WO2011023670A1 - Multifilamentleiter und verfahren zu dessen herstellung - Google Patents
Multifilamentleiter und verfahren zu dessen herstellung Download PDFInfo
- Publication number
- WO2011023670A1 WO2011023670A1 PCT/EP2010/062285 EP2010062285W WO2011023670A1 WO 2011023670 A1 WO2011023670 A1 WO 2011023670A1 EP 2010062285 W EP2010062285 W EP 2010062285W WO 2011023670 A1 WO2011023670 A1 WO 2011023670A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- band
- filaments
- filament
- multifilament conductor
- Prior art date
Links
- 239000004020 conductor Substances 0.000 title claims abstract description 103
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 8
- 239000000758 substrate Substances 0.000 claims abstract description 62
- 230000006641 stabilisation Effects 0.000 claims description 26
- 238000011105 stabilization Methods 0.000 claims description 26
- 239000012876 carrier material Substances 0.000 claims description 24
- 239000010949 copper Substances 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 20
- 230000000087 stabilizing effect Effects 0.000 claims description 17
- 229910052802 copper Inorganic materials 0.000 claims description 16
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 11
- 229910021521 yttrium barium copper oxide Inorganic materials 0.000 claims description 10
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 7
- 229910052709 silver Inorganic materials 0.000 claims description 7
- 239000004332 silver Substances 0.000 claims description 7
- 229910000831 Steel Inorganic materials 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 238000005096 rolling process Methods 0.000 claims description 4
- 239000010959 steel Substances 0.000 claims description 4
- 238000004026 adhesive bonding Methods 0.000 claims description 3
- 238000005868 electrolysis reaction Methods 0.000 claims description 3
- 238000005530 etching Methods 0.000 claims description 3
- 238000007735 ion beam assisted deposition Methods 0.000 claims description 3
- 150000002736 metal compounds Chemical group 0.000 claims description 3
- 238000004544 sputter deposition Methods 0.000 claims description 3
- 238000005979 thermal decomposition reaction Methods 0.000 claims description 3
- 238000007740 vapor deposition Methods 0.000 claims description 3
- 239000012808 vapor phase Substances 0.000 claims description 3
- 238000003466 welding Methods 0.000 claims description 3
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 claims description 3
- 238000005452 bending Methods 0.000 claims description 2
- 238000004891 communication Methods 0.000 claims description 2
- 238000007639 printing Methods 0.000 claims description 2
- 238000005476 soldering Methods 0.000 claims 2
- 239000000126 substance Substances 0.000 claims 1
- 239000002887 superconductor Substances 0.000 description 9
- 239000000969 carrier Substances 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 238000000151 deposition Methods 0.000 description 6
- 230000017105 transposition Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000006378 damage Effects 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 5
- 239000000395 magnesium oxide Substances 0.000 description 5
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 229910000856 hastalloy Inorganic materials 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- LNUFLCYMSVYYNW-ZPJMAFJPSA-N [(2r,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6r)-6-[(2r,3r,4s,5r,6r)-6-[(2r,3r,4s,5r,6r)-6-[[(3s,5s,8r,9s,10s,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-3-yl]oxy]-4,5-disulfo Chemical compound O([C@@H]1[C@@H](COS(O)(=O)=O)O[C@@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1[C@@H](COS(O)(=O)=O)O[C@@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1[C@@H](COS(O)(=O)=O)O[C@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1C[C@@H]2CC[C@H]3[C@@H]4CC[C@@H]([C@]4(CC[C@@H]3[C@@]2(C)CC1)C)[C@H](C)CCCC(C)C)[C@H]1O[C@H](COS(O)(=O)=O)[C@@H](OS(O)(=O)=O)[C@H](OS(O)(=O)=O)[C@H]1OS(O)(=O)=O LNUFLCYMSVYYNW-ZPJMAFJPSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000002144 chemical decomposition reaction Methods 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000003631 wet chemical etching Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/20—Permanent superconducting devices
- H10N60/203—Permanent superconducting devices comprising high-Tc ceramic materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/01—Manufacture or treatment
- H10N60/0268—Manufacture or treatment of devices comprising copper oxide
- H10N60/0661—Processes performed after copper oxide formation, e.g. patterning
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/01—Manufacture or treatment
- H10N60/0268—Manufacture or treatment of devices comprising copper oxide
- H10N60/0801—Manufacture or treatment of filaments or composite wires
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
Definitions
- the invention relates to a multifilament conductor having a band-shaped substrate and having at least one superconducting layer.
- the at least one superconducting layer is formed on at least one surface of the belt-shaped substrate and divided into filaments.
- the strip-shaped substrate has a first direction parallel to its longitudinal extent, and the at least one filament has a second direction parallel to its longitudinal extent.
- the invention relates to a method for producing such a multifilament conductor.
- Multifilament conductors with superconducting layers are used inter alia as conductors in superconducting devices.
- they can be used in superconducting windings of magnet spin tomographs, in motors, in generators or in current limiters.
- HTS high-temperature superconducting
- YBCO Y 2 BaCu 3 ⁇ 7
- Second-generation technical HTS conductors have, as the current-carrying layer, a monocrystalline HTS thin film, in particular of ceramic YBCO, which is formed on a metallic band-shaped carrier.
- a monocrystalline HTS thin film in particular of ceramic YBCO, which is formed on a metallic band-shaped carrier.
