 may be, at least in part, of a non-semiconducting material, for example a electrically insulating material or an electrically conductive material.
  • the object 20 comprises a region to be treated 28 at the level of the second face 26 and which is the region to be treated 28 to be treated.
  • the substrate 22 is not covered with another element on the side of the face 26 and the region to be treated 28 corresponds to the face 26 of the substrate 22.
  • the region to be treated 28 corresponds to a layer covering the face 26.
  • the layer to be treated 28 can be made of a material different from the substrate 22.
  • the layer to be treated 28 can be of the same material as the substrate 22 and then correspond to a portion of the substrate 22.
  • an additional zone 30 covering the layer to be treated 28 on the side of the layer to be treated 28 opposite the substrate 22.
  • the element 30 may comprise a layer in a material different from the substrate 22 and from the layer to be treated 28.
  • the layer 30 can be of the same material as the substrate 22 or of the same material as the layer to be treated 28.
  • the layer 30 is made of a dielectric material, for example silicon oxide or silicon nitride.
  • Element 30 may further comprise electronic circuits, for example light-emitting diode circuits or transistor circuits, in particular MOS transistors.
  • the treatment corresponds to the ablation of the layer to be treated 28 so as to allow the detachment of the element 30 relative to the substrate 22.
  • the treatment corresponds to the texturing of the face 26.
  • the treatment corresponds to an input of energy into the region to be treated 28, for example to cause a chemical reaction or a physical phenomenon.
  • the wavelength of the laser beam 18 supplied by the processing system 10 is greater than the wavelength corresponding to the band gap (bandgap) of the material making up the substrate 22, preferably at least 500 nm, more preferably at least 700 nm. This advantageously makes it possible to reduce the interactions between the laser beam 18 and the substrate 22 when the substrate 22 passes through the laser beam 18.
  • the wavelength of the laser beam 18 supplied by the system treatment 10 is not greater than the wavelength corresponding to the deviation of bands (bandgap) of the material making up the substrate 22, preferably over 2500 nm. This advantageously makes it possible to more easily provide a laser beam forming a laser spot of small dimensions.
  • the wavelength of the laser beam 18 is chosen equal to about 2 ⁇ m.
  • a source 20 providing a laser beam is for example sold by the company Novae under the name BrevityHP.
  • the wavelength of the laser beam 18 is chosen equal to approximately 2 pm or 2.35 pm.
  • the laser beam 18 is polarized. According to one embodiment, the laser beam 18 is polarized according to a rectilinear polarization. This advantageously makes it possible to improve the interactions of the laser beam 28 with the region to be treated 28. According to another embodiment, the laser beam 18 is polarized according to a circular polarization. This advantageously makes it possible to promote the propagation of the laser beam 18 in the substrate 22.
  • the laser beam 18 is emitted by the processing system 10 in the form of a pulse, two pulses or more than two pulses, each pulse having a duration between 0.1 ps and 1000 ps.
  • the peak laser beam power for each pulse is between 300 kW and 100 MW.
  • the fact of using pulses longer than pulses of durations strictly less than 100 femtoseconds makes it possible to reduce the peak power of the laser beam 18 and therefore to reduce the non-linear interactions of the laser beam 18 with the substrate 22.
  • the fact of using pulses shorter than nanosecond pulses makes it possible to avoid an undesirable heating outside the region to be treated 28 which could lead to deterioration of the layers adjacent to the region to be treated 28.
  • the digital image aperture of the optical device 14 is greater than 0.2, preferably greater than 0.6, more preferably greater than 0.7.
  • the digital image aperture is equal to the product nosin (io) where no is the refractive index at the wavelength of the medium traversed by the laser beam at the output of the optical device 14, for example air and io is the angle between the optical axis D of the optical device 14 and the ray of the laser beam 18 which leaves the optical device 14 furthest from the optical axis D.
  • the optical device 14 compensates for the optical aberrations due to the crossing of the substrate 22 by the laser beam 18.
  • the optical device 14 compensates for the spherical aberrations due to the crossing of the substrate 22 by the laser beam 18.
  • the optical aberrations, apart from defocusing, due to the crossing of the substrate 22 by the laser beam 18 correspond only to the aberrations spherical.
  • the optical aberrations, apart from defocusing, due to the crossing of the substrate 22 by the laser beam 18 correspond to spherical aberrations and to other aberrations, including coma or astigmatism.
  • Figure 2 illustrates the principle of spherical aberrations and is a sectional view, partial and schematic, of a lens 50 receiving a light beam 52 whose rays are parallel to the optical axis D 'of the lens 50 and providing a converging light beam 54.
  • the incident light rays 52 do not converge at the same focal point.
  • the focal points are close and can be considered as forming a single focal point F1.
  • the optical device 14 is determined to be aspherical in the presence of the substrate 22, for a given thickness of the substrate 22 and for a given distance between the substrate 22 and the optical device 14.
