EP4327140A1 - Dispositif pour produire un faisceau lumineux polychromatique par combinaison de plusieurs faisceaux lumineux individuels - Google Patents

Dispositif pour produire un faisceau lumineux polychromatique par combinaison de plusieurs faisceaux lumineux individuels

Info

Publication number
EP4327140A1
EP4327140A1 EP22723101.6A EP22723101A EP4327140A1 EP 4327140 A1 EP4327140 A1 EP 4327140A1 EP 22723101 A EP22723101 A EP 22723101A EP 4327140 A1 EP4327140 A1 EP 4327140A1
Authority
EP
European Patent Office
Prior art keywords
mirrors
mirror
light beams
additional
beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22723101.6A
Other languages
German (de)
English (en)
Inventor
Cyrielle MONPEURT
Mathieu Dupoy
Gabriel JOBERT
Olivier Lartigue
Grégoire MATHIEU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP4327140A1 publication Critical patent/EP4327140A1/fr
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/09Multifaceted or polygonal mirrors, e.g. polygonal scanning mirrors; Fresnel mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • G01J3/108Arrangements of light sources specially adapted for spectrometry or colorimetry for measurement in the infrared range
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0052Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/009Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with infrared radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1073Beam splitting or combining systems characterized by manufacturing or alignment methods
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1086Beam splitting or combining systems operating by diffraction only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/181Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02315Support members, e.g. bases or carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches

Definitions

  • TITLE Device for producing a polychromatic light beam by combining several individual light beams
  • the present invention relates in particular to a device for combining, or, otherwise formulated, for superimposing several light beams with each other, these light beams having different respective average wavelengths.
  • Two light beams emitted by two different laser sources can be combined with each other on a semi-reflecting blade, to obtain the same overall light beam. But this is accompanied by a significant loss of power (typically, by a factor of approximately two), unless a "dichroic" semi-reflecting plate is used, having a reflectivity which is highly dependent on wavelength, reflecting for the average wavelength of the first beam, and transparent for that of the second beam. But such a dichroic plate can be difficult to achieve in the mid-infrared range, in particular when the two wavelengths to be reflected or transmitted, respectively, are close to each other because it is then necessary that the filter has a clean cutoff.
  • Document US 2013/0292571 also discloses a device comprising several laser sources emitting in the mid-infrared, which emit individual light beams which are reflected in the same common direction thanks to a pivoting mirror system, mounted on a galvanometric actuator. For each laser source, the beam emitted by the source is first of all reflected towards the pivoting mirror by means of a deflection mirror. These deflection mirrors are static, but each mounted on a mount with two degrees of freedom which makes it possible to suitably direct the light beam so that it reaches the pivoting mirror.
  • the rotation of the pivoting mirror then makes it possible to alternately direct one then the other of these light beams along a given axis, fixed by two fixed diaphragms of small diameter.
  • this device has several disadvantages. First of all, it does not make it possible to simultaneously superimpose these different light beams on each other. Then, a pivoting mirror system makes the device less reliable and less robust with respect to misalignments, over the long term. And the set of mirrors used to direct the light beams towards the pivoting mirror is bulky and tends to get out of adjustment over time.
  • Document US 2013/0292571 also indicates that the different light beams emitted by these laser sources could, as a variant, be superimposed on each other thanks to a dispersive element such as a diffraction grating.
  • Document US9620933 also discloses a device for combining light beams using a diffraction grating, this device, represented in FIG. 4 of document US9620933, being made from a single block, transparent to the bundles to be combined.
  • a device for producing a polychromatic light beam, by combining several individual light beams, the device comprising: several distinct laser sources which each emit an individual light beam, these laser sources having lengths d respective average transmission wave which are different from each other, and a beam combining system comprising: a dispersive element which deflects each of said beams in a different way, depending on the average emission wavelength corresponding to this beam, and a set of deflecting mirrors which, for each laser source, comprises a deflecting mirror associated with this source, this deflection mirror reflecting the light beam emitted by this source towards the dispersive element, this deflection mirror being positioned and oriented so that, after deflection by the dispersive element, said light beam is substantially centered on an axis of common propagation, which is the same for the different light beams, the device comprising a monolithic part which has at least as many facets as there are laser sources and in which, for each of the said deflecting mirror
  • the different individual light beams reach the dispersive element (for example a diffraction grating) with different respective angles of incidence.
  • the dispersive element then combines these different beams to produce the polychromatic light beam in question, which constitutes an overall light beam, delivered as output by the device.
  • This global light beam is polychromatic in the sense that its spectrum has several intense peaks centered on different wavelengths, in this case on the average emission wavelengths of the different laser sources.
  • the term “polychromatic” cannot be interpreted as limiting the invention to the visible wavelength range.
  • each individual light beam After deflection by the dispersive element, each individual light beam is substantially centered on said common axis of propagation, in the sense that after deflection by the dispersive element, the mean axis of propagation of the individual light beam considered is parallel to this common axis of propagation to better than 3 or 4 degrees, or even less.
  • the precision with which this superposition is carried out can for example be such that, at a typical working distance of the dispersive element, for example between 0.1 m and 1 m, the beams are superimposed on each other with better precision. than 10% of the diameter of each of these bundles.
  • the deflection mirrors are individual optical components
  • the rear face of the mirror is fixed permanently, for example glued, against one of said facets, the mirror thus being integral with the monolithic piece.
  • the deflection mirrors are integral with each other. This makes the device much more stable and more compact than a device that would be made from adjustable mirror mounts, reduces its mechanical complexity and improves its reliability.
  • This configuration based on the monolithic part in question, also makes it possible to arrange the deflection mirrors, or at least some of them close to each other, or even in contact with each other, which proves particularly useful when the emission wavelengths of some of the sources are close to each other. Indeed, in this case, the light beams emitted by these sources will also be close to each other from an angular point of view, just upstream of the dispersive element, that is to say just before combination.
  • each emission wavelength is between 2 microns and 15 microns, or even between 5 and 11 microns (these values correspond to wavelengths of wave in vacuum).
  • the light beams in question then have spectra located in the mid-infrared. This range of wavelengths is well suited for detecting different types of molecules, whether they are small molecules like the carbon dioxide molecule CO2, or larger molecules like proteins or other molecules. of biological interest.
  • the average emission wavelengths of the different sources are such that: at least two of said emission wavelengths are separated from each other by less than 0.5 microns, and even less than 0.3 micron, or even less than 0.15 micron, while at least two of said emission wavelengths are separated from each other by more than 0.5 micron, or even more than 1.5 microns (or even more than 3 microns).
  • the respective wavelengths of the light beams to be combined are then distributed over a fairly wide range of wavelengths, while including close wavelengths to be combined.
  • the device may moreover comprise several pairs of sources each grouping together two of said laser sources, the two mean emission wavelengths of the two sources of each pair being separated from each other by less than 0. .3 micron, or even less than 0.15 micron.
  • the polychromatic light beam produced by the device then comprises several pairs of close wavelengths.
  • This setup is particularly interesting in terms of imaging, spectroscopy or detection of molecules and other compounds. Indeed, for each pair of wavelengths, the first of these wavelengths can be chosen away from an absorption peak of the compound to be detected, while the second of these wavelengths coincides with this peak. .
  • the first wavelength is then used to measure the absorption of the sample off peak, to produce a "blank" (ie: to measure a level of absorption of the medium which would correspond to an absence of the substance to be detected), while the second wavelength is used for detection or concentration measurement itself. More generally, such a pair of close wavelengths allows differential detection or differential concentration measurement of the compound in question.
  • combining such wavelengths is particularly restrictive from a geometric point of view. Indeed, before the dispersive element, some beams will be very close to each other from an angular point of view (those associated with a pair of close wavelengths), while others will be very far apart. from each other from an angular point of view.
  • the set of additional mirrors then comprises, for each laser source, an additional mirror associated with this source, this additional mirror reflecting the light beam emitted by this source towards the deflection mirror associated with the source considered, this deflection mirror then reflecting this beam towards the dispersive element.
  • the additional mirrors in question can be fixed to each other, and can also be fixed to the first mirrors.
  • the set of additional mirrors thus makes it possible to obtain a beam combination system that is both compact and compatible with a large initial spacing between beams.
  • the additional mirrors are separate from each other.
  • these mirrors which are for example flat, are oriented differently from each other, and/or are offset (longitudially or laterally) relative to each other, the mirrors then being disjoint.
  • the laser sources are small semiconductor laser sources very close to each other (for example 1 or a few mm from each other). Indeed, a collimation of the light beams produced remains desirable. If this collimation is carried out with several individual collimators, one per beam, the laser sources will have to be separated from each other, so that the beams produced will again be offset laterally relative to each other. And if the collimation of the beams is carried out with the same collimator, common to the different beams (see figure 8 for example), the axes of propagation of these beams after the collimator will be very far apart from each other from an angular point of view .
  • the set of additional mirrors again proves to be particularly useful, since it also makes it possible to bring the light beams closer together so that they reach the deflecting mirrors, and since it also makes it possible to reduce the difference angular between beams introduced by the common collimator.
  • the individual light beams are respectively centered on different axes called axes of propagation before combination.
  • at least two of said axes of propagation before combination can be angularly separated from each other by less than 5 degrees, or even less than 2 degrees. This corresponds to a situation in which the average emission wavelengths, corresponding to these two light beams to be combined, are close to each other.
  • these two deflection mirrors must be small in size, and located close to each other, in terms of lateral positions. It is also possible to provide that the two deflection mirrors, which reflect the two light beams whose axes of propagation before combination are angularly separated by less than 5 degrees or even less than 2 degrees, each have a transverse dimension between 0, 8 times and 3 times the diameter of the beam considered.
  • the device which has just been presented may have one or more of the following additional characteristics, considered individually or according to all the technically possible combinations: said monolithic part also has additional facets and, for each additional mirror, the reflective surface of the additional mirror is formed by one of said additional facets, or by a reflective deposit covering said additional facet, or by a front face of an individual optical component whose rear face is fixed against said additional facet; the device comprises an additional monolithic part which has at least as many facets as there are additional mirrors, and in which, for each additional mirror, the reflecting surface of the additional mirror is formed by one of the facets of the monolithic part additional, or by a reflective deposit covering this facet, or by a front face of an individual optical component whose rear face is fixed against said facet; said dispersive element is a diffraction grating produced on one face of said monolithic part, or fixed permanently against this face; said monolithic part is made of a thermally conductive material and the laser sources are in thermal contact
  • Figure 1 schematically represents a device for producing a polychromatic light beam according to a first embodiment implementing the teachings of the invention, seen from above.
  • FIG. 2 schematically represents an optical configuration common to a second, third, fourth and fifth embodiment implementing the teachings of the invention.
  • Figure 3 is a schematic representation in perspective of the second embodiment of the device for producing such a light beam polychromatic, on which only one of the individual light beams which are combined to obtain the polychromatic light beam has been represented.
  • FIG. 4 Figure 4 shows again the device of Figure 3, but showing another of said individual light beams.
  • Figure 5 again shows the device of Figure 3 but showing yet another of said individual light beams.
  • FIG. 6 Figure 6 again shows the device of Figure 3, but showing the last of the individual light beams in question.
  • FIG.7 Figure 7 schematically shows the device for producing a polychromatic light beam according to the third embodiment, seen from above.
  • FIG. 8 schematically represents the device for producing a polychromatic light beam according to the fourth embodiment, seen from above.
  • FIG. 9 schematically represents the device for producing a polychromatic light beam according to the fifth embodiment, seen from above.
  • the invention relates to a device for producing a polychromatic light beam by combining several individual light beams emitted by different laser sources having respective average emission wavelengths different from each other. This combination is achieved through a dispersive element, such as a prism or a diffraction grating.
  • a first, second, third, fourth and fifth embodiment of this device are shown respectively in Figures 1, 3, 7, 8 and 9. They are identified in these figures respectively by the reference numbers 1, 2 , 3, 4 and 5.
  • the device 2; 3; 4; 5 includes a first and a second set of mirrors, which allow very flexible adjustment of the directions and positions of the light beams F1, F2, F3, F4 produced by the various laser sources 11, 12, 13, 14, before combining them thanks to the dispersive element 30.
  • the device 1 comprises a single set of deflecting mirrors, 120.
  • the device 1; 2; 3; 4; 5 comprises four laser sources 11, 12, 13 and 14.
  • these laser sources 11, 12, 13, 14 are QCLs (according to the English acronym of Quantum Cascade Laser, or quantum cascade laser).
  • each source 11, 12, 13, 14 is here a semiconductor laser source, of the laser diode type, comprising an emissive structure (and not several) and emitting a light beam (and not several).
  • the source in question 11, 12, 13, 14 is not made in the form of an array of several laser diodes (“laser diode array” or “laser diode bar” or “laser diode stack” in English ).
  • These laser sources 11, 12, 13, 14 have average emission wavelengths, l1, l2, l3 and l4, which are different from each other and which are located here in the mid-infrared range. .
  • These average emission wavelengths l1, l2, l3, l4 are each between 2 and 15 microns, and even between 5 and 11 microns, here. It will also be noted that the fact that the beams F1 to F4 are called "light beams" cannot be interpreted as meaning that these beams are visible beams.
  • the sources 11, 12, 13, 14 are distinct from each other.
  • their respective emissive zones are not formed in the same layer of semiconductor material (which would be common to the different sources), and all of these different sources do not form the same bar of laser diodes, but rather form contrary a group of several distinct sources, and even disjoined.
  • the average emission wavelength l1, l2, l3, l4 of the source is a wavelength on which the emission spectrum of this source is centered. It can be the average wavelength of this spectrum, or a wavelength identifying the maximum of a main emission peak of the source.
  • the sources 11, 12, 13, 14 are substantially monochromatic, in the sense that they each have a narrow spectrum, with for example a spectral width (expressed in wave number) less than 0.1 cm 1 .
  • These different laser sources 11, 12, 13 and 14 each emit an individual light beam F1, F2, F3 and F4.
  • these light beams F1, F2, F3, F4 are respectively centered on different axes of propagation before combination, denoted X1, X2, X3, X4 (see FIGS. 1 to 6). These axes are angularly offset from each other.
  • X1, X2, X3 or X4 By "centered on the axis of propagation before corresponding combination, X1, X2, X3 or X4", it is meant that the average direction of propagation of each of the light beams F1, F2, F3 or F4 and their average lateral position respective (in a plane perpendicular to this direction of propagation), are those of the axis X1, X2, X3, X4 in question.
  • each of these light beams, F1, F2, F3 and F4 is substantially centered (and even, here, exactly centered) on a common axis of propagation Xo, which is the same for the different beams F 1 , F2, F3, F4.
  • these different beams are superimposed on each other. They thus form a global, polychromatic light beam, Fo.
  • the polychromatic light beam Fo propagated in the opposite direction, it would be broken up by the dispersive element 30 to give light beams centered respectively on the axes X1, X2, X3 and X4 and propagating in the opposite direction of the beams F1, F2, F3 and F4 (and having average wavelengths l1, l2, l3 and l4 respectively).
  • the dispersive element is a plane diffraction grating, in reflection, 30.
  • the angles of incidence on the grating are denoted respectively Q1, Q2, Q3, Q4 for the various light beams F1 to F4 (Q1, for example, is therefore the angle between the axis X1 and the direction Xn which is perpendicular to the plane P of the grating).
  • Q1 is therefore the angle between the axis X1 and the direction Xn which is perpendicular to the plane P of the grating.
  • the axis corresponding to the diffraction order m, for the wavelength l1 would be X1.
  • the axes X1, X2, X3 and X4 are chosen so as to meet the grating 30 at the same point O (point of combination of the beams). In other words, on the grating 30, the beams F1 to F4 are superimposed on each other (they occupy the same position, in the plane of the grating).
  • the diffraction grating 30 is a blazed grating: the pattern of the grating, repeated periodically with the pitch a, is a facet 31 inclined, with respect to the plane P of the grating, by an angle called the blaze angle g.
  • the blaze angle g is chosen so as to maximize the light power which is diffracted in the order m (ie: the grating is blazed in the order m), for a wavelength called the blaze wavelength Xb.
  • Using such a blazed network makes it possible to limit the power losses during the combination of the various beams F1 to F4 on the network. Indeed, with such a grating, the diffraction efficiency towards order m, around the blaze wavelength X, can commonly be greater than 70%, or even greater than 90%. This therefore allows, conversely, a combination efficiency greater than 70%, or even 90%.
  • the blaze wavelength Xb (and the corresponding blaze angle, g) can for example be chosen between the shortest and the longest of the emission wavelengths l1 to l4, to obtain a good combination efficiency for each of these wavelengths.
  • X can be equal to the average of these emission wavelengths I1 to X4.
  • the laser sources used here emit linearly polarized beams, all along the same axis. It is possible in this case to obtain very high diffraction (and therefore combination) efficiencies (for example greater than 85 or even 90%), even if the blaze wavelength Xb is slightly offset with respect to the wavelength range [11, X4 ⁇ .
  • the different light beams propagate and are contained in the same propagation plane, in this case the plane (x,y), which corresponds to the plane of the figure, on the figures 1, 2, and 7 to 9. Just at the output of the laser sources, the light beams each propagate in this plane.
  • the first mirrors, the grating plane, and, when present, the second mirrors, are each perpendicular to this propagation plane, so that the beams remain contained in the plane in question during their propagation in the device (especially since the lines of the network are perpendicular to this plane).
  • the device 1 comprises one, and not two sets of mirrors, arranged on the path of the light beams F1, F2, F3, F4, between the sources 11, 12, 13 , 14 and the dispersive element 30 (see FIG. 1).
  • each source 11, 12, 13, 14 comprises an individual collimating element, for example an aspherical converging lens or a set of globally converging lenses, which makes it possible to collimate the light beam that it emits.