- the monocrystalline HTS thin film is coated with a textured multilayer buffer layer onto which the HTS layer is deposited by deposition methods such as deposition. Evaporation, laser deposition or chemical decomposition is applied.
- Protective or stabilizing layer applied which faulty and electrically bridge short sections in the HTS layer and protect the HTS layer from mechanical damage.
- the normal conducting layer is usually made of silver and / or copper.
- the band-shaped carrier, on which the layer stack of buffer, HTS and stabilization layer is applied generally has a width in the range of millimeters or centimeters. In alternating current applications, a time-varying field component often occurs perpendicular to the band-shaped carrier. As a result, circulating shield currents are induced in the HTS layer, and to a lesser extent also in the stabilization layer, which superimpose on a transport stream.
- WO 03/100875 A2 discloses such a Roebel conductor, which is constructed from a plurality of parallel HTS-coated band-shaped carriers. Verlus- te are determined in a corresponding structure of an HTS conductor by the width of the single band.
- Methods of forming the longitudinal grooves or trenches extending to the wearer include mechanical treatment, chemical etching, laser processing, photoresist techniques, and local destruction of crystalline orders.
- a filament on a carrier is divided into many individual filaments, which run parallel to the longitudinal axis of the carrier.
- the effective conductor width df is the width of the individual filaments on the support, in contrast to the width of the superconductively coated support as filament.
- Another object of the present invention is to provide a process for the preparation of a
- the multifilament conductor according to the invention has a band-shaped substrate and at least one superconducting layer.
- the at least one superconducting layer is formed on at least one surface of the belt-shaped substrate and divided into filaments.
- the strip-shaped substrate has a first direction parallel to its longitudinal extent, and the at least one filament has a second direction parallel to its longitudinal extent.
- the first direction of the belt-shaped substrate includes an angle greater than zero with the second direction of the at least one filament.
- the losses in AC field applications and the effects of local damage in technical superconducting conductors, when using the multifilament conductors in, for example, coils in which the conductors are wound over one another, can be effectively reduced.
- a significant reduction of losses occurs.
- the losses P h due to an alternating field amplitude ⁇ B perpendicular to the multifilament conductor are not dependent on the conductor width but on the width of the individual filaments.
- an angle between the first direction of the band-shaped substrate and the second direction of the at least one filament between 30 and 60 degrees, in particular 45 degrees.
- the at least one filament can be formed completely along the second direction, in particular without a longitudinal component parallel to the first direction. Longitudinal components along the first direction increase in applications such as e.g. bifilar wound coils, the losses.
- the belt-shaped substrate may have a first surface on a front side and an opposite second surface on a back side, wherein a plurality of filaments are formed on both the first and the second surface.
- the filaments of the first surface may have a second direction that is different from a third direction parallel to the longitudinal direction of the filaments of the second surface.
- the at least one filament of the front side can be electrically conductively connected to the at least one filament of the rear side, in particular via at least one layer which is formed on at least one third surface on one or two side surfaces of the band-shaped substrate.
- Transposition length can be in the range of 20cm.
- Layer can be particularly effective, and losses can be further reduced if between at least two adjacent filaments on a surface at least one electrical bridge is formed.
- An electrical connection or electrical connections of the at least two adjacent filaments are formed by the bridge or bridges.
- the at least one electrical bridge may be arranged centrally on the one surface, in particular with a longitudinal direction of the bridge parallel to the first direction of the band-shaped substrate. A defective filament with reduced local current carrying capacity is electrically bridged across the bridge and adjacent filament.
- the multifilament conductor may comprise a layer stack of band-shaped carrier material, at least one buffer layer, at least one superconducting layer, in particular a high-temperature superconducting (HTS) layer, and / or at least one stabilization layer.
- the buffer layer enables an epitaxially grown monocrystalline superconducting layer on the carrier material.
- An HTS layer allows the use of the multifilament conductor with superconducting properties even at temperatures in the range of liquid nitrogen.
- the stabilization layer protects the superconductive layer from mechanical damage and electrically shunts localized sites in the superconductive layer with reduced current carrying capacity, i. it stabilizes and protects mechanically and electrically.
- the carrier material may consist of a metal, in particular steel.
- the at least one buffer layer may comprise at least one of Al, yttria, IBAD MgO, homo-epi MgO, LMO, or combinations of these materials or layer stacks of these materials.
- the at least one superconducting layer may consist of YBCO.
- the at least one bridge may likewise consist of YBCO, in particular YBCO of the at least one HTS layer. This allows a lossless electrical line also over the bridge.
- the at least one stabilizing layer may consist of copper or silver or a Layer stack comprising at least one copper and / or at least one silver layer.
- the at least one bridge can also consist of or comprise the material of the at least one stabilization layer, which allows a simple production of the bridge.
- the support material may have a thickness in the range of 50 to 100 ⁇ m and a width in the range of 10 mm.
- the at least one buffer layer may have a thickness in the range of 100 nm.
- the at least one superconducting layer may have a thickness in the range of 1 ⁇ m, and the at least one filament may have a width in the range of 0.5 mm.
- the at least one stabilization layer may have a thickness in the range of 3 ⁇ m to 300 ⁇ m.
- a method according to the invention for producing the above-described multifilament conductor comprises the steps of
- a stabilization layer is applied to the superconductive layer
- the stabilizing layer of a first band-shaped carrier material with the stabilizing layer of a second band-shaped carrier material are formed overlapping at the edges of the two band-shaped carrier materials, so that an electrical connection of the stabilizing layers takes place over the edges, and
- the superconducting layers and the stabilizing layers are divided into filaments.
