WO2011020558A1 - Kodiervorrichtung, vorrichtung zur weiterverarbeitung eines digitalen basisband- oder zwischenfrequenzsignals, system und verfahren zur externen digitalen kodierung - Google Patents

Kodiervorrichtung, vorrichtung zur weiterverarbeitung eines digitalen basisband- oder zwischenfrequenzsignals, system und verfahren zur externen digitalen kodierung Download PDF

Info

Publication number
WO2011020558A1
WO2011020558A1 PCT/EP2010/004740 EP2010004740W WO2011020558A1 WO 2011020558 A1 WO2011020558 A1 WO 2011020558A1 EP 2010004740 W EP2010004740 W EP 2010004740W WO 2011020558 A1 WO2011020558 A1 WO 2011020558A1
Authority
WO
WIPO (PCT)
Prior art keywords
digital
signal
baseband signal
intermediate frequency
asynchronous serial
Prior art date
Application number
PCT/EP2010/004740
Other languages
English (en)
French (fr)
Inventor
Manfred Reitmeier
Cornelius Heinemann
Original Assignee
Rohde & Schwarz Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohde & Schwarz Gmbh & Co. Kg filed Critical Rohde & Schwarz Gmbh & Co. Kg
Priority to US13/391,617 priority Critical patent/US8692698B2/en
Priority to JP2012525064A priority patent/JP5907870B2/ja
Priority to EP10752290.6A priority patent/EP2371124B1/de
Priority to BRPI1008649-8A priority patent/BRPI1008649B1/pt
Publication of WO2011020558A1 publication Critical patent/WO2011020558A1/de

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/38Transmitter circuitry for the transmission of television signals according to analogue transmission standards
    • H04N5/40Modulation circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/238Interfacing the downstream path of the transmission network, e.g. adapting the transmission rate of a video stream to network bandwidth; Processing of multiplex streams
    • H04N21/2383Channel coding or modulation of digital bit-stream, e.g. QPSK modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/242Synchronization processes, e.g. processing of PCR [Program Clock References]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/61Network physical structure; Signal processing
    • H04N21/6106Network physical structure; Signal processing specially adapted to the downstream path of the transmission network
    • H04N21/6112Network physical structure; Signal processing specially adapted to the downstream path of the transmission network involving terrestrial transmission, e.g. DVB-T
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/44Receiver circuitry for the reception of television signals according to analogue transmission standards
    • H04N5/445Receiver circuitry for the reception of television signals according to analogue transmission standards for displaying additional information