  • the same cylindrical lens common to the different beams can be placed on the paths of these beams, at the output of the sources, to reduce an (individual) divergence presented by each of these beams in a vertical plane, greater than the divergence of this beam in the x,y horizontal plane.
  • the respective axes of propagation, on which the various light beams F1, F2, F3, F4 are centered, are parallel to each other. In this case, they are each parallel to the x axis visible in Figure 1.
  • the sources 11, 12, 13, 14, they are arranged one after the other, in line, along an axis y perpendicular to the axis x.
  • the set of mirrors, 120 comprises, for each source 11 to 14, a mirror 121 associated with this source, which reflects the beam F1, F2, F3, F4 emitted by this source towards the dispersive element 30.
  • This mirror 121 is positioned and oriented so that, after reflection on this mirror, the considered beam, F1, F2, F3 or F4, is centered on the axis of propagation before combination X1, X2, X3 or X4 which has been mentioned above.
  • the first mirrors 121 are flat.
  • the set of mirrors 120 which includes four mirrors 121, is made here monolithically. It includes a monolithic part 105, it is in one piece (one piece, with continuity of material from one part of the part to another). This piece has at least as many facets as there are mirrors 121 , i.e. at least four facets here.
  • the mirrors 121 are made here by polishing the facets then by depositing a reflective coating on these facets.
  • This reflective coating is for example a reflective metallic deposit in the mid-infrared such as a deposit of gold, silver or aluminum (possibly covered itself with a thin transparent protective layer).
  • the reference sign 121 identifies both the mirror considered, and the corresponding facet of the monolithic part 105.
  • the monolithic part 105 is formed for example of a metallic material, or of a crystalline semiconductor material such as silicon.
  • the facets in question can be obtained by engraving, by molding, or even by machining by removing material (for example by milling).
  • the reflection on the mirrors 121 takes place externally, relative to the monolithic part 105 (in other words, the light beams do not pass through this part).
  • the monolithic part could be at least partially transparent for the light beams F1 to F4, and be traversed by these light beams (the part absorbing for example less than 10% of the light power of these beams).
  • the monolithic part can then be produced in a chalcogenide glass, such as Zinc Selenide ZnSe or Germanium Selenide GeSe.
  • the reflection on the mirrors would take place on the internal side of the part, and not on the external side. This reflection can be obtained by depositing reflection produced on the facets in question, or by total internal reflection on these facets.
  • the mirrors in question can be produced in the form of individual mirrors (in the form of individual optical components) each comprising a reflective coating (for example metallic) deposited on an individual substrate, this substrate itself being even fixed permanently, for example glued, against one of said facets of the monolithic part.
  • the reflection on the mirrors takes place on the external side of the substrates in question, on a front face of the component, the rear face being fixed against one of said facets.
  • the mirrors 121 are large enough to each intercept most of the light beam F1 - F4 which is reflected on the mirror in question.
  • the degree of overlap between the irradiance profile (power profile per unit area) of the beam considered, and the mirror 121 on which it is reflected is greater than 80%, or even greater than 90%.
  • the extension c of the mirror 121 in the plane (x,y) is greater than or equal to 0/cos(a), where the diameter ⁇ of the beam is the total width of the irradiance profile, taken as 1/e 2 of the maximum of this profile .
  • This first embodiment is simpler to make than the embodiments described below, since it does not include a second set of deflection mirrors.
  • it provides less flexibility in the positioning of the beams and the sources, and generally results in a device that is less compact than the other embodiments, with two sets of mirrors.
  • Figure 2 shows an optical configuration of the device 2; 3; 4; 5, common to the second, third, fourth and fifth embodiments.
  • the device 2; 3; 4; 5 includes the first set of mirrors 220; 520, as well as a second set of mirrors, 223; 423; 523.
  • the first mirror assembly comprises, for each source 11, 12, 13, 14, a first mirror 221; 521 which reflects the light beam F1, F2, F3, F4 emitted by this source towards the dispersive element 30, with a direction and a position adapted so that the various beams F1 - F4 are superimposed on each other, after deflection by the dispersive element 30.
  • the second set of mirrors 223; 423; 523 comprises, for each source 11, 12, 13, 14, a second mirror 222; 422; 522 which reflects the light beam F 1 , F2, F3, F4 emitted by this source towards the first mirror 221; 521 associated with this source.
  • the second set of mirrors 223; 423; 523 thus makes it possible to adapt the positions, and possibly the directions presented by the light beams at the output of the sources, to the positions and orientations of the first mirrors 221; 521.
  • the emission wavelengths l1 to l4 are classified in the following order: l1 > l2 > l3 > l4. As already indicated, they are located in the mid-infrared, between 2 and 15 microns.
  • the two wavelengths l1 and l2 form a pair of close wavelengths, and the same applies to the two wavelengths l3 and l4: the difference in wavelength l1 - l2 is less than 0, 5 micron and so is the l3 - l4 difference, which is even less than 0.3 microns (and, in fact, less than 0.2 microns), here.
  • the total difference between wavelengths, l1 - l4 it is greater than 0.5 microns, and even greater than 1.5 microns, or even greater than 2 microns, here.
  • the first pair of wavelengths l1, l2 is centered on an average wavelength of approximately 8 microns while the second pair of wavelengths l3, l4 is centered on an average wavelength approximately 6 microns.
  • the angular deviation Q1-Q2 is of the order of or less than 5 degrees, while the angular deviation Q3-Q4 is of the order of or less than 2 degrees.
  • the beams F1 and F2 are therefore slightly angularly separated from each other, and the same applies to the beams F3 and F4.
  • Like device 2; 3; 4; 5 is compact (the distance between the grating and the first mirrors is typically around ten cm, or even less), given the small angular difference between the beams F3 and F4, the first mirrors 221; 521 which reflect these two beams are positioned close to each other, from a lateral point of view.
  • These mirrors, as well as the first mirrors which reflect the beams F1 and F2 moreover each have a small lateral dimension c, for example just sufficient to intercept the light beam which is reflected on the mirror considered.
  • the extension c of each of the primes, in the (x,y) plane can be between 0 ,8 times and 3 times the diameter ⁇ of the beam considered ( ⁇ being the total width of the irradiance profile of the beam, taken at 1/e 2 of the maximum of this profile). Provision can be made more precisely for this extension c to be between 0.8 and 2 times the quantity 0/cos(a), where a is the angle of incidence of the beam on the mirror considered.
  • the device 2 according to the second embodiment is represented schematically, in perspective, in FIGS. 3 to 6.
  • FIGS. 3 to 6 For greater clarity, on the FIG. 3, only the light beam F4 emitted by the fourth source 14 of device 2 is represented.
  • FIGS. 4, 5 and 6, only the beam F3, the beam F2, and the beam F1 have been shown respectively.
  • the entire device 2 is made from a single monolithic part 205, which serves as a common support for the various elements of the device.
  • the first mirrors 221 as well as the second mirrors 222 are made in the form of different planar facets of this same monolithic part 205. These facets are reflective either because the material which forms the monolithic part 205 is itself reflective and suitably polished (or engraved), or because they are covered with a reflective deposit, for example a metallic deposit.
  • the mirrors, and the facets in question are identified by the same references, 221 and 222, in Figure 3.
  • the dispersive element 30, which we recall is a diffraction grating in reflection, is fixed permanently, for example glued against a face 206 of the monolithic part 205.
  • it is a lateral face of the grating, perpendicular to the plane P of the grating, which is glued against the face 206 of the monolithic part, face 206 which is itself parallel to the plane (x,y) mentioned above (mean plane in which propagate the different light beams).
  • it could be a rear face of the network (face parallel to the plane of the network) which is fixed against a face of the monolithic part perpendicular to the plane (x,y).
  • each of these sources comprises an individual box which integrates the various components of the source and which comprises a bottom plate 17, flat, which is fixed against a face of the monolithic part 205 (in this case a face parallel to the xy plane)
  • the monolithic part 205 is made of a thermally conductive material, that is to say having a thermal conductivity greater than or equal to 100 Watts per meter and per Kelvin, or even greater than 200 Watts per meter and per Kelvin.
  • the monolithic part 205 acts as a thermal radiator to evacuate the heat given off by the laser sources, this radiator having for example, for the heat transfer in question, a thermal resistance of less than 0.2 Kelvin per Watt.
  • it is made of metal, for example aluminum or aluminum alloy.
  • the laser sources 11 - 14 are mounted with their base 17 in contact with this part 205, good thermal contact is obtained between these sources and the monolithic conductive part 205, which promotes the evacuation of the heat given off by these sources and can contribute to improving the stability of their operating temperature, and therefore the stability of the average emission wavelength of each of the sources (which, among other things, improves the stability of the direction of the beam considered after the element dispersive).
  • each light beam F1 - F4 has a diameter ⁇ of 3 mm.
  • each of these beams F1, F2, F3, F4 propagates parallel to the y axis.
  • the sources 11, 12, 13, 14 are arranged next to each other, along a line parallel to the x axis.
  • Each second mirror 222 is located opposite the output aperture of the corresponding source, and is inclined by 45 degrees with respect to the beam F1, F2, F3, F4 which it reflects. It therefore deviates this beam by approximately 90 degrees. After reflection on these mirrors, the beams F1 - F4 are therefore parallel to the x axis.
  • the first two mirrors 221, which respectively reflect the beam F3 and the beam F4 are attached to each other, here (on the side, they are in contact with each other). The same applies to the first two mirrors 221 which respectively reflect the beam F1 and the beam F2.
  • the angles of incidence on the first mirrors 221 are here slightly less than 45 degrees. These angles of incidence are chosen so that the beams F1 - F4 then illuminate the grating 30 with the angles of incidence Q1 - Q4 mentioned above, adapted to combine these beams by diffraction.
  • the first and second mirrors 221, 222 each have a rectangular reflecting surface, the width of which is for example between 3.5 and 4.5 mm.
  • the grating 30 is for example a grating optimized for a blaze wavelength Xb of 10.6 microns, blazed in order -1 (this type of grating, relatively standard, is commercially available and perhaps easily acquired). Its blaze angle g is between 30 and 40 degrees. Here, this grating and its orientation are such that the exit angle qo is approximately 40 degrees. In this configuration, a combination efficiency of 70% is obtained for the beam F4, while it is 95% for the beam F1 (whose average wavelength l1 approaches the wavelength of blaze b). Combination efficiency means the ratio between: the power of the light beam considered, after deflection by the dispersive element, once superimposed on the other beams, and the power of this same beam just upstream of the dispersive element, before combination.
  • diffraction grating could be used.
  • it could for example be a blazed diffraction grating, whose blaze angle g is chosen to obtain an optimal diffraction efficiency in order -1, in Littrow configuration, at a length blaze wave Xb between CL and l1 (instead of being greater than l1).
  • the first and second mirrors could be produced in the form of individual mirrors (individual optical components) each comprising a reflective coating (for example metal) deposited on an individual substrate, this substrate being fixed permanently, for example glued, against a facet of the monolithic part in question.
  • the reflective surfaces of these individual mirrors are then positioned at the same place as the reflective facets 221, 222 described above, visible in FIG. 3.
  • the part 205 could be produced in the form of several distinct blocks fixed to each other, for example: a first block for the first set of mirrors, a second block for the second set of mirrors, and a third block serving as a support, on which the first and second blocks would be fixed as well as the laser sources and the grating.
  • the first block would have at least as many facets as there are first mirrors, and the first mirrors would be made by etching or polishing one of said facets, or by etching or polishing followed by a deposit reflecting on one of said facets, or would be fixed permanently against one of said facets.
  • the second set of mirrors would be made in the same way, based on the second block.
  • the third embodiment of the device 3 is shown schematically in Figure 7. It is similar to the second embodiment but, in this third embodiment, the polychromatic light beam Fo leaves the device 3 crossing a passage 306 provided between two of the first mirrors 221.
  • this passage 306 is located between the pair of first mirrors 221 (close to each other) on which the beams F3 and F4 are reflected, and the pair of first mirrors 221 (close to each other) each other) on which the beams F1 and F2 are reflected.
  • the passage 306 can be obtained, as here, by engraving or machining the monolithic part 305 on which the first mirrors 221 are made or fixed. We thus obtain this opening, crossed by the polychromatic light beam Fo, while preserving the monolithic character (in one piece) of part 305.
  • the device 3 can be obtained by slightly modifying the device 2 of the second embodiment visible in FIG. 3, as follows: the characteristics and/or the orientation of the diffraction grating 30 are modified so as to modify the orientation of the common axis Xo, and the passage in question is opened, in the monolithic part (by machining), between the two pairs of first mirrors mentioned above. In this case, the first and second mirrors are therefore made directly on the monolithic part 305, which also serves as a support for the laser sources and the grating.
  • the passage in question could however be obtained by making the first set of mirrors from two distinct monolithic parts, integral with each other and separated from each other so that the beam Fo can pass between them.
  • two of the first mirrors 221 are made (or fixed) on one of these two monolithic parts, while the other two first mirrors 221 are made (or fixed) on the other monolithic part.
  • the fourth embodiment of the device 4 is shown schematically in Figure 8. It is similar to the second embodiment but, in this fourth embodiment, the light beams F1 - F4 which come out of the laser sources 11 - 14 are not collimated. Just at the output of the sources, these beams are strongly divergent.
  • the device 4 then comprises a collimation element 407 common to the various light beams F1 - F4 placed on the path of these beams, just at the output of the sources 11 - 14. This same collimation element 407 modifies the divergence of each of the light beams, in this case so as to considerably reduce this divergence to put the light beam in the form of a beam of parallel rays.
  • the collimation element 407 is globally convergent (positive image focal length). It can be made in the form of a converging lens (for example an aspherical lens), or in the form of a group of lenses, globally converging. As a variant, the collimating element could optionally comprise a convergent mirror, on which the various light beams to be collimated would be reflected.
  • the second set of mirrors, 423 makes it possible to correct this large angular difference between the beams F1 - F4, and makes it possible to bring these beams closer from each other, in pairs, so that they reach the first mirrors 221 (which are themselves grouped in pairs of two mirrors close to each other).
  • the positions and orientations of the first mirrors 221 can be similar, or even identical to those mentioned above, during the presentation of the second embodiment.
  • the positions of the second mirrors 422, imposed mainly by the angular difference between beams caused by the collimating element 407, are clearly different from those of the second mirrors 222 of the second embodiment.
  • the device 4 comprises a monolithic part 405, comparable to the monolithic part 205 of the second embodiment: the first and second mirrors 221, 422 are made (or fixed) on facets of this part 405 in one piece , which also serves as a support for the sources 11 - 14, the grating 30, and the collimating element 407.
  • first and second sets of mirrors, 220 and 423 could be made respectively from two separate monolithic parts.
  • the common collimation element could be omitted, the second mirrors then being convergent mirrors each correcting the inherent divergence of the light beam reflecting on this mirror.
  • the monolithic part 505 which serves as a support for the first mirrors 521, is made of a material that is essentially transparent to the light beams F1 - F4 (FIG. 9). This monolithic part also serves as a support for the second mirrors 522.
  • the part 505 for example absorbs less than 10% of the light power of the beams F1 - F4 passing through it. It is made here in a chalcogenide glass, such as Selenium Zinc ZnSe or germanium.
  • Each first mirror 521 and each second mirror 522 corresponds to a flat facet of this part 505.
  • each of these facets is covered with a reflective coating, in this case metallic.
  • the reflection on these different mirrors takes place on the internal side of the part, in the material in question.
  • this reflecting coating could be omitted, the reflection in question being obtained by total internal reflection on the facets.
  • the inclination of the beams relative to the facets serving as a mirror must of course be compatible with total internal reflection in the material in question.
  • the diffraction grating could be produced, by etching or by deposition, directly on one face of the monolithic part in question, the grating then being either a transmission grating or a reflection grating.
  • the sources could deliver divergent light beams, as in the fourth embodiment.
  • the device can be provided with a collimation element common to the different light beams.
  • This collimating element can be made in the form of a convex entrance face of the monolithic part.
  • the device 1; 2; 3; 4; 5 which has just been described makes it possible to produce a polychromatic light beam Fo making it possible in particular to raise multi-spectral images in the mid-infrared, which is useful in particular in the field of medical imaging, defense and 'food industry.
  • this device could be made to this device, in addition to those already mentioned.
  • another type of dispersive element such as a prism, could be used instead of the grating mentioned above.
  • this network could be of another type. It could for example be a network in transmission, instead of a network in reflection. And instead of being used in the -1 order, it could be used in another diffraction order, for example in the -2 order.
  • some of the propagation axes before combination could correspond to a given diffraction order m, while the other propagation axes before combination would correspond to another diffraction order m′.
  • the axes X1 and X2 could correspond to the order -1
  • the axes X3 and X4 would correspond to the order +1 , or -2.
  • Exploiting different orders of diffraction in this way can facilitate the combination of beams having, two by two, close wavelengths, while being distributed over a fairly wide range of wavelengths.
  • the array could also be configured and positioned so as to couple each individual light beam to a propagation mode parallel to the plane of the array, the various incident light beams on the array then being combined in the form of the same light wave polychromatic propagating parallel to the grating.
  • the laser sources used could be of a type other than those mentioned above (in this case QCLs). It could for example be sources of the ICL type (according to the Anglo-Saxon acronym of "Interband Cascade Laser", that is to say interband cascade laser), other types of laser diodes (with an assembly in external cavity, or not), other types of laser with external or internal cavity or tunable lasers.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