- the two band-shaped carrier materials can be brought into congruence with each other.
- the application of layers can be carried out by electrolysis, brazing, vapor deposition, sputtering, and / or thermal decomposition of metal compounds in the vapor phase.
- the subdivision of the superconducting layers and the subdivision of the stabilizing layers into filaments can be carried out mechanically or by lasering and / or etching, in particular dry or wet-chemical etching, of trenches continuous through a layer. Photolithography can be used in particular in etching processes.
- the application of layers can alternatively be done by printing or pasting the still uncoated substrate strip at the position of the trenches. In the following deposition of superconductor and stabilization layers no material is applied here, so that the desired filament structure is formed.
- Trenches may be formed at an angle between the first direction of the belt-shaped substrate and the second direction of the at least one non-zero filament.
- the filaments can be electrically connected on the two band-shaped carrier materials over their edges in such a way that spiral-shaped current paths are formed.
- the two band-shaped carrier materials of the double-layered substrate can be separated from one another by a heat-resistant, insulating intermediate layer or an air gap.
- FIG. 1 shows a multifilament conductor in an oblique view with filaments parallel to the substrate axis according to the prior art
- FIG. 2 shows the layer construction of a filament of a multifilament conductor according to the prior art
- FIG. 3 shows a multifilament conductor according to the invention with filaments which are obliquely formed on a front and back side of a substrate, running spirally around its circumference
- FIG. 5 shows a plan view of the multifilament conductor shown in FIG. 3 with filaments on the front (bounded by continuous lines) and backside (dashed lines), and
- FIG. 5 shows a plan view of the multifilament conductor shown in FIG. 3 with filaments on the front (bounded by continuous lines) and backside (dashed lines), and
- FIG. 6a shows a sectional view of the multifilament conductor shown in FIG. 3 with two directly connected carriers
- FIG 6b shows a sectional view of the multifilament conductor shown in FIG. 3 with a compressed tube as the substrate
- FIG. 6c shows a sectional view of the multifilament conductor shown in FIG. 3, which consists of a folded-together part as a substrate with a weld at the open position Page exists.
- Fig. 1 shows a section perpendicular to the longitudinal axis of a multifilament conductor 1, in an oblique view from the front of the multifilament conductor 1, according to the prior art.
- the multi-filament conductor 1 has a band-shaped substrate 2, with a front side 9 and a back side 10.
- the band-shaped substrate 2 is defined as the longitudinal direction of the band-shaped substrate 2.
- strips of a buffer layer 4 are applied in strips on the front side 21 of the band-shaped substrate 2 in a strip-like manner.
- the strips of the buffer layer 4 are spaced apart and have a second direction
- a superconductive layer 3 e.g. made of YBCO material.
- a thin silver layer (Ag layer) 5a and a copper layer (Cu layer) 5b are formed as a supporting and stabilizing layer 5, respectively.
- continuous trenches 6 for spacing the filaments 20 are formed between the layer stacks or filaments 20, each consisting of the buffer layer 4, the superconducting layer 3, and the stabilization layer 5, continuous trenches 6 for spacing the filaments 20 are formed.
- Al layer 11 On top of the Al layer 11 is a layer of Yttria 12. On top of this, a layer of IBAD magnesium oxide (MgO) 13 and an epitaxial homo-epi MgO layer 14 are deposited. On the epitaxial homo-epi Mgo layer 14 is an epitaxial LMO
- Layer 15 is formed. These layers 11 to 15 together form the buffer layer 4 and act in an electrically insulating manner with respect to the substrate 2. They serve as a monocrystalline substrate and lead to monocrystalline growth of the superconducting layer 3, e.g. from YBCO, on the substrate 2 above the buffer layer 3.
- a silver (Ag) layer 5a and a copper (Cu) layer 5b are formed on the superconductive layer 3. These two layers form the stabilization layer 5, which protects the superconducting layer 3 from mechanical damage and electrically bridges defects in the monocrystalline superconducting material.
- a further Cu layer may be formed as a second stabilization layer 5 '.
- the substrate 2 of the multifilament conductor 1 in Figures 1 and 2 is Hastelloy or steel, is 50 microns thick and has a width of 10mm.
- the filament 20 shown in Fig. 2 has a buffer layer 3 with a thickness of 100 nm, and has a width of 0.5 mm.
- the superconducting layer 3 is 1 ⁇ m thick and the stabilization layer 5 on the front side 9 of the substrate 2 is 23 ⁇ m thick, with a 20 ⁇ m thick Cu layer.
- the stabilization layer 5 'on the back 10 of the copper substrate 2 is 20 ⁇ m thick.
- an inventive multifilament conductor 1 is shown in an oblique view from above.
- the substrate 2 of the multi-filament conductor 1 is made of Hastelloy or steel, is 50 microns thick and has a width of 10mm.
- the two beams 16 and 17 are on their backs facing the surfaces with filaments 20, 20 ', both in mechanical connection with each other, but substantially electrically separated by an intermediate layer 29, wherein the contacting backsides are further referred to as mechanical Compound 18 will be referred to.
- the two carriers 16 and 17 and the intermediate layer 29 together form the band-shaped substrate 2 of the multifilament conductor 1 according to the invention.