  • the optical device 14 comprises several optical components, for example several lenses
  • the curvature of each input face and of each output face of each optical component is determined so that all the light rays of the beam 18 supplied focus substantially at a single focal point F in the region of interest. These curvatures can be determined by numerical simulation.
  • FIG. 3 represents an embodiment of the optical device 14 in which the optical device 14 comprises an aspherical lens 60 receiving an incident beam 62, the rays of which are parallel to the optical axis of the lens 60, and providing a converging light beam 64.
  • the lens 60 includes an entrance face 66 and an exit face 68.
  • the exit face 68 is planar and the entrance face 66 is curved. The curvature of the entry face 66 is determined so that all the light rays of the incident light beam 62 converge at the same focal point F.
  • the determination of the curvature of the entry face 66 is carried out taking into account that the converging beam 64 successively passes through a zone 70 of air, in which a more or less significant vacuum can be created or in which a controlled gas atmosphere, for example a nitrogen atmosphere, can be provided, and the substrate 22.
  • a zone 70 of air in which a more or less significant vacuum can be created or in which a controlled gas atmosphere, for example a nitrogen atmosphere, can be provided, and the substrate 22.
  • the focal point F is fixed on the surface 26 of the substrate 22 which corresponds to the region to be treated 28.
  • the focal point F can be fixed in the middle of the layer to be treated. process 28 when it is present Consequently, the curvature of the input face 66 making it possible to eliminate the spherical aberration is determined for a given thickness of the substrate 22 and a given relative position between the substrate 22 and the optical device 14.
  • the distance between the face 68 of the optical device 15 and the face 24 of the substrate 22 is between 0.5 mm and 20 cm
  • the use of a large numerical aperture of the optical device 14 makes it possible to ensure that the energy density of the laser beam is high only at the level of the focal point.
  • the portion of the substrate 22 crossed by the laser beam 18 and in which the energy density of the laser beam is high is therefore reduced.
  • This also advantageously makes it possible to limit the nonlinear interactions of the laser beam 18 with the substrate 22 outside the region to be treated 28. Indeed, the nonlinear interactions of the laser beam 18 with the substrate 22 are of all the more important as the local energy density of the laser beam 18 is high.
  • the use of an aspherical optical device 14 makes it possible to obtain a suitable focusing of the laser beam 18 despite the large numerical aperture of the optical device 14.
  • the laser beam 18 can cause the formation of a plasma in the region to be treated 28.
  • the formation of a plasma causes a significant increase in the local absorption of the laser beam in the region of interest. .
  • FIG. 4 represents an evolution curve of the illumination I of the laser beam, expressed in arbitrary units (au) and measured in a plane parallel to the focal plane, as a function of the distance d of the measurement plane with respect to to the focal plane
  • FIG. 5 represents an evolution curve of the diameter 0 of the laser beam, measured in a plane parallel to the focal plane, as a function of the distance d of the measurement plane with respect to the focal plane.
  • the curves shown in Figures 5 and 6 were obtained by simulation using an aspherical optical device 14 having a numerical aperture equal to 0.72.
  • object 20 included a silicon substrate 22, which corresponds to the negative d distances in Figures 4 and 5, and a layer 30 of silicon dioxide, which corresponds to the positive d distances in Figures 4 and 5. 5.
  • the focal plane therefore corresponds to a distance d equal to zero.
  • the diameter of the laser beam 18 in the focal plane is less than 2 ⁇ m, in Due to diffraction, and when moving 5 mpi away from the focal plane in the silicon oxide layer 30, the diameter of the laser beam is 6.5 ⁇ m. This means that a good focusing of the laser beam 18 is obtained in the focal plane and a strong divergence of the laser beam 18 is obtained downstream of the focal plane.
  • the illumination decreases by a factor of about 15 when moving 5 ⁇ m away from the focal plane in the silicon oxide layer 30.
  • the diameter of the laser spot is about 1.7 ⁇ m and
  • the diameter of the laser beam is about 6.5 ⁇ m. This further means that the fluence of the light beam at 5 ⁇ m past the focal plane in silicon dioxide is substantially equal to 7% of the fluence of the laser beam in the focal plane.
  • the region to be treated 28 corresponds to a layer interposed between the substrate 22 and the dielectric layer 30 of negligible thickness which has a transmission of the order of 40% in linear mode. The transmission can be much lower in the case where the laser beam causes the local formation of a plasma in the region to be treated 18. Further, considering the fact that
  • the fluence of the light beam at 5 ⁇ m after the focal plane in the silicon dioxide is substantially equal to 2.4% of the fluence of the laser beam 18 in the focal plane. This means that any components formed on / in layer 30 may not be impacted by the treatment carried out by the treatment system 40.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