Definitions

  • Coding device device for processing a digital baseband or intermediate frequency signal, system and method for external digital coding
  • the invention relates to a coding device for converting a digital data stream, a device for processing a digital baseband signal or a digital intermediate frequency signal, a system of said coding device and apparatus and a method for external digital coding of a digital data stream.
  • Digital broadcasting defines regional and / or international standards for the transmission of continuous digital data streams such as music or video.
  • DVB Digital Video Broadcasting
  • DAB Digital Audio Broadcasting
  • a video data stream is transferred via an asynchronous serial interface (ASI) to an exciter, which converts the video data stream into a broadcasting signal according to the DVB-T standard the broadcast signal to an amplifier.
  • the amplifier transmits the amplified broadcast signal by means of a broadcast antenna.
  • the exciter would have to be adapted to the new broadcasting standard, for example higher Data volumes.
  • the previously used exciters are not designed for these higher requirements of the DVB-T2 standard, so that a simple reprogramming of the exciter is not enough.
  • the object of the invention is to solve the problems of the prior art and to find a simple and inexpensive alternative to replacing the complete exciter.
  • the object is solved by the coding device according to claim 1.
  • the coding device according to the invention is suitable for converting a digital data stream into a digital baseband signal in the time domain or into a digital intermediate frequency signal in the time domain.
  • the coding device has an asynchronous serial interface for outputting this digital baseband signal or intermediate frequency signal generated in the coding device.
  • the object is further achieved by an apparatus according to claim 7 of the invention.
  • the device according to the invention is suitable for further processing of a digital baseband signal in the time domain or of a digital intermediate frequency signal in the time domain.
  • the device according to the invention has an asynchronous serial interface for reading the digital baseband signal or intermediate frequency signal.
  • the invention is further achieved by an inventive system according to claim 14.
  • the system has a previously described coding device according to the invention and a device according to the invention previously described.
  • the asynchronous serial interface of the coding device and the asynchronous serial interface of the device are interconnected.
  • the object is achieved by the inventive method for external digital coding of a baseband signal or Intermediate frequency signal according to claim 15 solved.
  • the inventive method comprises the following steps: A digital data stream is converted in a coding device into a digital baseband signal in the time domain or into a digital intermediate frequency signal in the time domain. Then the digital baseband or intermediate frequency signal is transmitted via an asynchronous serial
  • the output digital baseband signal is applied by means of a transmission means such as a cable to an asynchronous serial interface of a device and read there by the device.
  • the device further processes the read digital baseband signal or intermediate frequency signal.
  • Instructions for reading the digital baseband signal or the digital intermediate frequency signal from the transmitted signal of the ASI interface determined and bridged the coding according to the old standard. By creating a digital signal in the time domain, the baseband signal or intermediate frequency signal can be transmitted via the digital ASI interface.
  • the coding device advantageously has an output device for connection or connected to the asynchronous serial interface.
  • the output device is for translating the digital baseband signal or intermediate frequency signal into the transmission format of the ASI interface, so that the control transmitter can receive the externally coded digital baseband signal via the existing ASI interface, since no input for digital baseband or IF signals is available at the control transmitter.
  • the device according to the invention has a read-in device connected to the asynchronous serial interface of the device.
  • the read-in device is suitable for reading in the digital baseband signal or the digital intermediate frequency signal from a signal present in the transmission format of the asynchronous serial interface.
  • the control transmitter can read in the externally coded digital baseband signal or intermediate frequency signal and can process the read-in digital signal further.
  • the adaptation required for further processing is preferably realized by a software update.
  • each test point of the digital baseband signal or intermediate frequency signal in the output device of the coding device is divided onto the transmission blocks of the transmission format of the ASI interface and output the distribution pattern with the converted digital baseband signal or intermediate frequency signal if the data size of a test point is greater than the data size of the transmission block is. Accordingly, in this case, each test point of the digital baseband signal or intermediate frequency signal in the reading device of the apparatus becomes out of the
  • the division pattern gives the necessary information to reconstruct a test point from a plurality of transmission blocks, in particular the order and order of the in the
  • Plurality of transmission blocks contained information of the test point. This has the advantage that the data size a test point and thus the resolution of the digital baseband signal or intermediate frequency signal in
  • Time range is not limited by the size or length of a transmission block.
  • the coding device has a synchronization unit for generating a clock signal connected to the output device and / or a synchronization interface for outputting the clock signal. Furthermore, the device also has a synchronization interface for reading in a clock signal connected to the read-in device. By connecting the two synchronization interfaces, the read-in device can be synchronized with the output device and parallel output signals can be synchronized to the clock signal via further ASI interfaces of the coding device or parallel read-in signals of further ASI interfaces of the read-in device. At the same time, this clock signal can continue in the device for synchronization of a
  • Common wave can be used on the clock signal of the coding device.
  • the coding device has at least one further ASI interface, and that a first portion of the digital baseband signal is output as first digital signal and a second portion of the digital baseband signal as second digital signal via different ASI interfaces. Further shares can be transferred accordingly via further ASI interfaces. It is also advantageous that the device has a further asynchronous serial interface, the first digital signal and the second digital signal are read in via various asynchronous serial interfaces. Two ASI interfaces make it possible to double the maximum transmission rate between the coding device and the device.
  • the first and second portions of the digital baseband or intermediate frequency signal are preferably the real part and the imaginary part of the inverse Fourier transformation of the baseband or intermediate frequency signal in frequency space, ie the points distributed in the in-phase quadrature space over the orthogonal frequencies of the frequency band.
  • the separate transmission of the first and second portion of the baseband or intermediate frequency signal is particularly advantageous, since so on the device side, no further information for merging the first and second portions of the baseband signal are necessary. As a result, the doubled maximum transmission rate is not diminished by additional information for merging the baseband or intermediate frequency signal parts transmitted in parallel. It is furthermore advantageous that the device has a digital / analog converter which converts the digital baseband signal into an analog baseband signal or the digital intermediate frequency signal into an analog intermediate frequency signal.
  • the device has a transmitting device for transmitting the analog baseband signal mixed to a carrier frequency or for transmitting the analog intermediate frequency signal mixed to a carrier frequency.
  • the coding device has an asynchronous serial input interface for reading in the digital data stream, wherein the asynchronous serial input interface can be directly connected to the asynchronous serial interface of the coding device. Furthermore, it is advantageous for the device to have a coding unit for converting a digital data stream into a digital baseband signal in the time domain or into a digital intermediate frequency signal in
  • the system can additionally one Provide easy-to-implement and cost-effective backwards compatibility with an older broadcasting standard.
  • Fig. 1 shows a first embodiment of the
  • Fig. 2 shows a second embodiment of the
  • Fig. 3 is a flowchart of the invention
  • Fig. 1 shows a first embodiment of the system according to the invention.
  • the system 1 has a coding device 2 and a control transmitter 3 as a device for further processing of a digital baseband signal in the time domain or a digital intermediate frequency signal in the time domain.
  • the coding device 2 has two ASI output interfaces 4 and 5 according to the European standard EN-50083-9.
  • the exciter 3 has two corresponding ASI interfaces 6 and 7 of European standard EN-50083-9.
  • the first ASI output interface 4 of the coding device 2 is connected to the first ASI interface 6 of the exciter 3 via a first connecting line 8.
  • the second ASI output interface 5 of the coding device 2 is connected to the second ASI interface 7 of the exciter 3 via a second connecting line 9.
  • the connection lines 8 and 9 are fiber optic cables.
  • the coding device 2 also has two ASI input interfaces 13 and 14 of the European standard EN-50083-9, which are connected to a coding module 15.
  • the coding module 15 receives a MPEG-2 ("Moving Picture Experts Group-2") transport stream (TS) or several MPEG-2 transport streams.
  • An MPEG-2 transport stream consists of one or more MPEG-2 program streams (MPEG-2 PS), each containing the continuous video stream and associated further data of a television program. This MPEG-2 transport stream is divided into 8-bit blocks according to the European standard EN-50083-9 and transmitted with attached error correction as 10-bit data blocks.
  • the serially transmitted data blocks are again converted into a synchronized and continuous MPEG-2 transport stream or again into parallel synchronized and continuous MPEG-2 transport streams.
  • the MPEG-2 transport stream can be transmitted both optically and electrically via the ASI interfaces of EN-50083-9.
  • the coding module 15 receives the MPEG-2 transport stream and converts it or these into a digital baseband signal in the time domain according to the DVB-T2 standard.
  • a digital signal in the time domain also referred to as a digital time signal, is characterized by a temporal sequence of discrete data points. This digital
  • Baseband signal is applied to an output device 16 connected to the coding module 15.
  • Baseband signal is just a signal type used in DVB mode.
  • a digital intermediate frequency signal could also be transmitted in the time domain.
  • the coding module 15 modulates the data of the MPEG-2 TS by means of quadrature amplitude modulations, such as QPSK, 16QAM, 32QAM, 64QAM, 256QAM, on points or constellations in the in-phase (I) quadrature (Q) diagram, also referred to as code words.
  • the constellations are divided over the time and the available orthogonal frequencies of the baseband.
  • the Baseband In the DVB-T2 standard, the Baseband have a bandwidth of 1.7 MHz, 5 MHz, 6 MHz, 7 MHz, 8 MHz and 10 MHz.