- Trenches 6 are formed continuously between the filaments 20, 20 'on a surface of the substrate 2, so that the superconducting layer 3 of two adjacent filaments 20, 20 'are each electrically separated from each other.
- the filaments 20 on the first carrier 16 are each arranged so that they lie congruently one above the other at the edge 19 of the carrier 16 with the filaments 20 'of the second carrier 17 at the edge 19 of the carrier 16, 17.
- the material of the stabilizing layer 5 is also deposited on the edge 19.
- the filaments 20 of the carrier 16 are electrically connected to the filaments 20 'of the carrier 17 via this material.
- they are also formed by the material of the stabilizing layer 5 at the edge 19 completely continuous, so that only at the edge 19 superimposed filaments 20 and 20 'are electrically connected together.
- the layer thicknesses and substrate 2 and filament 20, 20 ' are also formed by the material of the stabilizing layer 5 at the edge 19 completely continuous, so that only at the edge 19 superimposed filaments 20 and 20 'are electrically connected together.
- Widths are equal to the thicknesses and widths previously described for the multifilament conductor 1 of Figures 1 and 2.
- the angle of the filaments 20 on the front side 9 has the opposite value of the angle of the filaments 20 'on the back 10.
- the value of the angle is in the range of 1 to 5 degrees or -1 to -5 degrees.
- superconducting filaments 20, 20 'of limited length b which end at the edges 19 of the band-shaped substrate 2.
- a stabilizing layer 5, 5' of normally conducting material e.g. made of copper, which is in electrical connection with the superconducting layer 3 of the filaments 20, 20 'and can bridge the current at a defective normal conducting point of the superconductor.
- the stabilization layer 5, 5 ' is formed so that the filaments 20, 20' of the front and back 9, 10 are electrically connected via a normal conductive layer.
- FIG. 4 shows an alternative embodiment of the multifilament conductor 1 according to the invention.
- This multifilament conductor 1 is analogous to the multifilament conductor 1 shown in FIG. 3, with the exception of the additional formation of bridges 23 between adjacent filaments 20, 20 '.
- the bridges 23 are constructed from the layer structure forth equal to the filaments 20, 20 'of Fig. 1 to 3, or consist only of the stabilizing layer 5 or of the stabilizing layer 5 and the superconducting layer 3. They are electrically conductive and can be defects in the Superconducting layer 3 of a filament 20, 20 'over the superconducting layer 3 of the adjacent filament 20, 20' bridge.
- the bridges 23 are arranged as a web centrally on the surface of the substrate 2 along its first direction 21. Alternatively, however, the bridges 23 may also be arranged at or near the edge 19. They can not be arranged as a continuous web, but alternately or irregularly on the surface between each two adjacent filaments 20, 20 '.
- the width a of the bridges 23 is in the region of 1/20 of the length b of a filament 20 or 20 'on one side of the substrate 2. Depending on the material and required current carrying capacity, the width of the Bridges 23 also assume other values.
- FIG. 5 shows a plan view of a multifilament conductor 1 corresponding to the embodiment shown in FIG. It can be seen that the second direction 22 of the filaments 20 on the first carrier 16 (solid lines as a limit in the width of the filaments 20 in Fig. 5) at an angle to a third direction 26 of the longitudinal extent of the filaments 20 'on the second carrier 17 (dashed lines as a limit in the width of the filaments 20 'in Fig. 5) is arranged.
- the filaments 20 and 20 'on the carrier 16 and 17 thus enclose an angle. The angle is in the range of less degrees. But there are also other angles, such as shown in Fig. 5, conceivable.
- the filaments 20, 20 'on the first 16 and second carrier 17 form a twisted or transposed multifilament conductor 1.
- the filaments 20, 20' circulate spirally around the conductor.
- alternating field amplitude .DELTA.B is no longer the conductor width b, as is the case with a conductor without filaments 20, 20 ', but the width df of the individual filaments 20, 20' prevail.
- the proportion of hysteresis losses is reduced by the factor df / b.
- an area A is shown by way of example as a dot-and-dash line, which area is enclosed by any two filaments 20 on the front side 9 or 20 'on the rear side 10.
- the surface A is traversed by a magnetic flux BxA at a field component B perpendicular to the surface A.
- An electrically insulating layer 29 according to the invention between the first and second carriers 16 and 17 prevents induced currents perpendicularly through the thin substrate 2 between filaments 20 and 20 '. These currents would be superimposed on the transport stream in the filaments 20, 20 'and drive the filaments 20, 20' into the resistive, lossy region and additionally produce ohmic losses in the substrate 2. With the electrically insulating layer 29 or intermediate layer between the first carrier 16 and the second carrier 17, a magnetic coupling via the substrate 2 is prevented.
- the multifilament conductor 1 of the present invention can also be used in critical DC applications.
- R n ohmic resistance
- this resistance can be very small.
- the voltage drop is 250 ⁇ V / m or 2.5 ⁇ V / cm. This is in the range of the voltage drop l ⁇ V / cm, in which usually the critical current is defined in technical superconductors.
- FIGS. 6 a to 6 c show sectional views of the multifilament conductor 1 shown in FIG. 5 with different embodiments of the connection 18 via at least one intermediate layer 29 of the first and second carriers 16 and 17.
- the filaments 20, 20 ' are constructed of the same as the previously described filaments 20, 20' from a layer stack of buffer layer 4, superconducting layer 3 and stabilization layer 5. Trenches 6 are formed between adjacent filaments 20, 20 '. Filaments 20, 20 'on the front 9 and back 10 of the substrate 2 are electrically connected to each other via the edge 19 by the stabilizing layer 5.
- the first carrier 16 and the second carrier 17 are each connected to each other flat, electrically insulating over their back.
- the compound can e.g. by gluing the backs together.
- Between the carriers 16 and 17 may additionally be arranged a heat-insulating layer.
- the carriers 16 and 17 are formed by pressing a tube 24 of substrate material 2 together.
- a thin insulating air gap can remain inside the tube, which can also be used for cooling.
- liquid nitrogen are passed through this gap and additionally cool the multifilament conductor 1 from the inside.
- the first and second beams 16 and 17 are formed by folding together a wide beam having a width of the wide beam equal to twice the width of a beam 16, 17, the fold line being in the middle of the wide beam along its longitudinal axis ,
- the fold line forms an edge 19 of the substrate 2, and along the opposite edge 19 of the substrate 2 may be a
- Welding or gluing seam 25 connect the first and second carrier 16 and 17 mechanically stable.
- the filaments 20 of the first and second carrier 16 and 17 are connected via the edges 19, wherein at the formation of the trenches 6 adjacent to the edge 19 adjacent filaments 20 of a carrier 16 or 17 each electrically are separated at the edge 19.
- a combination of the exemplary embodiments in FIGS. 6 a to 6 c with the exemplary embodiment from FIG. 4 results in an electrical connection of filaments 20 on a carrier 16 or 17 via the bridges 23.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Abstract
Description
Claims
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012526028A JP5597711B2 (ja) | 2009-08-26 | 2010-08-24 | マルチフィラメント導体およびその製造方法 |
US13/392,380 US9024192B2 (en) | 2009-08-26 | 2010-08-24 | Multifilament conductor and method for producing same |
RU2012111340/28A RU2546127C2 (ru) | 2009-08-26 | 2010-08-24 | Многополосковый проводник и способ его изготовления |
ES10757739.7T ES2536998T3 (es) | 2009-08-26 | 2010-08-24 | Conductor multifilamentario y método para su producción |
EP20100757739 EP2471115B1 (de) | 2009-08-26 | 2010-08-24 | Multifilamentleiter und verfahren zu dessen herstellung |
CA2772158A CA2772158C (en) | 2009-08-26 | 2010-08-24 | Multifilament conductor and method for its production |
BR112012004242-4A BR112012004242B1 (pt) | 2009-08-26 | 2010-08-24 | condutor de multifilamentos e método para sua produção |
CN201080037916.4A CN102484198B (zh) | 2009-08-26 | 2010-08-24 | 多丝导体及其制造方法 |
KR1020127004844A KR101782177B1 (ko) | 2009-08-26 | 2010-08-24 | 멀티필라멘트 도체 및 그의 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009038920A DE102009038920A1 (de) | 2009-08-26 | 2009-08-26 | Multifilamentleiter und Verfahren zu dessen Herstellung |
DE102009038920.2 | 2009-08-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011023670A1 true WO2011023670A1 (de) | 2011-03-03 |
Family
ID=43217085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2010/062285 WO2011023670A1 (de) | 2009-08-26 | 2010-08-24 | Multifilamentleiter und verfahren zu dessen herstellung |
Country Status (11)
Country | Link |
---|---|
US (1) | US9024192B2 (de) |
EP (1) | EP2471115B1 (de) |
JP (1) | JP5597711B2 (de) |
KR (1) | KR101782177B1 (de) |
CN (1) | CN102484198B (de) |
BR (1) | BR112012004242B1 (de) |
CA (1) | CA2772158C (de) |
DE (1) | DE102009038920A1 (de) |
ES (1) | ES2536998T3 (de) |
RU (1) | RU2546127C2 (de) |
WO (1) | WO2011023670A1 (de) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017162714A1 (de) * | 2016-03-24 | 2017-09-28 | Siemens Aktiengesellschaft | Supraleitereinrichtung zum betrieb in einem externen magnetfeld |
EP3584847A1 (de) * | 2018-06-18 | 2019-12-25 | Bruker HTS GmbH | Herstellungsverfahren für hts beschichteten bandleiter |
EP3724898A4 (de) * | 2017-12-14 | 2021-09-15 | The Government of the U.S.A., as represented by The Secretary of the Navy | Herstellung von leitenden gerillten hochtemperatur-bandzusammensetzungen |
WO2022089992A1 (de) * | 2020-10-29 | 2022-05-05 | Karlsruher Institut für Technologie | Bandleitervorrichtung und kabel, das die bandleitervorrichtung aufweist |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140144682A1 (en) * | 2012-11-28 | 2014-05-29 | Rf Micro Devices, Inc. | Surface finish for conductive features on substrates |
US20140146489A1 (en) * | 2012-11-28 | 2014-05-29 | Rf Micro Devices, Inc. | Surface finish for conductive features on substrates |
EP2843721B1 (de) | 2013-09-03 | 2015-11-04 | Nexans | Spulenanordnung für Supraleiter |
US9947441B2 (en) * | 2013-11-12 | 2018-04-17 | Varian Semiconductor Equipment Associates, Inc. | Integrated superconductor device and method of fabrication |
US10158061B2 (en) | 2013-11-12 | 2018-12-18 | Varian Semiconductor Equipment Associates, Inc | Integrated superconductor device and method of fabrication |
JP6069269B2 (ja) * | 2014-05-07 | 2017-02-01 | 株式会社フジクラ | 酸化物超電導線材、超電導機器及び酸化物超電導線材の製造方法 |
US20170106421A1 (en) * | 2014-06-06 | 2017-04-20 | Koninklijke Philips N.V. | Manufacturing of litz wire |
CN104167487B (zh) * | 2014-07-31 | 2017-01-25 | 上海超导科技股份有限公司 | 接触电阻均分布的钇系超导带材及其制备方法、装置 |
EP3179486B1 (de) | 2014-08-05 | 2019-05-01 | Fujikura Ltd. | Supraleitender oxiddraht, supraleitende vorrichtung und verfahren zur herstellung eines supraleitenden oxiddrahtes |
JP6371395B2 (ja) | 2014-08-12 | 2018-08-08 | 国立研究開発法人理化学研究所 | 高温超伝導多芯テープ線、その製造方法、および製造装置 |
JP6201080B1 (ja) * | 2015-11-06 | 2017-09-20 | 株式会社フジクラ | 酸化物超電導線材 |
JP6895897B2 (ja) | 2015-12-18 | 2021-06-30 | 古河電気工業株式会社 | 超電導線材及び超電導コイル |
MX2019007160A (es) * | 2016-12-22 | 2019-10-15 | Essex Group | Montajes y conductores continuamente transpuestos. |
JP6484658B2 (ja) * | 2017-03-24 | 2019-03-13 | 株式会社フジクラ | 酸化物超電導線材及び超電導コイル |
GB201705214D0 (en) * | 2017-03-31 | 2017-05-17 | Tokamak Energy Ltd | Quench detection in superconducting magnets |
US10804010B2 (en) * | 2017-05-12 | 2020-10-13 | American Superconductor Corporation | High temperature superconducting wires having increased engineering current densities |
CN107622825B (zh) * | 2017-09-30 | 2021-06-01 | 上海朗达电缆(集团)有限公司 | 一种柔性耐火低压变频电缆 |
EP3540795A1 (de) | 2018-03-15 | 2019-09-18 | Bruker HTS GmbH | Bandförmiger supraleiter mit mehreren länglichen barrierestrukturen |
GB201904665D0 (en) * | 2019-04-03 | 2019-05-15 | Tokamak Energy Ltd | High temperature supconductor cable |
KR102582231B1 (ko) * | 2019-06-20 | 2023-09-22 | 한국전기연구원 | 필라멘트 꼬임을 갖는 고온초전도선재 및 이의 제조방법 |
WO2021180146A1 (zh) * | 2020-03-11 | 2021-09-16 | 上海交通大学 | 一种提高超导闭合线圈励磁效率的装置 |
CN111403103B (zh) * | 2020-04-29 | 2024-07-09 | 上海国际超导科技有限公司 | 超导带材 |
RU2770419C1 (ru) * | 2021-12-21 | 2022-04-18 | Общество с ограниченной ответственностью "Инженерные технологии защиты" | Высоковольтный предохранитель с высокотемпературной сверхпроводящей вставкой и токоограничитель c таким предохранителем |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001008169A2 (en) * | 1999-07-23 | 2001-02-01 | American Superconductor Corporation | Superconductor coated conductors with reduced a.c. loss |
WO2003100875A2 (de) | 2002-05-27 | 2003-12-04 | Siemens Aktiengesellschaft | VERFAHREN ZUR HERSTELLUNG EINES VOLLTRANSPONIERTEN HOCH-Tc-VERBUNDSUPRALEITERS SOWIE NACH DEM VERFAHREN HERGESTELLTER LEITER |
US20060040830A1 (en) * | 2004-08-20 | 2006-02-23 | American Superconductor Corporation | Low ac loss filamentary coated superconductors |
US20070191202A1 (en) | 2005-10-06 | 2007-08-16 | Foltyn Stephen R | Segmented superconducting tape having reduced AC losses and method of making |
US7756557B1 (en) * | 2005-11-30 | 2010-07-13 | The United States Of America As Represented By The Secretary Of The Air Force | AC-tolerant HTS coated conductor with transposed filaments |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US749639A (en) | 1904-01-12 | Metallic | ||
US3513251A (en) * | 1969-04-07 | 1970-05-19 | Southwire Co | Multifilament conductor |
US5157466A (en) * | 1991-03-19 | 1992-10-20 | Conductus, Inc. | Grain boundary junctions in high temperature superconductor films |
JP3188358B2 (ja) * | 1994-03-25 | 2001-07-16 | 財団法人国際超電導産業技術研究センター | 酸化物超電導体薄膜の製造方法 |
US5591696A (en) * | 1994-10-06 | 1997-01-07 | Board Of Regents, The University Of Texas System | Chemically tailored corrosion resistant high-TC superconductors |
JP3634078B2 (ja) | 1995-08-18 | 2005-03-30 | 株式会社フジクラ | 酸化物超電導導体 |
US6312819B1 (en) * | 1999-05-26 | 2001-11-06 | The Regents Of The University Of California | Oriented conductive oxide electrodes on SiO2/Si and glass |
US6828507B1 (en) * | 1999-07-23 | 2004-12-07 | American Superconductor Corporation | Enhanced high temperature coated superconductors joined at a cap layer |
US6765151B2 (en) * | 1999-07-23 | 2004-07-20 | American Superconductor Corporation | Enhanced high temperature coated superconductors |
AU6219200A (en) * | 1999-08-24 | 2001-03-19 | Electric Power Research Institute, Inc. | Surface control alloy substrates and methods of manufacture therefor |
US6756139B2 (en) * | 2002-03-28 | 2004-06-29 | The Regents Of The University Of California | Buffer layers on metal alloy substrates for superconducting tapes |
US6899928B1 (en) * | 2002-07-29 | 2005-05-31 | The Regents Of The University Of California | Dual ion beam assisted deposition of biaxially textured template layers |
US20040266628A1 (en) | 2003-06-27 | 2004-12-30 | Superpower, Inc. | Novel superconducting articles, and methods for forming and using same |
JP2005085612A (ja) | 2003-09-09 | 2005-03-31 | Yokohama Tlo Co Ltd | 超電導テープ導体、超電導テープ導体の製造方法、及び超電導テープ導体を備える装置 |
US7365271B2 (en) | 2003-12-31 | 2008-04-29 | Superpower, Inc. | Superconducting articles, and methods for forming and using same |
US7463915B2 (en) * | 2004-08-20 | 2008-12-09 | American Superconductor Corporation | Stacked filamentary coated superconductors |
US7582328B2 (en) * | 2004-08-20 | 2009-09-01 | American Superconductor Corporation | Dropwise deposition of a patterned oxide superconductor |
US7417192B2 (en) * | 2004-09-22 | 2008-08-26 | Superpower, Inc. | Superconductor components |
US7763343B2 (en) | 2005-03-31 | 2010-07-27 | American Superconductor Corporation | Mesh-type stabilizer for filamentary coated superconductors |
EP1925040B1 (de) * | 2005-07-29 | 2015-10-21 | American Superconductor Corporation | Hochtemperatur-supraleitende drähte und spulen |
JP4984466B2 (ja) * | 2005-09-21 | 2012-07-25 | 住友電気工業株式会社 | 超電導テープ線材の製造方法 |
US7674751B2 (en) * | 2006-01-10 | 2010-03-09 | American Superconductor Corporation | Fabrication of sealed high temperature superconductor wires |
JP2007305386A (ja) | 2006-05-10 | 2007-11-22 | Sumitomo Electric Ind Ltd | 超電導線材、超電導導体、超電導機器、超電導線材の製造方法、および超電導導体の製造方法 |
CN103069595B (zh) * | 2010-06-24 | 2016-05-18 | 休斯敦大学体系 | 具有降低的ac损耗的多细丝超导体及其形成方法 |
-
2009
- 2009-08-26 DE DE102009038920A patent/DE102009038920A1/de not_active Withdrawn
-
2010
- 2010-08-24 CA CA2772158A patent/CA2772158C/en not_active Expired - Fee Related
- 2010-08-24 BR BR112012004242-4A patent/BR112012004242B1/pt not_active IP Right Cessation
- 2010-08-24 JP JP2012526028A patent/JP5597711B2/ja not_active Expired - Fee Related
- 2010-08-24 US US13/392,380 patent/US9024192B2/en active Active
- 2010-08-24 CN CN201080037916.4A patent/CN102484198B/zh not_active Expired - Fee Related
- 2010-08-24 KR KR1020127004844A patent/KR101782177B1/ko active IP Right Grant
- 2010-08-24 EP EP20100757739 patent/EP2471115B1/de not_active Not-in-force
- 2010-08-24 ES ES10757739.7T patent/ES2536998T3/es active Active
- 2010-08-24 WO PCT/EP2010/062285 patent/WO2011023670A1/de active Application Filing
- 2010-08-24 RU RU2012111340/28A patent/RU2546127C2/ru active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001008169A2 (en) * | 1999-07-23 | 2001-02-01 | American Superconductor Corporation | Superconductor coated conductors with reduced a.c. loss |
WO2003100875A2 (de) | 2002-05-27 | 2003-12-04 | Siemens Aktiengesellschaft | VERFAHREN ZUR HERSTELLUNG EINES VOLLTRANSPONIERTEN HOCH-Tc-VERBUNDSUPRALEITERS SOWIE NACH DEM VERFAHREN HERGESTELLTER LEITER |
US20060040830A1 (en) * | 2004-08-20 | 2006-02-23 | American Superconductor Corporation | Low ac loss filamentary coated superconductors |
US20070191202A1 (en) | 2005-10-06 | 2007-08-16 | Foltyn Stephen R | Segmented superconducting tape having reduced AC losses and method of making |
US7756557B1 (en) * | 2005-11-30 | 2010-07-13 | The United States Of America As Represented By The Secretary Of The Air Force | AC-tolerant HTS coated conductor with transposed filaments |
Non-Patent Citations (1)
Title |
---|
BARNES P N ET AL: "Low AC Loss Structures in YBCO Coated Conductors With Filamentary Current Sharing", IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, IEEE SERVICE CENTER, LOS ALAMITOS, CA, US, vol. 15, no. 2, 1 June 2005 (2005-06-01), pages 2827 - 2830, XP011134270, ISSN: 1051-8223, DOI: DOI:10.1109/TASC.2005.848236 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017162714A1 (de) * | 2016-03-24 | 2017-09-28 | Siemens Aktiengesellschaft | Supraleitereinrichtung zum betrieb in einem externen magnetfeld |
KR20180132083A (ko) * | 2016-03-24 | 2018-12-11 | 지멘스 악티엔게젤샤프트 | 외부 자기장에서 동작하기 위한 초전도체 디바이스 |
RU2697426C1 (ru) * | 2016-03-24 | 2019-08-14 | Сименс Акциенгезелльшафт | Сверхпроводниковое устройство для работы во внешнем магнитном поле |
KR102147325B1 (ko) | 2016-03-24 | 2020-08-24 | 지멘스 악티엔게젤샤프트 | 외부 자기장에서 동작하기 위한 초전도체 디바이스 |
EP3724898A4 (de) * | 2017-12-14 | 2021-09-15 | The Government of the U.S.A., as represented by The Secretary of the Navy | Herstellung von leitenden gerillten hochtemperatur-bandzusammensetzungen |
EP3584847A1 (de) * | 2018-06-18 | 2019-12-25 | Bruker HTS GmbH | Herstellungsverfahren für hts beschichteten bandleiter |
WO2022089992A1 (de) * | 2020-10-29 | 2022-05-05 | Karlsruher Institut für Technologie | Bandleitervorrichtung und kabel, das die bandleitervorrichtung aufweist |
Also Published As
Publication number | Publication date |
---|---|
KR20120056257A (ko) | 2012-06-01 |
CN102484198A (zh) | 2012-05-30 |
EP2471115A1 (de) | 2012-07-04 |
JP2013503422A (ja) | 2013-01-31 |
US20120181062A1 (en) | 2012-07-19 |
KR101782177B1 (ko) | 2017-09-26 |
JP5597711B2 (ja) | 2014-10-01 |
CN102484198B (zh) | 2016-08-03 |
BR112012004242A2 (pt) | 2016-04-05 |
CA2772158C (en) | 2016-11-01 |
CA2772158A1 (en) | 2011-03-03 |
RU2012111340A (ru) | 2013-10-10 |
BR112012004242B1 (pt) | 2019-11-05 |
RU2546127C2 (ru) | 2015-04-10 |
US9024192B2 (en) | 2015-05-05 |
EP2471115B1 (de) | 2015-04-01 |
ES2536998T3 (es) | 2015-06-01 |
DE102009038920A1 (de) | 2011-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2471115B1 (de) | Multifilamentleiter und verfahren zu dessen herstellung | |
DE69924898T2 (de) | Resistiver Fehlerstrombegrenzer | |
DE69838221T2 (de) | Fehlerstrom limitierende supraleitende spule | |
DE69405678T2 (de) | Supraleitender Kabelleiter | |
DE69517186T2 (de) | Supraleitende magnetspule | |
DE112010005173T5 (de) | Supraleitende oxidspule, supraleitender oxidspulenkörperund rotationsmaschine | |
EP2917922B1 (de) | Supraleitende spuleneinrichtung mit spulenwicklung und kontakten | |
DE102010042598A1 (de) | Supraleitende MR-Magnetanordnung mit filamentlosem Supraleiter-Band | |
DE69202275T3 (de) | Verbindung zwischen Drähten unter Verwendung von Oxid-Supraleitern und Methode für die Verbindung. | |
DE69714646T2 (de) | Verbindungsstruktur für ein Supraleiter | |
EP2885791A1 (de) | Supraleitende spuleneinrichtung und herstellungsverfahren | |
EP3772071B1 (de) | Magnetspulensektion mit integrierten joints, insbesondere hts-lts-joints, und zugehörige magnetanordnung | |
EP0218867B1 (de) | Magnetspule | |
DE60226280T2 (de) | Verbesserte supraleiter und deren herstellungsverfahren | |
DE2241815A1 (de) | Niedrige verluste aufweisender leiter fuer die wechsel- oder gleichstromuebertragung | |
EP2634779A1 (de) | System mit einem dreiphasigen supraleitfähigen elektrischen Übertragungselement | |
EP3224839A1 (de) | Elektrische spuleneinrichtung zur induktiv-resistiven strombegrenzung | |
EP3399528B1 (de) | Supraleitfähige magnetspulenanordnung mit mehreren lagenweise gewickelten bandförmigen supraleitern | |
EP2490275A1 (de) | Verfahren zur Herstellung eines supraleitfähigen elektrischen Leiters | |
DE69531693T3 (de) | Supraleitende magnetspule mit variablem profil | |
DE19719738B4 (de) | AC-Oxid-Supraleiterkabel und Verfahren zur Herstellung eines AC-Oxid-Supraleiterbanddrahtes und eines AC-Oxid-Supraleiterrunddrahts | |
WO2004006345A2 (de) | Bifilare bandleiterstruktur eines hochtemperatursupraleiters zur strombegrenzung | |
EP3157070A1 (de) | Supraleiterstruktur zur verbindung von bandleitern, insbesondere mit einer gewellt oder gezackt verlaufenden naht | |
DE102011083489A1 (de) | Bandförmiger Hochtemperatur-Supraleiter und Verfahren zur Herstellung eines bandförmigen Hochtemperatur-Supraleiters | |
EP3622543B1 (de) | Spuleneinrichtung und wicklungsträger für niederpoligen rotor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080037916.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10757739 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 311/KOLNP/2012 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010757739 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012526028 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20127004844 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13392380 Country of ref document: US Ref document number: 2772158 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012111340 Country of ref document: RU |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112012004242 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112012004242 Country of ref document: BR Kind code of ref document: A2 Effective date: 20120227 |