La présente description concerne un système (10) pour le traitement d'une région (28) d'un objet (20) adjacente à un substrat (22). Le système comprend une source (20) d'un faisceau laser incident (16) fournissant un faisceau laser focalisé (18). La longueur d'onde du faisceau laser incident est supérieure à la somme de 500 nm et de la longueur d'onde associée à l'écart de bandes du matériau composant le substrat et inférieure à la somme de 2500 nm et de cette longueur d'onde. Le système comprend un dispositif optique associant une ouverture numérique supérieure à 0,3 et des moyens de correction des aberrations sphériques apparaissant lors de la traversée du substrat pour une épaisseur donnée du substrat et une distance donnée entre le substrat et le dispositif optique. Le traitement s'effectuant sur la région au travers du substrat (22), et comprenant la modification physique, chimique ou physico-chimique ou l'ablation de la région.

Description

DESCRIPTION
TITRE : Système et procédé de traitement par laser
La présente demande de brevet revendique la priorité de la demande de brevet français FR19/08743 qui sera considérée comme faisant partie intégrante de la présente description.
Domaine technique
[0001] La présente description concerne de façon générale les systèmes et procédés de traitement au laser d'un objet comprenant un substrat semiconducteur.
Technique antérieure
[0002] Pour certaines applications, il est souhaitable de pouvoir réaliser un traitement au laser d'un objet comprenant un substrat semiconducteur, par exemple en silicium, au travers du substrat. Le document US 2019/0058085 décrit un exemple d'une telle application dans laquelle des diodes électroluminescentes, formées depuis une couche de germination recouvrant un substrat en silicium, sont détachées du substrat par l'ablation de la couche de germination au moyen d'un laser infrarouge au travers du substrat .
[0003] Un inconvénient est que le silicium ne transmet sensiblement pas les rayonnements électromagnétiques dont la longueur d'onde est inférieure à 1100 nm, ce qui empêche l'utilisation des lasers infrarouges les plus répandus dans le commerce. En outre, même en utilisant un laser à une longueur d'onde pour laquelle le silicium est sensiblement transparent, il peut être difficile de focaliser efficacement le faisceau laser sur la région à retirer, notamment en raison d'interactions non linéaires entre le laser et le silicium. Il peut en outre être difficile d'empêcher la détérioration des régions voisines de la région à traiter.
Résumé de l'invention [0004] Ainsi, un objet d'un mode de réalisation est de pallier au moins en partie les inconvénients des systèmes et procédés de traitement au laser d'un objet comprenant un substrat semiconducteur décrits précédemment.
[0005] Un objet d'un mode de réalisation est que le faisceau laser soit focalisé sur la région à traiter au travers du substrat semiconducteur.
[0006] Un autre objet d'un mode de réalisation est que les régions de l'objet voisines de la région à traiter ne soient pas abimées par le traitement.
[0007] Un mode de réalisation prévoit un système configuré pour le traitement d'une région d'un objet adjacente à un substrat, le système comprenant :
- une source d'un faisceau laser incident configuré pour fournir un faisceau laser focalisé, ladite configuration étant telle que la longueur d'onde du faisceau laser incident est supérieure à la somme de 500 nm et de la longueur d'onde associée à l'écart de bandes du matériau composant le substrat et inférieure à la somme de 2500 nm et de la longueur d'onde associée à l'écart de bandes du matériau composant le substrat ; et
- un dispositif optique associant une ouverture numérique supérieure à 0,3 et des moyens de correction des aberrations sphériques apparaissant lors de la traversée du substrat pour une épaisseur donnée du substrat et une distance donnée entre le substrat et le dispositif optique,
ledit traitement s'effectuant sur ladite région adjacente au substrat et opposée au dispositif optique, soit au travers dudit substrat, et comprenant la modification physique, chimique ou physico-chimique ou l'ablation de la dite région.
[0008] Selon un mode de réalisation, le matériau composant le substrat est semiconducteur. [0009] Selon un mode de réalisation, la source est adaptée à fournir au moins une impulsion du faisceau laser incident, la durée de ladite au moins une impulsion étant comprise entre 0,1 ps et 1000 ps .
[0010] Selon un mode de réalisation, la source est adaptée à fournir ladite au moins une impulsion du faisceau laser incident avec une puissance crête comprise entre 300 kW et 100 MW.
[0011] Selon un mode de réalisation, le dispositif optique comprend au moins une lentille asphérique.
[0012] Un mode de réalisation prévoit également un procédé de traitement d'une région d'un objet comprenant en outre un substrat adjacent à la région à traiter comprenant l'exposition de la région à traiter au faisceau laser focalisé fourni par le système tel que défini précédemment au travers du substrat.
[0013] Selon un mode de réalisation, le substrat est semiconducteur .
[0014] Selon un mode de réalisation, le procédé comprend la fourniture d'au moins une impulsion du faisceau laser incident, la durée de ladite au moins une impulsion étant comprise entre 0,1 ps et 1000 ps .
[0015] Selon un mode de réalisation, le procédé comprend la fourniture de ladite au moins une impulsion avec une puissance crête comprise entre 300 kW et 100 MW.
[0016] Selon un mode de réalisation, le substrat comprend une face orientée du côté du système, le procédé comprenant la formation d'une couche antireflet sur ladite face.
[0017] Selon un mode de réalisation, le substrat est en silicium, en germanium, ou en un mélange ou alliage d'au moins deux de ces composés. [0018] Selon un mode de réalisation, l'objet comprend une couche diélectrique recouvrant le substrat, la région à traiter étant interposée entre le substrat et la couche diélectrique .
[0019] Selon un mode de réalisation, l'objet comprend au moins un circuit électronique recouvrant le substrat, la région à traiter étant interposée entre le substrat et le circuit électronique.