Le dispositif comprend plusieurs sources (11, 12, 13, 14) laser distinctes qui émettent chacune un faisceau lumineux individuel, un élément dispersif (30), et un ensemble (220) de miroirs de renvoi qui, pour chaque source laser, comporte un miroir (221) de renvoi associé à cette source, ce miroir réfléchissant le faisceau lumineux (F4) émis par cette source vers l'élément dispersif, ce miroir étant positionné et orienté de sorte que, après déviation par l'élément dispersif, ledit faisceau lumineux soit sensiblement centré sur un axe de propagation commun (Xo), qui est le même pour les différents faisceaux lumineux, lesdits miroirs étant solidaires les uns des autres.

Description

DESCRIPTION
TITRE : Dispositif pour produire un faisceau lumineux polychromatique par combinaison de plusieurs faisceaux lumineux individuels
DOMAINE TECHNIQUE
[0001] La présente invention concerne notamment un dispositif pour combiner, ou, autrement formulé, pour superposer plusieurs faisceaux lumineux les uns avec les autres, ces faisceaux lumineux ayant des longueurs d’onde moyennes respectives différentes.
ARRIERE-PLAN TECHNOLOGIQUE
[0002] Superposer des faisceaux lumineux émis par différentes sources laser permet d’obtenir un même faisceau lumineux polychromatique, dont le spectre comprend plusieurs pics intenses centrés sur des longueurs d’onde différentes. Cette forme de multiplexage (multiplexage fréquentiel) a de nombreuses applications. Elle permet par exemple de relever une image multispectrale représentative, pour les différentes longueurs d’ondes en question, d’une transmission ou d’une réflexion d’un élément à imager. Lorsque ces longueurs d’onde sont des longueurs d’onde de l’infrarouge moyen, correspondant à des longueurs d’onde d’absorption de telle ou telle molécule, un tel faisceau lumineux polychromatique permet de détecter la présence de différents types de molécules, voire de mesurer la concentration des molécules en question.
[0003] Deux faisceaux lumineux émis par deux sources laser différentes peuvent être combinés l’un à l’autre sur une lame semi-réfléchissante, pour obtenir un même faisceau lumineux global. Mais cela s’accompagne d’une perte de puissance importante (typiquement, d’un facteur deux environ), à moins d’utiliser une lame semi- réfléchissante « dichroïque » ayant une réflectivité qui dépend fortement de longueur d’onde, réfléchissante pour la longueur d’onde moyenne du premier faisceau, et transparente pour celle du deuxième faisceau. Mais une telle lame dichroïque peut être difficile à réaliser dans le domaine de l’infrarouge moyen, en particulier lorsque les deux longueurs d’ondes à, respectivement, réfléchir ou transmettre sont proches l’une de l’autre car il faut alors que le filtre ait une coupure nette. En outre, un système comprenant plusieurs lames sem i-réf léchissantes de ce type serait coûteux. [0004] On connaît par ailleurs du document US 2013/0292571 un dispositif comprenant plusieurs sources laser émettant dans infra-rouge moyen, qui émettent des faisceaux lumineux individuels qui sont réfléchis dans une même direction commune grâce à un système de miroir pivotant, monté sur un actionneur galvanométrique. Pour chaque source laser, le faisceau émis par la source est tout d’abord réfléchi vers le miroir pivotant grâce un miroir de renvoi. Ces miroirs de renvoi sont statiques, mais montés chacun sur une monture à deux degrés de liberté qui permet d’orienter convenablement le faisceau lumineux afin qu’il atteigne le miroir pivotant. La rotation du miroir pivotant permet ensuite de diriger alternativement l’un puis l’autre de ces faisceaux lumineux le long d’un axe donné, fixé par deux diaphragmes fixes de petit diamètre. Mais ce dispositif a différents inconvénients. Tout d’abord, il ne permet pas de superposer simultanément ces différents faisceaux lumineux les uns aux autres. Ensuite, un système à miroir pivotant rend le dispositif moins fiable et moins robuste vis-à-vis de désalignements, sur le long terme. Et l’ensemble de miroirs employé pour diriger les faisceaux lumineux vers le miroir pivotant est encombrant et a tendance à se dérégler au cours du temps.
[0005] Le document US 2013/0292571 indique aussi que les différents faisceaux lumineux émis par ces sources laser pourraient, en variante, être superposés les uns aux autres grâce à un élément dispersif tel qu’un réseau de diffraction. [0006] On connaît par ailleurs du document US9620933 un dispositif de combinaison de faisceaux lumineux utilisant un réseau de diffraction, ce dispositif, représenté en figure 4 du document US9620933, étant réalisé à partir d’un bloc d’un seul tenant, transparent pour les faisceaux à combiner.
RESUME [0007] Dans ce contexte, on propose un dispositif pour produire un faisceau lumineux polychromatique, par combinaison de plusieurs faisceaux lumineux individuels, le dispositif comprenant : plusieurs sources laser distinctes qui émettent chacune un faisceau lumineux individuel, ces sources laser ayant des longueurs d’onde d’émission moyennes respectives qui sont différentes les unes des autres, et un système de combinaison de faisceaux comprenant : un élément dispersif qui dévie chacun desdits faisceaux de manière différente, en fonction de la longueur d’onde d’émission moyenne correspondant à ce faisceau, et un ensemble de miroirs de renvoi qui, pour chaque source laser, comporte un miroir de renvoi associé à cette source, ce miroir de renvoi réfléchissant le faisceau lumineux émis par cette source vers l’élément dispersif, ce miroir de renvoi étant positionné et orienté de sorte que, après déviation par l’élément dispersif, ledit faisceau lumineux soit sensiblement centré sur un axe de propagation commun, qui est le même pour les différents faisceaux lumineux, le dispositif comprenant une pièce monolithique qui présente au moins autant de facettes qu’il y a de sources laser et dans lequel, pour chacun desdits miroirs de renvoi, la surface réfléchissante du miroir de renvoi est formée par l’une desdites facettes, ou par un dépôt réfléchissant recouvrant ladite facette, ou par une face avant d’un composant optique individuel dont la face arrière est fixée contre ladite facette, chaque longueur d’onde d’émission moyenne étant comprise entre 2 microns et 15 microns, au moins deux desdites longueurs d’onde d’émission moyenne étant séparées l’une de l’autre de moins de 0,3 micron, voire de moins de 0,15 micron, et au moins deux desdites longueurs d’onde d’émission moyenne étant séparées l’une de l’autre de plus de 0,5 microns, voire de plus de 1,5 microns.
[0008] Les différents faisceaux lumineux individuels atteignent l’élément dispersif (par exemple un réseau de diffraction) avec des angles d’incidences respectifs différents. L’élément dispersif combine alors ces différents faisceaux pour produire le faisceau lumineux polychromatique en question, qui constitue un faisceau lumineux global, délivré en sortie par le dispositif. Ce faisceau lumineux global est polychromatique en ce sens que son spectre présente plusieurs pics intenses centrés sur des longueurs d’ondes différentes, en l’occurrence sur les longueurs d’onde d’émission moyennes des différentes sources laser. Le terme « polychromatique » ne saurait être interprété comme limitant l’invention au domaine de longueurs d’onde du visible.
[0009] Après déviation par l’élément dispersif, chaque faisceau lumineux individuel est sensiblement centré sur ledit axe de propagation commun, en ce sens que après déviation par l’élément dispersif, l’axe de propagation moyen du faisceau lumineux individuel considéré est parallèle à cet axe de propagation commun à mieux que 3 ou 4degrés près, voire moins. La précision avec laquelle cette superposition est réalisée peut par exemple être telle que, à une distance de travail typique de l’élément dispersif, par exemple comprise entre 0,1 m et 1m, les faisceaux se superposent les uns aux autres avec une précision meilleure que 10% du diamètre de chacun de ces faisceaux.
[0010] Dans le cas où les miroirs de renvoi sont des composants optiques individuels, pour chaque miroir, la face arrière du miroir est fixée à demeure, par exemple collée, contre l’une desdites facettes, le miroir étant solidaire ainsi solidaire de la pièce monolithique.
[0011] Quoiqu’il en soit, les miroirs de renvoi sont solidaires les unes des autres. Cela rend le dispositif nettement plus stable et plus compact qu’un dispositif qui serait réalisé à partir de montures de miroirs réglables, réduit sa complexité mécanique et améliore sa fiabilité. Cette configuration, basée sur la pièce monolithique en question, permet en outre de disposer les miroirs de renvoi, ou tout au moins certains d’entre eux à proximité les uns des autres, voire en contact les uns avec les autres, ce qui s’avère particulièrement utile lorsque les longueurs d’ondes d’émission de certaines des sources sont proches les unes des autres. En effet, dans ce cas, les faisceaux lumineux émis par ces sources seront également proches les uns des autres d’un point de vue angulaire, juste en amont de l’élément dispersif, c’est-à-dire juste avant combinaison.
[0012] Les miroirs de renvoi sont distincts les uns des autres. En d’autres termes, ces miroirs, qui sont par exemple plans, sont orientés différemment les uns des autres, et/ou sont décalés (longitudinalement ou latéralement) les uns par rapport aux autres, les miroirs étant alors disjoints. [0013] Comme indiqué plus haut, dans ce dispositif pour produire un faisceau lumineux polychromatique, chaque longueur d’onde d’émission est comprise entre 2 microns et 15 microns, voire entre 5 et 11 microns (ces valeurs correspondent à des longueurs d’onde dans le vide). Les faisceaux lumineux en question ont alors des spectres situés dans l’infrarouge moyen. Cette gamme de longueurs d’onde est bien adaptée à la détection de différents types de molécules, qu’il s’agisse de molécules de petite taille comme la molécule de dioxyde de carbone CO2, ou de molécules plus grosses comme des protéines ou autres molécules d’intérêt biologique. La réalisation d’un tel dispositif, configuré pour l’infrarouge moyen, présente toutefois des contraintes techniques particulières par rapport à un dispositif configuré pour le domaine du visible ou du proche infrarouge. Par exemple, pour le visible, des filtres interférentiels très performants (filtres dichroïques ou coupe-bande notamment, ayant une fonction de transfert avec des flancs très abrupts, permettant de combiner des longueurs d’onde proches) sont disponibles commercialement alors que ce n’est pas le cas pour l’infrarouge moyen.
[0014] Par ailleurs, les longueurs d’onde d’émission moyennes des différentes sources sont telles que : au moins deux desdites longueurs d’onde d’émission sont séparées l’une de l’autre de moins de 0,5 microns, et même de moins de 0,3 micron, voire de moins de 0,15 micron, tandis que au moins deux desdites longueurs d’onde d’émission sont séparées l’une de l’autre de plus de 0,5 microns, voire de plus de 1 ,5 microns (ou même de plus de 3 microns).
[0015] Les longueurs d’ondes respectives des faisceaux lumineux à combiner se répartissent alors sur une gamme de longueurs d’onde assez étendue, tout en comprenant des longueurs d’ondes à combiner proches.
[0016] Le dispositif peut d’ailleurs comprendre plusieurs couples de sources regroupant chacun deux desdites sources laser, les deux longueurs d’onde d’émission moyennes des deux sources de chaque couple étant séparées l’une de l’autre de moins de 0,3 micron, voire de moins de 0,15 micron.
[0017] Le faisceau lumineux polychromatique produit par le dispositif comprend alors plusieurs couples de longueurs d’onde proches. Cette configuration est particulièrement intéressante en termes d’imagerie, de spectroscopie ou de détection de molécules et autres composés. En effet, pour chaque couple de longueurs d’onde, la première de ces longueurs d’onde peut être choisie écartée d’un pic d’absorption du composé à détecter, tandis que la deuxième de ces longueurs d’onde coïncide avec ce pic. La première longueur d’onde sert alors à mesure l’absorption de l’échantillon hors pic, pour réaliser un « blanc » (i.e. : pour mesurer un niveau d’absorption du milieu qui correspondrait à une absence de la substance à détecter), tandis que la deuxième longueur d’onde sert pour la détection ou la mesure de concentration en elle-même. Plus généralement, un tel couple de longueurs d’onde proches permet une détection différentielle ou une mesure de concentration différentielle du composé en question. En contrepartie, combiner de telles longueurs d’onde est particulièrement contraignant d’un point de vue géométrique. En effet, avant l’élément dispersif, certains faisceaux seront très proches l’un de l’autre d’un point de vue angulaire (ceux associés à un couple de longueurs d’onde proches), tandis que d’autres seront très écartés l’un de l’autre d’un point de vue angulaire.
[0018] Munir le dispositif d’un ensemble de miroirs additionnels, à disposer entre les sources et les miroirs de renvoi, s’avère alors particulièrement utile. En effet, cela apporte une liberté supplémentaire qui permet d’adapter les positions et orientations des faisceaux lumineux qui sortent des sources laser, aux positions et orientations des miroirs de renvoi qui sont imposées au moins partie par les contraintes liées à la recombinaison par l’élément dispersif (contraintes qui peuvent amener à placer certains de ces miroirs de renvoi très proches les uns des autres, voire en contact l’un avec l’autre).
[0019] L’ensemble de miroirs additionnels comprend alors, pour chaque source laser, un miroir additionnel associé à cette source, ce miroir additionnel réfléchissant le faisceau lumineux émis par cette source vers le miroir de renvoi associé la source considérée, ce miroir de renvoi réfléchissant ensuite ce faisceau vers l’élément dispersif. Les miroirs additionnels en question peuvent être solidaires les uns des autres, et peuvent aussi être solidaires des premiers miroirs.
[0020] L’ensemble de miroirs additionnels permet d’obtenir ainsi un système de combinaison de faisceaux à la fois compact, et compatible avec un écartement initial important entre faisceaux. [0021] De même que pour les miroirs de renvoi, les miroirs additionnels sont distincts les uns des autres. Ainsi, ces miroirs, qui sont par exemple plans, sont orientés différemment les uns des autres, et/ou sont décalés (longitudinalement ou latéralement) les uns par rapport aux autres, les miroirs étant alors disjoints.
[0022] Cette configuration à deux ensembles de miroirs est intéressante notamment lorsque les sources laser sont montées chacune dans un boîtier, propre à la source considérée, et sont pourvues chacune d’une optique de collimation du faisceau émis. En effet, dans ce cas, les faisceaux lumineux délivrés par les sources laser sont décalés latéralement les uns par rapport aux autres de manière assez importante, même en accolant les différents boîtiers de ces sources laser les uns aux autres (voir la figure 3 par exemple).
