WO2011024212A1 - 位相インタポレータ及び半導体回路装置 - Google Patents

位相インタポレータ及び半導体回路装置 Download PDF

Info

Publication number
WO2011024212A1
WO2011024212A1 PCT/JP2009/004065 JP2009004065W WO2011024212A1 WO 2011024212 A1 WO2011024212 A1 WO 2011024212A1 JP 2009004065 W JP2009004065 W JP 2009004065W WO 2011024212 A1 WO2011024212 A1 WO 2011024212A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
clock signal
phase
output
mixer
Prior art date
Application number
PCT/JP2009/004065
Other languages
English (en)
French (fr)
Inventor
小関由知
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to EP09848664.0A priority Critical patent/EP2472724A4/en
Priority to KR1020127005097A priority patent/KR101287224B1/ko
Priority to PCT/JP2009/004065 priority patent/WO2011024212A1/ja
Priority to JP2011528504A priority patent/JP5273252B2/ja
Publication of WO2011024212A1 publication Critical patent/WO2011024212A1/ja
Priority to US13/369,847 priority patent/US8427208B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/15Arrangements in which pulses are delivered at different times at several outputs, i.e. pulse distributors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/081Details of the phase-locked loop provided with an additional controlled phase shifter
    • H03L7/0812Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used
    • H03L7/0814Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used the phase shifting device being digitally controlled
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/087Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using at least two phase detectors or a frequency and phase detector in the loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0016Arrangements for synchronising receiver with transmitter correction of synchronization errors
    • H04L7/002Arrangements for synchronising receiver with transmitter correction of synchronization errors correction by interpolation
    • H04L7/0025Arrangements for synchronising receiver with transmitter correction of synchronization errors correction by interpolation interpolation of clock signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/033Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop
    • H04L7/0337Selecting between two or more discretely delayed clocks or selecting between two or more discretely delayed received code signals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K2005/00013Delay, i.e. output pulse is delayed after input pulse and pulse length of output pulse is dependent on pulse length of input pulse
    • H03K2005/00019Variable delay
    • H03K2005/00026Variable delay controlled by an analog electrical signal, e.g. obtained after conversion by a D/A converter
    • H03K2005/00052Variable delay controlled by an analog electrical signal, e.g. obtained after conversion by a D/A converter by mixing the outputs of fixed delayed signals with each other or with the input signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K2005/00013Delay, i.e. output pulse is delayed after input pulse and pulse length of output pulse is dependent on pulse length of input pulse
    • H03K2005/0015Layout of the delay element
    • H03K2005/00156Layout of the delay element using opamps, comparators, voltage multipliers or other analog building blocks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K2005/00013Delay, i.e. output pulse is delayed after input pulse and pulse length of output pulse is dependent on pulse length of input pulse
    • H03K2005/0015Layout of the delay element
    • H03K2005/00195Layout of the delay element using FET's
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K2005/00286Phase shifter, i.e. the delay between the output and input pulse is dependent on the frequency, and such that a phase difference is obtained independent of the frequency