[0020] Selon un mode de réalisation, le procédé comprend la destruction de la région d'intérêt par le faisceau laser focalisé .
Brève description des dessins
[0021] Ces caractéristiques et avantages, ainsi que d'autres, seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non limitatif en relation avec les figures jointes parmi lesquelles :
[0022] la figure 1 illustre un mode de réalisation d'un système de traitement d'un objet au laser ;
[0023] la figure 2 représente une lentille convergente présentant des aberrations sphériques ;
[0024] la figure 3 est une vue en coupe, partielle et schématique, d'un mode de réalisation du dispositif optique du système de traitement représenté en figure 1 ;
[0025] la figure 4 représente une courbe d'évolution de l'irradiance du faisceau laser fourni par le système de traitement représenté en figure 1 en fonction de la distance du faisceau laser par rapport au plan focal du dispositif optique du système de traitement ; et
[0026] la figure 5 représente une courbe d'évolution du diamètre du faisceau laser fourni par le système de traitement représenté en figure 1 en fonction de la distance du faisceau laser par rapport au plan focal du dispositif optique du système de traitement.
Description des modes de réalisation
[0027] De mêmes éléments ont été désignés par de mêmes références dans les différentes figures. En particulier, les éléments structurels et/ou fonctionnels communs aux différents modes de réalisation peuvent présenter les mêmes références et peuvent disposer de propriétés structurelles, dimensionnelles et matérielles identiques. Par souci de clarté, seuls les étapes et éléments utiles à la compréhension des modes de réalisation décrits ont été représentés et sont détaillés. En particulier, les sources laser infrarouge sont bien connues de l'homme du métier et ne sont pas détaillées par la suite.
[0028] Dans la description qui suit, lorsque l'on fait référence à des qualificatifs de position absolue, tels que les termes "avant", "arrière", "haut", "bas", "gauche", "droite", etc., ou relative, tels que les termes "dessus", "dessous", "supérieur", "inférieur", etc., il est fait référence sauf précision contraire à l'orientation des figures ou à un ... dans une position normale d'utilisation. Sauf précision contraire, les expressions "environ", "approximativement", "sensiblement", et "de l'ordre de" signifient à 10 % près, de préférence à 5 % près.
[0029] La figure 1 est une vue en coupe, partielle et schématique, d'un mode de réalisation d'un système de traitement 10 d'un objet 20.
[0030] Le système de traitement 10 comprend une source laser 12 et un dispositif optique de focalisation 14 ayant un axe optique D. La source 12 est adaptée à fournir un faisceau laser incident 16 au dispositif de collimation 14 qui fournit un faisceau laser 18 convergent. Le dispositif optique de focalisation 14 peut comprendre un composant optique, deux composants optiques ou plus de deux composants optiques, un composant optique correspondant par exemple à une lentille. De préférence, le faisceau laser incident 16 est sensiblement collimaté selon l'axe optique D du dispositif optique 14.
[0031] L'objet 20 comprend un substrat 22 en un matériau semiconducteur. Le matériau semiconducteur peut être du silicium, du germanium ou un mélange d'au moins deux de ces composés. De préférence, le substrat 22 est en silicium, plus préférentiellement en silicium monocristallin. Le substrat semiconducteur 22 comprend deux faces 24, 26 opposées, le faisceau laser 18 pénétrant dans le substrat 22 par la face 24. Selon un mode de réalisation, les faces 24 et 26 sont parallèles. Selon un mode de réalisation, les faces 24 et 26 sont planes. Selon un mode de réalisation, l'épaisseur du substrat 22 est comprise entre 50 pm et 3 mm. Selon un mode de réalisation, une couche antireflet, non représentée, est prévue sur la face avant 24 du substrat 22. A titre de variante, le substrat 22 peut être, au moins en partie, d'un matériau non semiconducteur, par exemple un matériau isolant électriquement ou un matériau conducteur électriquement.
[0032] L'objet 20 comprend une région à traiter 28 au niveau de la deuxième face 26 et qui est la région à traiter 28 à traiter. Selon un mode de réalisation, le substrat 22 n'est pas recouvert d'un autre élément du côté de la face 26 et la région à traiter 28 correspond à la face 26 du substrat 22. Dans le présent mode de réalisation illustré en figure 1, la région à traiter 28 correspond à une couche recouvrant la face 26. La couche à traiter 28 peut être en un matériau différent du substrat 22. A titre de variante, la couche à traiter 28 peut être du même matériau que le substrat 22 et correspondre alors à une portion du substrat 22. [0033] En figure 1, on a en outre représenté une zone supplémentaire 30 recouvrant la couche à traiter 28 du côté de la couche à traiter 28 opposé au substrat 22. A titre d'exemple, l'élément 30 peut comprendre une couche en un matériau différent du substrat 22 et de la couche à traiter 28. A titre de variante, la couche 30 peut être du même matériau que le substrat 22 ou du même matériau que la couche à traiter 28. Selon un mode de réalisation, la couche 30 est en un matériau diélectrique, par exemple en oxyde de silicium ou en nitrure de silicium. L'élément 30 peut en outre comprendre des circuits électroniques, par exemple des circuits à diodes électroluminescentes ou des circuits à transistor, notamment des transistors MOS.
[0034] Selon un mode de réalisation, le traitement correspond à l'ablation de la couche à traiter 28 de façon à permettre le détachement de l'élément 30 par rapport au substrat 22. Selon un autre mode de réalisation, notamment lorsque la région à traiter 28 correspond à la face 26 du substrat 22, le traitement correspond à la texturation de la face 26. Selon un autre mode de réalisation, le traitement correspond à un apport d'énergie dans la région à traiter 28, par exemple pour provoquer une réaction chimique ou un phénomène physique.