[0023] Cette configuration à deux ensembles de miroirs est intéressante aussi si les sources laser sont des sources laser à semi-conducteurs de petite taille très proches les unes des autres (par exemple à 1 ou quelques mm les unes des autres). En effet, une collimation des faisceaux lumineux produits reste souhaitable. Si cette collimation est réalisée avec plusieurs collimateurs individuels, un par faisceau, il faudra écarter les sources laser les unes des autres, si bien que les faisceaux produits seront là encore décalés latéralement les uns par rapport aux autres. Et si la collimation des faisceaux est réalisée avec un même collimateur, commun aux différents faisceaux (voir la figure 8 par exemple), les axes de propagation de ces faisceaux après le collimateur seront très écartés les uns des autres d’un point de vue angulaire. Dans cette situation, l’ensemble de miroirs additionnels s’avère à nouveau particulièrement utile, puisqu’il permet là aussi de rapprocher les faisceaux lumineux pour qu’ils atteignent les miroirs de renvoi, et puisqu’il permet aussi de réduire l’écart angulaire entre faisceaux introduit par le collimateur commun.
[0024] Immédiatement en amont dudit élément dispersif, les faisceaux lumineux individuels sont centrés respectivement sur différents axes appelés axes de propagation avant combinaison. Dans ce dispositif, au moins deux desdits axes de propagation avant combinaison peuvent être séparés angulairement l’un de l’autre de moins de 5 degrés, voire de moins de 2 degrés. Cela correspond à une situation dans laquelle les longueurs d’onde d’émission moyennes, correspondant à ces deux faisceaux lumineux à combiner, sont proches l’une de l’autre.
[0025] Le fait que ces deux axes de propagation avant combinaison soient très proches l’un de l’autre d’un point de vue angulaire pose des problèmes en termes d’encombrement et de configuration optique. En effet, à cause de ce faible écart angulaire, on est amené à positionner les deux miroirs de renvoi, qui réfléchissent ces deux faisceaux lumineux vers l’élément dispersif : soit loin de l’élément dispersif (pour obtenir un écart latéral suffisant entre ces deux miroirs), mais cela rend alors le dispositif très encombrant, soit relativement près de l’élément dispersif, mais alors presque l’un contre l’autre, en termes de positions latérales.
[0026] Ainsi, pour obtenir un dispositif compact, ces deux miroirs de renvoi doivent être de petite taille, et situés à proximité de l’un de l’autre, en termes de positions latérales. On peut d’ailleurs prévoir que les deux miroirs de renvoi, qui réfléchissent les deux faisceaux lumineux dont les axes de propagation avant combinaison sont séparés angulairement de moins de 5 degrés voire de moins de 2 degrés, aient chacun une dimension transverse comprise entre 0,8 fois et 3 fois le diamètre du faisceau considéré.
[0027] Outre les caractéristiques mentionnées ci-dessus, le dispositif qui vient d’être présenté peut présenter une ou plusieurs des caractéristiques complémentaires suivantes, considérées individuellement ou selon toutes les combinaisons techniquement envisageables : ladite pièce monolithique présente en outre des facettes additionnelles et, pour chaque miroir additionnel, la surface réfléchissante du miroir additionnel est formée par l’une desdites facettes additionnelles, ou par un dépôt réfléchissant recouvrant ladite facette additionnelle, ou par une face avant d’un composant optique individuel dont la face arrière est fixée contre ladite facette additionnelle; le dispositif comprend une pièce monolithique additionnelle qui présente au moins autant de facettes qu’il y a de miroirs additionnels, et dans lequel, pour chaque miroir additionnel, la surface réfléchissante du miroir additionnel est formée par l’une des facettes de la pièce monolithique additionnelle, ou par un dépôt réfléchissant recouvrant cette facette, ou par une face avant d’un composant optique individuel dont la face arrière est fixée contre ladite facette; ledit élément dispersif est un réseau de diffraction réalisé sur une face de ladite pièce monolithique, ou fixé à demeure contre cette face ; ladite pièce monolithique est en un matériau thermiquement conducteur et les sources laser sont en contact thermique avec cette pièce monolithique ; ledit élément dispersif est un réseau de diffraction en réflexion et le dispositif comprend un passage est ménagé entre deux desdits miroirs de renvoi, ledit axe de propagation commun traversant ledit passage ; ladite pièce monolithique est en un matériau essentiellement transparent pour lesdits faisceaux lumineux ; le dispositif comprend un élément de collimation commun aux différents faisceaux lumineux individuels, ce même élément de collimation modifiant la divergence propre de chacun desdits faisceau lumineux ; ledit élément de collimation comprend une face d’entrée de ladite pièce monolithique essentiellement transparente pour lesdits faisceaux lumineux, ladite face d’entrée étant convexe.
[0028] L’invention et ses différentes applications seront mieux comprises à la lecture de la description qui suit et à l’examen des figures qui l’accompagnent.
BREVE DESCRIPTION DES FIGURES
[0029] Les figures sont présentées à titre indicatif et nullement limitatif.
[0030] [Fig. 1] La figure 1 représente schématiquement un dispositif pour produire un faisceau lumineux polychromatique selon un premier mode de réalisation mettant en œuvre les enseignements de l’invention, vu de dessus.
[0031] [Fig. 2] La figure 2 représente schématiquement une configuration optique commune à un deuxième, troisième, quatrième et cinquième mode de réalisation mettant en œuvre les enseignements de l’invention.
[0032] [Fig. 3] La figure 3 est une représentation schématique en perspective du deuxième mode de réalisation du dispositif pour produire un tel faisceau lumineux polychromatique, sur laquelle on a représenté un seul des faisceaux lumineux individuels qui sont combinés pour obtenir le faisceau lumineux polychromatique.
[0033] [Fig. 4] La figure 4 représente à nouveau le dispositif de la figure 3, mais en montrant un autre desdits faisceaux lumineux individuels. [0034] [Fig. 5] La figure 5 représente à nouveau le dispositif de la figure 3 mais en montrant encore un autre desdits faisceaux lumineux individuels.
[0035] [Fig. 6] La figure 6 représente à nouveau le dispositif de la figure 3, mais en montrant le dernier des faisceaux lumineux individuels en question.
[0036] [Fig.7] La figure 7 représente schématiquement le dispositif pour produire un faisceau lumineux polychromatique selon le troisième mode de réalisation, vu de dessus.
[0037] [Fig. 8] La figure 8 représente schématiquement le dispositif pour produire un faisceau lumineux polychromatique selon le quatrième mode de réalisation, vu de dessus. [0038] [Fig. 9] La figure 9 représente schématiquement le dispositif pour produire un faisceau lumineux polychromatique selon le cinquième mode de réalisation, vu de dessus.
DESCRIPTION DETAILLEE
[0039] Comme indiqué plus haut, l’invention concerne un dispositif pour produire un faisceau lumineux polychromatique par combinaison de plusieurs faisceaux lumineux individuels émis par différentes sources laser ayant des longueurs d’onde d’émission moyennes respectives différentes les unes des autres. Cette combinaison est réalisée grâce un élément dispersif, tel qu’un prisme ou un réseau de diffraction.
[0040] Un premier, deuxième, troisième, quatrième et cinquième modes de réalisation de ce dispositif sont représentés respectivement sur les figures 1 , 3, 7, 8 et 9. Ils sont repérés sur ces figures respectivement par les numéros de référence 1 , 2, 3, 4 et 5.
[0041] Dans les deuxième, troisième, quatrième et cinquième modes de réalisation, le dispositif 2 ; 3 ; 4 ; 5 comprend un premier et un deuxième ensembles de miroirs, qui permettent d’ajuster avec beaucoup de souplesse les directions et positions des faisceau lumineux F1 , F2, F3, F4 produits par les différentes sources laser 11 , 12, 13, 14, avant de les combiner grâce à l’élément dispersif 30.
[0042] En revanche, dans le premier mode de réalisation, le dispositif 1 comprend un seul ensemble de miroirs de renvoi, 120.
[0043] Malgré leurs différences, ces cinq modes de réalisation présentent de nombreux points communs, et les éléments du dispositif identiques ou correspondants d’un mode de réalisation à l’autre seront autant que possible repérés par les mêmes numéros de référence et ne seront pas nécessairement décrits à chaque fois.
[0044] Tel que représenté sur les figures, le dispositif 1 ; 2 ; 3 ; 4 ; 5 comprend quatre sources laser 11 , 12, 13 et 14. En l’occurrence, ces sources laser 11 , 12, 13, 14 sont des QCLs (selon l’acronyme anglosaxon de Quantum Cascade Laser, ou laser à cascade quantique). Plus généralement, chaque source 11 , 12, 13, 14 est ici une source laser à semi-conducteur, de type diode laser, comprenant une structure émissive (et non plusieurs) et émettant un faisceau lumineux (et non plusieurs). En particulier, la source en question 11 , 12, 13, 14 n’est pas réalisée sous la forme d’une barrette de plusieurs diodes lasers (« lasers diode array » ou « laser diode bar » ou « laser diode stack » en anglais). Ces sources laser 11 , 12, 13, 14 ont des longueurs d’onde d’émission moyennes, l1 , l2, l3 et l4, qui sont différentes les unes des autres et qui, sont situées ici dans le domaine de l’infrarouge moyen. Ces longueurs d’onde d’émission moyennes l1 , l2, l3, l4 sont comprises chacune entre 2 et 15 microns, et même entre 5 et 11 microns, ici. On notera d’ailleurs, le fait que les faisceaux F1 à F4 soient appelés « faisceaux lumineux » ne saurait être interprété comme signifiant que ces faisceaux sont des faisceaux visibles. Les sources 11 , 12, 13, 14 sont distinctes les unes des autres. En particulier, leurs zones émissives respectives ne sont pas formées dans une même couche en matériau semi-conducteur (qui serait commune aux différentes sources), et l’ensemble de ces différentes sources ne forme pas une même barrette de diodes lasers, mais forme au contraire un groupe de plusieurs sources distinctes, et même disjointes.
[0045] Pour chaque source 11 , 12, 13, 14, la longueur d’onde d’émission moyennes l1 , l2, l3, l4 de la source (appelée plus simplement longueur d’onde d’émission dans la suite) est une longueur d’onde sur laquelle est centré le spectre d’émission de cette source. Il peut s’agir de la longueur d’onde moyenne de ce spectre, ou d’une longueur d’onde repérant le maximum d’un pic d’émission principal de la source. Ici, les sources 11 , 12, 13, 14 sont sensiblement monochromatiques, en ce sens qu’elles ont chacune un spectre étroit, avec par exemple une largeur spectrale (exprimée en nombre d’onde) inférieure à 0,1 cm 1.
[0046] Ces différentes sources laser 11 , 12, 13 et 14 émettent chacune un faisceau lumineux individuel F1 , F2, F3 et F4. Juste en amont de l’élément dispersif 30, ces faisceaux lumineux F1, F2, F3, F4 sont centrés respectivement sur différents axes de propagation avant combinaison, notés X1 , X2, X3, X4 (voir les figures 1 à 6). Ces axes sont décalés angulairement les uns par rapport aux autres.
[0047] Par « centré sur l’axe de propagation avant combinaison correspondant, X1, X2, X3 ou X4 », on entend que la direction moyenne de propagation de chacun des faisceaux lumineux F1 , F2, F3 ou F4 et leur position latérale moyenne respective (dans un plan perpendiculaire à cette direction de propagation), sont celles de l’axe X1, X2, X3, X4 en question.
[0048] Après déviation par l’élément dispersif 30, chacun de ces faisceaux lumineux, F1 , F2, F3 et F4, est sensiblement centré (et même, ici, centré exactement) sur un axe de propagation commun Xo, qui est le même pour les différents faisceaux F 1 , F2, F3, F4. En d’autres termes, après déviation par l’élément dispersif 30, ces différents faisceaux sont superposés les uns aux autres. Ils forment ainsi un faisceau lumineux global, polychromatique, Fo.
[0049] Ainsi, si le faisceau lumineux polychromatique Fo se propageait en sens inverse, il serait décomposé par l’élément dispersif 30 pour donner des faisceaux lumineux centrés respectivement sur les axes X1 , X2, X3 et X4 et se propageant en sens inverse des faisceaux F1 , F2, F3 et F4 (et ayant respectivement des longueurs d’onde moyennes l1, l2, l3 et l4).
[0050] Dans les cinq modes de réalisation représentés sur les figures, l’élément dispersif est un réseau de diffraction plan, en réflexion, 30.
[0051] Les angles d’incidence sur le réseau sont notés respectivement Q1 , Q2, Q3, Q4 pour les différents faisceaux lumineux F1 à F4 (Q1, par exemple, est donc l’angle entre l’axe X1 et la direction Xn qui est perpendiculaire au plan P du réseau). L’angle entre l’axe de propagation commun Xo et la direction Xn, appelé angle de sortie, est noté qo. [0052] Ici, les axes de propagation avant combinaison X1 , X2, X3, X4 sont choisis de manière à correspondre à un même ordre de diffraction donné, m, par exemple m=- 1 . Ainsi, si le faisceau lumineux polychromatique Fo se propageait en sens inverse, l’axe correspondant à l’ordre de diffraction m, pour la longueur d’onde l1 , serait X1 . La direction des axes X1 , X2, X3, X4 est donc donnée par la relation sin qί + sin 0o = -m. lί/a où i=1 ,... ,4 et où a est le pas du réseau, avec par exemple m=-1. Pour ce qui est de leurs positions (positions latérales), les axes X1 , X2, X3 et X4 sont choisis de manière à rencontrer le réseau 30 au même point O (point de combinaison des faisceaux). En d’autres termes, sur le réseau 30, les faisceaux F1 à F4 sont superposés les uns aux autres (ils occupent la même position, dans le plan du réseau).
[0053] Le réseau de diffraction 30 est un réseau blazé : le motif du réseau, répété périodiquement avec le pas a, est une facette 31 inclinée, par rapport au plan P du réseau, d’un angle appelé angle de blaze g. L’angle de blaze g est choisi de manière à maximiser la puissance lumineuse qui est diffractée dans l’ordre m (i.e. : le réseau est blazé dans l’ordre m), pour une longueur d’onde dite longueur d’onde de blaze Xb. Pour cela, l’angle de blaze g est choisi égal à (0o+0d)/2 où 0d est l’angle de diffraction pour l’ordre m et pour la longueur d’onde Xb : sin qά + sin qo = - m. Xb /a.
[0054] Employer un tel réseau blazé permet de limiter les pertes de puissance lors de la combinaison des différents faisceaux F1 à F4 sur le réseau. En effet, avec un tel réseau, l’efficacité de diffraction vers l’ordre m, autour de la longueur d’onde de blaze X, peut couramment être supérieure à 70%, voire supérieure à 90%. Cela permet donc, inversement, une efficacité de combinaison supérieure à 70%, voire à 90%.
[0055] La longueur d’onde de blaze Xb (et l’angle de blaze correspondant, g) peut par exemple être choisie entre la plus petite et la grande des longueurs d’onde d’émission l1 à l4, pour obtenir une bonne efficacité de combinaison pour chacune de ces longueurs d’onde. A titre d’exemple, X peut être égale à la moyenne de ces longueurs d’onde d’émission l1 à X4. On pourra noter toutefois que sources lasers employées ici émettent des faisceaux polarisés linéairement, tous selon le même axe. Il est possible dans ce cas d’obtenir des efficacités de diffraction (et donc de combinaison) très élevées (par exemple supérieures à 85 ou même 90%), même si la longueur d’onde de blaze Xb est légèrement décalée par rapport à la plage de longueurs d’ondes [l1 , X4\. [0056] L’angle de blaze g peut par exemple être choisi plus précisément de manière à maximiser la puissance lumineuse qui est diffractée dans l’ordre m, à la longueur d’onde de blaze Xb, et, en outre, pour la configuration géométrique particulière dite configuration de Littrow, pour laquelle 0o=0d=y=-arcsin(m. Xb /(2a)). [0057] Dans les différents modes de réalisation décrits ici, les différents faisceaux lumineux se propagent et sont contenus dans un même plan de propagation, en l’occurrence le plan (x,y), qui correspond au plan de la figure, sur les figures 1, 2, et 7 à 9. Juste en sortie des sources laser, les faisceaux lumineux se propagent chacun dans ce plan. Les premiers miroirs, le plan du réseau, et, lorsqu’ils sont présents, les deuxièmes miroirs, sont perpendiculaires chacun à ce plan de propagation, si bien que les faisceaux restent contenus dans le plan en question au cours de leur propagation dans le dispositif (d’autant que les traits du réseau sont perpendiculaires à ce plan).