Definitions

  • the present invention relates to a phase interpolator and a semiconductor circuit device.
  • the clock signal CLK2 whose phase advance amount is 90 ° from the regenerated clock signals CLK1 and CLK1B and CLK2B is generated and data is captured from the signal transmitted using these.
  • CLK2B is a signal whose phase advance amount is 180 ° from CLK2.
  • variable 45-degree phase shift circuit receives the feedback signal and changes the characteristic value of the circuit to adjust the phase shift angle to 45 ° by setting the phase advance amount to 0 °. .
  • a differential clock signal whose phase with data is adjusted is input, the differential clock signal is transformed and output, and a signal generated based on the differential clock signal is fed back to provide a differential clock signal. It is known to control the amount of signal deformation.
  • Such a four-phase clock signal is generated using a phase interpolator.
  • the temperature characteristics, voltage characteristics, frequency characteristics, etc. of the transistors (MOSFETs) inside the phase interpolator vary.
  • MOSFETs transistors
  • the disclosed phase interpolator includes a selector, a first mixer, a second mixer, a first phase detector, a second phase detector, a first charge pump circuit, and a second charge pump.
  • a pump circuit, an analog-digital converter, and an adder are included.
  • the selector supplies a four-phase clock signal to the first mixer and the second mixer.
  • the first mixer determines a first clock signal and a second clock signal to be generated based on the clock signal supplied from the selector, and determines an advance amount of the first phase given to the clock signal.
  • the first clock signal having an advance amount of the first phase and the second clock signal having a phase advance amount of 180 ° with respect to the first clock signal in accordance with a first control signal to be determined
  • the second mixer determines a third clock signal and a fourth clock signal to be generated based on the clock signal supplied from the selector, and determines an advance amount of the second phase given to the clock signal.
  • the phase advance amount is 270 with respect to the third clock signal and the first clock signal, which is 90 ° with respect to the first clock signal.
  • the fourth clock signal having a phase of [deg.].
  • the first phase detector obtains an exclusive OR of the first clock signal output from the first mixer and the third clock signal output from the second mixer.
  • the second phase detector obtains an exclusive OR of the second clock signal output from the first mixer and the fourth clock signal output from the second mixer.
  • the first charge pump circuit converts the exclusive OR output from the first phase detector into a first voltage signal.
  • the second charge pump circuit converts the exclusive OR output from the second phase detector into a second voltage signal.
  • the analog-to-digital converter is generated based on a combined signal of the first voltage signal output from the first charge pump circuit and the second voltage signal output from the second charge pump circuit.
  • a digital signal is generated based on the signal.
  • the adder adds the digital signal output from the analog-digital converter to the first control signal to generate the second control signal, and supplies the second control signal to the second mixer.
  • phase interpolator it is possible to realize a phase interpolator that outputs a four-phase clock signal whose phase advance angle is exactly 90 °, and it is possible to accurately detect the transmitted signal.
  • ADC analog digital converter
  • FIG. 1 is a diagram showing an example of a data transmission / reception system having a reception-side semiconductor integrated circuit device including a transmission-side semiconductor integrated circuit device and a phase interpolator.
  • the data transmission / reception system of FIG. 1 includes a transmission-side semiconductor integrated circuit device (hereinafter referred to as a transmission-side LSI chip) 100 and a reception-side semiconductor integrated circuit device (hereinafter referred to as a reception-side LSI chip) 200, and a transmission path 300 that connects them.
  • a transmission-side LSI chip 100 that transmits an input signal includes an output terminal 102 connected to an output buffer circuit 101.
  • a receiving-side LSI chip 200 that receives an input signal includes an input terminal 201.
  • the transmission line 300 connects between the output terminal 102 and the input terminal 201.
  • the transmission-side LSI chip 100 transmits input data from the output buffer circuit 101 to the LSI chip 200 via the transmission path 300.
  • the input data is, for example, a serial signal transmitted by a so-called embedded system in which a clock is embedded in the data.
  • the receiving-side LSI chip 200 includes an IO macro 202 and a processing circuit 208.
  • the IO macro 202 is an input circuit cell, extracts data and edges from the input signal received from the transmission-side LSI chip 100, and inputs them to the processing circuit 208.
  • the processing circuit 208 is a circuit that executes a predetermined process such as a process of recovering a clock from data and edge information, and other data communication for an input signal.
  • the IO macro 202 includes an input buffer circuit 203, a data output circuit 204, an edge output circuit 205, a PLL (Phase Locked Loop) 206, and a phase interpolator (PI) 207.
  • PLL Phase Locked Loop
  • Input data transmitted via the transmission path 300 is input to the input buffer circuit 203 via the input terminal 201.
  • the input buffer circuit 203 inputs the received input data to the data output circuit 204 and the edge output circuit 205.
  • the PLL 206 generates four-phase clock signals and supplies them to the phase interpolator 207.
  • the four-phase clock signals are clocks whose phase advance amounts are 0 °, 90 °, 180 °, and 270 °, respectively.
  • a clock having a phase advance amount of 0 ° is a signal having a phase advance amount of 0 °.
  • a clock having a phase advance amount of 90 ° is a signal having a phase advance amount of 90 ° with respect to a clock having a phase advance amount of 0 °. The same applies to other signals.
  • the phase interpolator 207 generates a four-phase clock signal CLK11, a clock signal CLK12, a clock signal CLK13, and a clock signal CLK13 based on the four-phase clock signal input from the PLL 206.
  • the clock signal CLK11 is a clock signal whose phase advance amount is ⁇ .
  • the phase advance amount ⁇ is a desired phase advance amount determined according to the phase of the input data.
  • the clock signal CLK12 is a clock signal having a phase advance amount of ( ⁇ + 90 °), and is a clock signal having an advance amount of 90 ° with respect to the clock signal CLK11.
  • the clock signal CLK13 is a clock signal having a phase advance amount of ( ⁇ + 180 °), and is a clock signal having an advance amount of 180 ° with respect to the clock signal CLK11.
  • the clock signal CLK14 is a clock signal having a phase advance amount of ( ⁇ + 270 °) and is a clock signal having an advance amount of 270 ° with respect to the clock signal CLK11.
  • the phase interpolator 207 supplies the clock signal CLK12 and the clock signal CLK13 to the data output circuit 204.
  • the phase interpolator 207 supplies the clock signal CLK11 and the clock signal CLK13 to the edge output circuit 205.
  • the clock signal CLK11 corresponds to, for example, the clock signal CLK1 in FIG.
  • the clock signal CLK12, the clock signal CLK13, and the clock signal CLK13 correspond to the clock signal CLK2, the clock signal CLK1B, and the clock signal CLK2B in FIG. 9, respectively.
  • the data output circuit 204 extracts data from the input data according to the clock signal CLK12 and the clock signal CLK13 supplied from the phase interpolator 207, and outputs the data to the processing circuit 208.
  • the edge output circuit 205 extracts the input data near the edge from the input data according to the clock signal CLK11 and the clock signal CLK13 supplied from the phase interpolator 207, and outputs the input data to the processing circuit 208.
  • the processing circuit 208 extracts edge information from the input data and data in the vicinity of the edge in synchronization with the input clock, performs signal processing such as converting it to a phase signal, and then uses them. A predetermined process is performed and a phase signal, in other words, the first control signal PIcode is output to the phase interpolator 207.
  • FIG. 2 is a diagram illustrating an example of a phase interpolator.
  • ADC Analog Digital Converter
  • the selector 1 is supplied with the four-phase clock signal from the PLL 206.
  • the selector 1 supplies the supplied four-phase clock signal to the first mixer 21 and the second mixer 22 based on the first control signal PIcode.
  • the first control signal PIcode will be described later.
  • the mixer 21 receives a clock signal having a phase advance amount of 0 °, and simultaneously receives a clock signal having a phase advance amount of 180 °.
  • the input IN1 to the mixer 21 is a clock signal having a phase advance amount of 0 °
  • the input IN1B is a clock signal having a phase advance amount of 180 °.
  • a clock signal having a phase advance angle of 90 ° is input to the mixer 21, and at the same time, a signal having a phase advance amount of 270 ° is also input.
  • the input IN2 to the mixer 21 is a clock signal having a phase advance amount of 90 °
  • the input IN2B is a clock signal having a phase advance amount of 270 °.
  • the mixer 22 is supplied with a clock signal having a phase advance amount of 90 °, and at the same time, a clock signal having a phase advance amount of 270 °.
  • the input IN1 to the mixer 22 is a clock signal having a phase advance amount of 90 °
  • the input IN1B is a clock signal having a phase advance amount of 270 °.
  • a clock signal having a phase advance amount of 180 ° is input to the mixer 22, and at the same time, a signal having a phase advance amount of 0 ° is also input.
  • the input IN2 to the mixer 22 is a clock signal with a phase advance amount of 180 °
  • the input IN2B is a clock signal with a phase advance amount of 0 °.
  • the mixer 21 advances by 180 ° with respect to the first clock signal CLK11 having a desired phase advance amount ⁇ and the clock signal CLK11 in accordance with the first control signal PIcode.
  • a second clock signal CLK13 having a phase advance amount ( ⁇ + 180 °) is generated.
  • the first control signal defines the clock signal CLK11 and the clock signal CLK13 generated by the mixer 21, and also defines the advance amount of the first phase given thereto. In FIG. 3, the advance amount of the first phase is 0 °.
  • the clock signal CLK13 is a signal whose phase advance amount is 180 ° (opposite phase) with respect to the clock signal CLK11.
  • the output of the mixer 21 is input to the first output buffer circuit 31 corresponding to the mixer 21 and the first and second phase detectors 41 and 42.
  • the mixer 22 Based on the clock signal supplied from the selector 1, the mixer 22 generates a third clock signal CLK12 having a phase whose phase advance amount is 90 ° with respect to the clock signal CLK11 in accordance with the second control signal PIcode ′. And a fourth clock signal CLK14 having a phase advance amount of 270 ° with respect to the clock signal CLK11 (in other words, a phase advance amount of 90 ° with respect to the clock signal CLK13). .
  • the second control signal determines the clock signal CLK12 and the clock signal CLK14 generated by the mixer 22, and also determines the advance amount of the second phase applied thereto.
  • the advance amount of the second phase is a value obtained by adding an advance amount corresponding to a phase shift ⁇ described later to 90 °.
  • the clock signal CLK14 is a signal whose phase advance angle is 180 ° with respect to the clock signal CLK12.
  • the clock signal CLK12 and the clock signal CLK14 (second differential signal) are signals having a phase whose phase advance amount is 90 ° with respect to the clock signal CLK11 and the clock signal CLK13 (first differential signal).
  • the output of the mixer 22 is input to the second output buffer circuit 32 corresponding to the mixer 22 and the first and second phase detectors 41 and 42.
  • the second control signal PIcode ′ is generated from the first control signal PIcode used to generate the clock signal CLK11 and the clock signal CLK13, and the clock signal CLK12 and the clock signal CLK14 having a phase advance amount of 90 °. Is a signal added with the value used for.
  • the second control signal PIcode ′ includes a phase shift of the clock signal CLK12 and the clock signal CLK14 with respect to the phase of the clock signal CLK11 and the clock signal CLK13 (in other words, the advance or delay of the phase advance amount). )
  • the value used for correcting ⁇ is added. As a result, the phases of the clock signal CLK12 and the clock signal CLK14 are maintained so that the phase advance amount accurately has 90 ° with respect to the phases of the clock signal CLK11 and the clock signal CLK13.
  • the phase shift (in other words, the phase advance shift) ⁇ is the phase advance between the clock signal CLK11 and the clock signal CLK13 and the clock signal CLK12 and the clock signal CLK14. It is a value obtained by subtracting 90 ° from the angular difference.
  • the phase shift ⁇ is an undesired shift and is originally a value that is desirably “0”.
  • FIG. 3 is a diagram illustrating an example of a phase interpolator mixer.
  • the mixer 21 includes two differential circuits (differential pairs), eight current sources, and eight control switches. Since the mixer 22 has the same configuration as the mixer 21, the illustration of the mixer 22 is omitted.
  • the number of current sources and control switches is not limited to eight. The number of current sources and control switches varies arbitrarily depending on the resolution at which an arbitrary phase signal is created.
  • the two differential circuits include a first differential circuit including resistors R31 and R32, which are loads common to the two differential circuits, N-channel MOS transistors (FETs) M1 and M2, and a second differential circuit including M3 and M4.
  • Input signals IN1, IN1B, IN2, and IN2B are applied to the gate electrodes of M1, M2, M3, and M4, respectively.
  • IN1B is an inverted signal of IN1.
  • IN2B is an inverted signal of IN2.
  • Differential outputs OUT and OUTB are connected to connection points of the resistors R31 and R32 and M1, M2, M3, and M4.
  • the differential output OUT corresponds to a clock signal having a phase advance amount ⁇
  • the differential output OUTB corresponds to a clock signal having a phase advance amount ( ⁇ + 180 °).
  • the differential outputs OUT and OUTB are input to the first output buffer circuit 31. Further, the differential output OUT is input to the first phase detector 41, and the differential output OUTB is input to the second phase detector 42.
  • the clock signal CLK11 is output to the differential output OUT.
  • the clock signal CLK13 is output to the differential output OUTB. This is signal INA2.
  • the clock signal CLK12 is output to the differential output OUT. This is signal INB1.
  • the clock signal CLK14 is output to the differential output OUTB. This is signal INB2.
  • the eight current sources include M13 to M20.
  • a bias voltage Bias is applied to the gate electrodes of M13 to M20.
  • a ground potential is connected to the source electrodes of M13 to M20.
  • a control switch corresponding to the current source is connected between the drain electrodes of the current sources M13 to M20 and the first and second differential circuits.
  • the first differential circuit is driven by current sources M13, M15, M17, and M19.
  • the second differential circuit is driven by current sources M14, M16, M18, and M20.
  • the eight control switches include M5 to 12 provided corresponding to the eight current sources.
  • a 4-bit control signal PIcode [3: 0] is applied to the gate electrodes of the control switches M5, M7, M9, and M11.
  • Each bit of PIcode [3: 0] is applied to any one of control switches M5, M7, M9, and M11 associated in advance.
  • a 4-bit control signal PIcodeB [3: 0] is applied to the gate electrodes of the control switches M6, M8, M10, and M12.
  • Each bit of PIcodeB [3: 0] is applied to any one of control switches M6, M8, M10, and M12 associated in advance.
  • PIcodeB [3: 0] is an inverted signal of PIcode [3: 0].
  • PIcodeB [3: 0] and PIcode [3: 0] are both the first control signal PIcode.
  • Control switches M5 and M6, M7 and 8, M9 and M10, and M11 and M12 are paired. Therefore, signals having an inversion relationship with each other are applied to the gate electrodes of the control switches to be paired. Thus, when one of the paired control switches is on, the other is off.
  • a clock signal having a phase advance amount of 0 ° is applied to IN1
  • a lead angle amount is 180 ° to IN1B with respect to a clock signal having a phase advance amount of 0 °. Therefore, a signal (with a phase advance amount of 180 °) is applied.
  • a clock signal having a phase advance amount of 90 ° is applied to IN2
  • IN2B has an advance amount of 180 ° with respect to a clock signal having a phase advance amount of 90 °.
  • a certain signal (and therefore a phase advance amount of 270 °) is applied.
  • PIcode [3: 0] supplied to the control switches M5, M7, M9, and M11 corresponding to the first differential circuit is (1, 1, 0, 0)
  • the second differential PIcodeB [3: 0] supplied to the control switches M6, M8, M10, and M12 corresponding to the circuit is set to (0, 0, 1, 1).
  • the weighting of IN1 with the phase advance amount of 0 ° is equal to the weighting of IN1 with the phase advance amount of 90 ° and the weighting of IN1B with the phase advance amount of 180 ° and the phase advancement.
  • This is equivalent to setting the weighting of IN2B with the angular amount of 270 ° to the weight “0”.
  • PIcode [3: 0] is set to (1, 1, 1, 0), and PIcodeB [3: 0] is set to (0 , 0, 0, 1).
  • the weighting of IN1 with a phase advance amount of 0 ° and the weighting of IN2 with a phase advance amount of 90 ° is set to 3: 1
  • the weight and phase of IN1B with a phase advance amount of 180 ° are set to 3: 1.
  • the mixer 22 has the same configuration as the mixer 21, but receives the second control signal PIcode 'instead of the first control signal PIcode.
  • the mixer 22 is a differential signal whose phase advance amount is 90 ° with respect to the differential signal output from the mixer 21, in other words, the phase advance amount ( ⁇ + 90 °) and the phase advance angle.
  • An amount ( ⁇ + 270 °) of a clock signal (differential signal) is output.
  • phase difference ⁇ of the clock signal CLK12 and the clock signal CLK14 with respect to the phase of the clock signal CLK11 exists in the second control signal PIcode ′