[0035] Selon un mode de réalisation, la longueur d'onde du faisceau laser 18 fourni par le système de traitement 10 est supérieure à la longueur d'onde correspondant à l'écart de bandes (bandgap) du matériau composant le substrat 22, de préférence d'au moins 500 nm, plus préférentiellement d'au moins 700 nm. Ceci permet de façon avantageuse de réduire les interactions entre le faisceau laser 18 et le substrat 22 lors de la traversée du substrat 22 par le faisceau laser 18. Selon un mode de réalisation, la longueur d'onde du faisceau laser 18 fourni par le système de traitement 10 n'est pas supérieure à la longueur d'onde correspondant à l'écart de bandes (bandgap) du matériau composant le substrat 22, de préférence de plus 2500 nm . Ceci permet de façon avantageuse de pouvoir fournir plus facilement un faisceau laser formant un spot laser de faibles dimensions.
[0036] Dans le cas où le substrat 22 est en silicium qui a un écart de bandes de 1,14 eV, ce qui correspond à une longueur d'onde de 1,1 pm, la longueur d'onde du faisceau laser 18 est choisie égale à environ 2 pm. Une source 20 fournissant un faisceau laser est par exemple commercialisée par la société Novae sous l'appellation BrevityHP. Dans le cas où le substrat 22 est en germanium qui a un écart de bandes de 0,661 eV, ce qui correspond à une longueur d'onde de 1,87 pm, la longueur d'onde du faisceau laser 18 est choisie égale à environ 2 pm ou 2,35 pm.
[0037] Selon un mode de réalisation, le faisceau laser 18 est polarisé. Selon un mode de réalisation, le faisceau laser 18 est polarisé selon une polarisation rectiligne. Ceci permet de façon avantageuse d'améliorer les interactions du faisceau laser 28 avec la région à traiter 28. Selon un autre mode de réalisation, le faisceau laser 18 est polarisé selon une polarisation circulaire. Ceci permet de façon avantageuse de favoriser la propagation du faisceau laser 18 dans le substrat 22.
[0038] Selon un mode de réalisation, le faisceau laser 18 est émis par le système de traitement 10 sous la forme d'une impulsion, de deux impulsions ou plus de deux impulsions, chaque impulsion ayant une durée comprise entre 0,1 ps et 1000 ps . La puissance crête du faisceau laser pour chaque impulsion est comprise entre 300 kW et 100 MW. Le fait d'utiliser des impulsions plus longues que des impulsions de durées inférieurs strictement à 100 femtosecondes permet de réduire la puissance crête du faisceau laser 18 et donc de réduire les interactions non linéaires du faisceau laser 18 avec le substrat 22. Le fait d'utiliser des impulsions plus courtes que des impulsions nanosecondes permet d'éviter un échauffement indésirable en dehors de la région à traiter 28 susceptible d'entraîner une détérioration des couches voisines de la région à traiter 28.
[0039] Selon un mode de réalisation, l'ouverture numérique image du dispositif optique 14 est supérieure à 0,2, de préférence supérieure à 0, 6, plus préférentiellement supérieure à 0,7. L'ouverture numérique image est égale au produit nosin(io) où no est l'indice de réfraction à la longueur d'onde du milieu traversé par le faisceau laser en sortie du dispositif optique 14, par exemple de l'air et io est l'angle entre l'axe optique D du dispositif optique 14 et le rayon du faisceau laser 18 qui sort du dispositif optique 14 le plus écarté de l'axe optique D.
[0040] Selon un mode de réalisation, le dispositif optique 14 compense les aberrations optiques dues à la traversée du substrat 22 par le faisceau laser 18. En particulier, le dispositif optique 14 compense les aberrations sphériques dues à la traversée du substrat 22 par le faisceau laser 18. Dans le cas où le faisceau laser 18 a une incidence normale par rapport au dispositif optique 14, les aberrations optiques, hors défaut de mise au point, dues à la traversée du substrat 22 par le faisceau laser 18 correspondent seulement aux aberrations sphériques. Dans le cas où le faisceau laser 18 a une incidence normale par rapport au dispositif optique 14, les aberrations optiques, hors défaut de mise au point, dues à la traversée du substrat 22 par le faisceau laser 18 correspondent aux aberrations sphériques et à d'autres aberrations, notamment la coma ou l'astigmatisme.
[0041] La figure 2 illustre le principe des aberrations sphériques et est une vue en coupe, partielle et schématique, d'une lentille 50 recevant un faisceau lumineux 52 dont les rayons sont parallèles à l'axe optique D' de la lentille 50 et fournissant un faisceau lumineux convergeant 54. Comme cela apparaît sur cette figure, les rayons lumineux incidents 52 ne convergent pas au même point focal. En particulier, plus les rayons lumineux incidents sont écartés de l'axe optique D' de la lentille 50, plus les points focaux de ces rayons sont proches de la lentille 50. Pour les rayons lumineux proches de l'axe optique D' de la lentille 50, les points focaux sont proches et peuvent être considérés comme formant un unique point focal Fl. Toutefois, cette approximation n'est plus valable lorsque l'écart entre les rayons lumineux incidents et l'axe optique D' de la lentille 50 devient trop important, de façon typique supérieur à 15 degrés. A titre d'exemple, deux points focaux F2 et F3 plus proches de la lentille 50 que le point focal Fl sont représentés en figure 2.
[0042] Le dispositif optique 14 est déterminé pour être asphérique en présence du substrat 22, pour une épaisseur donnée du substrat 22 et pour une distance donnée entre le substrat 22 et le dispositif optique 14. Lorsque le dispositif optique 14 comprend plusieurs composants optiques, par exemple plusieurs lentilles, la courbure de chaque face d'entrée et de chaque face de sortie de chaque composant optique est déterminée pour que l'ensemble des rayons lumineux du faisceau 18 fourni focalise sensiblement en un point focal unique F dans la région d'intérêt. Ces courbures peuvent être déterminées par simulation numérique.