[0058] Comme déjà indiqué, dans le premier mode de réalisation, le dispositif 1 comprend un, et non deux ensembles de miroirs, disposé sur le trajet des faisceaux lumineux F1 , F2, F3, F4, entre les sources 11 , 12, 13, 14 et l’élément dispersif 30 (voir la figure 1).
[0059] Ici, les faisceaux lumineux F1 , F2, F3, F4 sont collimatés sur l’ensemble du trajet qu’ils suivent, depuis la source qui émet le faisceau en question, jusqu’à un plan objet. Chacun de ces faisceaux forme ainsi un faisceau de rayons sensiblement parallèles entre eux, pas ou peu divergent, et cela sur l’ensemble du trajet suivi par ce faisceau. En l’occurrence, chaque source 11 , 12, 13, 14 comprend un élément de collimation individuel, par exemple une lentille convergente asphérique ou un ensemble de lentilles globalement convergent, qui permet de collimater le faisceau lumineux qu’elle émet. Dans certains modes de réalisation, une même lentille cylindrique commune aux différents faisceaux peut être placée sur les trajets de ces faisceaux, en sortie des sources, pour réduire une divergence (individuelle) présentée par chacun de ces faisceaux dans un plan vertical, plus forte que la divergence de ce faisceau dans le plan horizontal x,y.
[0060] Immédiatement en sortie des sources, les axes de propagation respectifs, sur lesquels sont centrés les différents faisceaux lumineux F1 , F2, F3, F4, sont parallèles les uns aux autres. En l’occurrence, ils sont parallèles chacun à l’axe x visible sur la figure 1. Quant aux sources 11 , 12, 13, 14, elles sont disposées les unes à la suite des autres, en ligne, le long d’un axe y perpendiculaire à l’axe x.
[0061] L’ensemble de miroirs, 120, comprend, pour chaque source 11 à 14, un miroir 121 associé à cette source, qui réfléchit le faisceau F1 , F2, F3, F4 émis par cette source vers l’élément dispersif 30. Ce miroir 121 est positionné et orienté de manière à ce que, après réflexion sur ce miroir, le faisceau considéré, F1 , F2, F3 ou F4, soit centré sur l’axe de propagation avant combinaison X1 , X2, X3 ou X4 qui a été mentionné plus haut. Les premiers miroirs 121 sont plans.
[0062] L’ensemble de miroirs 120, qui comprend quatre miroirs 121 , est réalisé ici de manière monolithique. Il comprend une pièce monolithique 105, c’est à d’un seul tenant (monobloc, avec une continuité de matière d’une partie à l’autre de la pièce). Cette pièce comporte au moins autant de facettes qu’il y a de miroirs 121 , soit au moins quatre facettes, ici. Les miroirs 121 sont réalisés ici par polissage des facettes puis par dépôt d’un revêtement réfléchissant sur ces facettes. Ce revêtement réfléchissant est par exemple un dépôt métallique réfléchissant dans l’infrarouge moyen tel qu’un dépôt d’or, d’argent ou d’aluminium (éventuellement recouvert lui-même d’une mince couche de protection transparente). Sur la figure 1 , le signe de référence 121 repère à la fois le miroir considéré, et la facette correspondante de la pièce monolithique 105.
[0063] La pièce monolithique 105 est formée par exemple d’un matériau métallique, ou d’un matériau semiconducteur cristallin comme le silicium. Les facettes en question peuvent être obtenues par gravure, par moulage, ou encore par usinage par enlèvement de matière (par exemple par fraisage).
[0064] Dans l’exemple représenté, la réflexion sur les miroirs 121 a lieu extérieurement, par rapport à la pièce monolithique 105 (autrement dit, les faisceaux lumineux ne traversent pas cette pièce).
[0065] En variante, la pièce monolithique pourrait être au moins partiellement transparente pour les faisceaux lumineux F1 à F4, et être traversée par ces faisceaux lumineux (la pièce absorbant par exemple moins de 10% de la puissance lumineuse de ces faisceaux). A titre d’exemple, la pièce monolithique peut alors être réalisée dans un verre de chalcogénure, tel que le Séléniure de Zinc ZnSe ou le Séléniure de Germanium GeSe. Dans ce cas, la réflexion sur les miroirs aurait lieu du côté interne de la pièce, et non du côté externe. Cette réflexion peut être obtenue par un dépôt réfléchissant réalisé sur les facettes en question, ou par réflexion totale interne sur ces facettes.
[0066] En variante encore, les miroirs en question peuvent être réalisés sous la forme de miroirs individuels (sous la forme de composants optiques individuels) comportant chacun un revêtement réfléchissant (par exemple métallique) déposé sur un substrat individuel, ce substrat étant lui-même fixé à demeure, par exemple collé, contre l’une desdites facettes de la pièce monolithique. Dans ce cas, la réflexion sur les miroirs a lieu du côté externe des substrats en question, sur une face avant du composant, la face arrière étant fixée contre l’une desdites facettes.
[0067] Quelle que soit la façon dont est réalisée la pièce monobloc 105, les miroirs 121 sont suffisamment grands pour intercepter chacun l’essentiel du faisceau lumineux F1 - F4 qui se réfléchit sur le miroir considéré. Le taux de recouvrement entre le profil d’irradiance (profil de puissance par unité de surface) du faisceau considéré, et le miroir 121 sur lequel il se réfléchit est supérieur à 80%, voire supérieur à 90%. A titre d’exemple, pour un angle d’incidence a du faisceau F1 - F4, sur le miroir 121 qui le réfléchit, l’extension c du miroir 121 dans le plan (x,y) (largeur du miroir 121 , dans le plan x,y, ou diamètre du miroir 121) est supérieure ou égale à 0/cos(a), où le diamètre ø du faisceau est la largeur totale du profil d’irradiance, prise à 1/e2 du maximum de ce profil.
[0068] Ce premier mode de réalisation est plus simple à réaliser que les modes de réalisation décrits plus bas, puisqu’il ne comprend pas de deuxième ensemble de miroirs renvoi. En revanche, comme déjà expliqué dans la partie intitulée « Résumé », il apporte une moins grande souplesse dans le positionnement des faisceaux et des sources, et conduit généralement un dispositif moins compact que les autres modes de réalisation, à deux ensembles de miroirs.
[0069] La figure 2 représente une configuration optique du dispositif 2 ; 3 ; 4 ; 5, commune aux deuxième, troisième, quatrième et cinquième modes de réalisation. Comme déjà indiqué, dans ces modes de réalisation, le dispositif 2 ; 3 ; 4 ; 5 comprend le premier ensemble de miroirs 220 ; 520, ainsi qu’un deuxième ensemble de miroirs, 223 ; 423 ; 523.
[0070] Le premier ensemble de miroir comprend, pour chaque source 11 , 12, 13, 14, un premier miroir 221 ; 521 qui réfléchit le faisceau lumineux F1 , F2, F3, F4 émis par cette source vers l’élément dispersif 30, avec une direction et une position adaptées pour que les différents faisceaux F1 - F4 se superposent les uns aux autres, après déviation par l’élément dispersif 30.
[0071] Le deuxième ensemble de miroirs 223 ; 423 ; 523 comprend, pour chaque source 11 , 12, 13, 14, un deuxième miroir 222 ; 422 ; 522 qui réfléchit le faisceau lumineux F 1 , F2, F3, F4 émis par cette source vers le premier miroir 221 ; 521 associé à cette source. Le deuxième ensemble de miroirs 223 ; 423 ; 523 permet ainsi d’adapter les positions, et éventuellement les directions présentées par les faisceaux lumineux en sortie des sources, aux positions et orientations des premiers miroirs 221 ; 521.
[0072] Sur la figure 2, on a représenté de manière générique les surfaces réfléchissantes S1 des premiers miroirs 221 ; 521 , ainsi que les surfaces réfléchissantes S2 des deuxièmes miroirs 222 ; 422 ; 522, indépendamment de la manière de réaliser ces miroirs.
[0073] Pour les deuxième, troisième, quatrième et cinquième modes de réalisation, les longueurs d’ondes d’émission l1 à l4 sont classés dans l’ordre suivant : l1 > l2 > l3 > l4. Comme déjà indiqué, elles sont situées dans l’infrarouge moyen, entre 2 et 15 microns. Les deux longueurs d’onde l1 et l2 forment un couple de longueurs d’ondes proches, et il en est de même des deux longueurs d’onde l3 et l4 : la différence de longueur d’onde l1 - l2 est inférieure à 0,5 micron et il en est de même pour la différence l3 - l4, qui est même inférieure à 0,3 microns (et, en fait, inférieure à 0,2 microns), ici. Quant à l’écart total entre longueurs d’onde, l1 - l4, il est supérieur à 0,5 micron, et même supérieur à 1 ,5 micron, voire supérieur à 2 microns, ici. Pour ces exemples, le premier couple de longueurs d’onde l1 , l2 est centré sur une longueur d’onde moyenne de 8 microns environ tandis que le deuxième couple de longueurs d’onde l3, l4 est centré sur une longueur d’onde moyenne de 6 microns environ.
[0074] Comme déjà expliqué dans la partie intitulée « résumé », une répartition de longueurs d’onde par couples de longueurs proches, telle que celle-ci, est très intéressante en termes de détection, d’imagerie ou de mesure de concentration de diverses molécules, car elle permet une détection ou une mesure différentielle. En revanche, elle conduit à des angles d’incidence sur l’élément dispersif 30, 01et Q2 qui sont proches l’un de l’autre, et il en est de même pour les angles d’incidence Q3 et Q4.
[0075] A titre d’exemple, pour un réseau comprenant 150 traits par mm (soit un pas a de 6,67 microns), bien adapté pour recombiner des longueurs d’ondes qui, comme ici, occupent une plage assez importante de l’infrarouge moyen, l’écart angulaire Q1- Q2 est de l’ordre de ou inférieur à 5 degrés, tandis que l’écart angulaire Q3 - Q4 est de l’ordre de ou inférieur à 2 degrés.
[0076] Les faisceaux F1 et F2 sont donc peu écartés angulairement l’un de l’autre, et il en est de même des faisceaux F3 et F4. Comme le dispositif 2 ; 3 ; 4 ; 5 est compact (la distance entre le réseau et les premiers miroirs est typiquement d’une dizaine de cm, voire moins), vu le faible écart angulaire entre les faisceaux F3 et F4, les premiers miroirs 221 ; 521 qui réfléchissent ces deux faisceaux sont positionnés à proximité l’un de l’autre, d’un point de vue latéral. Ces miroirs, ainsi que les premiers miroirs qui réfléchissent les faisceaux F1 et F2, ont par ailleurs chacun une dimension latérale c petite, par exemple juste suffisante pour intercepter le faisceau lumineux qui se réfléchit sur le miroir considéré.
[0077] A titre d’exemple, l’extension c de chacun des premiers, dans le plan (x,y) (largeur du miroir dans le plan (x,y), ou diamètre de ce miroir) peut être comprise entre 0,8 fois et 3 fois le diamètre ø du faisceau considéré (ø étant la largeur totale du profil d’irradiance du faisceau, prise à 1/e2 du maximum de ce profil). On peut prévoir plus précisément que cette extension c soit comprise entre 0,8 et 2 fois la quantité 0/cos(a), où a est l’angle d’incidence du faisceau sur le miroir considéré.
[0078] Quoiqu’il en soit, vue la proximité des deux premiers miroirs qui réfléchissent les faisceaux F3 et F4 (et la proximité des deux premiers miroirs qui réfléchissent les faisceaux F1 et F2), on comprend bien l’intérêt, de disposer du deuxième ensemble de miroirs 223 ; 423 ; 523, qui permet de rapprocher ces faisceaux les uns des autres pour adapter leurs positions aux positions, contraintes, des premiers miroirs 221 ; 521 .
[0079] Les deuxième, troisième, quatrième et cinquième modes de réalisation sont présentes maintenant plus spécifiquement, l’un après l’autre.
[0080] Le dispositif 2 selon le deuxième mode de réalisation est représenté schématiquement, en perspective, sur les figures 3 à 6. Pour plus de clarté, sur la figure 3, seul le faisceau lumineux F4 émis par la quatrième source 14 du dispositif 2 est représenté. De même, sur les figures 4, 5 et 6, on a représenté seulement le faisceau F3, le faisceau F2, et le faisceau F1 respectivement.
[0081] Dans ce deuxième mode de réalisation, l’ensemble du dispositif 2 est réalisé à partir d’une même pièce monolithique 205, qui sert de support commun aux différents éléments du dispositif.
[0082] Les premiers miroirs 221 ainsi que les deuxièmes miroirs 222 sont réalisés sous la forme de différentes facettes planes de cette même pièce monolithique 205. Ces facettes sont réfléchissantes soit parce que le matériau qui forme la pièce monolithique 205 est lui-même réfléchissant et convenablement poli (ou gravé), soit parce qu’elles sont recouvertes d’un dépôt réfléchissant, par exemple un dépôt métallique. Les miroirs, et les facettes en question sont repérés par les mêmes références, 221 et 222, sur la figure 3.
[0083] L’élément dispersif 30, dont on rappelle qu’il s’agit d’un réseau de diffraction en réflexion, est fixé à demeure, par exemple collé contre une face 206 de la pièce monolithique 205. En l’occurrence, c’est une face latérale du réseau, perpendiculaire au plan P du réseau, qui est collée contre la face 206 de la pièce monolithique, face 206 qui est elle-même parallèle au plan (x,y) mentionné plus haut (plan moyen dans lequel se propagent les différents faisceaux lumineux). En variante, ce pourrait être une face arrière du réseau (face parallèle au plan du réseau) qui soit fixée contre une face de la pièce monolithique perpendiculaire au plan (x,y).
[0084] Les quatre sources laser 11 , 12, 13 et 14 sont également fixées à demeure sur la pièce monolithique 205. En l’occurrence, chacune de ces sources comprend un boîtier individuel qui intègre les différents composants de la source et qui comporte une semelle 17 inférieure, plane, qui est fixée contre une face de la pièce monolithique 205 (en l’occurrence une face parallèle au plan xy)
[0085] La pièce monolithique 205 est réalisée dans un matériau thermiquement conducteur, c’est-à-dire ayant une conductivité thermique supérieure ou égale à 100 Watts par mètre et par Kelvin, voire supérieure à 200 Watts par mètre et par Kelvin. La pièce monolithique 205 joue un rôle de radiateur thermique pour évacuer la chaleur dégagée par les sources lasers, ce radiateur ayant par exemple, pour le transfert thermique en question, une résistance thermique inférieure à 0,2 Kelvin par Watt. Ici, elle est réalisée en métal, par exemple en aluminium ou en alliage d’aluminium. Comme les sources laser 11 - 14 sont montées avec leur semelle 17 en contact avec cette pièce 205, on obtient un bon contact thermique entre ces sources et la pièce monolithique 205 conductrice, ce qui favorise l’évacuation de la chaleur dégagée par ces sources et peut contribuer à améliorer la stabilité de leur température de fonctionnement, et donc la stabilité de la longueur d’onde d’émission moyenne de chacune des sources (ce qui, entre autres, améliore la stabilité de la direction du faisceau considéré après l’élément dispersif).
[0086] Dans ce deuxième mode de réalisation, chaque faisceau lumineux F1 - F4 a un diamètre ø de 3 mm. En sortie des sources 11 , 12, 13, 14, chacun de ces faisceaux F1 , F2, F3, F4 se propage parallèlement à l’axe y. Les sources 11 , 12, 13, 14 sont disposées les unes à côté des autres, le long d’une ligne parallèle à l’axe x.