  • the value used for correction is added. Accordingly, the phases of the clock signal CLK12 and the clock signal CLK14 are kept so as to be accurately shifted by 90 ° with respect to the phases of the clock signal CLK11 and the clock signal CLK13.
  • the value used for correcting the phase shift ⁇ is not added to the second control signal PIcode ′.
  • the first output buffer circuit 31 is an output circuit of the phase interpolator, and outputs a signal output from the output terminal of the mixer 21 as an output signal of the phase interpolator.
  • the second output buffer circuit 32 is an output circuit of the phase interpolator, and outputs a signal output from the output terminal of the mixer 22 as an output signal of the phase interpolator.
  • the phase interpolator has a differential signal including the clock signal having the phase advance amount ⁇ and the phase advance amount ( ⁇ + 180 °), and the phase advance amount is 90 ° with respect to the differential signal.
  • a differential signal in other words, a differential signal including a clock signal having a phase advance amount ( ⁇ + 90 °) and a phase advance amount ( ⁇ + 270 °) is output.
  • the first phase detector 41 includes a clock signal CLK11 (a clock signal having a phase advance amount ⁇ ) output from the mixer 21 and a clock signal CLK12 (a phase advance angle amount ( ⁇ + 90) output from the mixer 22.
  • the first phase detector 41 inputs the obtained exclusive OR to the first charge pump circuit 51 corresponding to the first phase detector 41.
  • the second phase detector 42 includes a clock signal CLK13 (clock signal having a phase advance amount ( ⁇ + 180 °)) output from the first mixer 21 and a clock signal CLK14 (phase advance) output from the mixer 22.
  • the exclusive OR with the angular amount (clock signal of ⁇ + 270 °) is obtained.
  • the second phase detector 42 inputs the obtained exclusive OR to the second charge pump circuit 52 corresponding to the second phase detector 42.
  • FIG. 4A is a diagram illustrating an example of a phase detector (PFD).
  • PFD phase detector
  • the phase detector 41 is an exclusive OR circuit EOR1. To the phase detector 41, the signal INA1 from the mixer 21 and the signal INB1 from the mixer 22 are input. The phase detector 41 obtains the result of an exclusive OR operation (EOR: Exclusive-OR) of the signal INA1 and the signal INB1, and outputs the result as a signal OUT1.
  • EOR Exclusive-OR
  • the phase detector 42 is an exclusive OR circuit EOR2.
  • the phase detector 42 receives the signal INA2 from the mixer 21 and the signal INB2 from the mixer 22.
  • the phase detector 42 obtains the result of the exclusive OR (EOR) of the signal INA2 and the signal INB2, and outputs the result as the signal OUT2.
  • the first charge pump circuit 51 converts the result of the exclusive OR operation output from the phase detector 41 into a first voltage signal.
  • the second charge pump circuit 52 converts the exclusive OR output from the phase detector 42 into a second voltage signal.
  • the output terminal of the first charge pump circuit 51 is connected to the output terminal of the second charge pump circuit 52.
  • the low-pass filter 6 receives a signal obtained by synthesizing the first voltage signal and the second voltage signal.
  • FIG. 4B is a diagram illustrating an example of a charge pump circuit.
  • the charge pump circuit 51 includes an analog switch circuit and two constant current sources inserted between the analog switch circuit and two power supplies.
  • the analog switch circuit includes a p-channel MOSFET ⁇ MP511 and an n-channel MOSFET ⁇ MN512.
  • a signal OUT1 from the phase detector 41 is input to the charge pump circuit 51 as an input IN.
  • the charge pump circuit 51 forms an inverted signal according to the input signal OUT1 and outputs it as a charge pump circuit output.
  • the charge pump circuit 52 is not shown in FIG. 4B, but has the same configuration as the charge pump circuit 51.
  • the charge pump circuit 52 takes the signal OUT2 from the phase detector 42 as an input IN, forms an inverted signal thereof, and outputs it as an output of the charge pump circuit.
  • the low-pass filter 6 is provided between the first and second charge pump circuits 51 and 52 and the ADC 7 and filters a signal obtained by synthesizing the first voltage signal and the second voltage signal by an RC circuit. Cut high frequency components.
  • the output (LPF output) of the low-pass filter 6 is a signal generated based on a combined signal of the first voltage signal and the second voltage signal.
  • the LPF output is input to the ADC 7.
  • FIG. 4C is a diagram illustrating an example of a low-pass filter.
  • the low pass filter (LPF) 6 is a filter circuit including a resistor R62 and a capacitor C63 connected in series, and a capacitor C61 connected in parallel to the series circuit.
  • the low pass filter 6 is supplied with the charge pump circuit outputs from the two charge pump circuits 51 and 52 in common.
  • the capacitors C61 and C63 are charged by the charge pump circuit output from the charge pump circuits 51 and 52, or discharged to the charge pump circuit output.
  • the low pass filter 6 outputs the level (voltage signal) charged in the capacitors C61 and C63 as an LPF output.
  • the ADC 7 is a signal generated based on a combined signal of the first voltage signal output from the first charge pump circuit 51 and the second voltage signal output from the second charge pump circuit 52, in other words, For example, a digital signal is generated based on the LPF output.
  • the output of the ADC 7 is input to the adder 8.
  • FIG. 5 is a diagram illustrating an example of an analog-digital converter (ADC).
  • ADC analog-digital converter
  • the ADC 7 includes a plurality of resistors R71 to R73, a plurality of comparators 71 to 72, and an encoder 73.
  • the number of the plurality of resistors R71 to R73 is not limited to three, and the number of the plurality of comparators 71 to 72 is not limited to two.
  • the plurality of resistors R71 to R73 are connected in series between the power supply voltage VDD and the ground potential, and divide the power supply voltage VDD into a plurality of voltage values Ref1 to Ref2.
  • the voltage at the connection point of the plurality of resistors R71 to R73 is input to one input terminal of the plurality of comparators 71 to 72 as the reference voltage Ref1 to Ref2.
  • the LPF output from the low pass filter 6 is input to the other input terminals of the plurality of comparators 71 to 72.
  • Each of the plurality of comparators 71 to 72 compares the input reference voltages Ref1 to Ref2 with the LPF output, forms an output “1” in a predetermined case, and inputs the output to the encoder 73.
  • reference voltages Ref1 to Ref2 formed inside the ADC 7 are illustrated outside the ADC 1.
  • the encoder 73 converts the LPF output from the low-pass filter 6 into a digital signal based on the outputs of the plurality of comparators 71 to 72, and further converts the converted digital signal into an addition value to the PIcode.
  • the encoder 73 sets the added value to the clock signal CLK11 and the clock signal CLK13.
  • the values are used to generate the clock signal CLK12 and the clock signal CLK14 having a phase advance amount of 90 °.
  • the encoder 73 sets the digital signal so that the phase shift of the clock signal CLK12 and the clock signal CLK14 with respect to the phase of the clock signal CLK11 and the clock signal CLK13 is 90 °. Is output.
  • the ADC 7 basically refers to the value that the LPF output takes when the phase shift of the clock signal CLK 12 and the clock signal CLK 14 with respect to the phase of the clock signal CLK 11 and the clock signal CLK 13 is 90 °. Used as voltage. Therefore, a value 1 ⁇ 2 Vdd that is half the power supply voltage Vdd is used as the reference voltage.
  • the encoder 73 corrects the addition value, the value used for generating the signal with the phase advance amount of 90 °, and the correction of the phase shift ⁇ . It is set as the value which added the value used for.
  • the adder 8 receives, for example, a first control signal PIcode and an output of the ADC 7 from a control circuit.
  • the adder 8 adds the digital signal output from the ADC 7 to the first control signal PIcode, generates a second control signal PIcode ′, and supplies the second control signal PIcode ′ to the mixer 22.
  • the mixer 22 can set the differential signal to be output as a signal having a phase advance angle of 90 ° relative to the differential signal output from the mixer 21.
  • FIG. 6 shows the case where the phase advance amount difference between the outputs of the phase interpolator 207 is kept exactly 90 °
  • FIG. 7 shows the phase advance amount between the outputs of the phase interpolator 207
  • 8 shows the case where the difference is smaller than 90 °
  • FIG. 8 shows the case where the phase advance amount difference between the outputs of the phase interpolator 207 is larger than 90 °.
  • FIG. 6 shows four phases of ⁇ , ( ⁇ + 90 °), ( ⁇ + 180 °), and ( ⁇ + 270 °) based on four-phase clock signals with phase advance amounts of 0 °, 90 °, 180 °, and 270 °.
  • the state in which the clock signal is formed is shown.
  • the mixer 21 outputs a differential signal having a desired phase advance amount ⁇
  • the mixer 22 has a phase advance amount ( ⁇ + 90 °) having an advance amount of 90 ° with respect to these signals.
  • is the advance amount of the desired phase.
  • the output of the phase detector 41 is an exclusive OR of the signal of the phase advance amount ⁇ and the signal of the phase advance amount ( ⁇ + 90 °). Accordingly, as shown in FIG. 6, the output OUT1 is at a high level during a period when one of the inputs is at a high level (“1”), and is at a low level during other periods.
  • the output of the phase detector 42 is an exclusive OR of the signal of the phase advance amount ( ⁇ + 180 °) and the signal of the phase advance amount ( ⁇ + 270 °). Therefore, as shown in FIG. 6, the output OUT2 becomes high level during a period when one of the inputs is high level (“1”), and becomes low level during other periods.
  • the charge pump circuits 51 and 52 output an inverted signal of the signal OUT1 from the phase detectors 41 and 42. Therefore, the charge pump circuits 51 and 52 charge the capacitor C61 and the capacitor C63 of the low pass filter 6 during the high level period and the low pass filter 6 during the low level period in the signal obtained by inverting the PFD output of FIG. The capacitor 61 and the capacitor C63 are discharged.
  • the phase advance amount difference between the outputs of the phase interpolator 207 is 90 °. Therefore, in the PFD output of FIG. 6, the high level period and the low level period are equal. In other words, the charging time and discharging time of the capacitor C61 and the capacitor C63 of the low pass filter 6 become equal.
  • the charge pump circuit output which is the result of combining the outputs of the charge pump circuits 51 and 52, becomes a signal having a predetermined voltage value.
  • This predetermined voltage value is, for example, a half voltage (1/2 Vdd) of the power supply voltage Vdd. As described above, this voltage value is used as a reference voltage for the ADC 7.
  • the output of the encoder 73 of the ADC 7 is only a value corresponding to the phase advance amount 90 °
  • the output PIcode ′ of the adder 8 is a value obtained by adding a value corresponding to the phase advance amount 90 ° to PIcode. It becomes.
  • the four-phase clock signals CLK11, CLK12, CLK13, and CLK14 output from the two mixers 21 and 22 maintain the phase advance amount difference as it is.
  • the phase advance amount difference between the outputs of the phase interpolator 207 is smaller than 90 °.
  • a signal having a phase advance amount difference of 90 ° with respect to a clock signal having a phase advance amount ⁇ is a phase advanced by ⁇ .
  • the high level period and the low level period are not equal, and the charging time and discharging time of the capacitor C61 and the capacitor C63 of the low pass filter 6 are not equal. That is, when the duty ratio of the PFD output is not 1: 1, the charging time and discharging time of the capacitor 61 and the capacitor 63 of the low-pass filter 6 are also not 1: 1.
  • the high level period becomes shorter than 1 ⁇ 4 period. In other words, the period is shorter than a period corresponding to a phase advance amount of 90 ° with respect to one cycle of 360 °. This high level period corresponds to the advance amount ⁇ of the advanced phase.
  • the output of the charge pump circuit which is the result of combining the outputs of the charge pump circuits 51 and 52, gradually increases to a higher value and corresponds to the advance amount ⁇ of the advanced phase than the original value 1 ⁇ 2 Vdd. It will be higher by the value you want. Accordingly, the output of the ADC 7 also becomes a value that is larger by a value corresponding to the advance amount ⁇ of the phase advanced than the original value “0”, and the output PIcode ′ of the adder 8 is changed to the PIcode by the advance amount of the original phase. A value corresponding to the difference of 90 ° is added to a value corresponding to the advance amount ⁇ of the advanced phase. In other words, the output PIcode 'of the adder 8 is a value that delays the phase (advanced) at that time.
  • the control signal PIcode ' that delays the current phase relative to the mixer 21 is input to the mixer 22.
  • the four-phase clock signals CLK11, CLK12, CLK13, and CLK14 output from the two mixers 21 and 22 are corrected to 90 °, which is the difference in the correct phase advance amount.
  • the difference in the phase advance amount between the outputs of the phase interpolator 207 is greater than 90 °.
  • the signal that should originally have a phase advance amount difference of 90 ° with respect to the clock signal having the phase advance amount ⁇ has a phase delayed by ⁇ .
  • the high level period is longer than a quarter cycle, in other words, It becomes longer than a period corresponding to a phase advance amount of 90 ° with respect to one cycle of 360 °. This high level period corresponds to the advanced phase amount ⁇ of the delayed phase.
  • the output of the charge pump circuit which is the result of combining the outputs of the charge pump circuits 51 and 52, gradually decreases to a lower value, and corresponds to the advance amount ⁇ of the phase delayed from the original value 1 ⁇ 2 Vdd.
  • the value will be as low as Accordingly, the output of the ADC 7 is also a value that is smaller by a value corresponding to the phase advance amount ⁇ delayed from the original value “0” 0, and the output PIcode ′ of the adder 8 is changed to PIcode by the original phase advance amount.
  • the value corresponding to the difference of 90 ° is added, and the value corresponding to the advance amount ⁇ of the delayed phase is subtracted.
  • the output PIcode 'of the adder 8 is set to a value that advances the (advanced) phase at that time.
  • the control signal PIcode ′ that advances the current phase relative to the mixer 21 is input to the mixer 22.
  • the four-phase clock signals CLK11, CLK12, CLK13, and CLK14 output from the two mixers 21 and 22 are corrected to 90 °, which is the difference in the correct phase advance amount.
  • the above embodiment is an example in which the four-phase clock signals CLK11, CLK12, CLK13, and CLK14 are maintained at 90 ° which is the difference in the advance amount of the correct phase. May be a value other than 90 °.
  • the first mixer 21 has a phase advance amount ⁇ of the clock signal CLK11 and a phase advance amount of 180 with respect to the clock signal CLK11.
  • a clock signal CLK13 that is ° is generated.
  • the advance amount of the phase of the clock signal CLK13 is ( ⁇ + 180 °).
  • the second mixer 22 is a clock that is a value obtained by adding or subtracting a predetermined advance amount adjustment value x to the clock signal CLK11 with a phase advance amount of 90 ° in accordance with the second control signal PIcode ′.
  • a signal CLK12 and a clock signal CLK14 which is a value obtained by adding or subtracting a predetermined advance amount adjustment value x to a phase advance amount of 270 ° with respect to the clock signal CLK11, are generated.
  • the advance amount of the phase of the clock signal CLK12 is ( ⁇ + 90 ° ⁇ x)
  • the advance amount of the phase of the clock signal CLK14 is ( ⁇ + 270 ° ⁇ x).
  • the difference in the advance amount of the phase of the clock signals CLK12 and CLK14 with respect to the clock signals CLK11 and CLK13 is (90 ° ⁇ x).
  • a digital signal output from the ADC 7 to be added to the first control signal PIcode is generated as follows.
  • the ADC 7 includes a combined signal of the first voltage signal output from the first charge pump circuit 51 and the second voltage signal output from the second charge pump circuit 52, and the second control signal PIcode.
  • a digital signal is generated based on a signal generated based on a signal (hereinafter referred to as an adjustment signal) that gives a signal amount corresponding to a predetermined advance amount adjustment value x in '.
  • the voltages Ref1 and Ref2 input to the comparators 71 and 72 of the ADC 7 are variable. Therefore, the voltages Ref1 and Ref2 are voltage signals including an adjustment signal.
  • the voltages Ref1 and Ref2 are a signal component having a phase advance difference of 90 ° between the clock signals CLK12 and CLK14 with respect to the clock signals CLK11 and CLK13, and the clock signals CLK12 and CLK14 with respect to the clock signals CLK11 and CLK13. This is the sum or difference with the signal component (the signal component of the adjustment signal) that uses the difference in phase advance amount as the advance amount adjustment value x.
  • the voltages Ref1 and Ref2 are usually signal components with a difference in advance amount of 90 °. This is the default value of the voltages Ref1 and Ref2.
  • the voltages Ref1 and Ref2 use the signal component that sets the difference in the advance amount as 90 ° and the difference in the advance amount as the advance amount adjustment value. It is the sum of the signal component x.
  • the voltages Ref1 and Ref2 are the signal component that sets the advance amount difference to 90 ° and the advance amount difference is the advance amount adjustment value x. And a signal component.
  • the resistor R73 is a variable resistor.
  • the voltages Ref1 and Ref2 can be changed by changing the value of the variable resistor R73.
  • the control signal of the variable resistor R73 is input from the input terminal of the LSI chip 200, for example, and set in a register that stores the value of the control signal.
  • the value of the control signal of the variable resistor R73 is determined based on, for example, the result of a data transmission test between the LSI chip 100 and the LSI chip 200. As a result, in the period determined by the up and down edges of the clock, the data is captured more accurately by synchronizing with the signal of the advance amount different from the advance amount of 90 ° instead of the center of the period. Can capture data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Manipulation Of Pulses (AREA)

Abstract

 第1のミキサ21は、第1の制御信号に従って、第1のクロック信号と第1のクロック信号の逆位相の第2のクロック信号とを生成する。第2のミキサ22は、第2の制御信号に従って、第1のクロック信号に対して位相の進角量が90°である第3のクロック信号と第3のクロック信号の逆位相の第4のクロック信号とを生成する。ADC7は、第1のクロック信号と第3のクロック信号との排他的論理和に基づいて形成された電圧信号と、第2のクロック信号と第4のクロック信号との排他的論理和に基づいて形成された電圧信号との合成信号に基づいて生成された信号に基づいて、デジタル信号を生成する。加算器8は、前記デジタル信号を第1の制御信号に加算して第2の制御信号を生成して、第2のミキサ22に供給する。

Description

位相インタポレータ及び半導体回路装置
 本発明は、位相インタポレータ及び半導体回路装置に関する。
 半導体装置の間における信号の転送の方法として、クロックをデータに埋め込むエンベデッド方式がある。エンベデッド方式においては、図9に示すように、伝送された信号におけるエッジを認識して、これに基づいてクロック信号CLK1及びCLK1Bを再生する。CLK1BはCLK1に対して位相の進角量が180°である位相を持つ信号である。
 また、エンベデッド方式で、データのトリガとしてクロックのアップエッジとダウンエッジの両エッジを使用する方式においては、再生されたクロック信号CLK1及びCLK1Bから位相の進角量が90°であるクロック信号CLK2及びCLK2Bを生成して、これらを用いて伝送された信号からデータを取り込む。CLK2BはCLK2から位相の進角量が180°である信号である。これにより、エッジに対して90°の進角量を有する信号の期間の中心において、データを取り込むことができる。すなわち、この場合には信号のアップ又はダウン期間の前半期間がセットアップ期間、信号のアップ又はダウン期間の後半期間がホールド期間となる。
 なお、可変型45度移相回路が帰還信号を受けて回路の特性値を変化させることで、位相の進角量を0°にして移相角を45°に調整することが知られている。
 また、データとの位相が調整された差動クロック信号を入力し、この差動クロック信号を変形して出力すると共に、差動クロック信号に基づいて生成された信号をフィードバックして、差動クロック信号の変形量を制御することが知られている。
特開2005-260787号公報 特開2004-297404号公報
 伝送された信号から正確なデータを取り出すためには、データを取り込むタイミングが、信号期間の中心に近いほうが、セットアップ期間及びホールド期間ともにマージンを取りやすい。換言すれば、クロック信号CLK2及びCLK2Bの位相の進角量は、クロック信号CLK1及びCLK1Bから90°である方が、セットアップ期間とホールド期間のマージンを取りやすい。従って、位相の進角量が正確に90°である4個のクロック信号(4相クロック信号)CLK1、CLK1B、CLK2及びCLK2Bを生成することが望ましい。
 このような4相クロック信号は、位相インタポレータを用いて生成される。しかし、製造ばらつきに起因して、位相インタポレータの内部のトランジスタ(MOSFET)の温度特性、電圧特性、周波数特性等がばらつく。このため、4相クロック信号の間の位相の進角量を正確に90°とする場合には、温度特性、電圧特性、周波数特性等のばらつきを考慮する必要がある。
 本発明は、位相の進角量が正確に90°である4相クロック信号を出力する位相インタポレータを提供することを目的とする。
 開示される位相インタポレータは、セレクタと、第1のミキサと、第2のミキサと、第1の位相検出器と、第2の位相検出器と、第1のチャージポンプ回路と、第2のチャージポンプ回路と、アナログデジタル変換器と、加算器とを含む。セレクタは、4相のクロック信号を第1のミキサ及び第2のミキサに供給する。第1のミキサは、セレクタから供給された前記クロック信号に基づいて、生成される第1のクロック信号及び第2のクロック信号を定めると共に前記クロック信号に与えられる第1の位相の進角量を定める第1の制御信号に従って、前記第1の位相の進角量の前記第1のクロック信号と前記第1のクロック信号に対して位相の進角量が180°である前記第2のクロック信号とを生成する。第2のミキサは、セレクタから供給された前記クロック信号に基づいて、生成される第3のクロック信号及び第4のクロック信号を定めると共に前記クロック信号に与えられる第2の位相の進角量を定める第2の制御信号に従って、前記第1のクロック信号に対して位相の進角量が90°である前記第3のクロック信号と前記第1のクロック信号に対して位相の進角量が270°である位相の前記第4のクロック信号とを生成する。第1の位相検出器は、第1のミキサから出力された前記第1のクロック信号と前記第2のミキサから出力された前記第3のクロック信号との排他的論理和を求める。第2の位相検出器は、第1のミキサから出力された前記第2のクロック信号と前記第2のミキサから出力された前記第4のクロック信号との排他的論理和を求める。第1のチャージポンプ回路は、第1の位相検出器から出力された排他的論理和を第1の電圧信号に変換する。第2のチャージポンプ回路は、第2の位相検出器から出力された排他的論理和を第2の電圧信号に変換する。アナログデジタル変換器は、第1のチャージポンプ回路から出力された前記第1の電圧信号と前記第2のチャージポンプ回路から出力された前記第2の電圧信号との合成信号に基づいて生成された信号に基づいて、デジタル信号を生成する。加算器は、アナログデジタル変換器から出力されたデジタル信号を前記第1の制御信号に加算して前記第2の制御信号を生成して、前記第2のミキサに供給する。
 開示される位相インタポレータによれば、位相の進角量が正確に90°である4相クロック信号を出力する位相インタポレータを実現することができ、伝送された信号を正確に検出することができる。
位相インタポレータを含む半導体装置の一例を示す図である。 位相インタポレータの一例を示す図である。 ミキサの一例を示す図である。 位相検出器、チャージポンプ回路、フィルタ回路の一例を示す図である。 アナログデジタル変換器(ADC)の一例を示す図である。 位相インタポレータの動作説明図である。 位相インタポレータの動作説明図である。 位相インタポレータの動作説明図である。 4相クロック信号を示すタイミングチャートである。
 図1は、送信側半導体集積回路装置と位相インタポレータを含む受信側半導体集積回路装置を有するデータ送受信システムの一例を示す図である。
 図1のデータ送受信システムは、送信側半導体集積回路装置(以下、送信側LSIチップ)100及び受信側半導体集積回路装置(以下、受信側LSIチップ)200と、これらの間を接続する伝送路300とを含む。入力信号を送信する送信側LSIチップ100は、出力バッファ回路101に接続された出力端子102を備える。入力信号を受信する受信側LSIチップ200は入力端子201を含む。伝送路300は、出力端子102と入力端子201との間を接続する。送信側LSIチップ100は、出力バッファ回路101から、伝送路300を介して、入力データをLSIチップ200に送信する。入力データは、例えば、クロックがデータに埋め込まれた、いわゆるエンベデッド方式で送信されるシリアル信号である。
 受信側LSIチップ200は、IOマクロ202と、処理回路208とを含む。IOマクロ202は、入力回路セルであり、送信側LSIチップ100から受信した入力信号からデータとエッジを抽出し、これらを処理回路208に入力する。処理回路208は、入力信号について、データとエッジ情報からクロックを再生する処理や、その他データ通信等の予め定められた処理を実行する回路である。IOマクロ202は、入力バッファ回路203、データ出力回路204、エッジ出力回路205、PLL(Phase Locked Loop)206、位相インタポレータ(PI)207を含む。
 伝送路300を介して伝送された入力データは、入力端子201を介して、入力バッファ回路203に入力される。入力バッファ回路203は、受信した入力データをデータ出力回路204及びエッジ出力回路205に入力する。
 一方、PLL206は、4相のクロック信号を生成して、これらを位相インタポレータ207に供給する。4相のクロック信号は、各々、位相の進角量が0°、90°、180°及び270°のクロックである。位相の進角量0°のクロックは、位相の進角量が0°の信号である。位相の進角量が90°のクロックは、位相の進角量0°のクロックに対して位相の進角量が90°である信号である。他の信号も同様である。
 位相インタポレータ207は、PLL206から入力される4相のクロック信号に基づいて、4相のクロック信号CLK11、クロック信号CLK12、クロック信号CLK13及びクロック信号CLK13を生成する。
 クロック信号CLK11は、位相の進角量がαのクロック信号である。位相の進角量αは、入力データの位相に応じて定まる所望の位相の進角量である。クロック信号CLK12は、位相の進角量が(α+90°)のクロック信号であり、クロック信号CLK11に対して90°の進角量のクロック信号である。クロック信号CLK13は、位相の進角量が(α+180°)のクロック信号であり、クロック信号CLK11に対して180°の進角量のクロック信号である。クロック信号CLK14は、位相の進角量が(α+270°)のクロック信号であり、クロック信号CLK11に対して270°の進角量のクロック信号である。これらの4相のクロック信号については後述する。
 位相インタポレータ207は、クロック信号CLK12及びクロック信号CLK13を、データ出力回路204に供給する。位相インタポレータ207は、クロック信号CLK11及びクロック信号CLK13を、エッジ出力回路205に供給する。
 なお、クロック信号CLK11は、例えば、図9におけるクロック信号CLK1に相当する。同様に、クロック信号CLK12、クロック信号CLK13及びクロック信号CLK13は、各々、図9におけるクロック信号CLK2、クロック信号CLK1B及びクロック信号CLK2Bに相当する。
 データ出力回路204は、位相インタポレータ207から供給されるクロック信号CLK12及びクロック信号CLK13に従って、入力データからデータを抽出して、処理回路208に出力する。エッジ出力回路205は、位相インタポレータ207から供給されるクロック信号CLK11及びクロック信号CLK13に従って、入力データからエッジ付近での入力データを抽出して、処理回路208に出力する。処理回路208は、入力されたクロックに同期して、入力されたデータおよびエッジ付近のデータからエッジ情報を抽出し、それを位相信号に変換するなどの信号処理を行ってから、これらを用いた所定の処理を行うと共に、位相信号、換言すれば、第1の制御信号PIcodeを位相インタポレータ207に出力する。
 図2は、位相インタポレータの一例を示す図である。
 図2の位相インタポレータ207は、セレクタ1、ミキサ21及び22、出力バッファ回路31及び32、位相検出器(PFD:Phase Frequency Detector)41及び42、チャージポンプ回路51及び52、ロウパスフィルタ6、アナログデジタル変換器(ADC:Analog Digital Converter)7、加算器8を含む。
 セレクタ1には、前述したように、PLL206から、4相のクロック信号が供給される。セレクタ1は、第1の制御信号PIcodeに基づいて、供給された4相のクロック信号を、第1のミキサ21及び第2のミキサ22に供給する。第1の制御信号PIcodeについては後述する。
 ミキサ21には、位相の進角量が0°のクロック信号が入力され、同時に、位相の進角量が180°のクロック信号も入力される。例えば、ミキサ21への入力IN1が位相の進角量が0°のクロック信号であり、入力IN1Bが位相の進角量が180°のクロック信号である。また、ミキサ21には、位相の進角量が90°のクロック信号が入力され、同時に、位相の進角量が270°の信号も入力される。例えば、ミキサ21への入力IN2が位相の進角量が90°のクロック信号であり、入力IN2Bが位相の進角量が270°のクロック信号である。
 ミキサ22には、位相の進角量が90°のクロック信号が入力され、同時に、位相の進角量が270°のクロック信号も入力される。例えば、ミキサ22への入力IN1が位相の進角量が90°のクロック信号であり、入力IN1Bが位相の進角量が270°のクロック信号である。また、ミキサ22には、位相の進角量が180°のクロック信号が入力され、同時に、位相の進角量が0°の信号も入力される。例えば、ミキサ22への入力IN2が位相の進角量が180°のクロック信号であり、入力IN2Bが位相の進角量が0°のクロック信号である。
 ミキサ21は、セレクタ1から供給されたクロック信号に基づいて、第1の制御信号PIcodeに従って、所望の位相の進角量αの第1のクロック信号CLK11と、クロック信号CLK11に対して180°進んだ位相の進角量(α+180°)の第2のクロック信号CLK13とを生成する。第1の制御信号は、ミキサ21により生成されるクロック信号CLK11及びクロック信号CLK13を定めると共に、これらに与えられる第1の位相の進角量を定める。図3において、第1の位相の進角量は、0°である。クロック信号CLK13はクロック信号CLK11に対して位相の進角量が180°である(逆位相の)信号である。ミキサ21の出力は、ミキサ21に対応する第1の出力バッファ回路31と、第1及び第2の位相検出器41及び42に入力される。
 ミキサ22は、セレクタ1から供給されたクロック信号に基づいて、第2の制御信号PIcode’に従って、クロック信号CLK11に対して位相の進角量が90°である位相の第3のクロック信号CLK12と、クロック信号CLK11に対して位相の進角量が270°である(換言すれば、クロック信号CLK13に対し位相の進角量が90°である)位相の第4のクロック信号CLK14とを生成する。第2の制御信号は、ミキサ22により生成されるクロック信号CLK12及びクロック信号CLK14を定めると共に、これらに与えられる第2の位相の進角量を定める。図3において、第2の位相の進角量は、90°に、後述する位相のずれβに相当する進角量を加えた値である。クロック信号CLK14はクロック信号CLK12に対して位相の進角量が180°である信号である。クロック信号CLK12及びクロック信号CLK14(第2の差動信号)は、クロック信号CLK11及びクロック信号CLK13(第1の差動信号)に対して位相の進角量が90°である位相の信号である。ミキサ22の出力は、ミキサ22に対応する第2の出力バッファ回路32と、第1及び第2の位相検出器41及び42に入力される。
 第2の制御信号PIcode’は、クロック信号CLK11及びクロック信号CLK13の生成に用いられる第1の制御信号PIcodeに、位相の進角量が90°である位相のクロック信号CLK12及びクロック信号CLK14の生成に用いられる値が加算された信号である。これに加えて、第2の制御信号PIcode’には、クロック信号CLK11及びクロック信号CLK13の位相に対するクロック信号CLK12及びクロック信号CLK14の位相のずれ(換言すれば、位相の進角量の進み又は遅れ)βの修正に用いられる値が加算される。これにより、クロック信号CLK12及びクロック信号CLK14の位相は、クロック信号CLK11及びクロック信号CLK13の位相に対して正確に位相の進角量が90°を有するように保たれる。
 位相のずれ(換言すれば、位相の進角量のずれ)βは、クロック信号CLK11及びクロック信号CLK13の位相の進角量と、クロック信号CLK12及びクロック信号CLK14の位相との間における位相の進角量の差から90°を引いた値である。位相のずれβは、不所望なずれであり、本来は“0”であることが望ましい値である。
 図3は、位相インタポレータのミキサの一例を示す図である。
 ミキサ21は、2個の差動回路(差動対)と、8個の電流源と、8個の制御スイッチとを含む。なお、ミキサ22はミキサ21と同様の構成を有するので、ミキサ22の図示は省略する。なお、電流源と制御スイッチの数は8個に限られない。電流源と制御スイッチの数は、任意の位相信号を作成する際の解像度によって任意に変わる。
 2個の差動回路は、これらに共通の負荷である抵抗R31及びR32と、NチャネルMOSトランジスタ(FET)M1及びM2とを含む第1の差動回路と、M3及びM4とを含む第2の差動回路とを含む。M1、M2、M3及びM4のゲート電極には、各々、入力信号IN1、IN1B、IN2、IN2Bが印加される。IN1BはIN1の反転信号である。IN2BはIN2の反転信号である。抵抗R31及びR32とM1、M2、M3及びM4との接続点に、差動出力OUT及びOUTBが接続される。
 差動出力OUTは位相の進角量αのクロック信号に相当し、差動出力OUTBは、位相の進角量(α+180°)のクロック信号に相当する。差動出力OUT及びOUTBは、第1の出力バッファ回路31に入力される。また、差動出力OUTは第1の位相検出器41に入力され、差動出力OUTBは第2の位相検出器42に入力される。
 従って、ミキサ21において、差動出力OUTには、クロック信号CLK11が出力される。これは、信号INA1である。差動出力OUTBには、クロック信号CLK13が出力される。これは、信号INA2である。
 なお、ミキサ22において、差動出力OUTには、クロック信号CLK12が出力される。これは、信号INB1である。差動出力OUTBには、クロック信号CLK14が出力される。これは、信号INB2である。
 8個の電流源は、M13~M20を含む。M13~M20のゲート電極には、バイアス電圧Biasが印加される。M13~M20のソース電極には、接地電位が接続される。電流源M13~M20のドレイン電極と第1及び第2の差動回路との間には、当該電流源に対応する制御スイッチが接続される。第1の差動回路は、電流源M13、M15、M17、M19により駆動される。第2の差動回路は、電流源M14、M16、M18、M20により駆動される。
 8個の制御スイッチは、8個の電流源に対応して設けられるM5~12を含む。制御スイッチM5、M7、M9、M11のゲート電極には、例えば4ビットの制御信号PIcode[3:0]が印加される。PIcode[3:0]の各ビットは、予め対応付けられた制御スイッチM5、M7、M9、M11のいずれか1個に印加される。制御スイッチM6、M8、M10、M12のゲート電極には、例えば4ビットの制御信号PIcodeB[3:0]が印加される。PIcodeB[3:0]の各ビットは、予め対応付けられた制御スイッチM6、M8、M10、M12のいずれか1個に印加される。
 PIcodeB[3:0]は、PIcode[3:0]の反転信号である。PIcodeB[3:0]及びPIcode[3:0]は、共に、第1の制御信号PIcodeである。
 制御スイッチM5とM6、M7と8、M9とM10、M11とM12は、各々、対とされる。従って、対とされる制御スイッチのゲート電極には相互に反転の関係にある信号が印加される。これにより、対とされる制御スイッチの一方がオンである場合、他方はオフとされる。
 例えば、α=45°のクロック信号を生成する場合、ミキサ21は、以下のように制御される。
 第1の差動回路において、IN1には位相の進角量0°のクロック信号が印加され、IN1Bには、位相の進角量0°のクロック信号に対して進角量が180°である(従って、位相の進角量180°の)信号が印加される。第2の差動回路において、IN2には、位相の進角量90°のクロック信号が印加され、IN2Bには、位相の進角量90°のクロック信号に対して進角量が180°である(従って、位相の進角量270°の)信号が印加される。
 一方、例えば、第1の差動回路に対応する制御スイッチM5、M7、M9、M11へ供給されるPIcode[3:0]が(1,1,0,0)とされ、第2の差動回路に対応する制御スイッチM6、M8、M10、M12へ供給されるPIcodeB[3:0]が(0,0,1,1)とされる。これは、位相の進角量0°のIN1への重み付けと、位相の進角量90°のIN2への重み付けとを等しくし、位相の進角量180°のIN1Bへの重み付けと位相の進角量270°のIN2Bへの重み付けとを重み“0”としたことに等しい。
 これにより、M5及びM7がオンし、M9及びM11がオフする。また、M6及びM8がオフし、M10及びM12がオンする。この結果、第1の差動回路及び第2の差動回路に等しい大きさの駆動電流が流れる。これにより、IN1である位相の進角量0°のクロック信号と、IN2である位相の進角量90°のクロック信号とが等しい比率で合成され、位相の進角量α=45°のクロック信号が生成され、差動出力OUTに出力される。この時、同時に、クロック信号の進角量が位相の進角量α=45°のクロック信号に対して180°である位相225°を持つ信号が、差動出力OUTBに出力される。以上から、ミキサ1は、位相の進角量α及び位相の進角量(α+180°)のクロック信号(差動信号)を出力する。
 なお、例えば、位相の進角量α=22.5°の信号を生成する場合、PIcode[3:0]が(1,1,1,0)とされ、PIcodeB[3:0]が(0,0,0,1)とされる。これは、位相の進角量0°のIN1への重み付けと、位相の進角量90°のIN2への重み付けとを3:1とし、位相の進角量180°のIN1Bへの重み付けと位相の進角量270°のIN2Bへの重み付けとを重み“0”としたことに等しい。
 ミキサ22は、前述したように、ミキサ21と同様の構成を有するが、第1の制御信号PIcodeに代えて、第2の制御信号PIcode’を入力される。これにより、ミキサ22は、ミキサ21が出力する差動信号に対して位相の進角量が90°である差動信号、換言すれば、位相の進角量(α+90°)及び位相の進角量(α+270°)のクロック信号(差動信号)を出力する。
 また、第2の制御信号PIcode’には、前述したように、クロック信号CLK11及びクロック信号CLK13の位相に対するクロック信号CLK12及びクロック信号CLK14の位相のずれβが存在する場合に、位相のずれβの修正に用いられる値が加算される。これにより、クロック信号CLK12及びクロック信号CLK14の位相は、クロック信号CLK11及びクロック信号CLK13の位相に対して、正確に90°だけずれるように保たれる。位相のずれβが存在しない場合には、第2の制御信号PIcode’には、位相のずれβの修正に用いられる値は加算されない。
 図2において、第1の出力バッファ回路31は、位相インタポレータの出力回路であり、ミキサ21の出力端子から出力される信号を、位相インタポレータの出力信号として出力する。第2の出力バッファ回路32は、位相インタポレータの出力回路であり、ミキサ22の出力端子から出力される信号を、位相インタポレータの出力信号として出力する。以上により、位相インタポレータは、位相の進角量α及び位相の進角量(α+180°)のクロック信号を含む差動信号と、この差動信号に対して位相の進角量が90°である差動信号、換言すれば、位相の進角量(α+90°)及び位相の進角量(α+270°)のクロック信号を含む差動信号とを出力する。
 一方、第1の位相検出器41は、ミキサ21から出力されたクロック信号CLK11(位相の進角量αのクロック信号)と、ミキサ22から出力されたクロック信号CLK12(位相の進角量(α+90°)のクロック信号)との排他的論理和を求める。第1の位相検出器41は、求めた排他的論理和を、第1の位相検出器41に対応する第1のチャージポンプ回路51に入力する。第2の位相検出器42は、第1のミキサ21から出力されたクロック信号CLK13(位相の進角量(α+180°)のクロック信号)と、ミキサ22から出力されたクロック信号CLK14(位相の進角量(α+270°)のクロック信号)との排他的論理和を求める。第2の位相検出器42は、求めた排他的論理和を、第2の位相検出器42に対応する第2のチャージポンプ回路52に入力する。
 図4(A)は、位相検出器(PFD)の一例を示す図である。
 位相検出器41は、排他的論理和回路EOR1である。位相検出器41には、ミキサ21からの信号INA1と、ミキサ22からの信号INB1とが入力される。位相検出器41は、信号INA1と信号INB1との排他的論理和演算(EOR:Exclusive-OR)の結果を求めて、信号OUT1として出力する。
 位相検出器42は、排他的論理和回路EOR2である。位相検出器42には、ミキサ21からの信号INA2と、ミキサ22からの信号INB2とが入力される。信号INA2は、信号INA1の反転信号(=INA1B)である。信号INB2は、信号INB1の反転信号(=INB1B)である。位相検出器42は、信号INA2と信号INB2との排他的論理和演算(EOR)の結果を求めて、信号OUT2として出力する。
 第1のチャージポンプ回路51は、位相検出器41から出力された排他的論理和演算の結果を第1の電圧信号に変換する。第2のチャージポンプ回路52は、位相検出器42から出力された排他的論理和を第2の電圧信号に変換する。第1のチャージポンプ回路51の出力端子は、第2のチャージポンプ回路52の出力端子と、相互に接続される。これにより、ロウパスフィルタ6には、第1の電圧信号と第2の電圧信号とを合成した信号が入力される。
 図4(B)は、チャージポンプ回路の一例を示す図である。
 チャージポンプ回路51は、アナログスイッチ回路と、アナログスイッチ回路と2個の電源との間に挿入された2個の定電流源とを含む。アナログスイッチ回路は、pチャネルMOSFET・MP511とnチャネルMOSFET・MN512とにより構成される。チャージポンプ回路51には、位相検出器41からの信号OUT1が入力INとして入力される。チャージポンプ回路51は、入力された信号OUT1に応じてその反転信号を形成して、チャージポンプ回路出力として出力する。
 チャージポンプ回路52は、図4(B)には示されないが、チャージポンプ回路51と同じ構成を有する。チャージポンプ回路52は、位相検出器42からの信号OUT2を入力INとして、その反転信号を形成して、チャージポンプ回路出力として出力する。
 ロウパスフィルタ6は、第1及び第2のチャージポンプ回路51及び52とADC7との間に設けられ、第1の電圧信号と第2の電圧信号とを合成した信号をRC回路によりフィルタリングして、高域成分をカットする。ロウパスフィルタ6の出力(LPF出力)は、第1の電圧信号と第2の電圧信号との合成信号に基づいて生成された信号である。LPF出力は、ADC7に入力される。
 図4(C)は、ロウパスフィルタの一例を示す図である。
 ロウパスフィルタ(LPF)6は、直列接続された抵抗R62及びキャパシタC63と、この直列回路に並列に接続されたキャパシタC61とを含むフィルタ回路である。ロウパスフィルタ6には、2個のチャージポンプ回路51及び52からのチャージポンプ回路出力が共通に入力される。キャパシタC61及びC63は、チャージポンプ回路51及び52からのチャージポンプ回路出力により充電され,又は、チャージポンプ回路出力に放電する。ロウパスフィルタ6は、キャパシタC61及びC63に充電されたレベル(電圧信号)を、LPF出力として出力する。
 ADC7は、第1のチャージポンプ回路51から出力された第1の電圧信号と第2のチャージポンプ回路52から出力された第2の電圧信号との合成信号に基づいて生成された信号、換言すれば、LPF出力に基づいて、デジタル信号を生成する。ADC7の出力は、加算器8に入力される。
 図5は、アナログデジタル変換器(ADC)の一例を示す図である。
 ADC7は、複数の抵抗R71~R73と、複数のコンパレータ71~72と、エンコーダ73とを含む。複数の抵抗R71~R73の数は3個に限られず、複数のコンパレータ71~72の数は2個に限られない。
 複数の抵抗R71~R73は、電源電圧VDDと接地電位との間に直列に接続され、電源電圧VDDを複数の電圧値Ref1~Ref2に分圧する。換言すれば、複数の抵抗R71~R73の接続点の電圧が、参照電圧Ref1~Ref2として、複数のコンパレータ71~72の一方の入力端子に入力される。複数のコンパレータ71~72の他方の入力端子には、ロウパスフィルタ6からのLPF出力が入力される。複数のコンパレータ71~72は、各々、入力された参照電圧Ref1~Ref2とLPF出力とを比較して、所定の場合に出力“1”を形成して、エンコーダ73に入力する。なお、図1においては、ADC7の内部で形成される参照電圧Ref1~Ref2を、ADC1の外部に図示している。
 エンコーダ73は、複数のコンパレータ71~72の出力に基づいて、ロウパスフィルタ6からのLPF出力をデジタル信号に変換し、更に、当該変換したデジタル信号をPIcodeへの加算値に変換する。
 この時、エンコーダ73は、クロック信号CLK11及びクロック信号CLK13の位相に対するクロック信号CLK12及びクロック信号CLK14の位相のずれβが存在しない場合には、前記加算値を、クロック信号CLK11及びクロック信号CLK13に対して位相の進角量90°である位相のクロック信号CLK12及びクロック信号CLK14の生成に用いられる値とする。従って、エンコーダ73は、LPF出力が予め定められた値である場合に、クロック信号CLK11及びクロック信号CLK13の位相に対するクロック信号CLK12及びクロック信号CLK14の位相のずれを90°とするように、デジタル信号を出力する。
 このために、ADC7は、基本的には、クロック信号CLK11及びクロック信号CLK13の位相に対するクロック信号CLK12及びクロック信号CLK14の位相のずれが90°である場合にLPF出力の取る値を、ADC7の参照電圧として用いる。従って、参照電圧としては、電源電圧Vddの半分の値1/2Vddが用いられる。
 なお、実際には、図7の例においては、位相のずれが進角量90°に対して位相マージンを有するように、電源電圧Vddを分圧することにより、1/2Vddより高い電圧Ref1と1/2Vddより低い電圧Ref2を作成し、それぞれをコンパレータ71、およびコンパレータ72の電圧Refとして用いる。
 また、エンコーダ73は、位相のずれβが存在する場合には、前記加算値を、前記位相の進角量が90°である信号の生成に用いられる値と、位相のずれβの修正の修正に用いられる値とを加算した値とする。
 加算器8には、例えば制御回路から第1の制御信号PIcodeと、ADC7の出力とが入力される。加算器8は、ADC7から出力されたデジタル信号を第1の制御信号PIcodeに加算して、第2の制御信号PIcode’を生成して、ミキサ22に供給する。これにより、ミキサ22は、出力する差動信号を、ミキサ21が出力する差動信号に対して相対的に位相の進角量が90°である信号とすることができる。
 図6~図8は、位相インタポレータのタイミングチャートである。特に、図6は位相インタポレータ207の出力の間の位相の進角量の差が正確に90°を保っている場合を示し、図7は位相インタポレータ207の出力の間の位相の進角量の差が90°より小さい場合を示し、図8は位相インタポレータ207の出力の間の位相の進角量の差が90°より大きい場合を示す。
 図6は、位相の進角量が0°、90°、180°及び270°の4相のクロック信号に基づいて、α、(α+90°)、(α+180°)及び(α+270°)の4相のクロック信号が形成されている状態を示す。換言すれば、ミキサ21は所望の位相の進角量αの差動信号を出力し、ミキサ22はこれらの信号に対して90°の進角量を有する位相の進角量(α+90°)の差動信号を出力する。αは、前述したように、所望の位相の進角量である。
 従って、位相検出器41の出力は位相の進角量αの信号と位相の進角量(α+90°)の信号との排他的論理和である。従って、出力OUT1は、図6に示すように、入力の一方がハイレベル(“1”)である期間にハイレベルとなり、これ以外の期間にロウレベルとなる。また、位相検出器42の出力は位相の進角量(α+180°)の信号と位相の進角量(α+270°)の信号との排他的論理和である。従って、出力OUT2は、図6に示すように、入力の一方がハイレベル(“1”)である期間にハイレベルとなり、これ以外の期間にロウレベルとなる。
 従って、位相検出器(PFD)41の出力OUT1及び位相検出器42の出力OUT2を重ねた結果であるPFD出力は、図6に示すようになる。
 チャージポンプ回路51及び52は、位相検出器41及び42からの信号OUT1の反転信号を出力する。従って、チャージポンプ回路51及び52は、図6のPFD出力を反転した信号において、ハイレベルの期間中はロウパスフィルタ6のキャパシタC61及びキャパシタC63を充電し、ロウレベルの期間中はロウパスフィルタ6のキャパシタ61及びキャパシタC63から放電する。
 ここで、図6においては、位相インタポレータ207の出力の間の位相の進角量の差が、90°である。従って、図6のPFD出力において、ハイレベルの期間とロウレベルの期間とが等しくなる。換言すれば、ロウパスフィルタ6のキャパシタC61及びキャパシタC63の充電時間と放電時間とが等しくなる。
 この結果、チャージポンプ回路51及び52の出力を合成した結果であるチャージポンプ回路出力は、予め定められた電圧値の信号となる。この予め定められた電圧値は、例えば、電源電圧Vddの1/2の電圧(1/2Vdd)である。この電圧値は、前述したように、ADC7の参照電圧として用いられる。この場合、ADC7のエンコーダ73の出力は位相の進角量90°に相当する値のみとなり、加算器8の出力PIcode’は、PIcodeに位相の進角量90°に相当する値を加算した値となる。この結果、2個のミキサ21及び22の出力する4相のクロック信号CLK11、CLK12、CLK13及びCLK14は、そのまま正しく位相の進角量の差を維持する。
 一方、図7においては、位相インタポレータ207の出力の間の位相の進角量の差が90°より小さい。換言すれば、図7に示すように、位相の進角量αのクロック信号に対して本来は90°の位相の進角量の差を持つ信号が、βだけ進んだ位相となっている。
 このため、図7のPFD出力において、ハイレベルの期間とロウレベルの期間とが等しくなくなり、ロウパスフィルタ6のキャパシタC61及びキャパシタC63の充電時間と放電時間とが等しくなくなる。すなわち、PFD出力のデューティ比が1:1でなくなる場合には、ロウパスフィルタ6のキャパシタ61及びキャパシタ63の充電時間と放電時間についても1:1でなくなる。具体的には、図7に示すように、2個の位相検出器(PFD)41及び42の出力を重ねた結果であるPFD出力において、ハイレベルの期間が、1/4周期よりも短くなり、換言すれば、1周期360°に対する位相の進角量90°に相当する期間よりも短くなる。このハイレベルの期間は、進んだ位相の進角量βに相当する。
 この結果、チャージポンプ回路51及び52の出力を合成した結果であるチャージポンプ回路出力は、次第に高い値に上昇して、本来の値1/2Vddよりも、進んだ位相の進角量βに相当する値だけ高い値となる。従って、ADC7の出力も本来の値“0” よりも進んだ位相の進角量βに相当する値だけ大きい値となり、加算器8の出力PIcode’は、PIcodeに、本来の位相の進角量の差90°に相当する値と進んだ位相の進角量βに相当する値とを加算した値となる。換言すれば、加算器8の出力PIcode’は、その時点の(進んでいる)位相を遅らせる値とされる。
 従って、ミキサ22には、ミキサ21に対して相対的に現時点での位相をより遅らせるような制御信号PIcode’が入力される。この結果、2個のミキサ21及び22の出力する4相のクロック信号CLK11、CLK12、CLK13及びCLK14は、正しい位相の進角量の差である90°に修正される。
 また、図8においては、位相インタポレータ207の出力の間の位相の進角量の差が90°より大きい。換言すれば、図8に示すように、位相の進角量αのクロック信号に対して本来は90°の位相の進角量の差を持つべき信号が、βだけ遅れた位相となっている。図7に示すように、2個の位相検出器(PFD)41及び42の出力を重ねた結果であるPFD出力において、ハイレベルの期間が、1/4周期よりも長くなり、換言すれば、1周期360°に対する位相の進角量90°に相当する期間よりも長くなる。このハイレベルの期間は、遅れた位相の進角量βに相当する。
 この結果、チャージポンプ回路51及び52の出力を合成した結果であるチャージポンプ回路出力は、次第に低い値に下降して、本来の値1/2Vddよりも、遅れた位相の進角量βに相当する値だけ低い値となる。従って、ADC7の出力も本来の値“0” よりも遅れた位相の進角量βに相当する値だけ小さい値となり、加算器8の出力PIcode’は、PIcodeに、本来の位相の進角量の差90°に相当する値を加算し、遅れた位相の進角量βに相当する値を減算した値となる。換言すれば、加算器8の出力PIcode’は、その時点の(進んでいる)位相を進める値とされる。
 従って、ミキサ22には、ミキサ21に対して相対的に現時点での位相をより進めるような制御信号PIcode’が入力される。この結果、2個のミキサ21及び22の出力する4相のクロック信号CLK11、CLK12、CLK13及びCLK14は、正しい位相の進角量の差である90°に修正される。
 以上の実施態様は、4相のクロック信号CLK11、CLK12、CLK13及びCLK14において、正しい位相の進角量の差である90°に維持する例であるが、維持される位相の進角量の差は90°以外の値であっても良い。
 例えば、信号の伝送路300等の条件によっては、クロックのアップエッジとダウンエッジにより定まる期間において、その期間の中心で、換言すれば、エッジに対して90°の進角量を有する信号に同期してデータを取込むことが最善ではない場合がある。この場合、むしろ90°の進角量とは異なる進角量の信号に同期してデータを取込むほうが、正確にデータを取込むことができる場合がある。
 この場合、例えば、第1のミキサ21は、前述したように、第1の制御信号PIcodeに従って、位相の進角量αのクロック信号CLK11と、クロック信号CLK11に対して位相の進角量が180°であるクロック信号CLK13とを生成する。換言すれば、クロック信号CLK13の位相の進角量は、(α+180°)である。
 また、第2のミキサ22は、第2の制御信号PIcode’に従って、クロック信号CLK11に対して位相の進角量が90°に所定の進角量調整値xを加算又は減算した値であるクロック信号CLK12と、クロック信号CLK11に対して位相の進角量が270°に所定の進角量調整値xを加算又は減算した値であるクロック信号CLK14とを生成する。換言すれば、クロック信号CLK12の位相の進角量は(α+90°±x)であり、クロック信号CLK14の位相の進角量は(α+270°±x)である。この場合、クロック信号CLK11及びCLK13に対するクロック信号CLK12及びCLK14の位相の進角量の差は(90°±x)である。
 このために、第2の制御信号PIcode’を生成する過程で、第1の制御信号PIcodeに加算されるADC7の出力するデジタル信号が、以下のように生成される。例えば、ADC7は、第1のチャージポンプ回路51から出力された第1の電圧信号と第2のチャージポンプ回路52から出力された第2の電圧信号との合成信号と、第2の制御信号PIcode’における所定の進角量調整値xに相当する信号量を与える信号(以下、調整信号)とに基づいて生成された信号に基づいて、デジタル信号を生成する。
 具体的には、ADC7のコンパレータ71及び72に入力される電圧Ref1及びRef2が可変とされる。従って、電圧Ref1及びRef2は、調整信号を含む電圧信号である。換言すれば、電圧Ref1及びRef2は、クロック信号CLK11及びCLK13に対するクロック信号CLK12及びCLK14の位相の進角量の差を90°とする信号成分と、クロック信号CLK11及びCLK13に対するクロック信号CLK12及びCLK14の位相の進角量の差を進角量調整値xとする信号成分(調整信号の信号成分)との和又は差である。
 例えば、電圧Ref1及びRef2は、通常、進角量の差を90°とする信号成分とされる。これが電圧Ref1及びRef2のデフォルト値である。
 そして、進角量の差を(90°+x)とする場合には、電圧Ref1及びRef2は、進角量の差を90°とする信号成分と、進角量の差を進角量調整値xとする信号成分との和とされる。進角量の差を(90°-x)とする場合には、電圧Ref1及びRef2は、進角量の差を90°とする信号成分と、進角量の差を進角量調整値xとする信号成分との差とされる。
 このために、例えば、抵抗R73が可変抵抗とされる。可変抵抗R73の値を変更することにより、電圧Ref1及びRef2を変更することができる。可変抵抗R73の制御信号は、例えば、LSIチップ200の入力端子から入力され、制御信号の値を格納するレジスタにセットされる。可変抵抗R73の制御信号の値は、例えば、LSIチップ100とLSIチップ200との間におけるデータの伝送テストの結果に基づいて定められる。これにより、クロックのアップエッジとダウンエッジにより定まる期間において、その期間の中心ではなく、90°の進角量とは異なる進角量の信号に同期してデータを取込むことにより、より正確にデータを取込むことができる。
1  セレクタ
6  ロウパスフィルタ(LPF)
7  アナログデジタル変換器
8  加算器
21、22  ミキサ
31、32  出力バッファ回路
41、42  位相検出器(PFD)
51、52  チャージポンプ回路
100、200  半導体集積回路装置(LSIチップ)
102  出力端子
201  入力端子
202  IOマクロ
203  入力バッファ回路
204  データ出力回路
205  エッジ出力回路
206  PLL
207  位相インタポレータ(PI)
208  処理回路
300  伝送路

Claims (7)

  1.  4相のクロック信号を第1のミキサ及び第2のミキサに供給するセレクタと、
     前記セレクタから供給された前記クロック信号に基づいて、生成される第1のクロック信号及び第2のクロック信号を定めると共に前記クロック信号に与えられる第1の位相の進角量を定める第1の制御信号に従って、前記第1の位相の進角量の前記第1のクロック信号と前記第1のクロック信号に対して位相の進角量が180°である前記第2のクロック信号とを生成する第1のミキサと、
     前記セレクタから供給された前記クロック信号に基づいて、生成される第3のクロック信号及び第4のクロック信号を定めると共に前記クロック信号に与えられる第2の位相の進角量を定める第2の制御信号に従って、前記第1のクロック信号に対して位相の進角量が90°である前記第3のクロック信号と前記第1のクロック信号に対して位相の進角量が270°である位相の前記第4のクロック信号とを生成する第2のミキサと、
     前記第1のミキサから出力された前記第1のクロック信号と前記第2のミキサから出力された前記第3のクロック信号との排他的論理和を求める第1の位相検出器と、
     前記第1のミキサから出力された前記第2のクロック信号と前記第2のミキサから出力された前記第4のクロック信号との排他的論理和を求める第2の位相検出器と、
     前記第1の位相検出器から出力された排他的論理和を第1の電圧信号に変換する第1のチャージポンプ回路と、
     前記第2の位相検出器から出力された排他的論理和を第2の電圧信号に変換する第2のチャージポンプ回路と、
     前記第1のチャージポンプ回路から出力された前記第1の電圧信号と前記第2のチャージポンプ回路から出力された前記第2の電圧信号との合成信号に基づいて生成された信号に基づいて、デジタル信号を生成するアナログデジタル変換器と、
     前記アナログデジタル変換器から出力されたデジタル信号を前記第1の制御信号に加算して前記第2の制御信号を生成して、前記第2のミキサに供給する加算器とを備える
     ことを特徴とする位相インタポレータ。
  2.  前記アナログデジタル変換器は、前記第1の電圧信号と前記第2の電圧信号との合成信号に基づいて生成された信号が予め定められた値である場合に、前記第1及び第2のクロック信号の位相に対する前記第3及び第4のクロック信号の位相のずれを90°とするように、前記デジタル信号を出力する
     ことを特徴とする請求項1に記載の位相インタポレータ。
  3.  前記アナログデジタル変換器は、前記第1及び第2のクロック信号の位相に対する前記第3及び第4のクロック信号の位相のずれが90°である場合に前記第1の電圧信号と前記第2の電圧信号との合成信号に基づいて生成された信号の取る値を、当該アナログデジタル変換器の参照電圧として用いる
     ことを特徴とする請求項2に記載の位相インタポレータ。
  4.  前記位相インタポレータが、更に、
     前記第1及び第2のチャージポンプ回路と前記アナログデジタル変換器との間に設けられ、前記第1の電圧信号と前記第2の電圧信号とを合成した信号をフィルタリングするロウパスフィルタを備える
     ことを特徴とする請求項1に記載の位相インタポレータ。
  5.  4相のクロック信号を第1のミキサ及び第2のミキサに供給するセレクタと、
     前記セレクタから供給された前記クロック信号に基づいて、生成される第1のクロック信号及び第2のクロック信号を定めると共に前記クロック信号に与えられる第1の位相の進角量を定める第1の制御信号に従って、前記第1の位相の進角量の前記第1のクロック信号と前記第1のクロック信号に対して位相の進角量が180°である前記第2のクロック信号とを生成する第1のミキサと、
     前記セレクタから供給された前記クロック信号に基づいて、生成される第3のクロック信号及び第4のクロック信号を定めると共に前記クロック信号に与えられる第2の位相の進角量を定める第2の制御信号に従って、前記第1のクロック信号に対して位相の進角量が90°である前記第3のクロック信号と前記第1のクロック信号に対して位相の進角量が270°である位相の前記第4のクロック信号とを生成する第2のミキサと、
     前記第1のミキサから出力された前記第1のクロック信号と前記第2のミキサから出力された前記第3のクロック信号との排他的論理和を求める第1の位相検出器と、
     前記第1のミキサから出力された前記第2のクロック信号と前記第2のミキサから出力された前記第4のクロック信号との排他的論理和を求める第2の位相検出器と、
     前記第1の位相検出器から出力された排他的論理和を第1の電圧信号に変換する第1のチャージポンプ回路と、
     前記第2の位相検出器から出力された排他的論理和を第2の電圧信号に変換する第2のチャージポンプ回路と、
     前記第1のチャージポンプ回路から出力された前記第1の電圧信号と前記第2のチャージポンプ回路から出力された前記第2の電圧信号との合成信号に基づいて生成された信号に基づいて、デジタル信号を生成するアナログデジタル変換器と、
     前記アナログデジタル変換器から出力されたデジタル信号を前記第1の制御信号に加算して前記第2の制御信号を生成して、前記第2のミキサに供給する加算器とを備える位相インタポレータと、
     前記セレクタに前記4相のクロック信号を供給するPLL回路と、
     受信した入力信号を、エッジ出力回路及びデータ出力回路に入力する入力バッファ回路と、
     前記第1のミキサから出力された前記第1のクロック信号と前記第2のクロック信号とに従って、前記入力信号からエッジを抽出するエッジ出力回路と、
     前記第2のミキサから出力された前記第3のクロック信号と前記第4のクロック信号とに従って、前記入力信号からデータを抽出するデータ出力回路とを備える
     ことを特徴とする半導体回路装置。
  6.  4相のクロック信号を第1のミキサ及び第2のミキサに供給するセレクタと、
     前記セレクタから供給された前記クロック信号に基づいて、生成される第1のクロック信号及び第2のクロック信号を定めると共に前記クロック信号に与えられる第1の位相の進角量を定める第1の制御信号に従って、前記第1の位相の進角量の前記第1のクロック信号と前記第1のクロック信号に対して位相の進角量が180°である前記第2のクロック信号とを生成する第1のミキサと、
     前記セレクタから供給された前記クロック信号に基づいて、生成される第3のクロック信号及び第4のクロック信号を定めると共に前記クロック信号に与えられる第2の位相の進角量を定める第2の制御信号に従って、前記第1のクロック信号に対して位相の進角量が90°に所定の進角量調整値を加算又は減算した値である前記第3のクロック信号と前記第1のクロック信号に対して位相の進角量が270°に所定の進角量調整値を加算又は減算した値である前記第4のクロック信号とを生成する第2のミキサと、
     前記第1のミキサから出力された前記第1のクロック信号と前記第2のミキサから出力された前記第3のクロック信号との排他的論理和を求める第1の位相検出器と、
     前記第1のミキサから出力された前記第2のクロック信号と前記第2のミキサから出力された前記第4のクロック信号との排他的論理和を求める第2の位相検出器と、
     前記第1の位相検出器から出力された排他的論理和を第1の電圧信号に変換する第1のチャージポンプ回路と、
     前記第2の位相検出器から出力された排他的論理和を第2の電圧信号に変換する第2のチャージポンプ回路と、
     前記第1のチャージポンプ回路から出力された前記第1の電圧信号と前記第2のチャージポンプ回路から出力された前記第2の電圧信号との合成信号と、前記第2の制御信号における前記所定の進角量調整値に相当する信号量を与える信号とに基づいて生成された信号に基づいて、デジタル信号を生成するアナログデジタル変換器と、
     前記アナログデジタル変換器から出力されたデジタル信号を前記第1の制御信号に加算して前記第2の制御信号を生成して、前記第2のミキサに供給する加算器とを備える
     ことを特徴とする位相インタポレータ。
  7.  4相のクロック信号を第1のミキサ及び第2のミキサに供給するセレクタと、
     前記セレクタから供給された前記クロック信号に基づいて、生成される第1のクロック信号及び第2のクロック信号を定めると共に前記クロック信号に与えられる第1の位相の進角量を定める第1の制御信号に従って、前記第1の位相の進角量の前記第1のクロック信号と前記第1のクロック信号に対して位相の進角量が180°である前記第2のクロック信号とを生成する第1のミキサと、
     前記セレクタから供給された前記クロック信号に基づいて、生成される第3のクロック信号及び第4のクロック信号を定めると共に前記クロック信号に与えられる第2の位相の進角量を定める第2の制御信号に従って、前記第1のクロック信号に対して位相の進角量が90°に所定の進角量調整値を加算又は減算した値である前記第3のクロック信号と前記第1のクロック信号に対して位相の進角量が270°に所定の進角量調整値を加算又は減算した値である前記第4のクロック信号とを生成する第2のミキサと、
     前記第1のミキサから出力された前記第1のクロック信号と前記第2のミキサから出力された前記第3のクロック信号との排他的論理和を求める第1の位相検出器と、
     前記第1のミキサから出力された前記第2のクロック信号と前記第2のミキサから出力された前記第4のクロック信号との排他的論理和を求める第2の位相検出器と、
     前記第1の位相検出器から出力された排他的論理和を第1の電圧信号に変換する第1のチャージポンプ回路と、
     前記第2の位相検出器から出力された排他的論理和を第2の電圧信号に変換する第2のチャージポンプ回路と、
     前記第1のチャージポンプ回路から出力された前記第1の電圧信号と前記第2のチャージポンプ回路から出力された前記第2の電圧信号との合成信号と、前記第2の制御信号における前記所定の進角量調整値に相当する信号量を与える信号とに基づいて生成された信号に基づいて、デジタル信号を生成するアナログデジタル変換器と、
     前記アナログデジタル変換器から出力されたデジタル信号を前記第1の制御信号に加算して前記第2の制御信号を生成して、前記第2のミキサに供給する加算器とを備える位相インタポレータと、
     前記セレクタに前記4相のクロック信号を供給するPLL回路と、
     受信した入力信号を、エッジ出力回路及びデータ出力回路に入力する入力バッファ回路と、
     前記第1のミキサから出力された前記第1のクロック信号と前記第2のクロック信号とに従って、前記入力信号からエッジを抽出するエッジ出力回路と、
     前記第2のミキサから出力された前記第3のクロック信号と前記第4のクロック信号とに従って、前記入力信号からデータを抽出するデータ出力回路とを備える
     ことを特徴とする半導体回路装置。
PCT/JP2009/004065 2009-08-24 2009-08-24 位相インタポレータ及び半導体回路装置 WO2011024212A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP09848664.0A EP2472724A4 (en) 2009-08-24 2009-08-24 PHASE INTERPOLATOR AND SEMICONDUCTOR CIRCUIT DEVICE
KR1020127005097A KR101287224B1 (ko) 2009-08-24 2009-08-24 위상 인터폴레이터 및 반도체 회로 장치
PCT/JP2009/004065 WO2011024212A1 (ja) 2009-08-24 2009-08-24 位相インタポレータ及び半導体回路装置
JP2011528504A JP5273252B2 (ja) 2009-08-24 2009-08-24 位相インタポレータ及び半導体回路装置
US13/369,847 US8427208B2 (en) 2009-08-24 2012-02-09 Phase interpolator and semiconductor circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/004065 WO2011024212A1 (ja) 2009-08-24 2009-08-24 位相インタポレータ及び半導体回路装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/369,847 Continuation US8427208B2 (en) 2009-08-24 2012-02-09 Phase interpolator and semiconductor circuit device

Publications (1)

Publication Number Publication Date
WO2011024212A1 true WO2011024212A1 (ja) 2011-03-03

Family

ID=43627343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004065 WO2011024212A1 (ja) 2009-08-24 2009-08-24 位相インタポレータ及び半導体回路装置

Country Status (5)

Country Link
US (1) US8427208B2 (ja)
EP (1) EP2472724A4 (ja)
JP (1) JP5273252B2 (ja)
KR (1) KR101287224B1 (ja)
WO (1) WO2011024212A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI478499B (zh) * 2011-10-09 2015-03-21 Realtek Semiconductor Corp 相位內插器、多相位內插裝置、內插時脈之產生方法及多相位之時脈產生方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9246436B2 (en) * 2012-07-16 2016-01-26 Linear Technology Corporation Low power radio receiver
KR20140124604A (ko) * 2013-04-17 2014-10-27 삼성전자주식회사 무선 데이터 수신 방법 및 무선 데이터 수신 장치
CN104124969A (zh) * 2013-04-26 2014-10-29 上海华虹宏力半导体制造有限公司 流水线模数转换器
US9496840B2 (en) 2014-05-16 2016-11-15 Linear Technology Corporation Radio receiver
CN109981086B (zh) * 2018-12-29 2023-04-28 晶晨半导体(上海)股份有限公司 一种相位插值器
US11392163B1 (en) * 2021-09-23 2022-07-19 Apple Inc. On-chip supply ripple tolerant clock distribution

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001217682A (ja) * 1999-11-26 2001-08-10 Fujitsu Ltd 位相合成回路およびタイミング信号発生回路
JP2003309543A (ja) * 2002-04-15 2003-10-31 Fujitsu Ltd クロック復元回路およびデータ受信回路
JP2004297404A (ja) 2003-03-26 2004-10-21 Toshiba Corp 位相補正回路及び受信装置
JP2005260787A (ja) 2004-03-15 2005-09-22 Mitsubishi Electric Corp 移相器
JP2007208616A (ja) * 2006-02-01 2007-08-16 Nec Electronics Corp クロックアンドデータリカバリ回路

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW483255B (en) 1999-11-26 2002-04-11 Fujitsu Ltd Phase-combining circuit and timing signal generator circuit for carrying out a high-speed signal transmission
US7515656B2 (en) 2002-04-15 2009-04-07 Fujitsu Limited Clock recovery circuit and data receiving circuit
JP4093826B2 (ja) * 2002-08-27 2008-06-04 富士通株式会社 クロック発生装置
SG161294A1 (en) * 2005-04-18 2010-05-27 Agency Science Tech & Res Time delay apparatus
JP4468298B2 (ja) * 2005-12-28 2010-05-26 富士通株式会社 適応的遅延調整を有する位相補間器
US7425856B2 (en) * 2006-06-30 2008-09-16 Agere Systems Inc. Phase interpolator with output amplitude correction
JP4768645B2 (ja) * 2007-02-16 2011-09-07 パナソニック株式会社 Pll回路、およびそれを備えた無線装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001217682A (ja) * 1999-11-26 2001-08-10 Fujitsu Ltd 位相合成回路およびタイミング信号発生回路
JP2003309543A (ja) * 2002-04-15 2003-10-31 Fujitsu Ltd クロック復元回路およびデータ受信回路
JP2004297404A (ja) 2003-03-26 2004-10-21 Toshiba Corp 位相補正回路及び受信装置
JP2005260787A (ja) 2004-03-15 2005-09-22 Mitsubishi Electric Corp 移相器
JP2007208616A (ja) * 2006-02-01 2007-08-16 Nec Electronics Corp クロックアンドデータリカバリ回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2472724A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI478499B (zh) * 2011-10-09 2015-03-21 Realtek Semiconductor Corp 相位內插器、多相位內插裝置、內插時脈之產生方法及多相位之時脈產生方法

Also Published As

Publication number Publication date
EP2472724A4 (en) 2014-12-24
US8427208B2 (en) 2013-04-23
JP5273252B2 (ja) 2013-08-28
US20120139591A1 (en) 2012-06-07
KR101287224B1 (ko) 2013-07-17
KR20120048660A (ko) 2012-05-15
JPWO2011024212A1 (ja) 2013-01-24
EP2472724A1 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
JP5273252B2 (ja) 位相インタポレータ及び半導体回路装置
US9673972B2 (en) Phase interpolator
US8232821B2 (en) Clock data recovery circuit
US6753712B2 (en) Clock and data recovery circuit and clock control method thereof
US9225324B2 (en) Circuit for generating accurate clock phase signals for high-speed SERDES
US8487708B2 (en) Clock oscillator circuit and semiconductor device
US20110025392A1 (en) Duty cycle correction method and its implementing circuit
CN113841334A (zh) 多相时钟占空比与时偏的测量和校正
US10135429B2 (en) Clock correction device and clock correcting method
CN107078726B (zh) 数字到相位转换器
KR100403106B1 (ko) Dll 회로
US9258009B2 (en) AD converter
US10476707B2 (en) Hybrid half/quarter-rate DFE
US10224936B1 (en) Self-calibrating frequency quadrupler circuit and method thereof
US6919750B2 (en) Clock signal generation circuit used for sample hold circuit
JP2008072597A (ja) 遅延ロックループ回路
JP4825710B2 (ja) 多相クロック生成回路およびシリアルデータ受信回路
US20100141319A1 (en) Clock signal output circuit
KR101208951B1 (ko) 클럭 신호 매칭 회로
US11711200B2 (en) Multiphase clock generators with digital calibration
KR102041471B1 (ko) 반도체 장치
CN114731155B (zh) 一种时钟产生电路
CN118473377A (zh) 时钟校正电路和对时钟进行校正的方法
CN114884504A (zh) 时钟校正方法、时钟数据恢复电路、芯片、接收端和终端
JP2010239483A (ja) Dll回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09848664

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011528504

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127005097

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009848664

Country of ref document: EP