[0043] La figure 3 représente un mode de réalisation du dispositif optique 14 dans lequel le dispositif optique 14 comprend une lentille asphérique 60 recevant un faisceau incident 62, dont les rayons sont parallèles à l'axe optique de la lentille 60, et fournissant un faisceau lumineux 64 convergeant. La lentille 60 comprend une face d'entrée 66 et une face de sortie 68. Dans le présent mode de réalisation, la face de sortie 68 est plane et la face d'entrée 66 est courbe. La courbure de la face d'entrée 66 est déterminée pour que tous les rayons lumineux du faisceau lumineux incident 62 converge en un même point focal F. La détermination de la courbure de la face d'entrée 66 est réalisée en tenant compte du fait que le faisceau convergeant 64 traverse successivement une zone 70 d'air, dans lequel un vide plus ou moins important peut être réalisé ou dans lequel une atmosphère contrôlée en gaz, par exemple une atmosphère d'azote, peut être prévue, et le substrat 22. A titre d'exemple, en figure 3, le point focal F est fixé sur la surface 26 du substrat 22 qui correspond à la région à traiter 28. A titre de variante, le point focal F peut être fixé au milieu de la couche à traiter 28 lorsque celle-ci est présente De ce fait, la courbure de la face d'entrée 66 permettant de supprimer l'aberration sphérique est déterminée pour une épaisseur donnée du substrat 22 et une position relative donnée entre le substrat 22 et le dispositif optique 14. Selon un mode de réalisation, la distance entre la face 68 du dispositif optique 15 et la face 24 du substrat 22 est comprise entre 0,5 mm et 20 cm.
[0044] L'utilisation d'une grande ouverture numérique du dispositif optique 14 permet d'assurer que la densité d'énergie du faisceau laser est élevée seulement au niveau du point focal. La portion du substrat 22 traversée par le faisceau laser 18 et dans laquelle la densité d'énergie du faisceau laser est élevée est donc réduite. Ceci permet en outre, de façon avantageuse, de limiter les interactions non linéaires du faisceau laser 18 avec le substrat 22 en dehors de la région à traiter 28. En effet, les interactions non linéaires du faisceau laser 18 avec le substrat 22 sont d'autant plus importantes que la densité d'énergie locale du faisceau laser 18 est élevée. [0045] L'utilisation d'un dispositif optique 14 asphérique permet d'obtenir une focalisation convenable du faisceau laser 18 malgré la grande ouverture numérique du dispositif optique 14. Ceci permet de réduire la puissance du faisceau laser incident 16 puisque une densité d'énergie locale importante peut être obtenue au point focal. En outre, l'obtention d'une zone focale réduite permet d'assurer que le traitement souhaité ne soit réalisé que dans la région à traiter 28 et pas dans les régions voisines de la région à traiter 28.
[0046] Lors du traitement, le faisceau laser 18 peut entraîner la formation d'un plasma dans la région à traiter 28. La formation d'un plasma entraîne une augmentation importante de l'absorption locale du faisceau laser dans la région d'intérêt.
[0047] La figure 4 représente une courbe d'évolution de l'éclairement I du faisceau laser, exprimé en unité arbitraire (a. u.) et mesuré dans un plan parallèle au plan focal, en fonction de la distance d du plan de mesure par rapport au plan focal et la figure 5 représente une courbe d'évolution du diamètre 0 du faisceau laser, mesuré dans un plan parallèle au plan focal, en fonction de la distance d du plan de mesure par rapport au plan focal. Les courbes représentées sur les figures 5 et 6 ont été obtenues par simulation en utilisant un dispositif optique 14 asphérique ayant une ouverture numérique égale à 0,72. Pour les simulations, l'objet 20 comprenait un substrat 22 en silicium, ce qui correspond aux distances d négatives sur les figures 4 et 5, et une couche 30 en dioxyde de silicium, ce qui correspond aux distances d positives sur les figures 4 et 5. Le plan focal correspond donc à une distance d égale à zéro.
[0048] Comme cela apparaît sur la figure 5, le diamètre du faisceau laser 18 dans le plan focal est inférieur à 2 pm, en raison de la diffraction, et lorsqu'on s'éloigne de 5 mpi du plan focal dans la couche d'oxyde de silicium 30, le diamètre du faisceau laser est de 6,5 pm. Ceci signifie qu'une bonne focalisation du faisceau laser 18 est obtenue dans le plan focal et une forte divergence du faisceau laser 18 est obtenue en aval du plan focal.
[0049] Comme cela apparaît sur la figure 4, l'éclairement diminue d'un facteur d'environ 15 lorsqu'on s'éloigne de 5 pm du plan focal dans la couche d'oxyde de silicium 30. Dans le plan focal, le diamètre du spot laser est d'environ 1,7 pm et
5 pm après le plan focal dans le dioxyde de silicium, le diamètre du faisceau laser est d'environ 6,5 pm. Ceci signifie en outre que la fluence du faisceau lumineux à 5 pm après le plan focal dans le dioxyde de silicium est sensiblement égale à 7 % de la fluence du faisceau laser dans le plan focal. De plus, dans le cas où la région à traiter 28 correspond à une couche interposée entre le substrat 22 et la couche diélectrique 30 d'épaisseur négligeable qui présente une transmission de l'ordre de 40 % en régime linéaire. La transmission peut être beaucoup plus faible dans le cas où le faisceau laser entraîne la formation locale d'un plasma dans la région à traiter 18. En outre, en considérant le fait que
15 % du rayonnement est réfléchi au niveau de la couche à traiter 28 vers le substrat 22 en silicium, on obtient que la fluence du faisceau lumineux à 5 pm après le plan focal dans le dioxyde de silicium est sensiblement égale à 2,4 % de la fluence du faisceau laser 18 dans le plan focal. Ceci signifie que d'éventuels composants formés sur/dans la couche 30 peuvent ne pas être impactés par le traitement réalisé par le système de traitement 40.
[0050] Divers modes de réalisation et variantes ont été décrits. L'homme de l'art comprendra que certaines caractéristiques de ces divers modes de réalisation et variantes pourraient être combinées, et d'autres variantes apparaîtront à l'homme de l'art. Enfin, la mise en oeuvre pratique des modes de réalisation et variantes décrits est à la portée de l'homme du métier à partir des indications fonctionnelles données ci-dessus.