[0087] Chaque deuxième miroir 222 est situé en face de l’ouverture de sortie de la source correspondante, et est incliné de 45 degrés par rapport au faisceau F1 , F2, F3, F4 qu’il réfléchit. Il dévie donc ce faisceau de 90 degrés environ. Après réflexion sur ces miroirs, les faisceaux F1 - F4 sont donc parallèles à l’axe x.
[0088] Les deux premiers miroirs 221 , qui réfléchissent respectivement le faisceau F3 et le faisceau F4 sont accolés l’un à l’autre, ici (sur le côté, ils sont en contact l’un avec l’autre). Il en est de même des deux premiers miroirs 221 qui réfléchissent respectivement le faisceau F1 et le faisceau F2. Les angles d’incidence sur les premiers miroirs 221 sont ici légèrement inférieurs à 45 degrés. Ces angles d’incidence sont choisis de manière à ce que les faisceaux F1 - F4 éclairent ensuite le réseau 30 avec les angles d’incidence Q1 - Q4 mentionnés plus haut, adaptés pour combiner ces faisceaux par diffraction. Les premiers et deuxièmes miroirs 221 , 222 ont chacun une surface réfléchissante rectangulaire, dont la largeur est par exemple comprise entre 3,5 et 4,5 mm.
[0089] Le réseau 30 est par exemple un réseau optimisé pour une longueur d’onde de blaze Xb de 10,6 microns, blazé dans l’ordre -1 (ce type de réseau, relativement standard, est disponible commercialement et peut-être facilement acquis). Son angle de blaze g est compris entre 30 et 40 degrés. Ici, ce réseau, et son orientation sont tels que l’angle de sortie qo est de 40 degrés environ. [0090] Dans cette configuration, une efficacité de combinaison de 70% est obtenue pour le faisceau F4, tandis qu’elle est de 95% pour le faisceau F1 (dont la longueur d’onde moyenne l1 se rapproche de la longueur d’onde de blaze b). Par efficacité de combinaison, on entend le rapport entre : la puissance du faisceau lumineux considéré, après déviation par l’élément dispersif, une fois superposé aux autres faisceaux, et la puissance de ce même faisceau juste en amont de l’élément dispersif, avant combinaison.
[0091] En variante, un autre type de réseau de diffraction pourrait être employé. Comme mentionné plus haut, il pourrait par exemple s’agir d’un réseau de diffraction blazé, dont l’angle de blaze g soit choisi pour obtenir une efficacité de diffraction optimale dans l’ordre -1 , en configuration Littrow, à une longueur d’onde de blaze Xb comprise entre CL et l1 (au lieu d’être plus grande que l1 ).
[0092] En variante encore, au lieu d’être réalisés directement par dépôt métallique sur des facettes de la pièce monolithique 205, les premiers et deuxièmes miroirs pourraient être réalisés sous forme de miroirs individuels (composants optiques individuels) comportant chacun un revêtement réfléchissant (par exemple métallique) déposé sur un substrat individuel, ce substrat étant fixé à demeure, par exemple collé, contre une facette de la pièce monolithique en question. Les surfaces réfléchissantes de ces miroirs individuels (qui correspondent à une face avant du composant optique) sont alors positionnées au même endroit que les facettes réfléchissantes 221 , 222 décrites plus haut, visibles sur la figure 3.
[0093] Par ailleurs, au lieu d’être complètement monolithique, la pièce 205 pourrait être réalisée sous la forme de plusieurs blocs distincts fixés les uns aux autres, par exemple : un premier bloc pour le premier ensemble de miroirs, un deuxième bloc pour le deuxième ensemble de miroirs, et un troisième bloc servant de support, sur lequel seraient fixés les premier et deuxième blocs ainsi que les sources laser et le réseau.
[0094] Dans ce cas, le premier bloc présenterait au moins autant de facettes qu’il y a de premiers miroirs, et les premiers miroirs seraient réalisés par gravure ou polissage de l’une desdites facettes, ou par gravure ou polissage suivi d’un dépôt réfléchissant sur l’une desdites facettes, ou seraient fixés à demeure contre l’une desdites facettes. Le deuxième ensemble de miroirs serait réalisé de la même manière, sur la base du deuxième bloc.
[0095] Le troisième mode de réalisation du dispositif 3 est représenté de manière schématique sur la figure 7. Il est similaire au deuxième mode de réalisation mais, dans ce troisième mode de réalisation, le faisceau lumineux polychromatique Fo sort du dispositif 3 en traversant un passage 306 ménagé entre deux des premiers miroirs 221.
[0096] En l’occurrence, ce passage 306 est situé entre le couple de premiers miroirs 221 (proches l’un de l’autre) sur lequel se réfléchissent les faisceaux F3 et F4, et le couple de premiers miroirs 221 (proches l’un de l’autre) sur lequel se réfléchissent les faisceaux F1 et F2.
[0097] Le passage 306 peut être obtenu, comme ici, en gravant ou en usinant la pièce monolithique 305 sur laquelle sont réalisés ou fixés les premiers miroirs 221 . On obtient ainsi cette ouverture, traversée par le faisceau lumineux polychromatique Fo, tout en conservant le caractère monolithique (d’un seul tenant) de la pièce 305.
[0098] On remarquera que le dispositif 3 peut être obtenu en modifiant légèrement le dispositif 2 du deuxième mode de réalisation visible sur la figure 3, comme suit : les caractéristiques et/ou l’orientation du réseau de diffraction 30 sont modifiées de manière à modifier l’orientation de l’axe commun Xo, et le passage en question est ouvert, dans la pièce monolithique (par usinage), entre les deux couples de premiers miroirs mentionnés ci-dessus. Dans ce cas, les premiers et deuxièmes miroirs sont donc réalisés directement sur la pièce monolithique 305, qui sert aussi de support aux sources laser et au réseau.
[0099] En variante, le passage en question pourrait toutefois être obtenu en réalisant le premier ensemble de miroirs à partir de deux pièces monolithiques distinctes, solidaires l’une de l’autre et écartées l’une de l’autre pour que le faisceau Fo puisse passer entre elles. Dans ce cas, deux des premiers miroirs 221 sont réalisés (ou fixés) sur l’une de ces deux pièces monolithiques, tandis que les deux autres premiers miroirs 221 sont réalisés (ou fixés) sur l’autre pièce monolithique. On remarquera que, même si l’on a recours à deux pièces distinctes, plusieurs premiers miroirs restent néanmoins réalisés sur une même pièce monolithique, dans ce cas.
[00100] Quoi qu’il en soit, la configuration adoptée dans le troisième mode de réalisation, avec le faisceau global Fo qui passe entre les faisceaux lumineux F1 - F4 incidents sur le réseau 30, à contre-sens de ceux-ci, est intéressante en termes d’efficacité de combinaison. En effet, cette configuration géométrique correspond à une configuration proche de la configuration de Littrow mentionnée plus haut, et, en général, c’est dans cette configuration que l’on obtient les efficacités de diffraction les plus élevées.
[00101] Le quatrième mode de réalisation du dispositif 4 est représenté de manière schématique sur la figure 8. Il est similaire au deuxième mode de réalisation mais, dans ce quatrième mode de réalisation, les faisceaux lumineux F1 - F4 qui sortent des sources laser 11 - 14 ne sont pas collimatés. Juste en sortie des sources, ces faisceaux sont fortement divergents. Le dispositif 4 comprend alors un élément de collimation 407 commun aux différents faisceaux lumineux F1 - F4 disposé sur le trajet de ces faisceaux, juste en sortie des sources 11 - 14. Ce même élément de collimation 407 modifie la divergence de chacun des faisceaux lumineux, en l’occurrence de manière à réduire considérablement cette divergence pour mettre le faisceau lumineux sous la forme d’un faisceau de rayons parallèles.
[00102] L’élément de collimation 407 est globalement convergent (distance focale image positive). Il peut être réalisé sous la forme d’une lentille convergente (par exemple une lentille asphérique), ou sous la forme d’un groupe de lentilles, globalement convergent. En variante, l’élément de collimation pourrait éventuellement comprendre un miroir convergent, sur lequel se réfléchiraient les différents faisceaux lumineux à collimater.
[00103] Les directions de propagation respectives des différents faisceaux lumineux F1 - F4 sont modifiées, assez fortement, par l’élément de collimation 407. En d’autres termes, cet élément n’a pas pour seul effet de collimater les faisceaux lumineux, mais il modifie aussi les directions de propagation moyennes de ces faisceaux.
[00104] Le deuxième ensemble de miroirs, 423, permet de corriger cet écart angulaire important entre les faisceaux F1 - F4, et permet de rapprocher ces faisceaux les uns des autres, par couples, pour qu’ils atteignent les premiers miroirs 221 (qui sont eux même groupés en couples de deux miroirs proches l’un de l’autre).
[00105] Dans ce quatrième mode de réalisation, les positions et orientations des premiers miroirs 221 peuvent être similaires, ou même identiques à celles mentionnées plus haut, lors de la présentation du deuxième mode de réalisation. En revanche, les positions des deuxièmes miroirs 422, imposées principalement par l’écart angulaire entre faisceaux causé par l’élément de collimation 407, sont nettement différentes de celles des deuxièmes miroirs 222 du deuxième mode de réalisation.
[00106] Le dispositif 4 comprend une pièce monolithique 405, comparable à la pièce monolithique 205 du deuxième mode de réalisation : les premiers et deuxièmes miroirs 221 , 422 sont réalisés (ou fixés) sur des facettes de cette pièce 405 d’un seul tenant, qui sert également de support aux sources 11 - 14, au réseau 30, et à l’élément de collimation 407.
[00107] Toutefois, en variante, les premier et deuxième ensembles de miroirs, 220 et 423, pourraient être réalisés respectivement à partir de deux pièces monolithiques distinctes l’une de l’autre.
[00108] En variante encore, l’élément de collimation commun pourrait être omis, les deuxièmes miroirs étant alors des miroirs convergeant corrigeant chacun la divergence propre du faisceau lumineux se réfléchissant sur ce miroir.
[00109] Dans le cinquième mode de réalisation, la pièce 505 monolithique, qui sert de support aux premiers miroirs 521 , est réalisée dans un matériau essentiellement transparent pour les faisceaux lumineux F1 - F4 (figure 9). Cette pièce monolithique sert d’ailleurs aussi de support aux deuxièmes miroirs 522. La pièce 505 absorbe par exemple moins de 10% de la puissance lumineuse des faisceaux F1 - F4 qui la traverse. Elle est réalisée ici dans un verre de chalcogénure, tel que le Sélénium de Zinc ZnSe ou de germanium.
[00110] Chaque premier miroir 521 et chaque deuxième miroir 522 correspond à une facette, plane, de cette pièce 505. Ici, chacune de ces facettes est recouverte d’un revêtement réfléchissant, en l’occurrence métallique. La réflexion sur ces différents miroirs a lieu du côté interne de la pièce, dans le matériau en question. [00111] En variante, ce revêtement réfléchissant pourrait être omis, la réflexion en question étant obtenue par réflexion interne totale sur les facettes. Dans ce cas, l’inclinaison des faisceaux par rapport aux facettes servant de miroir doit bien sûr être compatible avec une réflexion totale interne dans le matériau en question.
[00112] Les faisceaux lumineux F1 - F4 émis par les sources laser 11 - 14 entrent dans la pièce 505 par une face d’entrée 51 , plane, et qui est ici recouverte par un traitement anti-reflet. Après réflexion sur les deuxièmes 522, puis sur les premiers miroirs 521 , ces faisceaux sortent de la pièce 505 par une face de sortie 52, plane, également recouverte par un traitement anti-reflet.
[00113] En variante, le réseau de diffraction pourrait être réalisé, par gravure ou par dépôt, directement sur une face de la pièce monolithique en question, le réseau étant alors soit un réseau en transmission, soit un réseau en réflexion.
[00114] Par ailleurs, au lieu de délivrer des faisceaux lumineux collimatés, les sources pourraient délivrer des faisceaux lumineux divergents, comme dans le quatrième mode de réalisation. Dans ce cas, le dispositif peut être pourvu d’un élément de collimation commun aux différents faisceaux lumineux. Cet élément de collimation peut être réalisé sous la forme d’une face d’entrée convexe de la pièce monolithique.
[00115] Réaliser ainsi le système de combinaison essentiellement à partir de cette pièce monolithique transparente, dans laquelle se propagent les faisceaux lumineux, permet de s’affranchir d’une éventuelle absorption causée par la vapeur d’eau ou le dioxyde de carbone de l’air qui serait présent sinon sur leur trajet, et qui, dans l’infrarouge moyen, peut présenter des pics d’absorption marqués (absorption susceptible en outre de varier au cours du temps, du fait de variation de la teneur en vapeur d’eau ou en CO2). Cela permet d’éviter de placer le dispositif dans une enceinte hermétique remplie d’azote, par exemple.
[00116] Le dispositif 1 ; 2 ; 3 ; 4 ; 5 qui vient d’être décrit permet de produire un faisceau lumineux polychromatique Fo permettant notamment de relever des images multi-spectrales dans l’infrarouge moyen, ce qui est utile notamment dans le domaine de l’imagerie médicale, de la défense et de l’industrie agro-alimentaire.
[00117] On notera que différentes variantes peuvent être apportées à ce dispositif, en plus de celles déjà mentionnées. [00118] Par exemple, un autre type d’élément dispersif, tel qu’un prisme pourrait être employé au lieu du réseau mentionné plus haut. Par ailleurs, ce réseau pourrait être d’un autre type. Il pourrait par exemple s’agir d’un réseau en transmission, au lieu d’un réseau en réflexion. Et au lieu d’être employé dans l’ordre -1 , il pourrait être employé dans un autre ordre de diffraction, par exemple dans l’ordre -2.
[00119] Par ailleurs, certains des axes de propagation avant combinaison pourrait correspondre à un ordre de diffraction m donné, tandis que les autres axes de propagation avant combinaison correspondraient à un autre ordre de diffraction m’. Ainsi, les axes X1 et X2 pourrait correspondre à l’ordre -1 , tandis que les axes X3 et X4 correspondraient à l’ordre +1 , ou -2. Exploiter ainsi différents ordres de diffraction peut faciliter la combinaison de faisceaux ayant, deux à deux, des longueurs d’ondes proches, tout en étant répartis sur une plage de longueurs d’onde assez étendue. On peut par exemple employer l’ordre -1 pour combiner deux longueurs d’ondes proches l’une de l’autre, et l’ordre -2 pour combiner deux autres longueurs d’ondes proches l’une de l’autre mais éloignées des deux autres. En termes d’efficacité de combinaison, un tel agencement est néanmoins moins favorable qu’une combinaison réalisée dans un même ordre de diffraction, pour lequel le réseau est optimisé.
[00120] Le réseau pourrait aussi être configuré, et positionné de manière à coupler chaque faisceau lumineux individuel à un mode propagation parallèle au plan du réseau, les différents faisceaux lumineux incidents sur le réseau étant alors combinés sous la forme d’une même onde lumineuse polychromatique se propageant parallèlement au réseau.
[00121] D’autre part, les sources laser employées pourraient être d’un autre type que celles mentionnées précédemment (en l’occurrence des QCLs). Il pourrait par exemple s’agir de sources de type ICL (selon l’acronyme anglosaxon de « Interband Cascade Laser », c’est-à-dire laser à cascade interbandes), d’autre types de diodes laser (avec un montage en cavité externe, ou non), d’autres types de laser à cavité externe ou interne ou encore des laser accordables.