  • the coding module 15 adds various error correcting mechanisms (FEC) to the signal at different coding stages and performs various interleaving processes
  • the constellations transmitted simultaneously on the orthogonal carrier frequencies are digitally converted into the time period by an inverse Fourier transformation, for example an inverse fast Fourier transformation (IFFT).
  • IFFT inverse fast Fourier transformation
  • the test points of the time signal calculated in this way are resolved with an accuracy of 14 bits.
  • the digital baseband signal is present in the time frame.
  • the baseband signal is still reduced in the DVB-T2 standard by a reduction of the peak-to-average ratio (Peak to Average Power Ratio, PAPR), by adding redundant portions of the baseband signal to repetitive guard intervals ("Guard Interval") and inserting a preamble (Pl)
  • the digital baseband signal in the time domain is the inverse Fourier transform of a frequency in the baseband associated constellation in the IQ diagram or the inverse Fourier transform of several different frequencies in the baseband uniquely assigned constellations in the IQ diagram.
  • the baseband signal is a digital time signal consisting of temporally consecutive, discrete test points. Since a baseband can only be transmitted real, a real part and an imaginary part of the inverse Fourier transform are transmitted as orthogonal superimposed real signal components phase-shifted by 90 °.
  • the phase shift by 90 ° can be achieved by the Mixing the real part with the sine of an intermediate frequency, ie with an oscillator oscillating at the intermediate frequency, and by mixing the imaginary part with the cosine of an intermediate frequency, ie with the phase-shifted by 90 ° oscillator. Therefore in the
  • the imaginary part of the inverse Fourier transform, the sine component of the baseband signal and the real part are referred to as the cosine component of the baseband signal.
  • the sine and cosine components are sometimes referred to as the I and Q component of the baseband signal.
  • the cosine component is given by the 90 ° to the output device 16 without the phase shift. It is not important for the invention, whether the cosine component is already transmitted by 90 ° out of phase with the sine component or whether the phase shift is performed only in the exciter 3.
  • the coding module 15 now outputs the digital sine component and the digital cosine component of the digital baseband signal in parallel and synchronously, but not yet
  • Output device 16 translates the sine component of the digital baseband signal into a transmission signal according to the transmission standard of the first ASI output interface 4 according to the European Standard of ASI output interface 4. Instead of an MPEG-2 transport stream for which the first ASI output interface 4 is actually provided now the digital sine component divided into the 8-bit payload data blocks of the transmission signal. Since a test point has a size of 14 bits, each test point is divided into a first part of 7 bits and a second part of 7 bits and written into an 8-bit block each. In the unassigned bit, for example the first or last one, it is indicated whether it is the first or the second part of the test point. Alternatively, the first part could consist of 8 bits and the second part of 6 bits.
  • the 8-bit payload data blocks are supplemented by the addition of formations and error correction mechanisms extended to 10-bit transmission blocks.
  • the transmission blocks are output serially according to the standard of the first ASI output interface 4.
  • the cosine component of the digital baseband signal is output via the second ASI output interface 5 in series to the control transmitter 3, exactly like the sine component in 8-bit / 10-bit data blocks. Every test point of the
  • Cosine component has exactly one associated test point of the sine component, which must be transmitted synchronously, both to maintain the affiliation and not to disturb the data flow. Therefore, a transmission block having a first part of a test point of the sine component is simultaneously transmitted to the transmission block having the first part of the test point of the cosine component belonging to the test point of the sine component.
  • the output device 16 is connected to a synchronization device 17, which outputs a clock signal to the output device 16.
  • the synchronization device 17 also outputs this clock signal to a synchronization interface 10, which is connected via a line 11 to a synchronization interface 12 of the control transmitter 3.
  • the synchronization interface 12 is connected via an input interface 18 to a global positioning system (GPS) device (not shown in FIG. 1). From the signal of the GPS device, the synchronization device 17 calculates the clock signal.
  • GPS global positioning system
  • the exciter 3 has an input device 19, which is connected to the ASI input interfaces 6 and 7.
  • the read-in device 19 reads from the read transfer blocks the first and the second part of each test point and adds them together.
  • the test points, which are read in via the first ASI input interface 6, are combined to form the sine component of the digital baseband signal and the test points, which are read in via the second ASI input interface 7 are combined into the cosine component of the digital baseband signal.
  • the associated transmission blocks of the first or second part of associated test points are read in synchronously in the read-in device 19.
  • the synchronicity is checked and possibly restored by the clock signal output by the coding device 2 and given to the reading device 19 via the synchronization interface 12 and a synchronization device 20.
  • the sine and cosine components of the digital baseband signal are output to a digital / analog converter 21 and 22 in synchronization, respectively.
  • the first digital-to-analog converter 21 converts the digital sine component of the baseband signal into an analog sine component of the baseband signal. The second one changes accordingly
  • Digital to analog converter 22 converts the digital cosine component of the baseband signal into an analog cosine component of the baseband signal.
  • the analog sine and cosine component of the baseband signal is mixed via the mixers 23 and 24 to an intermediate frequency.
  • the oscillator oscillations of the two mixers 23 and 24 have the same frequency, but are phase-shifted by 90 °. The on the
  • Intermediate frequency mixed analog cosine component and the intermediate frequency mixed analog sine component of the baseband signal are superimposed on the adder 25 with 90 ° phase shift from the mixers 23 and 24 to the intermediate frequency analog signal.
  • the analog intermediate frequency signal is subjected to further correction steps and mixed up to the broadcast frequency as the carrier frequency to the broadcast signal.
  • the broadcast signal is sent via the output interface 27 to a not shown in FIG.
  • the digital sine component and the digital cosine phase shifted by 90 ° in the coding module of the coding device 2 are already digitally superimposed on the digital baseband signal.
  • the pattern with which the digital baseband signal is distributed to the two ASI output interfaces 4 and 5 must be included
  • the digital baseband signal in order to read back in the input device 19 the digital baseband signal from the two ASI input interfaces and to form it into a continuous and synchronized digital baseband signal. Consequently, the digital baseband signal only has to be converted into an analog baseband signal in a digital / analog converter. The analog baseband signal is then in a mixer on the
  • the exciter 3 no longer has to be completely replaced, although it initially has no input for the baseband signal.
  • the exciter 3 only has to be adapted by a software update to read the digital baseband signal and skip the DVB-T coding.
  • this invention also provides down compatibility for the DVB-T standard.
  • the coding device 2 must short-circuit only the two ASI input interfaces 13 and 14 with the two ASI output interfaces 4 and 5 and interrupt the DVB-T2 coding.
  • the ASI input and output cut parts 13, 14 and 4, 5 each directly connectable via the switch 28 and 29.
  • the read-in device 19 can input the read MPEG-2 transport streams directly into the DVB-T coding module 30, which sends the digital baseband signal to the
  • Fig. 2 shows a second embodiment of the invention.
  • the system 31 is basically the same as the system 1. The same devices are therefore designated with the same reference characters and will not be described.
  • a digital baseband signal is generated in the coding module 33 of the coding device 32.
  • the sine component and the sine component are generated in the coding module 33 of the coding device 32.
  • Cosine component digitally superimposed 90 ° out of phase with the digital baseband and the digital baseband signal digitally mixed to an intermediate frequency is applied to the output device 34, where it corresponds to a transmission signal according to the transmission format of the ASI output interface 4 via the connecting line 8 and the ASI input interface 6 to a read-in device 35 of a control transmitter 36.
  • the read-in device 35 as far as possible the read-in device 19, wherein instead of a digital sine component of the baseband signal directly determines the digital intermediate frequency signal from the transmission signal.
  • the data rate can be doubled again by the intermediate frequency signal via two ASI interfaces, according to the embodiment according to the first embodiment, transmitted.
  • the read-in digital intermediate frequency signal is converted in a digital / analog converter 37 into an analog intermediate frequency signal.
  • the analog intermediate frequency signal as in the exciter 3 of the first embodiment, further processed in the correction device 26.
  • FIG. 3 shows a flow chart with the steps of the method according to the invention for external coding of a digital data stream. Since the method has already been described in connection with the first two exemplary embodiments, only the most important steps are described here once again.
  • a first step S1 an MPEG-2 TS is encoded in a coding module 15 or 33 of the coding device 2 or 32 as a digital data stream into a digital baseband signal or a digital intermediate frequency signal of the DVB-T2 standard.
  • This digital signal is brought into the digital format of the ASI interface 4 and / or 5 and transmitted in a second step S2 via this ASI interface 4 and / or 5 to the exciter 3 or 36.
  • the digital baseband signal or the digital intermediate frequency signal is read from the received signal.
  • a fourth step S4 the digital baseband signal or the digital intermediate frequency signal is converted in a digital / analog converter 21, 22 or 37 into an analog baseband signal or intermediate frequency signal of the DVB-T2 standard and in a fifth step S5 in a correction device 26 to a broadcast signal according to the DVB-T2 standard further processed.
  • any data stream such as a music stream
  • the coding module 15 is preferably a chip or chipset, but may alternatively consist of a plurality of individual devices.
  • the invention is described by the example of a broadcasting system of the DVB-T2 standard. The invention is not limited to the described embodiments. Rather, the invention can also be applied to transmission systems of satellite and cable-based systems, such as in DVB-S and DVB-C. In addition, the invention is basically applicable to all broadcast systems of all broadcast standards. The invention is also applicable to other data transmission systems. The invention is not limited to the described embodiments. Rather, all aspects of the embodiments can be advantageously combined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Transmitters (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

Die Erfindung betrifft ein Verfahren und System (1) zum externen digitalen Kodieren eines Basisbandsignals oder Zwischenfrequenzsignals. Zuerst wird in einer Kodiervorrichtung (2) ein digitaler Datenstrom in ein digitales Basisbandsignal im Zeitbereich oder in ein digitales Zwischenfrequenzsignal im Zeitbereich umgewandelt. Das digital erzeugte Signal wird über eine asynchrone serielle Schnittstelle der Kodiervorrichtung (2) an eine weitere Vorrichtung (3) ausgegeben. Die weitere Vorrichtung (3) weist ebenfalls eine asynchrone serielle Schnittstelle auf, die mit der asynchronen seriellen Schnittstelle der Kodiervorrichtung (2) verbunden ist. Die Vorrichtung (3) liest das ausgegebene digitale Basisbandsignals oder Zwischenfrequenzsignal ein und verarbeitet dieses weiter.

Description

Kodiervorrichtung, Vorrichtung zur Weiterverarbeitung eines digitalen Basisband- oder Zwischenfrequenzsignals, System und Verfahren zur externen digitalen Kodierung
Die Erfindung betrifft eine Kodiervorrichtung zur Umwandlung eines digitalen Datenstroms, eine Vorrichtung zur Weiterverarbeitung eines digitalen Basisbandsignals oder eines digitalen Zwischenfrequenzsignal , ein System aus besagter Kodiervorrichtung und Vorrichtung und ein Verfahren zur externen digitalen Kodierung eines digitalen Datenstroms . Im digitalen Rundfunk werden regionale und/oder internationale Standards zur Übertragung von kontinuierlichen digitalen Datenströmen wie Musik- oder Videodaten definiert. So wurde zum Beispiel in Europa DVB („Digital Video Broadcasting") als Standard für das digitale Fernsehen und DAB („Digital Audio Broadcasting") als Standard für digitalen Hörfunk festgelegt. Aufgrund dieser Festlegung spiegelt ein Rundfunkstandard nicht den neuesten Stand der digitalen Übertragungstechnik wieder. Deshalb werden die digitalen Rundfunkstandards durch neue Rundfunkstandards ersetzt, die wiederum an die neuen Standards angepasste Rundfunksendegeräte erfordern.
In Rundfunksystemen des terrestrischen digitalen Videorundfunkstandards DVB-T wird ein Videodatenstrom über eine asynchrone serielle Schnittstelle („Asynchronous Serial Interface", ASI) an einen Steuersender („exciter") übergeben, der den Videodatenstrom in ein Rundfunksignal nach dem DVB-T Standard überführt und das Rundfunksignal an einen Verstärker gibt . Der Verstärker sendet das ver- stärkte Rundfunksignal mittels einer Rundfunkantenne aus.
Wird nun ein neuer Rundfunkstandard wie z. B. DVB-T2 verwendet, so müsste der Steuersender an den neuen Rundfunkstandard angepasst werden, um beispielsweise höheren Datenmengen gerecht zu werden. Die bisher eingesetzten Steuersender sind nicht für diese höheren Anforderungen des DVB-T2 Standards ausgelegt, so dass eine einfache Umprogrammierung des Steuersenders nicht genügt .
Die Aufgabe der Erfindung ist es, die Probleme des Stands der Technik zu lösen und eine einfache und kostengünstige Alternative zum Ersetzen des vollständigen Steuersenders zu finden.
Die Aufgabe ist durch die Kodiervorrichtung nach Anspruch 1 gelöst. Die erfindungsgemäße Kodiervorrichtung ist zur Umwandlung eines digitalen Datenstroms in ein digitales Basisbandsignal im Zeitbereich oder in ein digitales Zwi- schenfrequenzsignal im Zeitbereich geeignet. Die Kodiervorrichtung weist eine asynchrone serielle Schnittstelle zum Ausgeben dieses in der Kodiervorrichtung erzeugten digitalen Basisbandsignals oder Zwischenfrequenzsignals auf .
Die Aufgabe ist weiterhin durch eine erfindungsgemäße Vorrichtung nach Anspruch 7 gelöst. Die erfindungsgemäße Vorrichtung ist zur Weiterverarbeitung eines digitalen Basisbandsignals im Zeitbereich oder eines digitalen Zwischen- frequenzsignals im Zeitbereich geeignet. Die erfindungsgemäße Vorrichtung weist eine asynchrone serielle Schnittstelle zum Einlesen des digitalen Basisbandsignals oder Zwischenfrequenzsignals auf. Die Erfindung ist weiterhin durch ein erfindungsgemäßes System nach Anspruch 14 gelöst . Das System weist eine zuvor beschriebene erfindungsgemäße Kodiervorrichtung und eine zuvor beschriebene erfindungsgemäße Vorrichtung auf. Die asynchrone serielle Schnittstelle der Kodiervor- richtung und die asynchrone serielle Schnittstelle der Vorrichtung sind miteinander verbunden.
Die Aufgabe ist durch das erfindungsgemäße Verfahren zum externen digitalen Kodieren eines Basisbandsignals oder Zwischenfrequenzsignals nach Anspruch 15 gelöst. Das erfindungsgemäße Verfahren weist die folgenden Schritte auf: Ein digitaler Datenstrom wird in einer Kodiervorrichtung in ein digitales Basisbandsignal im Zeitbereich oder in ein digitales Zwischenfrequenzsignal im Zeitbereich umgewandelt. Daraufhin wird das digitale Basisband- oder Zwischenfrequenzsignal über eine asynchrone serielle
Schnittstelle der Kodiervorrichtung ausgegeben. Das ausgegebene digitale Basisbandsignal wird mittels eines Über- tragungsmittels wie zum Beispiel ein Kabel an eine asynchrone serielle Schnittstelle einer Vorrichtung gegeben und dort von der Vorrichtung eingelesen. Die Vorrichtung verarbeitet das eingelesene digitale Basisbandsignals oder Zwischenfrequenzsignal weiter.
Durch die externe Kodierung, d. h. eine Kodierung außerhalb des Steuersenders eines digitalen Basisbandsignals oder eines digitalen Zwischenfrequenzsignals im Zeitbereich in einem externen Gerät und die Übermittlung dieses dort erzeugten Signals mittels der existierenden ASI-
Schnittstelle des Steuersenders kann ein Austauschen des nach Änderung eines zu erfüllenden Übertragungsstandards des Steuersenders vermieden werden. Der Steuersender benötigt dann nur eine Softwareaktualisierung, die die
Anweisungen zum Auslesen des digitalen Basisbandsignals oder des digitalen Zwischenfrequenzsignals aus dem übermittelten Signal der ASI -Schnittstelle ermittelt und die Kodierung nach dem alten Standard überbrückt. Durch das Erstellen eines digitalen Signals im Zeitbereich, kann das Basisbandsignal oder Zwischenfrequenzsignal über die digitale ASI -Schnittstelle übermittelt werden.
Die Unteransprüche betreffen vorteilhafte Weiterführungen der Erfindung.
Die Kodiervorrichtung weist in vorteilhafter Weise eine Ausgabevorrichtung zur Verbindung bzw. verbunden mit der asynchronen seriellen Schnittstelle auf. Die Ausgabevorrichtung ist zum Übersetzen des digitalen Basisbandsignals oder Zwischenfrequenzsignals in das Übertragungsformat der ASI-Schnittstelle geeignet, so dass der Steuersender das extern kodierte digitale Basisbandsignal über die vorhandene ASI-Schnittstelle empfangen kann, da an dem Steu- ersender kein Eingang für digitale Basisband- oder ZF-
Signale vorgesehen ist. Entsprechend weist die erfindungsgemäße Vorrichtung eine Einlesevorrichtung verbunden mit der asynchronen seriellen Schnittstelle der Vorrichtung auf. Die Einlesevorrichtung ist zum Einlesen des digitalen Basisbandsignals oder des digitalen Zwischenfrequenzsignals aus einem in dem Übertragungsformat der asynchronen seriellen Schnittstelle vorliegenden Signal geeignet. Durch eine solche Anpassung des Steuersenders als erfindungsgemäße Vorrichtung kann der Steuersender das extern kodierte digitale Basisbandsignal oder Zwischenfre- quenzsignal einlesen und kann das eingelesene digitale Signal weiterverarbeiten. Die für die weitere Verarbeitung erforderliche Anpassung wird vorzugsweise durch eine Softwareaktualisierung realisiert.
Es ist besonders vorteilhaft, die Daten jedes Testpunkts des digitalen Basisbandsignals oder Zwischenfrequenzsignals in der Ausgabevorrichtung der Kodiervorrichtung auf die Übertragungsblöcke des Übertragungsformats der ASI- Schnittstelle aufzuteilen und das Aufteilungsmuster mit dem umgewandelten digitalen Basisbandsignal oder Zwischen- frequenzsignal auszugeben, wenn die Datengröße eines Testpunkts größer als die Datengröße des Übertragungsblocks ist. Entsprechend wird in diesem Fall jeder Testpunkt des digitalen Basisbandsignals oder Zwischenfrequenzsignals in der Einlesevorrichtung der Vorrichtung aus den
Übertragungsblöcken auf der Basis eines mit dem digitalen Basisbandsignal oder Zwischenfrequenzsignal eingelesenen Aufteilungsmusters ermittelt. Das Aufteilungsmuster gibt dabei die notwendigen Informationen um einen Testpunkt aus einer Mehrzahl von Übertragungsblöcken zu rekonstruieren, insbesondere die Ordnung und Reihenfolge der in der
Mehrzahl von Übertragungsblöcken enthaltenen Informationen des Testpunkts. Dies hat den Vorteil, dass die Datengröße eines Testpunktes und damit die Auflösung des digitalen Basisbandsignals oder Zwischenfrequenzsignals im
Zeitbereich nicht durch die Größe oder Länge eines Übertragungsblocks beschränkt ist.
Es ist besonders vorteilhaft, dass die Kodiervorrichtung eine Synchronisierungseinheit zur Erzeugung eines Takt- signals verbunden mit der Ausgabevorrichtung und/oder einer Synchronisierungsschnittstelle zur Ausgabe des Takt- Signals aufweist. Weiterhin weist die Vorrichtung ebenfalls eine Synchronisierungsschnittstelle zum Einlesen eines Taktsignals verbunden mit der Einlesevorrichtung auf. Durch eine Verbindung der beiden Synchronisierungs- schnittstellen kann die Einlesevorrichtung mit der Aus- gabevorrichtung synchronisiert werden und parallele Ausgabesignale über weitere ASI-Schnittstellen der Kodiervorrichtung oder parallele Einlesesignale weiterer ASI- Schnittstellen der Einlesevorrichtung auf das Taktsignal synchronisiert werden. Gleichzeitig kann dieses Taktsignal weiter in der Vorrichtung zur Synchronisierung eines
Gleichwellennetzes auf das Taktsignal der Kodiervorrichtung genutzt werden.
Es ist weiterhin Vorteilhaft, dass die Kodiervorrichtung wenigstens eine weitere ASI-Schnittstelle aufweist, und dass ein erster Anteil des digitalen Basisbandsignals als erstes digitales Signal und ein zweiter Anteil des digitalen Basisbandsignals als zweites digitales Signal über verschiedene ASI-Schnittstellen ausgegeben werden. Weitere Anteile können entsprechend über weitere ASI-Schnittstellen übertragen werden. Es ist ebenfalls von Vorteil, dass die Vorrichtung eine weitere asynchrone serielle Schnittstelle aufweist, das erste digitale Signal und das zweite digitale Signal über verschiedene asynchrone seri- eile Schnittstellen eingelesen werden. Durch zwei ASI- Schnittstellen lässt sich die maximale Übertragungsrate zwischen der Kodiervorrichtung und der Vorrichtung verdoppeln. Der erste und der zweite Anteil des digitalen Basisband- oder Zwischenfrequenzsignals sind vorzugsweise der Realteil und der Imaginärteil der inversen Fourier- transformation des Basisband- oder Zwischenfrequenzsignals im Frequenzraum, d.h. der über die orthogonalen Frequenzen des Frequenzbands verteilten Punkte im Inphase-Quadratur- Raum. Die separate Übertragung des ersten und zweiten Anteils des Basisband- oder Zwischenfrequenzsignals ist besonders vorteilhaft, da so auf der Vorrichtungsseite keine weiteren Angaben zum Zusammenführen des ersten und zweiten Anteils des Basisbandsignals nötig sind. Dadurch wird die verdoppelte maximale Übertragungsrate nicht durch zusätzliche Informationen zum Zusammenführen der parallel übertragenen Basisband- oder Zwischenfrequenzsignalteile geschmälert . Es ist weiterhin von Vorteil, dass die Vorrichtung einen Digital/Analog-Wandler aufweist, der das digitale Basisbandsignal in ein analoges Basisbandsignal oder das digitale Zwischenfrequenzsignal in ein analoges Zwischenfre- quenzsignal umwandelt.
Es ist weiterhin vorteilhaft, dass die Vorrichtung eine Sendevorrichtung zum Senden des auf eine Trägerfrequenz gemischten analogen Basisbandsignals oder zum Senden des auf eine Trägerfrequenz gemischten analogen Zwischenfre- quenzsignals aufweist.
Es ist weiterhin von Vorteil, dass die Kodiervorrichtung eine asynchrone serielle Eingangsschnittstelle zum Einlesen des digitalen Datenstroms aufweist, wobei die asyn- chrone serielle Eingangsschnittstelle mit der asynchronen seriellen Schnittstelle der Kodiervorrichtung direkt verbindbar ist. Weiterhin ist es vorteilhaft, dass die Vorrichtung eine Kodiereinheit zur Umwandlung eines digitalen Datenstroms in ein digitales Basisbandsignal im Zeitbe- reich oder in ein digitales Zwischenfrequenzsignal im
Zeitbereich aufweist, wobei die Kodiereinheit zwischen die asynchrone serielle Schnittstelle und den Digital/Analog Wandler schaltbar ist. So kann das System zusätzlich eine einfach realisierte und kostengünstige Abwärtskompatibilität zu einem älteren Rundfunkstandard vorweisen.
Im Folgenden wird ein bevorzugtes Ausführungsbeispiel der Erfindung anhand der Zeichnung beschrieben. Die Zeichnung zeigt :
Fig. 1 ein erstes Ausführungsbeispiel des
erfindungsgemäßen Systems;
Fig. 2 ein zweites Ausführungsbeispiel des
erfindungsgemäßen Systems; und
Fig. 3 ein Flussdiagramm der erfindungsgemäßen
Verfahrensschritte.
Fig. 1 zeigt ein erstes Ausführungsbeispiel des erfindungsgemäßen Systems. Das System 1 weist eine Kodiervorrichtung 2 auf und einen Steuersender 3 als Vorrichtung zur Weiterverarbeitung eines digitalen Basisbandsignals im Zeitbereich oder eines digitalen Zwischenfrequenzsignals im Zeitbereich. Der Kürze halber wird nachfolgend nur noch das Basisbandsignal stellvertretend genannt. Die Kodiervorrichtung 2 weist zwei ASI -Ausgangsschnittstellen 4 und 5 gemäß der europäischen Norm EN-50083-9 auf. Der Steuersender 3 weist zwei korrespondierende ASI -Schnittstellen 6 und 7 der europäischen Norm EN-50083-9 auf. Die erste ASI- Ausgangschnittstelle 4 der Kodiervorrichtung 2 ist mit der ersten ASI-Schnittstelle 6 des Steuersenders 3 über eine erste Verbindungsleitung 8 verbunden. Die zweite ASI -Ausgangsschnittstelle 5 der Kodiervorrichtung 2 ist mit der zweiten ASI-Schnittstelle 7 des Steuersenders 3 über eine zweite Verbindungsleitung 9 verbunden. Im Falle einer optischen ASI-Schnittstelle sind die Verbindungsleitungen 8 und 9 Glasfaserkabel.
Die Kodiervorrichtung 2 weist weiterhin zwei ASI -Eingangsschnittstellen 13 und 14 der europäischen Norm EN-50083-9 auf, die mit einem Kodiermodul 15 verbunden sind. Über die ASI -Eingangsschnittstellen 13 und 14 empfängt das Kodiermodul 15 einen MPEG-2 („Moving Picture Experts Group-2") Transportstrom („Transport stream", TS) oder mehrere MPEG-2 Transportströme. Ein MPEG-2 Transportstrom besteht aus einem oder mehreren MPEG-2 Programmströmen (MPEG-2 PS) , die jeweils den kontinuierlichen Videostrom und die dazugehörigen weiteren Daten eines Fernsehprogramms enthalten. Dieser MPEG-2 Transportstrom wird entsprechend der europäischen Norm EN-50083-9 seriell in 8 Bit große Blöcke aufgeteilt und mit angehängter Fehlerkorrektur als 10 Bit große Datenblöcke übertragen. An den ASI -Eingangsschnittstellen 13 und 14 werden die seriell verschickten Datenblöcke wieder in einen synchronisierten und kontinuierlichen MPEG-2 Transportstrom bzw. wieder in parallele syn- chronisierte und kontinuierliche MPEG-2 Transportströme umgewandelt. Der MPEG-2 Transportstrom kann über die ASI- Schnittstellen der EN-50083-9 sowohl optisch als elektrisch übertragen werden. Das Kodiermodul 15 empfängt den MPEG-2 Transportström und wandelt diesen oder diese in ein digitales Basisbandsignal im Zeitbereich entsprechend des DVB-T2 Standards um. Ein digitales Signal im Zeitbereich, auch als digitales Zeitsignal bezeichnet, zeichnet sich durch eine zeitliche Folge von diskreten Datenpunkten aus. Dieses digitale
Basisbandsignal wird an eine mit dem Kodiermodul 15 verbundene Ausgabevorrichtung 16 gegeben. An dieser Stelle soll noch einmal darauf hingewiesen werden, dass das
Basisbandsignal lediglich ein im DVB-Betrieb verwendeter Signaltyp ist . Hier könnte auch ein digitales Zwischen- frequenzsignal im Zeitbereich übertragen werden.
Das Kodiermodul 15 moduliert die Daten des MPEG-2 TS mittels Quadraturamplitudenmodulationen, wie QPSK, 16QAM, 32QAM, 64QAM, 256QAM, auf Punkte oder Konstellationen in dem Inphase (I) - Quadratur (Q) - Diagramm, die auch als Codewörter bezeichnet werden. Die Konstellationen werden über die Zeit und die verfügbaren orthogonalen Frequenzen des Basisbands aufgeteilt. Im DVB-T2 Standard kann das Basisband eine Bandbreite von 1,7 MHz, 5 MHz, 6 MHz, 7 MHz, 8 MHz und 10 MHz haben. Das Kodiermodul 15 fügt dem Signal in verschiedenen Kodierstadien verschiedene Fehlerkorrekturmechanismen („Forward Error Correction", FEC) hinzu und führt verschiedene Verschränkungsprozesse
(„Interleaving") wie Bit-, Zell-, Zeit- und Frequenzver- schränkung aus. Die zeitgleich auf den orthogonalen Trägerfrequenzen übertragenen Konstellationen werden durch eine inverse Fouriertransformation, zum Beispiel eine inverse schnelle Fouriertransformation (IFFT) , digital in den Zeitraum überführt . Die so berechneten Testpunkte des Zeitsignals werden mit einer Genauigkeit von 14 Bit aufgelöst. Nach der inversen Fouriertransformation liegt das digitale Basisbandsignal im Zeitraum vor. Das Basisband- Signal wird in dem DVB-T2 Standard noch durch eine Verkleinerung des Spitzen- zu-Durchschnitts-Verhältnisses („Peak to Average Power Ratio", PAPR) , durch Einfügen von redundanten Teilen des Basisbandsignals wiederholenden Überwachungsintervallen („Guard Intervall") und durch das Einfügen einer Präampel (Pl) ergänzt. Diese digital ausgeführten Schritte zur Weiterverarbeitung des digitalen Basisbands werden in dem ersten Ausführungsbeispiel bevorzugt ebenfalls in dem Kodiermodul 15 ausgeführt. Alternativ können diese Schritte auch in dem Steuersender 3 nach dem Auslesen des digitalen Basisbandsignals ausgeführt werden.
Das digitale Basisbandsignal im Zeitbereich ist die inverse Fouriertransformation einer Frequenz im Basisband zugeordneten Konstellation im I-Q-Diagramm oder die inverse Fouriertransformation mehrerer verschiedener Frequenzen im Basisband eindeutig zugeordneter Konstellationen im I-Q-Diagramm. Das Basisbandsignal ist ein digitales Zeitsignal bestehend aus zeitlich aufeinanderfolgen- den, diskreten Testpunkten. Da ein Basisband nur reell gesendet werden kann, wird ein Realteil und ein Imaginärteil der inversen Fouriertransformation als orthogonale um 90° phasenverschobenen überlagerte reelle Signalkomponen- ten gesendet. Die Phasenverschiebung um 90° kann durch das Mischen des Realteils mit dem Sinus einer Zwischenfrequenz, d.h. mit einem Oszillator der auf der Zwischenfrequenz schwingt, und durch das Mischen des Imaginärteils mit dem Cosinus einer Zwischenfrequenz, d.h. mit dem um 90° phasenverschobenen Oszillator. Deshalb soll im
Folgenden der Imaginärteil der inversen Fouriertransfor- mation die Sinuskomponente des Basisbandsignals und der Realteil als Cosinuskomponente des Basisbandsignals bezeichnet werden. Die Sinus- und Cosinuskomponente werden manchmal auch als I und Q Komponente des Basisbandsignals bezeichnet. In dem ersten Ausführungsbeispiel wird die Cosinuskomponente ohne die Phasenverschiebung um 90° an die Ausgabevorrichtung 16 gegeben. Dabei ist es für die Erfindung nicht wichtig, ob die Cosinuskomponente bereits um 90° phasenverschoben zu der Sinuskomponente übertragen wird oder ob die Phasenverschiebung erst in dem Steuersender 3 vollzogen wird.
Das Kodiermodul 15 gibt nun die digitale Sinuskomponente und die digitale Cosinuskomponente des digitalen Basisbandsignals parallel und synchron, aber noch nicht
überlagert, an die Ausgabevorrichtung 16 aus. Die
Ausgabevorrichtung 16 übersetzt die Sinuskomponente des digitalen Basisbandsignals in ein Übermittlungssignal nach dem Übermittlungsstandard der ersten ASI -Ausgangsschnittstelle 4 nach der europäischen Norm der ASI -Ausgangsschnittstelle 4. Anstatt eines MPEG-2 TransportStroms, für den die erste ASI -Ausgangsschnittstelle 4 eigentlich vorgesehen ist, wird nun die digitale Sinuskomponente in die 8 Bit großen Nutzdatenblöcke des Übermittlungssignals aufgeteilt. Da ein Testpunkt eine Größe von 14 Bit aufweist, wird jeder Testpunkt in einen ersten Teil von 7 Bit und einen zweiten Teil von 7 Bit aufgeteilt und in jeweils einen 8 Bit Block geschrieben. In dem noch nicht belegten Bit, zum Beispiel das erste oder letzte, wird gekennzeichnet, ob es sich um den ersten oder zweiten Teil des Test- punkts handelt. Alternativ könnte der erste Teil auch aus 8 Bit und der zweite Teil aus 6 Bit bestehen. Die 8 Bit Nutzdatenblöcke werden durch die Ergänzung von Steuerin- formationen und von Fehlerkorrekturmechanismen auf 10 Bit große Übertragungsblöcke erweitert . Die Übertragungsblöcke werden seriell entsprechend der Norm der ersten ASI -Ausgangsschnittstelle 4 ausgegeben.
Die Cosinuskomponente des digitalen Basisbandsignals wird über die zweite ASI -Ausgangsschnittstelle 5 genau wie die Sinuskomponente in 8 Bit / 10 Bit Datenblöcken seriell an den Steuersender 3 ausgegeben. Jeder Testpunkt der
Cosinuskomponente hat genau einen zugehörigen Testpunkt der Sinuskomponente, die synchron übertragen werden müssen, um sowohl die Zugehörigkeit zu bewahren und den Datenfluss nicht zu stören. Deshalb wird ein Übertragungs- block mit einem ersten Teil eines Testpunkts der Sinus- komponente gleichzeitig dem Übertragungsblock übertragen, der den ersten Teil des zu dem Testpunkt der Sinuskomponente gehörenden Testpunkts der Cosinuskomponente aufweist . Dazu ist die Ausgabevorrichtung 16 mit einer Synchronisationsvorrichtung 17 verbunden, die ein Taktsignal an die Ausgabevorrichtung 16 gibt. Die Synchronisationsvorrichtung 17 gibt dieses Taktsignal auch an eine Synchronisationsschnittstelle 10, die über eine Leitung 11 mit einer Synchronisierungsschnittstelle 12 des Steuersenders 3 verbunden ist. Die Synchronisierungsschnittstelle 12 ist über eine Eingangsschnittstelle 18 mit einem in Fig. 1 nicht gezeigten Gerät des globalen Positionierungssystems (GPS) verbunden. Aus dem Signal des GPS-Geräts berechnet die Synchronisierungsvorrichtung 17 das Taktsignal.
Der Steuersender 3 weist eine Einlesevorrichtung 19 auf, die mit den ASI -Eingangsschnittstellen 6 und 7 verbunden ist. Die Einlesevorrichtung 19 liest aus den eingelesenen Übertragungsblöcken den ersten und den zweiten Teil eines jeden Testpunkts aus und fügt diese zusammen. Die Test- punkte, die über die erste ASI -Eingangsschnittstelle 6 eingelesen werden, werden zu der Sinuskomponente des digitalen Basisbandsignals zusammengefügt und die Testpunkte, die über die zweite ASI-Eingangsschnittstelle 7 eingelesen werden, werden zu der Cosinuskomponente des digitalen Basisbandsignals zusammengefügt. Die zusammengehörenden Übertragungsblöcke des ersten oder zweiten Teils zusammen- gehörender Testpunkte werden synchron in der Einlesevorrichtung 19 eingelesen. Die Synchronität wird durch das von der Kodiervorrichtung 2 ausgegebene und über die Synchronisationsschnittstelle 12 und eine Synchronisations- vorrichtung 20 an die Einlesevorrichtung 19 gegebene Takt- signal geprüft und eventuell wiederhergestellt.
Die Sinus- und Cosinuskomponente des digitalen Basisbandsignals werden synchron an jeweils einen Digital/Analog- Wandler 21 und 22 ausgegeben. Der erste Digital/Analog Wandler 21 wandelt die digitale Sinuskomponente des Basisbandsignals in eine analoge Sinuskomponente des Basis- bandsignals. Entsprechend wandelt der zweite
Digital/Analog Wandler 22 die digitale Cosinuskomponente des Basisbandsignals in eine analoge Cosinuskomponente des Basisbandsignals. Die analoge Sinus- und Cosinuskomponente des Basisbandsignals wird über die Mischer 23 und 24 auf eine Zwischenfrequenz gemischt. Die Oszillatorschwingungen der beiden Mischer 23 und 24 weisen die gleiche Frequenz auf, sind aber um 90° phasenverschoben. Die auf die
Zwischenfrequenz gemischte analoge Cosinuskomponente und die auf die Zwischenfrequenz gemischte analoge Sinuskomponente des Basisbandsignals werden an dem Addierer 25 mit 90° Phasenverschiebung aus den Mischern 23 und 24 zu dem analogen Zwischenfrequenzsignal überlagert. In der Korrekturvorrichtung 26 wird das analoge Zwischenfrequenzsignal weiteren Korrekturschritten unterzogen und auf die Rundfunkfrequenz als Trägerfrequenz zu dem Rundfunksignal hochgemischt. Das Rundfunksignal wird über die Ausgabeschnittstelle 27 an einen in Fig. 1 nicht gezeigten
Verstärker gegeben und verstärkt über eine in Fig. 1 nicht gezeigte Antenne ausgesendet .
In einem alternativen Ausführungsbeispiel können die digitale Sinuskomponente und die digitale Cosinus- komponente um 90° phasenverschoben in dem Kodiermodul der Kodiervorrichtung 2 bereits zu dem digitalen Basisbandsignal digital überlagert werden. Allerdings muss bei der Verwendung von zwei ASI -Ausgangsschnittstellen 4 und 5 zur Übermittlung des digitalen Basisbandsignals das Muster, mit dem das digitale Basisbandsignal auf die beiden ASI- Ausgangsschnittstellen 4 und 5 verteilt wird, mit
übertragen werden, um in der Eingabevorrichtung 19 das digitale Basisbandsignal aus den beiden ASI-Eingangs- Schnittstellen wieder herauszulesen und zu einem kontinuierlichen und synchronisierten digitalen Basisbandsignal zu formen. Folglich muss das digitale Basisbandsignal nur noch in einem Digital/Analog-Wandler in ein analoges Basisbandsignal gewandelt werden. Das analoge Basisbandsignal wird daraufhin in einem Mischer auf die
Zwischenfrequenz gemischt und an die Korrekturvorrichtung 26 gegeben.
Durch die externe Kodierung des MPEG-2 Transportstroms in der Kodiervorrichtung 2 in ein digitales Basisbandsignal nach dem DVB-T2 Standard und durch die Übermittlung des digitalen Basisbandsignals im Zeitbereich über die ASI- Schnittstelle an den Steuersender 3 und durch die entsprechende Anpassung des Steuersenders 3 zum Einlesen des digitalen Basisbandsignals aus dem übermittelten Signal, das in dem Format der ASI -Schnittstelle vorliegt, muss der Steuersender 3 nicht mehr vollständig ersetzt werden, obwohl er ursprünglich keinen Eingang für das Basisbandsignal aufweist. Der Steuersender 3 muss nur noch durch ein Software-Update auf das Einlesen des digitalen Basisbandsignals und das Überspringen der DVB-T Kodierung an- gepasst werden.
Zusätzlich lässt sich durch diese Erfindung auch eine Ab- wärtskompatibilität für den DVB-T Standard realisieren.
Dazu muss die Kodiervorrichtung 2 nur die beiden ASI -Eingangsschnittstellen 13 und 14 mit den beiden ASI -Ausgangsschnittstellen 4 und 5 kurzschließen und die DVB-T2 Kodierung unterbrechen. Dazu sind die ASI -Ein- und Ausgangs- schnittsteilen 13, 14 und 4, 5 jeweils über den Schalter 28 und 29 direkt verbindbar. In dem Steuersender 3 kann die Einlesevorrichtung 19 in diesem Fall die eingelesenen MPEG-2 Transportströme direkt in das DVB-T Kodiermodul 30 geben, welche das digitale Basisbandsignal an den
Digital/Analog-Wandler oder die digitale Sinus- und
Cosinuskomponente des Basisbandsignals an die
Digital/Analog-Wandler 21 und 22 gibt. Fig. 2 zeigt ein zweites Ausführungsbeispiel der Erfindung. Das System 31 ist im Wesentlichen gleich wie das System 1 aufgebaut . Gleiche Vorrichtungen werden deshalb mit den gleichen Referenzzeichen bezeichnet und werden nicht mehr beschrieben. Wie in dem ersten Ausführungs- beispiel des Systems 1 wird in dem Kodiermodul 33 der Kodiervorrichtung 32 ein digitales Basisbandsignal erzeugt. Zusätzlich wird die Sinuskomponente und die
Cosinuskomponente digital um 90° phasenverschoben zu dem digitalen Basisband überlagert und das digitale Basisband- signal digital auf eine Zwischenfrequenz gemischt. Das digitale Zwischenfrequenzsignal im Zeitbereich wird an die Ausgabevorrichtung 34 gegeben, wo es in ein Übermittlungs- signal nach dem Übermittlungsformat der ASI -Ausgangsschnittstelle 4 über das die Verbindungsleitung 8 und die ASI -Eingangsschnittstelle 6 an eine Einlesevorrichtung 35 eines Steuersenders 36. Die Einlesevorrichtung 35 entspricht weitestgehend der Einlesevorrichtung 19, wobei sie anstatt einer digitalen Sinuskomponente des Basisbandsignals direkt das digitale Zwischenfrequenzsignal aus dem Übermittlungssignal ermittelt. Durch die Überlagerung der Sinus- und der Cosinuskomponente in dem Kodiermodul 33 und durch das Hochmischen des digitalen Basisbandbandsignals auf die Zwischenfrequenz kann mit einer ASI -Schnittstelle die gleiche Datenrate wie in dem ersten Ausführungs- beispiel erzielt werden. Alternativ, je nach erforderten Datenraten, kann die Datenrate noch einmal verdoppelt werden, indem das Zwischenfrequenzsignal über zwei ASI- Schnittstellen, entsprechend der Ausführung gemäß des ersten Ausführungsbeispiels, übermittelt werden. Das eingelesene digitale Zwischenfrequenzsignal wird in einem Digital/Analog Wandler 37 in ein analoges Zwischen- frequenzsignal umgewandelt. Das analoge Zwischenfrequenz- signal wird, wie in dem Steuersender 3 des ersten Ausführungsbeispiels, in der Korrekturvorrichtung 26 weiterverarbeitet .
Fig. 3 zeigt ein Flussdiagramm mit den Schritten des erfindungsgemäßen Verfahrens zum externen Kodieren eines digitalen Datenstroms. Da das Verfahren bereits in Zusammenhang mit den ersten beiden Ausführungsbeispielen beschrieben wurde, werden hier nur noch einmal die wichtigsten Schritte beschrieben.
In einem ersten Schritt Sl wird in einem Kodiermodul 15 oder 33 der Kodiervorrichtung 2 oder 32 ein MPEG-2 TS als digitaler Datenstrom in ein digitales Basisbandsignal oder ein digitales Zwischenfrequenzsignal des DVB-T2 Standards kodiert. Dieses digitale Signal wird in das digitale Format der ASI -Schnittstelle 4 und/oder 5 gebracht und in einem zweiten Schritt S2 über diese ASI-Schnittstelle 4 und/oder 5 an den Steuersender 3 oder 36 übermittelt. In einem dritten Schritt S3 wird das digitale Basisbandsignal oder das digitale Zwischenfrequenzsignal aus dem empfangenen Signal ausgelesen. In einem vierten Schritt S4 wird das digitale Basisbandsignal oder das digitale Zwischen- frequenzsignal in einem Digital/Analog-Wandler 21, 22 oder 37 in ein analoges Basisbandsignal oder Zwischenfrequenz- signal des DVB-T2 Standards umgewandelt und in einem fünften Schritt S5 in einer Korrekturvorrichtung 26 zu einem Rundfunksignal nach dem DVB-T2 Standard weiterverarbeitet.
Als Alternative zu einem MPEG-2 Transportstrom kann jeder Datenstrom wie zum Beispiel ein Musikdatenstrom verwendet werden. Das Kodiermodul 15 ist vorzugsweise ein Chip oder Chipsatz, kann aber alternativ auch aus einer Mehrzahl an Einzelvorrichtungen bestehen. Die Erfindung ist an dem Beispiel eines Rundfunksende- Systems des DVB-T2 Standards beschrieben. Die Erfindung ist nicht auf die beschriebenen Ausführungsbeispiele beschränkt. Vielmehr kann die Erfindung auch auf Sende- Systeme von Satelliten- und Kabel -gestützten Systemen, wie in DVB-S und DVB-C angewandt werden. Außerdem ist die Erfindung grundsätzlich auf alle Sendesysteme aller Rundfunkstandards anwendbar. Die Erfindung ist auch auf sonstige Datenübertragungs- systeme anwendbar. Die Erfindung ist nicht auf die beschriebenen Ausführungsbeispiele beschränkt . Vielmehr können alle Aspekte der Ausführungsbeispiele vorteilhaft kombiniert werden.

Claims

Ansprüche
1. Kodiervorrichtung zur Umwandlung eines digitalen
Datenstroms in ein digitales Basisbandsignal im
Zeitbereich oder in ein digitales Zwischenfrequenzsignal im Zeitbereich;
dadurch gekennzeichnet,
dass die Kodiervorrichtung wenigstens eine asynchrone serielle Schnittstelle (4, 5) zum Ausgeben des digitalen Basisbandsignals oder des digitalen Zwischenfrequenz- signals im Zeitbereich aufweist.
2. Kodiervorrichtung nach Anspruch 1,
dadurch gekennzeichnet,
dass eine Ausgabevorrichtung (16) verbunden mit der asynchronen seriellen Schnittstelle (4, 5) zum Umwandeln des digitalen Basisbandsignals oder digitalen Zwischen- frequenzsignals in das Übertragungsformat der asynchronen seriellen Schnittstelle (4, 5) vorgesehen ist.
3. Kodiervorrichtung nach Anspruch 2 ,
dadurch gekennzeichnet,
dass die Testpunkte des digitalen Basisbandsignals oder Zwischenfrequenzsignals in der Ausgabevorrichtung (16, 34) auf wenigstens zwei Übertragungsblöcke des Übertragungs- formats der asynchronen seriellen Schnittstelle (4, 5) aufgeteilt werden und das Aufteilungsmuster mit dem umgewandelten digitalen Basisbandsignal oder digitalen Zwischenfrequenzsignal ausgegeben wird, wenn die Daten- große eines Testpunkts größer als die Datengröße eines einzelnen Übertragungsblocks ist .
4. Kodiervorrichtung nach Anspruch 2 oder 3,
dadurch gekennzeichnet,
dass die Kodiervorrichtung eine Synchronisierungseinheit zur Erzeugung eines Taktsignals aufweist, die mit der Ausgabevorrichtung (34) und/oder einer Synchronisierungs- schnittstelle (10) zur Ausgabe des Taktsignals verbunden ist.
5. Kodiervorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet,
dass die Kodiervorrichtung zumindest eine zweite asyn- chrone serielle Schnittstelle (5, 4) aufweist, und die Sinuskomponente des digitalen Basisbandsignals als erstes digitales Signal und die Cosinuskomponente des digitalen Basisbandsignals als zweites digitales Signal über verschiedene asynchrone serielle Schnittstellen (4, 5) ausgegeben werden.
6. Kodiervorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet,
dass eine asynchrone serielle Eingangsschnittstelle (13, 14) zum Einlesen des digitalen Datenstroms vorgesehen ist, wobei die asynchrone serielle Eingangsschnittstelle (13, 14) mit der asynchronen seriellen Schnittstelle (4, 5) direkt verbindbar ist . 7. Vorrichtung zur Weiterverarbeitung eines digitalen
Basisbandsignals im Zeitbereich oder eines digitalen
Zwischenfrequenzsignals im Zeitbereich;
dadurch gekennzeichnet,
dass die Vorrichtung eine asynchrone serielle Schnitt- stelle (6,
7) zum Einlesen des digitalen Basisbandsignals aufweist .
8. Vorrichtung nach Anspruch 7 ,
dadurch gekennzeichnet,
dass die Vorrichtung eine Einlesevorrichtung (19, 35) aufweist, die mit der asynchronen seriellen Schnittstelle (6, 7) zum Umwandeln eines in dem Übertragungsformat der asynchronen seriellen Schnittstelle (6, 7) vorliegenden eingelesenes Signals in das digitale Basisbandsignal oder das digitale Zwischenfrequenzsignal verbunden ist.
9. Vorrichtung nach Anspruch 8,
dadurch gekennzeichnet, dass jeder Testpunkt des digitalen Basisbandsignals oder Zwischenfrequenzsignals in der Einlesevorrichtung (19, 35) aus in dem Übertragungsformat der asynchronen seriellen Schnittstelle definierten Übertragungsblöcken auf der Basis eines mit dem digitalen Basisbandsignal oder Zwi- schenfrequenzsignal eingelesenen Aufteilungsmusters ermittelt wird, wenn die Datengröße eines Testpunkts größer als die Datengröße eines Übertragungsblocks ist.
10. Vorrichtung nach Anspruch 8 oder 9,
dadurch gekennzeichnet,
dass die Vorrichtung eine Synchronisierungsschnittstelle (12) zum Einlesen eines Taktsignals aufweist, die mit der Einlesevorrichtung (19, 35) verbunden ist.
11. Vorrichtung nach einem der Ansprüche 7 bis 10,
dadurch gekennzeichnet,
dass die Vorrichtung zumindest eine zweite asynchrone serielle Schnittstelle (7, 6) aufweist, wobei die Sinus- komponente des digitalen Basisbandsignals als erstes digitales Signal und die Cosinuskomponente des digitalen
Basisbandsignals als zweites digitales Signal über verschiedene asynchrone serielle Schnittstellen (6, 7) eingelesen werden.
12. Vorrichtung nach einem der Ansprüche 7 bis 11,
dadurch gekennzeichnet,
dass die Vorrichtung einen Digital/Analog-Wandler (21, 22; 37) zum Umwandeln des digitalen Basisbandsignals in ein analoges Basisbandsignal oder zum Umwandeln des digitalen Zwischenfrequenzsignals in ein analoges Zwischenfrequenzsignal aufweist.
13. Vorrichtung nach Anspruch 12,
dadurch gekennzeichnet,
dass die Vorrichtung ein Kodiermodul (30) zur Umwandlung eines digitalen Datenstroms in ein digitales Basisbandsignal im Zeitbereich oder in ein digitales Zwischenfre- quenzsignal im Zeitbereich aufweist, wobei das Kodier- modul (30) zwischen die asynchrone serielle Schnittstelle (6, 7) und den Digital/Analog Wandler (21, 22) schaltbar ist.
14. System aufweisend
eine Kodiervorrichtung (2, 32) nach einem der Ansprüche 1 bis 6 und
eine Vorrichtung (3, 36) nach einem der Ansprüche 7 bis 13, wobei die asynchrone serielle Schnittstelle (4, 5) der Kodiervorrichtung (2, 32) mit der asynchronen Schnittstelle (6, 7) der Vorrichtung (3, 36) verbunden ist.
15. Verfahren zum externen digitalen Kodieren eines
Basisbandsignals oder Zwischenfrequenzsignals, das
Verfahren aufweisend die folgenden Schritte:
- Umwandeln (Sl) eines digitalen Datenstroms in ein digitales Basisbandsignal im Zeitbereich oder in ein digitales Zwischenfrequenzsignal im Zeitbereich in einer Kodiervorrichtung (2, 32);
- Ausgeben (S2) des digitalen Basisbandsignals oder
Zwischenfrequenzsignals über eine asynchrone serielle Schnittstelle (4, 5) der Kodiervorrichtung (2, 32);
- Einlesen (S3) des ausgegebenen digitalen
Basisbandsignals an einer mit der asynchronen seriellen Schnittstelle (4, 5) der Kodiervorrichtung (2,
32 ) verbundenen asynchronen seriellen Schnittstelle (6, 7) einer Vorrichtung (3, 36); und
- Weiterverarbeiten (S5) des eingelesenen digitalen
Basisbandsignals oder Zwischenfrequenzsignals .
PCT/EP2010/004740 2009-08-20 2010-08-03 Kodiervorrichtung, vorrichtung zur weiterverarbeitung eines digitalen basisband- oder zwischenfrequenzsignals, system und verfahren zur externen digitalen kodierung WO2011020558A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/391,617 US8692698B2 (en) 2009-08-20 2010-08-03 Coding device, device for reprocessing a digital baseband signal or intermediate frequency signal, system and method for external digital coding
JP2012525064A JP5907870B2 (ja) 2009-08-20 2010-08-03 符号化装置、デジタルベースバンド信号又は中間周波信号を更に処理する装置、外部でデジタル符号化を行うシステム及び方法
EP10752290.6A EP2371124B1 (de) 2009-08-20 2010-08-03 Kodiervorrichtung, vorrichtung zur weiterverarbeitung eines digitalen basisband- oder zwischenfrequenzsignals, system und verfahren zur externen digitalen kodierung
BRPI1008649-8A BRPI1008649B1 (pt) 2009-08-20 2010-08-03 Dispositivo de codificação, dispositivo para processamento adicional de um sinal de banda base digital ou sinal de frequência intermediária, sistema e método para codificação digital externa

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102009038269 2009-08-20
DE102009038269.0 2009-08-20
DE102010012428A DE102010012428A1 (de) 2009-08-20 2010-03-23 Kodiervorrichtung, Vorrichtung zur Weiterverarbeitung eines digitalen Basisband- oder Zwischenfrequenzsignals, System und Verfahren zur externen digitalen Kodierung
DE102010012428.1 2010-03-23

Publications (1)

Publication Number Publication Date
WO2011020558A1 true WO2011020558A1 (de) 2011-02-24

Family

ID=43495558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/004740 WO2011020558A1 (de) 2009-08-20 2010-08-03 Kodiervorrichtung, vorrichtung zur weiterverarbeitung eines digitalen basisband- oder zwischenfrequenzsignals, system und verfahren zur externen digitalen kodierung

Country Status (6)

Country Link
US (1) US8692698B2 (de)
EP (1) EP2371124B1 (de)
JP (1) JP5907870B2 (de)
BR (1) BRPI1008649B1 (de)
DE (1) DE102010012428A1 (de)
WO (1) WO2011020558A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203236A1 (en) * 2013-06-16 2014-12-24 Siklu Communication ltd. Millimeter-wave system with beam direction by switching sources
US9806428B2 (en) 2013-06-16 2017-10-31 Siklu Communication ltd. Systems and methods for forming, directing, and narrowing communication beams
US9413078B2 (en) 2013-06-16 2016-08-09 Siklu Communication ltd. Millimeter-wave system with beam direction by switching sources
KR101799276B1 (ko) * 2013-09-27 2017-11-20 엘지전자 주식회사 방송 신호 송신 장치, 방송 신호 수신 장치, 방송 신호 송신 방법 및 방송 신호 수신 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19948383A1 (de) * 1999-10-07 2001-04-12 Rohde & Schwarz Verfahren zum empfangsseitigen Bestimmen der Nutzdatenkonstellation eines nach dem DVB-T-Standard modulierten Multiträger-Signals für die Berechnung der Restträgerleistung bzw. Verbesserung der Demodulation
US20050034156A1 (en) * 2003-08-08 2005-02-10 Yuichi Terui Data broadcast material transmission system for ground wave digital broadcasting
FR2864404A1 (fr) * 2003-12-17 2005-06-24 Sodielec Generateur d'un signal pour la television analogique ou la television numerique

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6690606B2 (en) * 2002-03-19 2004-02-10 Micron Technology, Inc. Asynchronous interface circuit and method for a pseudo-static memory device
DE10336121B4 (de) * 2003-08-06 2006-10-26 Infineon Technologies Ag Serielle asynchrone Schnittstelle mit SLIP-Kodierung/Dekodierung und CRC-Prüfung im Sende- und Empfangspfad
JP3851620B2 (ja) * 2003-09-09 2006-11-29 日本無線株式会社 データ送受信システム
US7319729B2 (en) * 2003-09-29 2008-01-15 International Business Machines Corporation Asynchronous interface methods and apparatus
JP2005151153A (ja) * 2003-11-14 2005-06-09 Hitachi Kokusai Electric Inc デジタル伝送システム
JP2005286566A (ja) * 2004-03-29 2005-10-13 Mitsubishi Electric Corp 情報レート自動検出システム及びこの情報レート自動検出システムを備えた通信機器
US20080195920A1 (en) * 2007-02-13 2008-08-14 Freescale Semiconductor, Inc. Self-test structure and method of testing a digital interface
US8379609B2 (en) * 2007-03-29 2013-02-19 Vixs Systems, Inc. Multimedia client/server system with adjustable data link rate and range and methods for use therewith
JP5069580B2 (ja) * 2007-08-10 2012-11-07 株式会社日立国際電気 信号再生装置
US7996704B2 (en) * 2007-08-21 2011-08-09 Richwave Technology Corp. Asynchronous first in first out interface and operation method thereof
JP4998519B2 (ja) * 2009-05-29 2012-08-15 富士通株式会社 非同期インタフェース回路及び非同期データ転送方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19948383A1 (de) * 1999-10-07 2001-04-12 Rohde & Schwarz Verfahren zum empfangsseitigen Bestimmen der Nutzdatenkonstellation eines nach dem DVB-T-Standard modulierten Multiträger-Signals für die Berechnung der Restträgerleistung bzw. Verbesserung der Demodulation
US20050034156A1 (en) * 2003-08-08 2005-02-10 Yuichi Terui Data broadcast material transmission system for ground wave digital broadcasting
FR2864404A1 (fr) * 2003-12-17 2005-06-24 Sodielec Generateur d'un signal pour la television analogique ou la television numerique

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DVB ORGANIZATION: "En300744.V1.1.1.pdf", DVB, DIGITAL VIDEO BROADCASTING, C/O EBU - 17A ANCIENNE ROUTE - CH-1218 GRAND SACONNEX, GENEVA - SWITZERLAND, 3 October 2003 (2003-10-03), XP017830695 *
DVB ORGANIZATION: "En50083_9.pdf", DVB, DIGITAL VIDEO BROADCASTING, C/O EBU - 17A ANCIENNE ROUTE - CH-1218 GRAND SACONNEX, GENEVA - SWITZERLAND, 3 October 2003 (2003-10-03), XP017830709 *

Also Published As

Publication number Publication date
EP2371124A1 (de) 2011-10-05
US8692698B2 (en) 2014-04-08
JP2013502788A (ja) 2013-01-24
BRPI1008649B1 (pt) 2021-08-31
BRPI1008649A2 (pt) 2016-03-08
EP2371124B1 (de) 2020-09-30
JP5907870B2 (ja) 2016-04-26
DE102010012428A1 (de) 2011-02-24
US20120146827A1 (en) 2012-06-14

Similar Documents

Publication Publication Date Title
DE60128518T2 (de) Phasenrauscharmer Frequenzumsetzer
DE69828835T2 (de) Trelliskodierer zur Kodierung eines digitalen Datenstromes
DE69127828T2 (de) Sender und empfänger für kompatibles hochauflösendes fernsehsystem
DE10197172T5 (de) Zeit- und bandbreitenskalierbares Schlitzformat für mobile Datensysteme
EP2371124B1 (de) Kodiervorrichtung, vorrichtung zur weiterverarbeitung eines digitalen basisband- oder zwischenfrequenzsignals, system und verfahren zur externen digitalen kodierung
EP1368918B1 (de) Verfahren zur verringerung der ausserbandstrahlung bei am-sendern für digitale übertragung
DE19962340B4 (de) Sender zum Versenden von Signalen über Funkkanäle und Verfahren zum Senden von Signalen über Funkkanäle
WO1998047248A1 (de) System zur übertragung hochratiger mehrwertdienste im terrestrischen digitalen rundfunk
EP0869649B1 (de) Modulation mit mehrfacher Auflösung
WO2002023843A1 (de) Verfahren zur erzeugung von mobilkommunikationssignalen verschiedener mobilfunkstandards
DE60007102T2 (de) Aufwärtsumsetzung von Fernseh-Zwischenfrequenzsignalen unter Berücksichtigung des detektierten analogen oder digitalen Signaltyps
WO2007101642A2 (de) Fm-simulcast-rundfunksignal, rundfunkübertragungssystem und empfängereinrichtung dafür
DE60024498T2 (de) Konfigurierbarer erreger für nachrichtenübertragungssysteme
EP2854314B1 (de) Verfahren und Vorrichtung zum Einblenden von Alarmmeldungen in einem DAB-Ensemble innerhalb eines Tunnels
AT501427B1 (de) Qam-modulator
DE102015214079B4 (de) System und Verfahren zum Senden eines digitalen Radiosignals
EP1943761A1 (de) Verfahren zur rundfunkübertragung von einer vielzahl von unterschiedlichen informationsangeboten und sende- und empfangseinrichtung hierzu
EP0777349B1 (de) Kopfstellenanlage für den Empfang digitaler Rundfunksignale
DE102010022011A1 (de) Erweiterte Datenübertragung auf FM (UKW) mit Nutzung des RDS Protokolls
EP0603656A2 (de) Verfahren und Vorrichtung zur Beseitigung des Frequenzversatzes in Empfangssignalen eines digitalen Übertragungssystems
EP0877504A1 (de) Verfahren zur Übertragung von Daten, sowie Sender und Empfänger
EP0660545A1 (de) System zur Erzeugung von Rundfunksignalen für eine Satellitenübertragung
DE19935001A1 (de) Multi-Modemprotokoll mit Datenraten von M X 33.600 bit/s und höher zur Nutzung auf analogen Zweidrahtleitungen
DE10139066A1 (de) Verfahren und Anordnung zum Verbessern der Empfangseigenschaften von DVB-Signalen
DE102013100052A1 (de) Verfahren und Vorrichtung zum Sicherstellen einer stationären Datenrate in einem DVB-C2-Sender

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010752290

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10752290

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012525064

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13391617

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1008649

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1008649

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110809