Claims

REVENDICATIONS
1. Système (10) configuré pour le traitement d'une région (28) d'un objet (20) adjacente à un substrat (22), le système comprenant : une source (20) d'un faisceau laser incident (16) configuré pour fournir un faisceau laser focalisé (18), ladite configuration étant telle que la longueur d'onde du faisceau laser incident est supérieure à la somme de 500 nm et de la longueur d'onde associée à l'écart de bandes du matériau composant le substrat et inférieure à la somme de 2500 nm et de la longueur d'onde associée à l'écart de bandes du matériau composant le substrat ; et
- un dispositif optique associant une ouverture numérique supérieure à 0,3 et des moyens de correction des aberrations sphériques apparaissant lors de la traversée du substrat pour une épaisseur donnée du substrat et une distance donnée entre le substrat et le dispositif optique, ledit traitement s'effectuant sur ladite région adjacente au substrat et opposée au dispositif optique, soit au travers dudit substrat (22), et comprenant la modification physique, chimique ou physico-chimique ou l'ablation de la dite région.
2. Système selon la revendication 1, dans lequel le matériau composant le substrat (22) est semiconducteur.
3. Système selon la revendication 1 ou 2, dans lequel la source (20) est adaptée à fournir au moins une impulsion du faisceau laser incident (16), la durée de ladite au moins une impulsion étant comprise entre 0,1 ps et 1000 ps .
4. Système selon la revendication 3, dans lequel la source (20) est adaptée à fournir ladite au moins une impulsion du faisceau laser incident (16) avec une puissance crête comprise entre 300 kW et 100 MW.
5. Système selon l'une quelconque des revendications 1 à 4, dans lequel le dispositif optique (14) comprend au moins une lentille asphérique.
6. Procédé de traitement d'une région (28) d'un objet (20) comprenant en outre un substrat (22) adjacent à la région à traiter (28) comprenant l'exposition de la région à traiter au faisceau laser focalisé (18) fourni par le système (10) selon l'une quelconque des revendications 1 à 5 au travers du substrat.
7. Procédé selon la revendication 6, dans lequel le substrat (22) est semiconducteur.
8. Procédé selon la revendication 6 ou 7, comprenant la fourniture d'au moins une impulsion du faisceau laser incident (16), la durée de ladite au moins une impulsion étant comprise entre 0,1 ps et 1000 ps .
9. Procédé selon la revendication 8, comprenant la fourniture de ladite au moins une impulsion avec une puissance crête comprise entre 300 kW et 100 MW.
10. Procédé selon l'une quelconque des revendications 6 à
9, dans lequel le substrat (22) comprend une face (24) orientée du côté du système (10), le procédé comprenant la formation d'une couche antireflet sur ladite face.
11. Procédé selon l'une quelconque des revendications 6 à
10, dans lequel le substrat (22) est en silicium, en germanium, ou en un mélange ou alliage d'au moins deux de ces composés.
12. Procédé selon l'une quelconque des revendications 6 à
11, dans lequel l'objet (20) comprend une couche diélectrique (30) recouvrant le substrat (22), la région à traiter (28) étant interposée entre le substrat (22) et la couche diélectrique (30) .
13. Procédé selon l'une quelconque des revendications 6 à
12, dans lequel l'objet (20) comprend au moins un circuit électronique recouvrant le substrat (22), la région à traiter (28) étant interposée entre le substrat et le circuit électronique.
14. Procédé selon l'une quelconque des revendications 6 à
13, comprenant la destruction de la région d'intérêt (28) par le faisceau laser focalisé (18) .
EP20740344.5A 2019-07-31 2020-07-21 Systeme et procede de traitement par laser Pending EP4003635A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1908743A FR3099636B1 (fr) 2019-07-31 2019-07-31 Système et procédé de traitement par laser
PCT/EP2020/070502 WO2021018661A1 (fr) 2019-07-31 2020-07-21 Systeme et procede de traitement par laser

Publications (1)

Publication Number Publication Date
EP4003635A1 true EP4003635A1 (fr) 2022-06-01

Family

ID=68807012

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20740344.5A Pending EP4003635A1 (fr) 2019-07-31 2020-07-21 Systeme et procede de traitement par laser

Country Status (5)

Country Link
US (1) US20220266384A1 (fr)
EP (1) EP4003635A1 (fr)
KR (1) KR20220038408A (fr)
FR (1) FR3099636B1 (fr)
WO (1) WO2021018661A1 (fr)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5265114C1 (en) * 1992-09-10 2001-08-21 Electro Scient Ind Inc System and method for selectively laser processing a target structure of one or more materials of a multimaterial multilayer device
JP4754801B2 (ja) * 2004-10-13 2011-08-24 浜松ホトニクス株式会社 レーザ加工方法
ITTO20110327A1 (it) * 2011-04-08 2012-10-09 Osai A S S R L Metodo di taglio laser intramateriale con profondita' di campo estesa
US9895767B2 (en) * 2011-05-10 2018-02-20 The United States Of America, As Represented By The Secretary Of The Navy Laser induced extra-planar elicitation
TWI610374B (zh) * 2013-08-01 2018-01-01 格芯公司 用於將搬運器晶圓接合至元件晶圓以及能以中段波長紅外光雷射燒蝕釋出之接著劑
JP5941113B2 (ja) * 2014-09-30 2016-06-29 ファナック株式会社 集光径を拡大できるレーザ加工装置
US10439101B2 (en) 2017-08-18 2019-10-08 Intel Corporation Micro light-emitting diode (LED) elements and display

Also Published As

Publication number Publication date
FR3099636B1 (fr) 2021-08-06
US20220266384A1 (en) 2022-08-25
WO2021018661A1 (fr) 2021-02-04
KR20220038408A (ko) 2022-03-28
FR3099636A1 (fr) 2021-02-05

Similar Documents

Publication Publication Date Title
CA2922526C (fr) Dispositif et procede de marquage laser d'une lentille ophtalmique avec un laser pulse de longueur d'onde et energie par impulsion selectionnees
WO2018020144A1 (fr) Appareil et procédé de découpe de matériau par faisceau laser allongé non diffractif
FR2935916A1 (fr) Procede et installation de coupage laser avec modification du facteur de qualite du faisceau laser
FR2479482A1 (fr) Absorbeur de resonance
FR2775794A1 (fr) Convertisseur d'intensite lumineuse
EP3058412A1 (fr) Appareil laser modulaire
WO2011027065A1 (fr) Tete de focalisation laser avec des lentilles en zns ayant une epaisseur aux bords d'au moins 5 mm; installation et procede de coupage laser employant une telle tete de focalisation
FR3052603A1 (fr) Dispositif laser et son procede de fabrication
EP0724315B1 (fr) Cavité pour microlaser et son procédé de fabrication
CA2925491A1 (fr) Appareil laser modulaire
FR2737316A1 (fr) Appareil pour l'amelioration de la limite d'endommagement des cristaux de qualite optique par l'intensite optique
FR2985579A1 (fr) Dispositif de mise en forme des rayons lumineux d'un faisceau laser
WO2021018661A1 (fr) Systeme et procede de traitement par laser
FR2934722A1 (fr) Dispositif de generation d'une impulsion laser a duree reduite.
FR2759208A1 (fr) Dispositif de controle du pointage et de la focalisation des chaines laser sur une cible
EP4097535A1 (fr) Dispositif de traitement d'un faisceau lumineux par l'intermediaire d'un convertisseur multi plan pour le conformer à une forme prédéterminée
FR2961731A1 (fr) Procede et installation de coupage laser a fibre ou disque avec distribution d'intensite du faisceau laser en anneau
FR2855273A1 (fr) Lentille de fresnel a eclairer sous incidence elevee
WO2015121578A1 (fr) Systeme laser femtoseconde a grande energie et impulsion de duree reduite
FR2967789A1 (fr) Protection d'une surface optique
WO2002001683A1 (fr) Laser pompe et milieu laser optimise
WO2024100047A1 (fr) Système laser avec dispositif optique monolithique de collimation et de circularisation
EP4327140A1 (fr) Dispositif pour produire un faisceau lumineux polychromatique par combinaison de plusieurs faisceaux lumineux individuels
FR3118330A1 (fr) Dispositif d'amplification d'un laser
FR2739732A1 (fr) Dispositif d'amplification optique

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220119

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NOVAE

Owner name: ALEDIA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LEUKOS

Owner name: ALEDIA