Claims

REVENDICATIONS
[Revendication 1] Dispositif (1 ; 2 ; 3 ; 4 ; 5) pour produire un faisceau lumineux polychromatique (Fo) par combinaison de plusieurs faisceaux lumineux (F1, F2, F3, F4) individuels, le dispositif comprenant :
- plusieurs sources (11, 12, 13, 14) laser distinctes qui émettent chacune un faisceau lumineux (F1, F2, F3, F4) individuel, ces sources laser ayant des longueurs d’onde d’émission moyennes (l1, l2, l3, l4) respectives qui sont différentes les unes des autres, et
- un système de combinaison de faisceaux comprenant : o un élément dispersif (30) qui dévie chacun desdits faisceaux (F1, F2, F3, F4) de manière différente, en fonction de la longueur d’onde d’émission moyenne (l1, l2, l3, l4) correspondant à ce faisceau, et o un ensemble de miroirs de renvoi (120 ; 220 ; 520) qui, pour chaque source (11, 12, 13, 14) laser, comporte un miroir de renvoi (121 ; 221 ; 521) associé à cette source, ce miroir de renvoi (121 ; 221 ; 521 ) réfléchissant le faisceau lumineux (F 1 , F2, F3, F4) émis par cette source vers l’élément dispersif (30), ce miroir de renvoi étant positionné et orienté de sorte que, après déviation par l’élément dispersif (30), ledit faisceau lumineux soit sensiblement centré sur un axe de propagation commun (Xo), qui est le même pour les différents faisceaux lumineux (F1, F2, F3, F4),
- le dispositif (1 ; 2 ; 3 ; 4 ; 5) comprenant une pièce monolithique (105 ; 205 ; 305 ; 405 ; 505) qui présente au moins autant de facettes qu’il y a de sources (11, 12, 13, 14) laser et dans lequel, pour chacun desdits miroirs de renvoi (121 ; 221 ; 521), la surface réfléchissante du miroir de renvoi est formée par l’une desdites facettes, ou par un dépôt réfléchissant recouvrant ladite facette, ou par une face avant d’un composant optique individuel dont la face arrière est fixée contre ladite facette.
- chaque longueur d’onde d’émission moyenne (l1 , l2, l3, l4) étant comprise entre 2 microns et 15 microns, - au moins deux desdites longueurs d’onde d’émission moyenne (l1 , 2) étant séparées l’une de l’autre de moins de 0,3 microns, voire de moins de 0,15 microns, et
- au moins deux desdites longueurs d’onde d’émission moyenne (l1 , l4) étant séparées l’une de l’autre de plus de 0,5 microns, voire de plus de 1 ,5 microns.
[Revendication 2] Dispositif (1 ; 2 ; 3 ; 4 ; 5) selon la revendication 1 , comprenant plusieurs couples (15, 16) de sources regroupant chacun deux desdites sources (11 , 12, 13, 14) laser et dans lequel, pour chaque couple de sources (15, 16), les deux longueurs d’onde d’émission (l1 , l2) moyennes des deux sources laser (11 , 12) du couple (15) considéré sont séparées l’une de l’autre de moins de 0,3 microns, voire de moins de 0,15 microns.
[Revendication 3] Dispositif (2 ; 3 ; 4 ; 5) selon l’une des revendications 1 ou 2, dans lequel le système de combinaison comprend en outre un ensemble de miroirs additionnels (223 ; 423 ; 523) qui, pour chaque source (11 , 12, 13, 14) laser, comporte un miroir additionnel (222 ; 422 ; 522) associé à cette source, ce miroir additionnel (222 ; 422 ; 522) réfléchissant le faisceau lumineux (F1 , F2, F3, F4) émis par cette source (11 , 12, 13, 14) vers le miroir de renvoi (221 ; 521 ) associé la source considérée.
[Revendication 4] Dispositif (2 ; 3 ; 4 ; 5) selon l’une des revendications 1 à 3, dans lequel :
- immédiatement en amont dudit élément dispersif (30), les faisceaux lumineux (F1 , F2, F3, F4) individuels sont centrés respectivement sur différents axes de propagation avant combinaison (X1 , X2, X3, X4), et au moins deux desdits axes de propagation avant combinaison (X1 , X2) sont séparés angulairement l’un de l’autre de moins de 5 degrés, voire de moins de 2 degrés, et dans lequel les deux miroirs de renvoi (221 ; 521 ), qui réfléchissent les deux faisceaux lumineux (F1 , F2) dont les axes de propagation avant combinaison (X1 , X2) sont séparés angulairement de moins de 5 degrés, ont chacun une dimension transverse (c) comprise entre 0,8 fois et 3 fois le diamètre (ø) du faisceau (F1 , F2) considéré, le diamètre du faisceau étant la largeur totale du profil d’irradiance du faisceau, prise à 1/e2 du maximum du profil.
[Revendication 5] Dispositif (2 ; 3 ; 4 ; 5) selon l’une des revendications 3 ou 4, dans lequel ladite pièce monolithique (205 ; 305 ; 405 ; 505) présente en outre des facettes additionnelles et dans lequel, pour chaque miroir additionnel (222 ; 422 ; 522), la surface réfléchissante du miroir additionnel est formée par l’une desdites facettes additionnelles, ou par un dépôt réfléchissant recouvrant ladite facette additionnelle, ou par une face avant d’un composant optique individuel dont la face arrière est fixée contre ladite facette additionnelle.
[Revendication 6] Dispositif (2 ; 3 ; 4 ; 5) selon l’une des revendications 3 ou 4, comprenant une pièce monolithique additionnelle qui présente au moins autant de facettes qu’il y a de miroirs additionnels, et dans lequel, pour chaque miroir additionnel, la surface réfléchissante du miroir additionnel est formée par l’une des facettes de la pièce monolithique additionnelle, ou par un dépôt réfléchissant recouvrant cette facette, ou par une face avant d’un composant optique individuel dont la face arrière est fixée contre ladite facette.
[Revendication 7] Dispositif (1 ; 2 ; 3 ; 4 ; 5) selon l’une des revendications 1 à 6, dans lequel ledit élément dispersif (30) est un réseau de diffraction réalisé sur une face de ladite pièce monolithique (105 ; 205 ; 305 ; 405 ; 505), ou fixé à demeure contre une face (206) de cette pièce monolithique (205).
[Revendication 8] Dispositif (1 ; 2 ; 3 ; 4) selon l’une des revendications 1 à 7, dans lequel ladite pièce monolithique (105 ; 205 ; 305 ; 405) est en un matériau thermiquement conducteur, de conductivité thermique supérieure ou égale à 100 Watts par mètre et par Kelvin, et dans lequel les sources (11 , 12, 13, 14) laser sont en contact thermique avec cette pièce monolithique (105 ; 205 ; 305 ; 405).
[Revendication 9] Dispositif (3) selon l’une des revendications 1 à 8, dans lequel ledit élément dispersif (30) est un réseau de diffraction en réflexion, le dispositif (3) comprenant un passage (306) ménagé entre deux desdits miroirs de renvoi (221), ledit axe de propagation commun (Xo) traversant ledit passage.
[Revendication 10] Dispositif (5) selon l’une des revendications 1 à 8, dans lequel ladite pièce monolithique (505) est en un matériau essentiellement transparent pour lesdits faisceaux lumineux (F1 , F2, F3, F4). [Revendication 11] Dispositif (4) selon l’une des revendications 1 à 10, comprenant un élément de collimation (407) commun aux différents faisceaux lumineux (F1, F2, F3, F4) individuels, ce même élément de collimation (407) modifiant la divergence propre de chacun desdits faisceaux lumineux. [Revendication 12] Dispositif selon la revendication 11 prise dans la dépendance de la revendication 10, dans lequel ledit élément de collimation comprend une face d’entrée de ladite pièce monolithique essentiellement transparente pour lesdits faisceaux lumineux, ladite face d’entrée étant convexe.
EP22723101.6A 2021-04-22 2022-04-14 Dispositif pour produire un faisceau lumineux polychromatique par combinaison de plusieurs faisceaux lumineux individuels Pending EP4327140A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2104212A FR3122263B1 (fr) 2021-04-22 2021-04-22 Dispositif pour produire un faisceau lumineux polychromatique par combinaison de plusieurs faisceaux lumineux individuels
PCT/EP2022/060102 WO2022223459A1 (fr) 2021-04-22 2022-04-14 Dispositif pour produire un faisceau lumineux polychromatique par combinaison de plusieurs faisceaux lumineux individuels

Publications (1)

Publication Number Publication Date
EP4327140A1 true EP4327140A1 (fr) 2024-02-28

Family

ID=76375238

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22723101.6A Pending EP4327140A1 (fr) 2021-04-22 2022-04-14 Dispositif pour produire un faisceau lumineux polychromatique par combinaison de plusieurs faisceaux lumineux individuels

Country Status (3)

Country Link
EP (1) EP4327140A1 (fr)
FR (1) FR3122263B1 (fr)
WO (1) WO2022223459A1 (fr)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8132919B2 (en) * 2009-04-30 2012-03-13 Eastman Kodak Company Digital projector using arrayed light sources
US20130292571A1 (en) 2011-06-02 2013-11-07 Infrasign, Inc. Optically multiplexed mid-infrared laser systems and uses thereof
US9620933B1 (en) * 2013-04-06 2017-04-11 TeraDiode, Inc. High brightness, monolithic, multispectral semiconductor laser
US20180274976A1 (en) * 2015-09-24 2018-09-27 The University Of South Alabama Illumination device for spectral imaging

Also Published As

Publication number Publication date
FR3122263B1 (fr) 2023-05-19
FR3122263A1 (fr) 2022-10-28
WO2022223459A1 (fr) 2022-10-27

Similar Documents

Publication Publication Date Title
CA1304971C (fr) Polariseur a couches dielectriques
EP1514279B1 (fr) Dispositif optique pour applications rayons x
FR2883384A1 (fr) Dispositif optique de multiplexage en longueur d'onde
EP2277074B1 (fr) Lunettes informatives
EP3058412A1 (fr) Appareil laser modulaire
WO2011012825A1 (fr) Systeme optique planaire d'imagerie polychromatique a large champ de vision
FR2918467A1 (fr) Dispositif d'imagerie multispectral a filtre de type moems pour observation satellitaire
WO2014087083A1 (fr) Spectromètre pour l'analyse du spectre d'un faisceau lumineux
EP0102272B1 (fr) Procédé de focalisation des réseaux de diffraction sphériques holographiques travaillant par réflexion, objectifs dispersifs et spectromètres en faisant application
EP2929307B1 (fr) Spectromètre pour l'analyse du spectre d'un faisceau lumineux
EP3855068A1 (fr) Dispositif de projection distribuée de lumière
WO2022223459A1 (fr) Dispositif pour produire un faisceau lumineux polychromatique par combinaison de plusieurs faisceaux lumineux individuels
EP3149524B1 (fr) Systeme de recombinaison spatiale d'impulsions laser ultra-breves par un element diffractif
FR2492176A1 (fr) Dispositif selecteur optique utilisant un coin de fizeau en reflexion
FR3126049A1 (fr) Dispositif pour combiner plusieurs faisceaux lumineux
EP4139657A1 (fr) Dispositif de répartition de lumière basé sur des réseaux de diffraction
EP1474849A1 (fr) Chaine amplificatrice pour la generation d impulsions ultracourtes de forte puissance
EP2473824B1 (fr) Interféromètre à compensation de champ
US20240184126A1 (en) Device for producing a polychromatic light beam by combining a plurality of individual light beams
WO2024002600A1 (fr) Dispositif optique de balayage d'un faisceau lumineux sur une pièce à usiner
CA3202454A1 (fr) Dispositif d'amplification d'un faisceau laser
WO2004086124A2 (fr) Dispositif optique confocal avec separateur de faisceaux amovible
FR3118330A1 (fr) Dispositif d'amplification d'un laser
FR3059156A1 (fr) Module de detection optique
WO2000014836A1 (fr) Systeme de mise en forme d'un faisceau optique

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20231117

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR