WO2011016525A1 - プラズマエッチング装置及びプラズマエッチング方法 - Google Patents

プラズマエッチング装置及びプラズマエッチング方法 Download PDF

Info

Publication number
WO2011016525A1
WO2011016525A1 PCT/JP2010/063306 JP2010063306W WO2011016525A1 WO 2011016525 A1 WO2011016525 A1 WO 2011016525A1 JP 2010063306 W JP2010063306 W JP 2010063306W WO 2011016525 A1 WO2011016525 A1 WO 2011016525A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
etching
interference light
light
light receiving
Prior art date
Application number
PCT/JP2010/063306
Other languages
English (en)
French (fr)
Inventor
大輔 松嶋
Original Assignee
芝浦メカトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 芝浦メカトロニクス株式会社 filed Critical 芝浦メカトロニクス株式会社
Priority to JP2011525934A priority Critical patent/JP5665746B2/ja
Priority to KR1020127005676A priority patent/KR101293799B1/ko
Priority to US13/389,181 priority patent/US20120132617A1/en
Publication of WO2011016525A1 publication Critical patent/WO2011016525A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32357Generation remote from the workpiece, e.g. down-stream
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • H01J37/32963End-point detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • H01J37/32972Spectral analysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/26Acting in response to an ongoing measurement without interruption of processing, e.g. endpoint detection, in-situ thickness measurement

Definitions

  • the present invention relates to a plasma etching apparatus and a plasma etching method.
  • Etching using plasma is used in a wide range of technical fields, such as the manufacture of electronic devices such as semiconductor devices and liquid crystal displays, the manufacture of micromachines in the field of MEMS (Micro Electro Mechanical Systems), the manufacture of photomasks and precision optical components, etc. Has been.
  • Etching using plasma is advantageous in that it is low-cost, high-speed, and can reduce environmental pollution because it does not use chemicals.
  • the end point of etching is detected in order to suppress under-etching and over-etching.
  • a technique for detecting the end point of etching by analyzing plasma emission is known (see, for example, Patent Document 1).
  • light having a specific wavelength in plasma emission is detected by a detector, and the end point of etching is detected by utilizing the fact that the intensity of light having a specific wavelength varies when the substrate is exposed. I am doing so.
  • the emission intensity of plasma may change when process conditions (for example, processing pressure, applied power, etc.) fluctuate.
  • the emission intensity does not change unless the substrate is exposed by etching, the substrate may be excessively etched or damaged.
  • the present invention provides a plasma etching apparatus and a plasma etching method capable of improving the detection accuracy of the etching end point.
  • a processing container capable of maintaining an atmosphere depressurized from atmospheric pressure, a decompression unit that decompresses the interior of the processing container to a predetermined pressure, and an interior of the processing container.
  • a placing portion for placing an object to be treated, a region for generating plasma inside, a discharge tube provided at a position separated from the processing vessel, and a microwave emitted from the microwave generating portion An introduction waveguide that propagates and introduces microwaves into the region that generates the plasma, a gas supply unit that supplies a process gas to the region that generates the plasma, the discharge tube, and the processing vessel, A plurality of transport pipes that communicate with each other, a detection window that transmits light provided on the wall surface of the processing container, and a light receiving surface that receives interference light emitted from the surface of the object to be processed placed on the placement unit.
  • Dryer with light receiving element A light detection unit, and a control unit that detects an end point of etching based on an output from the interference light detection unit, wherein the control unit is based on an output from the light receiving element in a detection region of the interference light detection unit.
  • the output of the light receiving element corresponding to the etched portion is extracted, and the etching end point is detected based on the intensity of the interference light obtained from the output of the light receiving element corresponding to the etched portion.
  • a plasma etching apparatus is provided.
  • a processing container having a region for generating plasma therein and capable of maintaining an atmosphere depressurized from atmospheric pressure, and the inside of the processing container up to a predetermined pressure
  • a decompression unit for depressurization a placement unit for placing an object to be processed provided in the processing container, a plasma generation unit for generating plasma by supplying electromagnetic energy to the region for generating plasma,
  • a gas supply unit that supplies a process gas to a region where the plasma is generated, a detection window that transmits light provided on a wall surface of the processing container, and a surface of an object to be processed placed on the mounting unit.
  • An interference light detection unit having a plurality of light receiving elements on a light receiving surface for receiving the interference light, and a control unit for detecting an etching end point based on an output from the interference light detection unit, the control unit, Said dried
  • the output of the light receiving element in the portion corresponding to the etched portion is extracted from the output from the light receiving element in the detection region of the light detection unit, and the intensity of the interference light obtained from the output of the light receiving element in the portion corresponding to the etched portion
  • An etching end point is detected based on the plasma etching apparatus.
  • a processing container capable of maintaining an atmosphere depressurized from atmospheric pressure, a decompression unit that decompresses the interior of the processing container to a predetermined pressure, and an interior of the processing container Radiated from a microwave generating section, a mounting section for mounting an object to be processed, a discharge tube provided in a position separated from the processing vessel, and a region for generating plasma therein.
  • An introduction waveguide that propagates microwaves and introduces microwaves into the plasma generation region, a gas supply unit that supplies process gas to the plasma generation region, the discharge tube, and the treatment
  • a transport pipe that communicates with the container, a detection window that transmits light provided on a wall surface of the processing container, and light on the surface of the object to be processed placed on the placement unit via the detection window.
  • the light source to irradiate An interference light detection unit having a plurality of light receiving elements on a light receiving surface for receiving interference light emitted from the surface of the workpiece to be processed, and a control unit for detecting an etching end point based on an output from the interference light detection unit And the control unit extracts the output of the light receiving element corresponding to the etched portion from the output from the light receiving element in the detection region of the interference light detecting unit, and the portion corresponding to the etched portion.
  • a plasma etching apparatus is provided that detects the end point of etching based on the intensity of interference light obtained from the output of a light receiving element.
  • a processing container having a region for generating plasma therein and capable of maintaining an atmosphere depressurized from atmospheric pressure, and the inside of the processing container up to a predetermined pressure
  • a decompression unit for depressurization a placement unit for placing an object to be processed provided in the processing container, a plasma generation unit for generating plasma by supplying electromagnetic energy to the region for generating plasma,
  • a gas supply unit that supplies a process gas to the region where the plasma is generated, a detection window that transmits light provided on a wall surface of the processing container, and a target that is placed on the mounting unit via the detection window.
  • a light source for irradiating light on the surface of the workpiece an interference light detector having a plurality of light receiving elements on a light receiving surface for receiving interference light emitted from the surface of the workpiece placed on the mounting portion, and Output from the interference light detector
  • a plasma etching apparatus characterized by extracting and detecting an end point of etching based on the intensity of interference light obtained from the output of a light receiving element corresponding to the etched portion.
  • plasma is generated in an atmosphere whose pressure is lower than atmospheric pressure, a process gas supplied to the plasma is excited to generate a plasma product, and the plasma
  • a plasma etching method for performing an etching process on an object to be processed using a product the step of detecting interference light from the object to be processed using an interference light detection unit having a plurality of light receiving elements on a light receiving surface;
  • the output of the light receiving element corresponding to the etched portion is extracted from the output from the light receiving element in the detection area of the interference light detecting unit, and the interference light obtained from the output of the light receiving element corresponding to the etched portion
  • a step of detecting an end point of etching based on the intensity of the plasma etching method the intensity of the plasma etching method.
  • a plasma etching apparatus and a plasma etching method capable of improving the detection accuracy of the etching end point are provided.
  • FIG. 1 is a schematic cross-sectional view for illustrating a plasma etching apparatus according to a first embodiment of the present invention.
  • (A) is a schematic diagram for illustrating a state of detection in a detection region of the interference light detection unit, and (b) is an enlarged view of a part A in (a).
  • It is a schematic cross section for illustrating the plasma etching apparatus which concerns on the 2nd Embodiment of this invention.
  • FIG. 1 is a schematic cross-sectional view for illustrating a plasma etching apparatus according to a first embodiment of the present invention.
  • a plasma etching apparatus 1 illustrated in FIG. 1 is a microwave excitation type plasma etching apparatus generally called a “CDE (Chemical Dry Etching) apparatus”. That is, it is an example of a plasma etching apparatus that generates a plasma product from a process gas using plasma excited and generated by microwaves, and processes an object to be processed.
  • CDE Chemical Dry Etching
  • the plasma etching apparatus 1 includes a plasma generation unit 2, a decompression unit 3, a gas supply unit 4, a microwave generation unit 5, a processing vessel 6, an interference light detection unit 7, a control unit 8, and the like. Yes.
  • the plasma generator 2 generates the plasma P by supplying microwaves (electromagnetic energy) to the region where the plasma P is generated.
  • the plasma generator 2 is provided with a discharge tube 9 and an introduction waveguide 10.
  • the discharge tube 9 has a region for generating plasma therein and is provided at a position separated from the processing vessel 6. Further, the discharge tube 9 has a tubular shape and is made of a material that has a high transmittance for the microwave M and is difficult to be etched.
  • the discharge tube 9 can be made of a dielectric such as alumina or quartz.
  • a tubular shield 18 is provided so as to cover the outer peripheral surface of the discharge tube 9.
  • a predetermined gap is provided between the inner peripheral surface of the shielding portion 18 and the outer peripheral surface of the discharge tube 9, and the shielding portion 18 and the discharge tube 9 are disposed so as to be substantially coaxial.
  • the gap is dimensioned so that the microwave M does not leak. Therefore, leakage of the microwave M by the shielding part 18 can be suppressed.
  • the introduction waveguide 10 is connected to the shielding portion 18 so as to be substantially orthogonal to the discharge tube 9.
  • a termination matching unit 11 a is provided at the end of the introduction waveguide 10.
  • a stub tuner 11b is provided on the inlet side of the introduction waveguide 10 (the introduction side of the microwave M).
  • the introduction waveguide 10 propagates the microwave M radiated from the microwave generation unit 5 described later, and introduces the microwave M into a region where the plasma P is generated.
  • An annular slot 12 is provided at a connection portion between the introduction waveguide 10 and the shielding portion 18.
  • the slot 12 is for radiating the microwave M guided inside the introduction waveguide 10 toward the discharge tube 9.
  • plasma P is generated inside the discharge tube 9, but the portion facing the slot 12 is substantially the center of the region where the plasma P is generated.
  • a microwave generation unit 5 is provided at one end of the introduction waveguide 10.
  • the microwave generation unit 5 can generate a microwave M having a predetermined frequency (eg, 2.75 GHz) and radiate it toward the introduction waveguide 10.
  • a predetermined frequency eg, 2.75 GHz
  • a gas supply unit 4 is connected to one end of the discharge tube 9 via a flow rate control unit (Mass Flow Controller: MFC) 13.
  • MFC Mass Flow Controller
  • the process gas G can be supplied from the gas supply unit 4 to the region in the discharge tube 9 where plasma is generated via the flow rate control unit 13. Further, the supply amount of the process gas G can be adjusted by controlling the flow rate control unit 13 by the control unit 8.
  • the transport tube 14 is made of a material that can withstand corrosion by neutral active species, such as quartz, stainless steel, ceramics, fluororesin, and the like.
  • the processing container 6 has a substantially cylindrical shape with a bottom, and its upper end is closed with a top plate 6a. Inside the processing container 6 is provided a mounting portion 15 containing an electrostatic chuck (not shown), and a workpiece W (for example, a semiconductor wafer or a glass substrate) is placed on the upper surface (mounting surface). It can be held.
  • a workpiece W for example, a semiconductor wafer or a glass substrate
  • the decompression unit 3 such as a turbo molecular pump (TMP) is connected to the bottom surface of the processing vessel 6 via a pressure control unit (Auto Pressure Controller: APC) 16.
  • the decompression unit 3 decompresses the inside of the processing container 6 to a predetermined pressure.
  • the pressure control unit 16 controls the internal pressure of the processing container 6 to be a predetermined pressure based on the output of a vacuum gauge (not shown) that detects the internal pressure of the processing container 6. That is, the processing container 6 can accommodate an object to be processed W such as a semiconductor wafer or a glass substrate and can maintain an atmosphere reduced from the atmospheric pressure.
  • a rectifying plate 17 is provided below the connecting portion with the transport pipe 14 and above the mounting portion 15 so as to face the upper surface (mounting surface) of the mounting portion 15.
  • the rectifying plate 17 rectifies the flow of the gas containing neutral active species introduced from the transport pipe 14 so that the amount of the neutral active species on the processing surface of the workpiece W is substantially uniform. belongs to.
  • the current plate 17 is a substantially circular plate-like body provided with a large number of holes 17 a and is fixed to the inner wall of the processing container 6. And the area
  • a detection window 19 is provided on the wall surface of the processing vessel 6.
  • the detection window 19 is made of a transparent material and can transmit light.
  • the detection window 19 is provided at a position where the surface of the workpiece W placed on the upper surface (placement surface) of the placement unit 15 can be faced.
  • the detection window 19 can be provided on the top plate 6 a facing the top surface (mounting surface) of the mounting portion 15.
  • the position where the detection window 19 is provided is not limited to the top plate 6a, and a position where the surface of the workpiece W placed on the upper surface (mounting surface) of the placement unit 15 can be seen, for example, Further, it can be appropriately provided on the side wall of the processing vessel 6, the top plate 6a, or the like.
  • the interference light detection unit 7 is provided at a position where the surface of the workpiece W placed on the upper surface (placement surface) of the placement unit 15 can be faced through the detection window 19.
  • the interference light detector 7 detects the intensity of interference light caused by light reflected from the surface of the film to be etched and light reflected from the interface between the film to be etched and the base.
  • the intensity of the interference light periodically changes as the film thickness decreases by etching, and becomes substantially constant when the base is exposed.
  • the period when the intensity of the interference light changes has a correlation with the wavelength of the light, the refractive index and the film thickness of the film to be etched, so the period when the intensity of the interference light changes can be detected. If possible, the film thickness can be calculated. Therefore, it is possible to detect the time when etching is completed, that is, the end point of etching.
  • the interference light detection unit 7 has a plurality of light receiving elements on a light receiving surface that receives interference light emitted from the surface of the object to be processed placed on the placement unit 15.
  • the arrangement of the light receiving elements is not particularly limited.
  • the light receiving elements may be arranged in a line, or may be spread in a flat shape such as a lattice shape.
  • the detection region can be planarized, so that the detection position can be easily aligned.
  • a CCD (Charge Coupled Device) sensor etc. can be illustrated, for example.
  • a resist mask (etching mask) is provided on the surface of the film to be etched.
  • the ratio of the resist portion of the resist mask increases (when the aperture ratio decreases)
  • the intensity of the interference light when viewed in the entire detection region may be reduced, and the detection accuracy may be deteriorated.
  • the aperture ratio becomes smaller with the recent miniaturization, the detection accuracy may be further deteriorated.
  • the detection target is specified, so that the influence of the resist portion of the resist mask can be reduced.
  • a minute portion is detected, which may cause a new problem that it is difficult to align the detection position.
  • a plurality of light receiving elements are provided on the light receiving surface of the interference light detecting unit 7, and an etching portion (opening portion of the resist mask) can be extracted from the detection region. Then, the etching end point is detected based on the intensity of the interference light in the extracted etching portion (opening portion of the resist mask). Details regarding the extraction of the etching portion (opening portion of the resist mask) and the detection of the etching end point will be described later.
  • a light source 21 is provided at a position where light can be applied to the surface of the workpiece W placed on the upper surface (mounting surface) of the placement unit 15 via the detection window 19. Interference light can be generated by utilizing light from the plasma P leaking into the processing container 6 through the transport pipe 14 and light emission generated in the processing container 6. For this reason, the light source 21 is not necessarily provided. However, it is preferable to provide the light source 21 in consideration of fluctuations in the intensity of light from the plasma P, light leaking into the processing container 6, and low intensity of light emission generated in the processing container 6.
  • the light source 21 is not particularly limited, and examples thereof include those provided with a metal halide lamp, a halogen lamp, etc., and those capable of emitting laser light.
  • the scanned laser beam is irradiated on the surface of the workpiece W.
  • the control unit 8 controls the decompression unit 3, the gas supply unit 4, the microwave generation unit 5, the pressure control unit 16, the flow rate control unit 13, the light source 21, and the like. Further, the control unit 8 extracts an etching portion (opening portion of the resist mask) from the detection region based on an electric signal from a light receiving element provided in the interference light detection unit 7. Then, the etching end point is detected based on the intensity of the interference light in the extracted etching portion (opening portion of the resist mask). In this case, the control unit 8 extracts an etching portion (opening portion of the resist mask) from a detection region having a predetermined area, and ends the etching based on the intensity of interference light in the etching portion (opening portion of the resist mask). Is detected.
  • control unit 8 extracts the output of the light receiving element corresponding to the etching portion (opening portion of the resist mask) from the output from the light receiving element in the detection region 7a of the interference light detection unit 7, and performs etching.
  • the etching end point is detected based on the intensity of the interference light obtained from the output of the light receiving element corresponding to the portion (opening portion of the resist mask).
  • the extraction of the etching portion (opening portion of the resist mask) from the detection region 7a is performed by outputting the light receiving element in the detection region 7a and the output of the light receiving device corresponding to the etching portion (opening portion of the resist mask). And based on.
  • it is simply expressed as “extraction of an etching portion (opening portion of a resist mask)” in order to avoid complication.
  • FIG. 2 is a schematic diagram for illustrating the extraction of the etched portion (opening portion of the resist mask).
  • 2A is a schematic diagram for illustrating the state of detection in the detection region 7a of the interference light detection unit 7, and
  • FIG. 2B is an enlarged view of a part A in FIG. 2A.
  • a plurality of pixels (light receiving elements) are laid in a lattice pattern on the light receiving surface of the interference light detection unit 7, and an electric signal corresponding to the intensity of the interference light is output to each pixel (each light receiving element) in the detection region 7a. It is output every time.
  • the electric signal from the interference light detection unit 7 is sent to the control unit 8, and the intensity of the interference light is detected for each pixel (each light receiving element).
  • the intensity change amount of the interference light for each pixel (each light receiving element) can be monitored, and a portion where the intensity change occurs can be extracted as an etching portion (opening portion of the resist mask).
  • the “shaded part” in FIG. 2A can be extracted as an etching part (opening part of the resist mask).
  • a portion having the largest fluctuation amount of the intensity of the interference light is set as a detection target. For example, since the variation amount of the intensity of the interference light is larger in the pixel B in FIG. 2B than in the surrounding pixels, the pixel B is set as a detection target.
  • the temporal differential amount of the interference light intensity is monitored, and the pixel having the largest value is determined as the pixel having the largest variation amount of the interference light intensity.
  • a region where the amount of fluctuation in the intensity of interference light is large is set as a detection target. You can also. In this case, for example, it is possible to monitor the top several pixels having a large fluctuation amount of the intensity of the interference light, and obtain the average value of these.
  • the etching portion (opening portion of the resist mask) is extracted from the detection area 7a having a predetermined area, the detection target is specified, so the influence of the resist portion of the resist mask is reduced. Can be made. Further, even if the etching portion (opening portion of the resist mask) is very small, it is possible to easily specify the detection target (detection alignment). Therefore, the detection accuracy of the etching end point can be improved. In addition, if the area where the fluctuation amount of the interference light intensity is large is targeted for detection and the end point of etching is detected based on the average value of the interference light intensity in this area, the influence of noise and the like can be further reduced. Can do.
  • a workpiece W for example, a semiconductor wafer or a glass substrate
  • a transfer device not shown
  • the inside of the processing container 6 is decompressed to a predetermined pressure by the decompression unit 3.
  • the pressure in the processing container 6 is adjusted by the pressure controller 16.
  • the inside of the discharge tube 9 communicating with the processing vessel 6 is also decompressed.
  • a plasma product containing neutral active species is generated by the plasma generator 2. That is, first, a process gas G (eg, CF 4 ) having a predetermined flow rate is supplied from the gas supply unit 4 through the flow rate control unit 13 into the discharge tube 9. On the other hand, a microwave M having a predetermined power is radiated from the microwave generator 5 into the introduction waveguide 10. The radiated microwave M is guided in the introduction waveguide 10 and radiated toward the discharge tube 9 through the slot 12.
  • a process gas G eg, CF 4
  • a microwave M having a predetermined power is radiated from the microwave generator 5 into the introduction waveguide 10. The radiated microwave M is guided in the introduction waveguide 10 and radiated toward the discharge tube 9 through the slot 12.
  • the microwave M radiated toward the discharge tube 9 propagates on the surface of the discharge tube 9 and is radiated into the discharge tube 9. In this way, plasma P is generated by the energy of the microwave M radiated into the discharge tube 9.
  • the microwave M is discharged from the inner wall surface of the discharge tube 9 to the discharge tube. Reflected until it enters the space in 9 by a certain distance (skin depth). Therefore, a standing wave of the microwave M is formed between the reflection surface of the microwave M and the lower surface of the slot 12.
  • the reflection surface of the microwave M becomes a plasma excitation surface, and the plasma P is stably excited and generated on this plasma excitation surface.
  • the process gas G is excited and activated to generate plasma products such as neutral active species and ions.
  • the gas containing the generated plasma product is conveyed into the processing container 6 through the transport pipe 14. At this time, ions having a short life cannot reach the processing container 6, and only neutral active species having a long life reach the processing container 6.
  • the gas containing the neutral active species introduced into the processing container 6 is rectified by the rectifying plate 17 and reaches the surface of the workpiece W to be etched.
  • an isotropic process is mainly performed using neutral active species.
  • the interference light detector 7 detects the intensity of interference light caused by the light reflected from the surface of the film to be etched and the light reflected from the interface between the film to be etched and the base.
  • the electrical signal from the interference light detection unit 7 is sent to the control unit 8, and the intensity of the interference light is detected for each pixel (each light receiving element).
  • an etching portion (opening portion of the resist mask) is extracted from the difference in the intensity of the interference light.
  • the part where the fluctuation amount of the intensity of the interference light is the largest is detected, the period of the intensity change of the interference light in this part is detected, the period, the wavelength of the light, the refractive index and film thickness of the film to be etched
  • the end point of etching that is, the end point of etching is detected.
  • light can be emitted from the light source 21 toward the detection target portion.
  • interference light can also be generated using light from the plasma P leaking into the processing container 6 via the transport pipe 14 or light emission generated in the processing container 6.
  • the light from the light source 21 toward the detection target portion Is preferably irradiated.
  • control unit 8 determines that the etching process has been completed, the generation of the plasma product by the plasma generation unit 2 is stopped.
  • the workpiece W for which the etching process has been completed is carried out of the processing container 6 by a transfer device (not shown). Thereafter, if necessary, the above-described etching process is repeated.
  • the plasma P is generated in an atmosphere depressurized from the atmospheric pressure, and the process gas G supplied toward the plasma P is excited to generate the plasma.
  • the step of detecting interference light from the object W, and the etching portion (opening portion of the resist mask) are extracted from the detection area 7a having a predetermined area, and the intensity of the interference light in the etching portion (opening portion of the resist mask) is extracted.
  • a step of detecting an end point of etching based on an area where the amount of fluctuation of the interference light intensity is large may be detected, and the etching end point may be detected based on the average value of the interference light intensity in this area. it can.
  • the interference light detection unit 7 having a plurality of light receiving elements is provided, and the etching portion (opening portion of the resist mask) is extracted from the detection region 7a having a predetermined area.
  • the detection target (etched portion) can be specified. Therefore, the influence of the resist portion (non-etched portion) of the resist mask can be suppressed. In addition, the influence of noise and the like can be reduced. Further, even if the etching portion (opening portion of the resist mask) is very small, it is possible to easily specify the detection target (detection alignment). Therefore, the detection accuracy of the etching end point can be improved.
  • the influence of noise and the like can be further reduced. Can do. In addition, productivity, yield, quality, and the like can be improved.
  • FIG. 3 is a schematic cross-sectional view for illustrating a plasma etching apparatus according to the second embodiment of the present invention.
  • the plasma etching apparatus 30 illustrated in FIG. 3 is a microwave-excited plasma etching apparatus generally called a “SWP (Surface Wave Plasma) apparatus”. That is, it is an example of a plasma etching apparatus that generates a plasma product from a process gas using plasma excited and generated by microwaves, and processes an object to be processed.
  • SWP Surface Wave Plasma
  • the plasma etching apparatus 30 includes a plasma generation unit 31, a decompression unit 3, a gas supply unit 4, a microwave generation unit 5, a processing vessel 32, an interference light detection unit 7, a control unit 33, and the like. Yes.
  • the plasma generator 31 generates the plasma P by supplying microwaves (electromagnetic energy) to a region where the plasma P is generated.
  • the plasma generator 31 is provided with a transmission window 34 and an introduction waveguide 35.
  • the transmission window 34 has a flat plate shape and is made of a material that has a high transmittance with respect to the microwave M and is difficult to be etched.
  • the transmission window 34 can be made of a dielectric such as alumina or quartz.
  • the transmission window 34 is provided at the upper end of the processing container 32 so as to be airtight.
  • An introduction waveguide 35 is provided outside the processing container 32 and on the top surface of the transmission window 34. Although illustration is omitted, a terminal matching unit and a stub tuner may be provided as appropriate.
  • the introduction waveguide 35 propagates the microwave M emitted from the microwave generation unit 5 and introduces the microwave M into the region where the plasma P is generated.
  • a slot 36 is provided at a connection portion between the introduction waveguide 35 and the transmission window 34. The slot 36 is for radiating the microwave M guided inside the introduction waveguide 35 toward the transmission window 34.
  • a microwave generator 5 is provided at one end of the introduction waveguide 35.
  • the microwave generator 5 can generate a microwave M having a predetermined frequency (eg, 2.75 GHz) and radiate it toward the introduction waveguide 35.
  • a gas supply unit 4 is connected to the upper portion of the side wall of the processing vessel 32 via a flow rate control unit (Mass Flow Controller: MFC) 13. Then, the process gas G can be supplied from the gas supply unit 4 to the region where the plasma P in the processing container 32 is generated via the flow rate control unit 13. Further, the supply amount of the process gas G can be adjusted by controlling the flow rate control unit 13 by the control unit 33.
  • MFC Mass Flow Controller
  • the processing container 32 has a substantially cylindrical shape with a bottom, and a mounting portion 15 including an electrostatic chuck (not shown) is provided therein.
  • a workpiece W for example, a semiconductor wafer or a glass substrate
  • a decompression unit 3 such as a turbo molecular pump (TMP) is connected to the bottom surface of the processing vessel 32 via a pressure control unit (Auto Pressure Controller: APC) 16.
  • the decompression unit 3 decompresses the inside of the processing container 32 to a predetermined pressure.
  • the pressure control unit 16 controls the internal pressure of the processing container 32 to be a predetermined pressure based on the output of a vacuum gauge (not shown) that detects the internal pressure of the processing container 32. That is, the processing container 32 has a region for generating the plasma P inside, and can maintain an atmosphere that is depressurized from the atmospheric pressure.
  • a rectifying plate 17 is provided below the connecting portion with the gas supply unit 4 and above the mounting unit 15 so as to face the upper surface (mounting surface) of the mounting unit 15.
  • the rectifying plate 17 rectifies the flow of the gas containing the plasma product generated in the region where the plasma P is generated, so that the amount of the plasma product on the processing surface of the workpiece W becomes substantially uniform. Is for.
  • the rectifying plate 17 is a substantially circular plate-like body provided with a large number of holes 17a, and is fixed to the inner wall of the processing vessel 32. And the area
  • a material that does not easily react with the neutral active species for example, a ceramic material such as tetrafluororesin (PTFE) or alumina.
  • Detection windows 19 and 19 a are provided on the wall surface of the processing container 32.
  • the detection windows 19 and 19a are made of a transparent material so that light can pass therethrough.
  • the detection windows 19, 19 a are provided at positions where the surface of the workpiece W placed on the upper surface (placement surface) of the placement unit 15 can be faced.
  • the detection windows 19 and 19 a can be provided on the side wall of the processing container 32.
  • the position where the detection windows 19 and 19a are provided is not limited to the side wall of the processing container 32, and may face the surface of the workpiece W placed on the upper surface (mounting surface) of the mounting portion 15. It can be provided as appropriate at a possible position, for example, on the ceiling of the processing container 32.
  • the interference light detection unit 7 described above is provided at a position where the surface of the workpiece W placed on the upper surface (placement surface) of the placement unit 15 can be faced through the detection window 19. Further, a detection window 19 a and a light source 21 are provided at a position where light emitted from the light source 21 and reflected by the surface of the workpiece W can enter the interference light detection unit 7.
  • a plurality of light receiving elements are provided on the light receiving surface of the interference light detecting unit 7, and an etching portion (opening portion of the resist mask) can be extracted from the detection region. Then, the etching end point is detected based on the intensity of the interference light in the extracted etching portion (opening portion of the resist mask).
  • Interference light can be generated using light from the plasma P generated in the region where the plasma P is generated.
  • the light source 21 is not necessarily provided.
  • the light source 21 is not particularly limited, and examples thereof include those provided with a metal halide lamp, a halogen lamp, etc., and those capable of emitting laser light.
  • the scanned laser beam is irradiated on the surface of the workpiece W.
  • the control unit 33 controls the decompression unit 3, the gas supply unit 4, the microwave generation unit 5, the pressure control unit 16, the flow rate control unit 13, the light source 21, and the like. Further, the control unit 33 extracts an etching portion (opening portion of the resist mask) from the detection region based on an electric signal from a light receiving element provided in the interference light detection unit 7. Then, the etching end point is detected based on the intensity of the interference light in the extracted etching portion (opening portion of the resist mask). That is, the control unit 33 extracts the etching portion (opening portion of the resist mask) from the detection region having a predetermined area, and sets the etching end point based on the intensity of the interference light in the etching portion (opening portion of the resist mask). To detect. Note that details regarding the extraction of the etching portion (opening portion of the resist mask) and the detection of the end point of the etching are the same as those described above, and are omitted.
  • a workpiece W for example, a semiconductor wafer or a glass substrate
  • a transfer device not shown
  • the inside of the processing container 32 is decompressed to a predetermined pressure by the decompression unit 3.
  • the pressure in the processing container 32 is adjusted by the pressure controller 16.
  • a plasma product containing neutral active species is generated by the plasma generator 31. That is, first, a predetermined amount of process gas G (for example, CF 4 or the like) is supplied from the gas supply unit 4 to the region where the plasma P in the processing container 32 is generated via the flow rate control unit 13. On the other hand, a microwave M having a predetermined power is radiated from the microwave generator 5 into the introduction waveguide 35. The radiated microwave M is guided in the introduction waveguide 35 and radiated toward the transmission window 34 through the slot 36.
  • process gas G for example, CF 4 or the like
  • the microwave M radiated toward the transmission window 34 propagates through the surface of the transmission window 34 and is radiated into the processing container 32.
  • Plasma P is generated by the energy of the microwave M radiated into the processing container 32 in this way.
  • the microwave M passes from the lower surface of the transmission window 34 to the processing container 32. It will be reflected before it enters a certain distance (skin depth) toward the inner space. Therefore, a standing wave of the microwave M is formed between the reflection surface of the microwave M and the lower surface of the slot 36.
  • the reflection surface of the microwave M becomes a plasma excitation surface, and the plasma P is stably excited and generated on this plasma excitation surface.
  • the process gas G is excited and activated to generate plasma products such as neutral active species and ions.
  • the gas containing the generated plasma product is rectified by the rectifying plate 17 and reaches the surface of the workpiece W to be etched.
  • ions and electrons are removed when the gas containing the plasma product passes through the rectifying plate 17. Therefore, an isotropic treatment (isotropic etching treatment) is mainly performed using neutral active species.
  • An anisotropic process anisotropic etching process can also be performed by applying a bias voltage so that ions can pass through the rectifying plate 17.
  • the interference light detector 7 detects the intensity of interference light caused by the light reflected from the surface of the film to be etched and the light reflected from the interface between the film to be etched and the base.
  • the electrical signal from the interference light detection unit 7 is sent to the control unit 33, and the intensity of the interference light is detected for each pixel (each light receiving element). Then, the portion where the interference light intensity change occurs is extracted as an etching portion (opening portion of the resist mask).
  • the part where the fluctuation amount of the intensity of the interference light is the largest is detected, the period of the intensity change of the interference light in this part is detected, the period, the wavelength of the light, the refractive index and film thickness of the film to be etched
  • the end point of etching that is, the end point of etching is detected. Note that when detecting the end point of the etching process, light can be emitted from the light source 21 toward the detection target portion. In this case, interference light can also be generated using light from the plasma P generated in the region where the plasma P is generated. However, considering that the intensity of light from the plasma P varies, it is preferable to irradiate light from the light source 21 toward the detection target portion.
  • control unit 33 determines that the etching process has been completed, the generation of the plasma product by the plasma generation unit 31 is stopped.
  • the workpiece W for which the etching process has been completed is carried out of the processing container 32 by a transfer device (not shown). Thereafter, if necessary, the above-described etching process is repeated.
  • the plasma P is generated in an atmosphere depressurized from the atmospheric pressure, and the process gas G supplied toward the plasma P is excited to generate the plasma.
  • the step of detecting interference light from the object W, and the etching portion (opening portion of the resist mask) are extracted from the detection area 7a having a predetermined area, and the intensity of the interference light in the etching portion (opening portion of the resist mask) is extracted.
  • a step of detecting an end point of etching based on in the same manner as described above, in the step of detecting the end point of etching, an area where the fluctuation amount of the intensity of interference light is large is detected, and the end point of etching is determined based on the average value of the intensity of interference light in this area. It can also be detected.
  • the interference light detection unit 7 having a plurality of light receiving elements is provided, and the etching portion (opening portion of the resist mask) is extracted from the detection region 7a having a predetermined area.
  • the detection target (etched portion) can be specified. Therefore, the influence of the resist portion (non-etched portion) of the resist mask can be suppressed. In addition, the influence of noise and the like can be reduced. Further, even if the etching portion (opening portion of the resist mask) is very small, it is possible to easily specify the detection target (detection alignment). Therefore, the detection accuracy of the etching end point can be improved.
  • the influence of noise and the like can be further reduced. Can do. In addition, productivity, yield, quality, and the like can be improved.
  • FIG. 4 is a schematic cross-sectional view for illustrating a plasma etching apparatus according to the third embodiment of the present invention.
  • the plasma etching apparatus 40 illustrated in FIG. 4 is a capacitively coupled plasma (CCP) processing apparatus generally called a “parallel plate type RIE (Reactive Ion Etching) apparatus”. That is, it is an example of a plasma etching apparatus that generates a plasma product from the process gas G using plasma generated by applying high-frequency power to parallel plate electrodes and processes the object to be processed.
  • CCP capacitively coupled plasma
  • RIE Reactive Ion Etching
  • the plasma etching apparatus 40 includes a plasma generation unit 43, a decompression unit 3, a gas supply unit 4, a power supply unit 44, a processing container 42, an interference light detection unit 7, a control unit 41, and the like.
  • the processing container 42 has a substantially cylindrical shape with both ends closed, and has an airtight structure capable of maintaining a reduced-pressure atmosphere.
  • a plasma generator 43 that generates plasma P is provided inside the processing vessel 42.
  • the plasma generator 43 generates the plasma P by supplying electromagnetic energy to a region where the plasma P is generated.
  • the plasma generating unit 43 is provided with a lower electrode 48 and an upper electrode 49.
  • the lower electrode 48 is provided below the region in the processing container 42 where the plasma P is generated.
  • the lower electrode 48 is provided with a holding portion (not shown) for holding the workpiece W.
  • the holding unit (not shown) can be, for example, an electrostatic chuck. Therefore, the lower electrode 48 also serves as a placement unit that places and holds the workpiece W on the upper surface (mounting surface).
  • the upper electrode 49 is provided so as to face the lower electrode 48.
  • a power supply 45 is connected to the lower electrode 48 via a blocking capacitor 46, and the upper electrode 49 is grounded. Therefore, the plasma generator 43 can generate the plasma P by supplying electromagnetic energy to a region where the plasma P is generated.
  • the power supply unit 44 is provided with a power supply 45 and a blocking capacitor 46.
  • the power supply 45 applies high frequency power of about 100 KHz to 100 MHz to the lower electrode 48.
  • the blocking capacitor 46 is provided to prevent movement of electrons generated in the plasma P and reaching the lower electrode 48.
  • the decompression unit 3 such as a turbo molecular pump (TMP) is connected to the bottom surface of the processing container 42 via a pressure control unit (Auto Pressure Controller: APC) 16.
  • the decompression unit 3 decompresses the inside of the processing container 42 to a predetermined pressure.
  • the pressure control unit 16 controls the internal pressure of the processing container 42 to be a predetermined pressure based on the output of a vacuum gauge (not shown) that detects the internal pressure of the processing container 42. That is, the processing vessel 42 has a region for generating the plasma P inside, and can maintain an atmosphere that is depressurized from the atmospheric pressure.
  • the gas supply part 4 is connected to the upper part of the side wall of the processing container 42 via a flow rate control part (Mass Flow Controller: MFC) 13. Then, the process gas G can be supplied from the gas supply unit 4 to the region where the plasma P in the processing container 42 is generated via the flow rate control unit 13. Further, the supply amount of the process gas G can be adjusted by controlling the flow rate control unit 13 by the control unit 41.
  • MFC Mass Flow Controller
  • Detection windows 19 and 19 a are provided on the wall surface of the processing container 42.
  • the detection windows 19 and 19a are made of a transparent material so that light can pass therethrough.
  • the detection windows 19, 19 a are provided at positions where the surface of the workpiece W placed on the upper surface (mounting surface) of the lower electrode 48 can be faced.
  • the detection windows 19 and 19 a can be provided on the side wall of the processing container 42.
  • the position where the detection windows 19 and 19a are provided is not limited to the side wall of the processing container 42, and can face the surface of the workpiece W placed on the upper surface (mounting surface) of the lower electrode 48.
  • the position can be appropriately provided, for example, on the ceiling of the processing container 42.
  • the interference light detection unit 7 is provided at a position where the surface of the workpiece W placed on the upper surface (placement surface) of the lower electrode 48 can be faced through the detection window 19. Further, a detection window 19 a and a light source 21 are provided at a position where light emitted from the light source 21 and reflected by the surface of the workpiece W can enter the interference light detection unit 7.
  • a plurality of light receiving elements are provided on the light receiving surface of the interference light detecting unit 7, and an etching portion (opening portion of the resist mask) can be extracted from the detection region. Then, the etching end point is detected based on the intensity of the interference light in the extracted etching portion (opening portion of the resist mask).
  • Interference light can be generated using light from the plasma P generated in the region where the plasma P is generated.
  • the light source 21 is not necessarily provided.
  • the light source 21 is not particularly limited, and examples thereof include those provided with a metal halide lamp, a halogen lamp, etc., and those capable of emitting laser light.
  • the scanned laser beam is irradiated on the surface of the workpiece W.
  • the control unit 41 controls the decompression unit 3, the gas supply unit 4, the power source 45, the pressure control unit 16, the flow rate control unit 13, the light source 21, and the like. Further, the control unit 41 extracts an etching portion (opening portion of the resist mask) from the detection region based on an electric signal from a light receiving element provided in the interference light detection unit 7. Then, the etching end point is detected based on the intensity of the interference light in the extracted etching portion (opening portion of the resist mask). That is, the control unit 41 extracts the etching portion (opening portion of the resist mask) from the detection region having a predetermined area, and sets the etching end point based on the intensity of the interference light in the etching portion (opening portion of the resist mask). To detect. Note that details regarding the extraction of the etching portion (opening portion of the resist mask) and the detection of the end point of the etching are the same as those described above, and are omitted.
  • a workpiece W for example, a semiconductor wafer or a glass substrate
  • a transfer device not shown
  • the inside of the processing container 42 is decompressed to a predetermined pressure by the decompression unit 3.
  • the pressure in the processing container 42 is adjusted by the pressure controller 16.
  • a plasma product containing neutral active species is generated by the plasma generator 43. That is, first, a predetermined amount of process gas G (for example, CF 4 or the like) is supplied from the gas supply unit 4 to the region where the plasma P in the processing container 42 is generated via the flow rate control unit 13. On the other hand, high frequency power of about 100 KHz to 100 MHz is applied from the power supply unit 44 to the lower electrode 48. Then, since the lower electrode 48 and the upper electrode 49 constitute a parallel plate electrode, discharge occurs between the electrodes and plasma P is generated. The process gas G is excited and activated by the generated plasma P, and plasma products such as neutral active species, ions, and electrons are generated. The generated plasma product descends in the processing container 42 and reaches the surface of the workpiece W, and an etching process is performed.
  • process gas G for example, CF 4 or the like
  • ions move in the direction of the lower electrode 48 (processed object W) along the vertical electric field generated by the cathode fall, and enter the surface of the processed object W, so that a physical etching process (anisotropic etching) is performed.
  • a physical etching process anisotropic etching
  • the neutral active species are lowered by a gas flow or gravity and reach the surface of the workpiece W, and a chemical etching process (isotropic etching process) is performed.
  • the interference light detector 7 detects the intensity of interference light caused by the light reflected from the surface of the film to be etched and the light reflected from the interface between the film to be etched and the base.
  • the electrical signal from the interference light detection unit 7 is sent to the control unit 41, and the intensity of the interference light is detected for each pixel (each light receiving element).
  • an etching portion (opening portion of the resist mask) is extracted from the difference in the intensity of the interference light.
  • the part where the fluctuation amount of the intensity of the interference light is the largest is detected, the period of the intensity change of the interference light in this part is detected, the period, the wavelength of the light, the refractive index and film thickness of the film to be etched
  • the end point of etching that is, the end point of etching is detected. Note that when detecting the end point of the etching process, light can be emitted from the light source 21 toward the detection target portion. In this case, interference light can also be generated using light from the plasma P generated in the region where the plasma P is generated. However, considering that the intensity of light from the plasma P varies, it is preferable to irradiate light from the light source 21 toward the detection target portion.
  • control unit 41 determines that the etching process has been completed, the generation of the plasma product by the plasma generation unit 43 is stopped.
  • the workpiece W for which the etching process has been completed is carried out of the processing container 42 by a transfer device (not shown). Thereafter, if necessary, the above-described etching process is repeated.
  • the plasma P is generated in an atmosphere depressurized from the atmospheric pressure, and the process gas G supplied toward the plasma P is excited to generate the plasma.
  • the step of detecting interference light from the object W, and the etching portion (opening portion of the resist mask) are extracted from the detection area 7a having a predetermined area, and the intensity of the interference light in the etching portion (opening portion of the resist mask) is extracted.
  • a step of detecting an end point of etching based on in the same manner as described above, in the step of detecting the end point of etching, an area where the fluctuation amount of the intensity of interference light is large is detected, and the end point of etching is determined based on the average value of the intensity of interference light in this area. It can also be detected.
  • the interference light detection unit 7 having a plurality of light receiving elements is provided, and the etching portion (opening portion of the resist mask) is extracted from the detection region 7a having a predetermined area.
  • the detection target (etched portion) can be specified. Therefore, the influence of the resist portion (non-etched portion) of the resist mask can be suppressed. In addition, the influence of noise and the like can be reduced. Further, even if the etching portion (opening portion of the resist mask) is very small, it is possible to easily specify the detection target (detection alignment). Therefore, the detection accuracy of the etching end point can be improved.
  • the influence of noise and the like can be further reduced. Can do. In addition, productivity, yield, quality, and the like can be improved.
  • the present embodiment has been illustrated. However, the present invention is not limited to these descriptions. As long as the features of the present invention are provided, those skilled in the art appropriately modified the design of the above-described embodiments are also included in the scope of the present invention.
  • the shape, size, material, arrangement, and the like of each element included in the plasma etching apparatus 1, the plasma etching apparatus 30, and the plasma etching apparatus 40 are not limited to those illustrated, but can be changed as appropriate.
  • the microwave excitation type and capacitive coupling type plasma etching apparatuses have been described as examples, but the plasma generation method is not limited to these and can be changed as appropriate.
  • each element with which each embodiment mentioned above is combined can be combined as much as possible, and what combined these is also included in the scope of the present invention as long as the characteristics of the present invention are included.
  • Plasma etching apparatus Plasma generation part 3 Decompression part 4 Gas supply part 5 Microwave generation part 6 Processing container 7 Interference light detection part 8 Control part 9 Discharge tube 10 Introduction waveguide 14 Transport pipe 15 Mounting part 16 Pressure control part 19 Detection Window 19a Detection Window 30 Plasma Etching Device 31 Plasma Generation Unit 32 Processing Vessel 33 Control Unit 34 Transmission Window 35 Introduced Waveguide 40 Plasma Etching Device 41 Control Unit 42 Processing Vessel 43 Plasma Generation Unit 44 Power Supply Unit 45 Power Supply 46 Blocking Capacitor 48 Lower electrode 49 Upper electrode M Microwave P Plasma W Workpiece

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)

Abstract

 本発明の実施形態に係るプラズマエッチング装置は、大気圧よりも減圧された雰囲気を維持可能な処理容器と、前記処理容器の内部を所定の圧力まで減圧する減圧部と、前記処理容器の内部に設けられた被処理物を載置する載置部と、内部にプラズマを発生させる領域を有し、前記処理容器から離隔された位置に設けられた放電管と、マイクロ波発生部から放射されたマイクロ波を伝播させて、前記プラズマを発生させる領域にマイクロ波を導入する導入導波管と、前記プラズマを発生させる領域にプロセスガスを供給するガス供給部と、前記放電管と、前記処理容器と、を連通させる輸送管と、前記処理容器の壁面に設けられた光を透過させる検出窓と、前記載置部に載置された被処理物の表面から発せられる干渉光を受光する受光面に複数の受光素子を有する干渉光検出部と、前記干渉光検出部からの出力に基づいてエッチングの終点を検出する制御部と、を備え、前記制御部は、前記干渉光検出部の検出領域における前記受光素子からの出力よりエッチング部分に相当する部分の前記受光素子の出力を抽出し、前記エッチング部分に相当する部分の受光素子の出力から求められた干渉光の強度に基づいてエッチングの終点を検出すること、を特徴とする。

Description

プラズマエッチング装置及びプラズマエッチング方法
 本発明は、プラズマエッチング装置及びプラズマエッチング方法に関する。
 プラズマを利用したエッチング処理は、半導体装置や液晶ディスプレイなどの電子デバイスの製造、MEMS(Micro Electro Mechanical Systems)分野におけるマイクロマシーンの製造、フォトマスクや精密光学部品などの製造など、幅広い技術分野において活用されている。プラズマを利用したエッチング処理は、低コストで、高速であり、薬剤を用いないために環境汚染を低減できる点でも有利である。
 このようなプラズマを利用したエッチング処理においては、アンダーエッチングやオーバーエッチングを抑制するためにエッチングの終点検出を行うようにしている。 
 エッチングの終点検出としては、プラズマ発光を分析することでエッチングの終点を検出する技術が知られている(例えば、特許文献1を参照)。
 この様な技術においては、プラズマ発光のうち特定の波長の光を検出器で検出し、下地が露出した際に特定の波長の光の強度が変動することを利用してエッチングの終点を検出するようにしている。
 しかしながら、プラズマの発光強度は、プロセス条件(例えば、処理圧力や印加電力など)が変動すると変化してしまうおそれがある。また、エッチングにより下地が露出しないと発光強度が変化しないため、下地が余分にエッチングされたり、ダメージを受けるおそれもある。
 そのため、エッチングされる膜の表面で反射された光と、エッチングされる膜と下地との界面で反射された光と、による干渉光の強度を検出することでエッチングの終点を検出する技術が提案されている(特許文献2を参照)。 
 特許文献2に開示がされた技術においては、エッチングにより膜厚が減少するのに伴って干渉光の強度が周期的に変化することを利用してエッチングの終点を検出するようにしている。 
 そのため、下地が露出する時点を予め知ることができるので、下地が余分にエッチングされたり、ダメージを受けることを抑制することができる。また、下地が露出する時点を予め知ることができるので、その後にプロセス条件が変動して干渉光の強度が変化してもその影響を抑制することができる。
 しかしながら、特許文献2に開示がされた技術においては、エッチングされる膜の表面に設けられたレジストマスク(エッチングマスク)の影響が考慮されていなかった。そのため、レジストマスクのレジスト部分の割合が多くなると(開口率が小さくなると)検出領域全体から見た場合の干渉光の強度が低下して検出精度が悪化してしまうおそれがある。特に、近年の微細化に伴い開口率がより小さくなると検出精度がさらに悪化するおそれがある。この場合、エッチング部分(レジストマスクの開口部分)のみを検出するようにすれば検出対象が特定されるので、レジストマスクのレジスト部分の影響を低減させることができる。しかしながら、エッチング部分(レジストマスクの開口部分)のみを検出するようにすれば微小な部分を検出することになるので、検出位置の位置合わせが困難になるという新たな問題が発生するおそれがある。
特開平9-36090号公報 特開平10-64884号公報
 本発明は、エッチングの終点の検出精度を向上させることができるプラズマエッチング装置及びプラズマエッチング方法を提供する。
 本発明の一態様によれば、大気圧よりも減圧された雰囲気を維持可能な処理容器と、前記処理容器の内部を所定の圧力まで減圧する減圧部と、前記処理容器の内部に設けられた被処理物を載置する載置部と、内部にプラズマを発生させる領域を有し、前記処理容器から離隔された位置に設けられた放電管と、マイクロ波発生部から放射されたマイクロ波を伝播させて、前記プラズマを発生させる領域にマイクロ波を導入する導入導波管と、前記プラズマを発生させる領域にプロセスガスを供給するガス供給部と、前記放電管と、前記処理容器と、を連通させる輸送管と、前記処理容器の壁面に設けられた光を透過させる検出窓と、前記載置部に載置された被処理物の表面から発せられる干渉光を受光する受光面に複数の受光素子を有する干渉光検出部と、前記干渉光検出部からの出力に基づいてエッチングの終点を検出する制御部と、を備え、前記制御部は、前記干渉光検出部の検出領域における前記受光素子からの出力よりエッチング部分に相当する部分の前記受光素子の出力を抽出し、前記エッチング部分に相当する部分の受光素子の出力から求められた干渉光の強度に基づいてエッチングの終点を検出すること、を特徴とするプラズマエッチング装置が提供される。
 また、本発明の他の一態様によれば、内部にプラズマを発生させる領域を有し、大気圧よりも減圧された雰囲気を維持可能な処理容器と、前記処理容器の内部を所定の圧力まで減圧する減圧部と、前記処理容器の内部に設けられた被処理物を載置する載置部と、前記プラズマを発生させる領域に電磁エネルギーを供給することでプラズマを発生させるプラズマ発生部と、前記プラズマを発生させる領域にプロセスガスを供給するガス供給部と、前記処理容器の壁面に設けられた光を透過させる検出窓と、前記載置部に載置された被処理物の表面から発せられる干渉光を受光する受光面に複数の受光素子を有する干渉光検出部と、前記干渉光検出部からの出力に基づいてエッチングの終点を検出する制御部と、を備え、前記制御部は、前記干渉光検出部の検出領域における前記受光素子からの出力よりエッチング部分に相当する部分の前記受光素子の出力を抽出し、前記エッチング部分に相当する部分の受光素子の出力から求められた干渉光の強度に基づいてエッチングの終点を検出すること、を特徴とするプラズマエッチング装置が提供される。
 また、本発明の他の一態様によれば、大気圧よりも減圧された雰囲気を維持可能な処理容器と、前記処理容器の内部を所定の圧力まで減圧する減圧部と、前記処理容器の内部に設けられた被処理物を載置する載置部と、内部にプラズマを発生させる領域を有し、前記処理容器から離隔された位置に設けられた放電管と、マイクロ波発生部から放射されたマイクロ波を伝播させて、前記プラズマを発生させる領域にマイクロ波を導入する導入導波管と、前記プラズマを発生させる領域にプロセスガスを供給するガス供給部と、前記放電管と、前記処理容器と、を連通させる輸送管と、前記処理容器の壁面に設けられた光を透過させる検出窓と、前記検出窓を介して前記載置部に載置された被処理物の表面に光を照射する光源と、前記載置部に載置された被処理物の表面から発せられる干渉光を受光する受光面に複数の受光素子を有する干渉光検出部と、前記干渉光検出部からの出力に基づいてエッチングの終点を検出する制御部と、を備え、前記制御部は、前記干渉光検出部の検出領域における前記受光素子からの出力よりエッチング部分に相当する部分の前記受光素子の出力を抽出し、前記エッチング部分に相当する部分の受光素子の出力から求められた干渉光の強度に基づいてエッチングの終点を検出すること、を特徴とするプラズマエッチング装置が提供される。
 また、本発明の他の一態様によれば、内部にプラズマを発生させる領域を有し、大気圧よりも減圧された雰囲気を維持可能な処理容器と、前記処理容器の内部を所定の圧力まで減圧する減圧部と、前記処理容器の内部に設けられた被処理物を載置する載置部と、前記プラズマを発生させる領域に電磁エネルギーを供給することでプラズマを発生させるプラズマ発生部と、前記プラズマを発生させる領域にプロセスガスを供給するガス供給部と、前記処理容器の壁面に設けられた光を透過させる検出窓と、前記検出窓を介して前記載置部に載置された被処理物の表面に光を照射する光源と、前記載置部に載置された被処理物の表面から発せられる干渉光を受光する受光面に複数の受光素子を有する干渉光検出部と、前記干渉光検出部からの出力に基づいてエッチングの終点を検出する制御部と、を備え、前記制御部は、前記干渉光検出部の検出領域における前記受光素子からの出力よりエッチング部分に相当する部分の前記受光素子の出力を抽出し、前記エッチング部分に相当する部分の受光素子の出力から求められた干渉光の強度に基づいてエッチングの終点を検出すること、を特徴とするプラズマエッチング装置が提供される。
 また、本発明の他の一態様によれば、大気圧よりも減圧された雰囲気においてプラズマを発生させ、前記プラズマに向けて供給されたプロセスガスを励起させてプラズマ生成物を生成し、前記プラズマ生成物を用いて被処理物に対するエッチング処理を行うプラズマエッチング方法であって、受光面に複数の受光素子を有する干渉光検出部を用いて前記被処理物からの干渉光を検出する工程と、前記干渉光検出部の検出領域における前記受光素子からの出力よりエッチング部分に相当する部分の前記受光素子の出力を抽出し、前記エッチング部分に相当する部分の受光素子の出力から求められた干渉光の強度に基づいてエッチングの終点を検出する工程と、を備えたことを特徴とするプラズマエッチング方法が提供される。
 本発明によれば、エッチングの終点の検出精度を向上させることができるプラズマエッチング装置及びプラズマエッチング方法が提供される。
本発明の第1の実施の形態に係るプラズマエッチング装置を例示するための模式断面図である。 (a)は干渉光検出部の検出領域における検出の様子を例示するための模式図、(b)は(a)におけるA部の拡大図である。 本発明の第2の実施の形態に係るプラズマエッチング装置を例示するための模式断面図である。 本発明の第3の実施の形態に係るプラズマエッチング装置を例示するための模式断面図である。
 以下、図面を参照しつつ、本発明の実施の形態について例示をする。なお、各図面中、同様の構成要素には同一の符号を付して詳細な説明は適宜省略する。 
 図1は、本発明の第1の実施の形態に係るプラズマエッチング装置を例示するための模式断面図である。  
 図1に例示をするプラズマエッチング装置1は、一般に「CDE(Chemical Dry Etching;ケミカルドライエッチング)装置」と呼ばれるマイクロ波励起型のプラズマエッチング装置である。すなわち、マイクロ波により励起、発生させたプラズマを用いてプロセスガスからプラズマ生成物を生成し、被処理物の処理を行うプラズマエッチング装置の一例である。
 図1に示すように、プラズマエッチング装置1は、プラズマ発生部2、減圧部3、ガス供給部4、マイクロ波発生部5、処理容器6、干渉光検出部7、制御部8などを備えている。 
 プラズマ発生部2は、プラズマPを発生させる領域にマイクロ波(電磁エネルギー)を供給することでプラズマPを発生させる。
 プラズマ発生部2には、放電管9、導入導波管10が設けられている。
 放電管9は、内部にプラズマを発生させる領域を有し、処理容器6から離隔された位置に設けられている。また、放電管9は管状を呈し、マイクロ波Mに対する透過率が高くエッチングされにくい材料からなる。例えば、放電管9をアルミナや石英などの誘電体からなるものとすることができる。
 放電管9の外周面を覆うようにして管状の遮蔽部18が設けられている。遮蔽部18の内周面と放電管9の外周面との間には所定の隙間が設けられ、遮蔽部18と放電管9とが略同軸となるようにして配設されている。なお、この隙間は、マイクロ波Mが漏洩しない程度の寸法とされている。そのため、遮蔽部18によりマイクロ波Mが漏洩することを抑制することができる。
 また、遮蔽部18には、放電管9と略直交するように導入導波管10が接続されている。導入導波管10の終端には終端整合器11aが設けられている。また、導入導波管10の入口側(マイクロ波Mの導入側)にはスタブチューナ11bが設けられている。導入導波管10は、後述するマイクロ波発生部5から放射されたマイクロ波Mを伝播させて、プラズマPを発生させる領域にマイクロ波Mを導入する。
 導入導波管10と遮蔽部18との接続部分には、環状のスロット12が設けられている。スロット12は、導入導波管10の内部を導波されてきたマイクロ波Mを放電管9に向けて放射するためのものである。後述するように、放電管9の内部にはプラズマPが発生するが、スロット12に対向する部分がプラズマPを発生させる領域の略中心となる。
 導入導波管10の一端には、マイクロ波発生部5が設けられている。このマイクロ波発生部5は、所定周波数(例えば2.75GHz)のマイクロ波Mを発生させ、導入導波管10に向けて放射することができるようになっている。
 放電管9の一端には流量制御部(Mass Flow Controller:MFC)13を介してガス供給部4が接続されている。そして、流量制御部13を介して、ガス供給部4から放電管9内のプラズマを発生させる領域にプロセスガスGを供給することができるようになっている。また、制御部8により流量制御部13を制御することで、プロセスガスGの供給量が調整できるようになっている。
 放電管9の他端には輸送管14の一端が接続され、輸送管14の他端は処理容器6に接続されている。すなわち、輸送管14は、放電管9と処理容器6とを連通させている。輸送管14は、中性活性種による腐蝕に耐え得る材料、例えば、石英、ステンレス鋼、セラミックス、フッ素樹脂などからなる。
 処理容器6は、有底の略円筒形状を呈し、その上端が天板6aで塞がれている。処理容器6の内部には、図示しない静電チャックを内蔵した載置部15が設けられ、その上面(載置面)に被処理物W(例えば、半導体ウェーハやガラス基板など)を載置、保持することができるようになっている。
 処理容器6の底面には、圧力制御部(Auto Pressure Controller:APC)16を介してターボ分子ポンプ(TMP)などの減圧部3が接続されている。減圧部3は、処理容器6の内部を所定の圧力まで減圧する。圧力制御部16は、処理容器6の内圧を検出する図示しない真空計の出力に基づいて、処理容器6の内圧が所定の圧力となるように制御する。すなわち、処理容器6は、半導体ウェーハやガラス基板などの被処理物Wを収容し大気圧よりも減圧された雰囲気を維持できるようになっている。
 輸送管14との接続部分よりは下方であって載置部15の上方には、載置部15の上面(載置面)と対向させるようにして整流板17が設けられている。整流板17は、輸送管14から導入される中性活性種を含んだガスの流れを整流し、被処理物Wの処理面上における中性活性種の量が略均一となるようにするためのものである。整流板17は、多数の孔部17aが設けられた略円形の板状体であり、処理容器6の内壁に固定されている。そして、整流板17と載置部15の上面(載置面)との間の領域が、被処理物に対する処理が行われる処理空間20となる。また、処理容器6の内壁面、整流板17の表面は、中性活性種と反応しにくい材料(例えば、四弗化樹脂(PTFE)またはアルミナ等のセラミック材料など)で覆われている。
 処理容器6の壁面には検出窓19が設けられている。また、検出窓19は透明材料からなり光が透過できるようになっている。検出窓19は、載置部15の上面(載置面)に載置された被処理物Wの表面を臨むことができる位置に設けられている。例えば、図1に例示をしたように載置部15の上面(載置面)に対向する天板6aに検出窓19を設けるようにすることができる。ただし、検出窓19を設ける位置は天板6aに限定されるわけではなく、載置部15の上面(載置面)に載置された被処理物Wの表面を臨むことができる位置、例えば、処理容器6の側壁、天板6aなどに適宜設けるようにすることができる。
 検出窓19を介して載置部15の上面(載置面)に載置された被処理物Wの表面を臨むことができる位置には、干渉光検出部7が設けられている。 
 干渉光検出部7は、エッチングされる膜の表面で反射された光と、エッチングされる膜と下地との界面で反射された光と、による干渉光の強度を検出する。 
 ここで、干渉光の強度は、エッチングにより膜厚が減少するのに伴って周期的に変化し、下地が露出すると略一定となる。そして、干渉光の強度が変化する際の周期は、光の波長、エッチングされる膜の屈折率や膜厚と相関関係があるので、干渉光の強度が変化する際の周期を検出することができれば膜厚を演算することができる。そのため、エッチングが終了する時点、すなわち、エッチングの終点を検出することができる。
 また、干渉光検出部7の受光面には複数の受光素子が設けられている。受光素子は受光した干渉光の強度に応じた電気信号を出力する。すなわち、干渉光検出部7は、載置部15に載置された被処理物の表面から発せられる干渉光を受光する受光面に複数の受光素子を有する。受光素子の配設形態は特に限定されるわけではなく、例えば、一列に並べるようにしてもよいし、格子状などのように平面状に敷き詰めるようにしてもよい。ただし、受光素子を平面状に敷き詰めるようにすれば、検出領域を平面状とすることができるので、検出位置の位置合わせが容易となる。 
 干渉光検出部7としては、例えば、CCD(Charge Coupled Device)センサなどを例示することができる。
 ここで、エッチングされる膜の表面にはレジストマスク(エッチングマスク)が設けられている。そのため、レジストマスクのレジスト部分の割合が多くなると(開口率が小さくなると)検出領域全体で見た場合の干渉光の強度が低下して検出精度が悪化してしまうおそれがある。特に、近年の微細化に伴い開口率がより小さくなると検出精度がさらに悪化するおそれがある。この場合、エッチング部分(レジストマスクの開口部分)のみを検出するようにすれば検出対象が特定されるので、レジストマスクのレジスト部分の影響を低減させることができる。しかしながら、エッチング部分(レジストマスクの開口部分)のみを検出するようにすれば微小な部分を検出することになるので、検出位置の位置合わせが困難になるという新たな問題が発生するおそれがある。
 そのため、本実施の形態においては、干渉光検出部7の受光面に複数の受光素子を設け、検出領域からエッチング部分(レジストマスクの開口部分)を抽出することができるようになっている。そして、抽出したエッチング部分(レジストマスクの開口部分)における干渉光の強度に基づいてエッチングの終点を検出するようにしている。なお、エッチング部分(レジストマスクの開口部分)の抽出やエッチングの終点の検出に関する詳細は後述する。
 検出窓19を介して載置部15の上面(載置面)に載置された被処理物Wの表面に光を照射できる位置には光源21が設けられている。 
 輸送管14を介して処理容器6内に漏れ出るプラズマPからの光や処理容器6内で生じる発光を利用して干渉光を発生させることができる。そのため、光源21は必ずしも設ける必要はない。ただし、プラズマPからの光の強度が変動することや、処理容器6内に漏れ出る光、処理容器6内で生じる発光の強度が低いことを考慮すると光源21を設けるようにすることが好ましい。光源21としては特に限定されるわけではなく、例えば、メタルハライドランプやハロゲンランプなどを備えたものやレーザ光を出射可能なものなどを例示することができる。 
 なお、レーザ光を用いる場合には、走査されたレーザ光が被処理物Wの表面に照射されるようにすることが好ましい。
 制御部8は、減圧部3、ガス供給部4、マイクロ波発生部5、圧力制御部16、流量制御部13、光源21などの制御を行う。  
 また、制御部8は、干渉光検出部7に設けられた受光素子からの電気信号に基づいて検出領域からエッチング部分(レジストマスクの開口部分)を抽出する。そして、抽出したエッチング部分(レジストマスクの開口部分)における干渉光の強度に基づいてエッチングの終点を検出する。この場合、制御部8は、所定の広さを有する検出領域からエッチング部分(レジストマスクの開口部分)を抽出し、エッチング部分(レジストマスクの開口部分)における干渉光の強度に基づいてエッチングの終点を検出する。さらに詳細に説明すると、制御部8は、干渉光検出部7の検出領域7aにおける受光素子からの出力よりエッチング部分(レジストマスクの開口部分)に相当する部分の受光素子の出力を抽出し、エッチング部分(レジストマスクの開口部分)に相当する部分の受光素子の出力から求められた干渉光の強度に基づいてエッチングの終点を検出する。
 この様に、検出領域7aからのエッチング部分(レジストマスクの開口部分)の抽出は、検出領域7aにおける受光素子の出力と、エッチング部分(レジストマスクの開口部分)に相当する部分の受光素子の出力とに基づいて行われる。ただし、本明細書においては、煩雑化を避けるため単に「エッチング部分(レジストマスクの開口部分)の抽出」などと表現することにする。
 図2は、エッチング部分(レジストマスクの開口部分)の抽出について例示をするための模式図である。なお、図2(a)は干渉光検出部7の検出領域7aにおける検出の様子を例示するための模式図、図2(b)は図2(a)におけるA部の拡大図である。  
 この場合、干渉光検出部7の受光面には複数の画素(受光素子)が格子状に敷き詰められており、干渉光の強度に応じた電気信号が検出領域7aの各画素(各受光素子)ごとに出力されるようになっている。
 干渉光検出部7からの電気信号は制御部8に送られ、各画素(各受光素子)ごとに干渉光の強度が検出される。 
 ここで、各画素(各受光素子)ごとの干渉光の強度変化量をモニタし、強度変化が生じている部分をエッチング部分(レジストマスクの開口部分)として抽出することができる。例えば、図2(a)における「網掛け部分」をエッチング部分(レジストマスクの開口部分)として抽出することができる。
 そして、抽出されたエッチング部分(レジストマスクの開口部分)のうち、干渉光の強度の変動量が最も大きい部分を検出対象とする。 
 例えば、図2(b)における画素Bが周囲の画素より干渉光の強度の変動量が大きくなるので、画素Bを検出対象とする。
 干渉光の強度の変動量が最も大きい画素の自動判別方法としては、干渉光の強度の時間微分量を監視し、この値が最も大きいものを干渉光の強度の変動量が最も大きい画素とする方法がある。 
 また、1つの画素を検出対象として抽出するのではなく、干渉光の強度の変動量が大きい領域(例えば、図2(b)における画素Bとその周囲の画素からなる領域)を検出対象とすることもできる。この場合、例えば、干渉光の強度の変動量が大きい上位数個の画素を併せて監視し、これらの平均値を求めるようにすることができる。
 以上例示をしたように、所定の広さを有する検出領域7aからエッチング部分(レジストマスクの開口部分)を抽出するようにすれば検出対象が特定されるので、レジストマスクのレジスト部分の影響を低減させることができる。また、エッチング部分(レジストマスクの開口部分)が微小であっても検出対象の特定(検出の位置合わせ)を容易とすることができる。そのため、エッチングの終点の検出精度を向上させることができる。 
 また、干渉光の強度の変動量が大きい領域を検出対象とし、この領域における干渉光の強度の平均値に基づいてエッチングの終点を検出するようにすれば、ノイズなどの影響をさらに低減させることができる。
 次に、プラズマエッチング装置1の作用とともに本実施の形態に係るプラズマエッチング方法について例示をする。 
 まず、図示しない搬送装置により被処理物W(例えば、半導体ウェーハやガラス基板など)が、処理容器6内に搬入され、載置部15上に載置、保持される。 
 次に、処理容器6内が減圧部3により所定圧力まで減圧される。この際、圧力制御部16により処理容器6内の圧力が調整される。また、処理容器6と連通する放電管9の内部も減圧される。
 次に、プラズマ発生部2により中性活性種を含むプラズマ生成物が生成される。すなわち、まず、ガス供給部4から流量制御部13を介して所定流量のプロセスガスG(例えば、CFなど)が放電管9内に供給される。一方、マイクロ波発生部5から所定のパワーのマイクロ波Mが導入導波管10内に放射される。放射されたマイクロ波Mは導入導波管10内を導波され、スロット12を介して放電管9に向けて放射される。
 放電管9に向けて放射されたマイクロ波Mは、放電管9の表面を伝搬して、放電管9内に放射される。このようにして放電管9内に放射されたマイクロ波Mのエネルギーにより、プラズマPが発生する。そして、発生したプラズマP中の電子密度が、放電管9を介して供給されるマイクロ波Mを遮蔽できる密度(カットオフ密度)以上になると、マイクロ波Mは放電管9の内壁面から放電管9内の空間に向けて一定距離(スキンデプス)だけ入るまでの間に反射されるようになる。そのため、このマイクロ波Mの反射面とスロット12の下面との間にはマイクロ波Mの定在波が形成されることになる。その結果、マイクロ波Mの反射面がプラズマ励起面となって、このプラズマ励起面で安定的にプラズマPが励起、発生するようになる。このプラズマ励起面で励起、発生したプラズマP中において、プロセスガスGが励起、活性化されて中性活性種、イオンなどのプラズマ生成物が生成される。
 生成されたプラズマ生成物を含むガスは、輸送管14を介して処理容器6内に搬送される。この際、寿命の短いイオンなどは処理容器6にまで到達できず、寿命の長い中性活性種のみが処理容器6に到達することになる。処理容器6内に導入された中性活性種を含むガスは、整流板17で整流されて被処理物Wの表面に到達し、エッチング処理が行われる。本実施の形態においては、主に中性活性種による等方性処理(等方性エッチング処理)が行われることになる。
 また、エッチング処理の終点が検出される。 
 まず、前述したように、エッチングされる膜の表面で反射された光と、エッチングされる膜と下地との界面で反射された光と、による干渉光の強度が干渉光検出部7により検出される。この場合、干渉光検出部7からの電気信号は制御部8に送られ、各画素(各受光素子)ごとに干渉光の強度が検出される。そして、干渉光の強度の違いからエッチング部分(レジストマスクの開口部分)を抽出する。
 次に、干渉光の強度の変動量が最も大きい部分を検出対象とし、この部分の干渉光の強度変化の周期を検出し、周期と、光の波長、エッチングされる膜の屈折率や膜厚と、の相関関係から膜厚を演算することでエッチングが終了する時点、すなわち、エッチングの終点を検出する。   
 なお、エッチング処理の終点検出の際に、光源21から検出対象部分に向けて光を照射するようにすることができる。この場合、輸送管14を介して処理容器6内に漏れ出るプラズマPからの光や処理容器6内で生じる発光を利用して干渉光を発生させることもできる。ただし、プラズマPからの光の強度が変動することや、処理容器6内に漏れ出る光、処理容器6内で生じる発光の強度が低いことを考慮すると、光源21から検出対象部分に向けて光を照射するようにすることが好ましい。
 制御部8により、エッチング処理が終了したと判定された場合には、プラズマ発生部2によるプラズマ生成物の生成が停止される。  
 エッチング処理が終了した被処理物Wは、図示しない搬送装置により処理容器6外に搬出される。この後、必要があれば、前述したエッチング処理が繰り返される。
 以上に例示をしたように、本実施の形態に係るプラズマエッチング方法は、大気圧よりも減圧された雰囲気においてプラズマPを発生させ、プラズマPに向けて供給されたプロセスガスGを励起させてプラズマ生成物を生成し、生成されたプラズマ生成物を用いて被処理物Wに対するエッチング処理を行うプラズマエッチング方法であって、受光面に複数の受光素子を有する干渉光検出部7を用いて被処理物Wからの干渉光を検出する工程と、所定の広さを有する検出領域7aからエッチング部分(レジストマスクの開口部分)を抽出し、エッチング部分(レジストマスクの開口部分)における干渉光の強度に基づいてエッチングの終点を検出する工程と、を備えている。 
 また、エッチングの終点を検出する工程において、干渉光の強度の変動量が大きい領域を検出対象とし、この領域における干渉光の強度の平均値に基づいてエッチングの終点を検出するようにすることもできる。
 本実施の形態によれば、複数の受光素子を有する干渉光検出部7を設け、所定の広さを有する検出領域7aからエッチング部分(レジストマスクの開口部分)を抽出するようにしているので、検出対象(エッチング部分)を特定することができる。そのため、レジストマスクのレジスト部分(非エッチング部分)の影響を抑制することができる。また、ノイズなどの影響を低減させることができる。また、エッチング部分(レジストマスクの開口部分)が微小であっても検出対象の特定(検出の位置合わせ)を容易とすることができる。そのため、エッチングの終点の検出精度を向上させることができる。 
 また、干渉光の強度の変動量が大きい領域を検出対象とし、この領域における干渉光の強度の平均値に基づいてエッチングの終点を検出するようにすれば、ノイズなどの影響をさらに低減させることができる。 
 また、生産性、歩留まり、品質などの向上を図ることができる。
 図3は、本発明の第2の実施の形態に係るプラズマエッチング装置を例示するための模式断面図である。 
 図3に例示をするプラズマエッチング装置30は、一般に「SWP(Surface Wave Plasma:表面波プラズマ)装置」と呼ばれるマイクロ波励起型のプラズマエッチング装置である。すなわち、マイクロ波により励起、発生させたプラズマを用いてプロセスガスからプラズマ生成物を生成し、被処理物の処理を行うプラズマエッチング装置の一例である。
 図3に示すように、プラズマエッチング装置30は、プラズマ発生部31、減圧部3、ガス供給部4、マイクロ波発生部5、処理容器32、干渉光検出部7、制御部33などを備えている。 
 プラズマ発生部31は、プラズマPを発生させる領域にマイクロ波(電磁エネルギー)を供給することでプラズマPを発生させる。  
 プラズマ発生部31には、透過窓34、導入導波管35が設けられている。透過窓34は平板状を呈し、マイクロ波Mに対する透過率が高くエッチングされにくい材料からなる。例えば、透過窓34をアルミナや石英などの誘電体からなるものとすることができる。透過窓34は、処理容器32の上端に気密となるようにして設けられている。
 処理容器32の外側であって、透過窓34の上面には導入導波管35が設けられている。なお、図示は省略したが終端整合器やスタブチューナを適宜設けるようにすることもできる。導入導波管35は、マイクロ波発生部5から放射されたマイクロ波Mを伝播させて、プラズマPを発生させる領域にマイクロ波Mを導入する。 
 導入導波管35と透過窓34との接続部分には、スロット36が設けられている。スロット36は、導入導波管35の内部を導波されてきたマイクロ波Mを透過窓34に向けて放射するためのものである。
 導入導波管35の一端には、マイクロ波発生部5が設けられている。このマイクロ波発生部5は、所定周波数(例えば2.75GHz)のマイクロ波Mを発生させ、導入導波管35に向けて放射することができるようになっている。 
 処理容器32の側壁上部には、流量制御部(Mass Flow Controller:MFC)13を介してガス供給部4が接続されている。そして、ガス供給部4から流量制御部13を介して処理容器32内のプラズマPを発生させる領域にプロセスガスGを供給することができるようになっている。また、制御部33により流量制御部13を制御することで、プロセスガスGの供給量が調整できるようになっている。
 処理容器32は、有底の略円筒形状を呈し、その内部には、図示しない静電チャックを内蔵した載置部15が設けられている。そして、載置部15の上面(載置面)に被処理物W(例えば、半導体ウェーハやガラス基板など)を載置、保持することができるようになっている。 
 処理容器32の底面には、圧力制御部(Auto Pressure Controller:APC)16を介してターボ分子ポンプ(TMP)などの減圧部3が接続されている。減圧部3は、処理容器32の内部を所定の圧力まで減圧する。圧力制御部16は、処理容器32の内圧を検出する図示しない真空計の出力に基づいて、処理容器32の内圧が所定の圧力となるように制御する。すなわち、処理容器32は、内部にプラズマPを発生させる領域を有し、大気圧よりも減圧された雰囲気を維持できるようになっている。
 ガス供給部4との接続部分よりは下方であって載置部15の上方には、載置部15の上面(載置面)と対向させるようにして整流板17が設けられている。整流板17は、プラズマPを発生させる領域において生成されたプラズマ生成物を含んだガスの流れを整流し、被処理物Wの処理面上におけるプラズマ生成物の量が略均一となるようにするためのものである。
 また、整流板17は、多数の孔部17aが設けられた略円形の板状体であり、処理容器32の内壁に固定されている。そして、整流板17と載置部15の上面(載置面)との間の領域が、被処理物に対する処理が行われる処理空間20となる。また、処理容器32の内壁面、整流板17の表面は、中性活性種と反応しにくい材料(例えば、四弗化樹脂(PTFE)またはアルミナ等のセラミック材料など)で覆われている。
 処理容器32の壁面には検出窓19、19aが設けられている。また、検出窓19、19aは透明材料からなり光が透過できるようになっている。検出窓19、19aは、載置部15の上面(載置面)に載置された被処理物Wの表面を臨むことができる位置に設けられている。例えば、図3に例示をしたように処理容器32の側壁に検出窓19、19aを設けるようにすることができる。ただし、検出窓19、19aを設ける位置は処理容器32の側壁に限定されるわけではなく、載置部15の上面(載置面)に載置された被処理物Wの表面を臨むことができる位置、例えば、処理容器32の天井などに適宜設けるようにすることができる。 検出窓19を介して載置部15の上面(載置面)に載置された被処理物Wの表面を臨むことができる位置には、前述した干渉光検出部7が設けられている。 
 また、光源21から出射し、被処理物Wの表面で反射した光が干渉光検出部7に入射可能な位置に検出窓19a、光源21が設けられている。
 本実施の形態においても、干渉光検出部7の受光面には複数の受光素子が設けられ、検出領域からエッチング部分(レジストマスクの開口部分)を抽出することができるようになっている。そして、抽出したエッチング部分(レジストマスクの開口部分)における干渉光の強度に基づいてエッチングの終点を検出するようにしている。
 プラズマPを発生させる領域において発生させたプラズマPからの光を利用して干渉光を発生させることができる。そのため、光源21は必ずしも設ける必要はない。ただし、プラズマPからの光の強度が変動することを考慮すると光源21を設けるようにすることが好ましい。光源21としては特に限定されるわけではなく、例えば、メタルハライドランプやハロゲンランプなどを備えたものやレーザ光を出射可能なものなどを例示することができる。 
 なお、レーザ光を用いる場合には、走査されたレーザ光が被処理物Wの表面に照射されるようにすることが好ましい。
 制御部33は、減圧部3、ガス供給部4、マイクロ波発生部5、圧力制御部16、流量制御部13、光源21などの制御を行う。  
 また、制御部33は、干渉光検出部7に設けられた受光素子からの電気信号に基づいて検出領域からエッチング部分(レジストマスクの開口部分)を抽出する。そして、抽出したエッチング部分(レジストマスクの開口部分)における干渉光の強度に基づいてエッチングの終点を検出する。すなわち、制御部33は、所定の広さを有する検出領域からエッチング部分(レジストマスクの開口部分)を抽出し、エッチング部分(レジストマスクの開口部分)における干渉光の強度に基づいてエッチングの終点を検出する。なお、エッチング部分(レジストマスクの開口部分)の抽出やエッチングの終点の検出に関する詳細は前述したものと同様のため省略する。
 次に、プラズマエッチング装置30の作用とともに本実施の形態に係るプラズマエッチング方法について例示をする。 
 まず、図示しない搬送装置により被処理物W(例えば、半導体ウェーハやガラス基板など)が、処理容器32内に搬入され、載置部15上に載置、保持される。 次に、処理容器32内が減圧部3により所定圧力まで減圧される。この際、圧力制御部16により処理容器32内の圧力が調整される。
 次に、プラズマ発生部31により中性活性種を含むプラズマ生成物が生成される。すなわち、まず、ガス供給部4から所定量のプロセスガスG(例えば、CFなど)が、流量制御部13を介して処理容器32内のプラズマPを発生させる領域に供給される。一方、マイクロ波発生部5から所定のパワーのマイクロ波Mが導入導波管35内に放射される。放射されたマイクロ波Mは、導入導波管35内を導波され、スロット36を介して透過窓34に向けて放射される。
 透過窓34に向けて放射されたマイクロ波Mは、透過窓34の表面を伝搬して、処理容器32内に放射される。このようにして処理容器32内に放射されたマイクロ波Mのエネルギーにより、プラズマPが発生する。そして、発生したプラズマP中の電子密度が、透過窓34を介して供給されるマイクロ波Mを遮蔽できる密度(カットオフ密度)以上になると、マイクロ波Mは透過窓34の下面から処理容器32内の空間に向けて一定距離(スキンデプス)だけ入るまでの間に反射されるようになる。そのため、このマイクロ波Mの反射面とスロット36の下面との間にはマイクロ波Mの定在波が形成されることになる。その結果、マイクロ波Mの反射面がプラズマ励起面となって、このプラズマ励起面で安定的にプラズマPが励起、発生するようになる。このプラズマ励起面で励起、発生したプラズマP中において、プロセスガスGが励起、活性化されて中性活性種、イオンなどのプラズマ生成物が生成される。
 生成されたプラズマ生成物を含むガスは、整流板17で整流されて被処理物Wの表面に到達し、エッチング処理が行われる。本実施の形態においては、プラズマ生成物を含むガスが整流板17を通過する際に、イオンや電子が除去される。そのため、主に中性活性種による等方性処理(等方性エッチング処理)が行われることになる。なお、バイアス電圧を付加してイオンが整流板17を通過できるようにすることで、異方性処理(異方性エッチング処理)を行うようにすることもできる。
 また、エッチング処理の終点が検出される。 
 まず、前述したように、エッチングされる膜の表面で反射された光と、エッチングされる膜と下地との界面で反射された光と、による干渉光の強度が干渉光検出部7により検出される。この場合、干渉光検出部7からの電気信号は制御部33に送られ、各画素(各受光素子)ごとに干渉光の強度が検出される。そして、干渉光の強度変化が生じている部分をエッチング部分(レジストマスクの開口部分)として抽出する。
 次に、干渉光の強度の変動量が最も大きい部分を検出対象とし、この部分の干渉光の強度変化の周期を検出し、周期と、光の波長、エッチングされる膜の屈折率や膜厚と、の相関関係から膜厚を演算することでエッチングが終了する時点、すなわち、エッチングの終点を検出する。   
 なお、エッチング処理の終点検出の際に、光源21から検出対象部分に向けて光を照射するようにすることができる。この場合、プラズマPを発生させる領域において発生させたプラズマPからの光を利用して干渉光を発生させることもできる。ただし、プラズマPからの光の強度が変動することを考慮すると、光源21から検出対象部分に向けて光を照射するようにすることが好ましい。
 制御部33により、エッチング処理が終了したと判定された場合には、プラズマ発生部31によるプラズマ生成物の生成が停止される。  
 エッチング処理が終了した被処理物Wは、図示しない搬送装置により処理容器32外に搬出される。この後、必要があれば、前述したエッチング処理が繰り返される。
 以上に例示をしたように、本実施の形態に係るプラズマエッチング方法は、大気圧よりも減圧された雰囲気においてプラズマPを発生させ、プラズマPに向けて供給されたプロセスガスGを励起させてプラズマ生成物を生成し、生成されたプラズマ生成物を用いて被処理物Wに対するエッチング処理を行うプラズマエッチング方法であって、受光面に複数の受光素子を有する干渉光検出部7を用いて被処理物Wからの干渉光を検出する工程と、所定の広さを有する検出領域7aからエッチング部分(レジストマスクの開口部分)を抽出し、エッチング部分(レジストマスクの開口部分)における干渉光の強度に基づいてエッチングの終点を検出する工程と、を備えている。 
 また、前述したものと同様に、エッチングの終点を検出する工程において、干渉光の強度の変動量が大きい領域を検出対象とし、この領域における干渉光の強度の平均値に基づいてエッチングの終点を検出するようにすることもできる。
 本実施の形態によれば、複数の受光素子を有する干渉光検出部7を設け、所定の広さを有する検出領域7aからエッチング部分(レジストマスクの開口部分)を抽出するようにしているので、検出対象(エッチング部分)を特定することができる。そのため、レジストマスクのレジスト部分(非エッチング部分)の影響を抑制することができる。また、ノイズなどの影響を低減させることができる。また、エッチング部分(レジストマスクの開口部分)が微小であっても検出対象の特定(検出の位置合わせ)を容易とすることができる。そのため、エッチングの終点の検出精度を向上させることができる。 
 また、干渉光の強度の変動量が大きい領域を検出対象とし、この領域における干渉光の強度の平均値に基づいてエッチングの終点を検出するようにすれば、ノイズなどの影響をさらに低減させることができる。 
 また、生産性、歩留まり、品質などの向上を図ることができる。
 図4は、本発明の第3の実施の形態に係るプラズマエッチング装置を例示するための模式断面図である。    
 図4に例示をするプラズマエッチング装置40は、一般に「平行平板型RIE(Reactive Ion Etching)装置」と呼ばれる容量結合型プラズマ(CCP:Capacitively Coupled Plasma)処理装置である。すなわち、平行平板電極に高周波電力を印加することで発生させたプラズマを用いてプロセスガスGからプラズマ生成物を生成し、被処理物の処理を行うプラズマエッチング装置の一例である。
 図4に示すように、プラズマエッチング装置40は、プラズマ発生部43、減圧部3、ガス供給部4、電源部44、処理容器42、干渉光検出部7、制御部41などを備えている。 
 処理容器42は、両端が閉塞された略円筒形状を呈し、減圧雰囲気が維持可能な気密構造となっている。
 処理容器42の内部にはプラズマPを発生させるプラズマ発生部43が設けられている。 
 プラズマ発生部43は、プラズマPを発生させる領域に電磁エネルギーを供給することでプラズマPを発生させる。
 プラズマ発生部43には、下部電極48、上部電極49が設けられている。
 下部電極48は、処理容器42内のプラズマPを発生させる領域の下方に設けられている。下部電極48には、被処理物Wを保持するための図示しない保持部が設けられている。図示しない保持部は、例えば静電チャックなどとすることができる。そのため、下部電極48は、上面(載置面)に被処理物Wを載置、保持する載置部ともなる。
 上部電極49は、下部電極48に対向させるようにして設けられている。そして、下部電極48にはブロッキングコンデンサ46を介して電源45が接続され、上部電極49は接地されている。そのため、プラズマ発生部43は、プラズマPを発生させる領域に電磁エネルギーを供給することでプラズマPを発生させることができる。
 電源部44には、電源45、ブロッキングコンデンサ46が設けられている。
 電源45は、100KHz~100MHz程度の高周波電力を下部電極48に印加する。ブロッキングコンデンサ46は、プラズマPの中で発生し下部電極48に到達した電子の移動を阻止するために設けられている。
 処理容器42の底面には、圧力制御部(Auto Pressure Controller:APC)16を介してターボ分子ポンプ(TMP)などの減圧部3が接続されている。減圧部3は、処理容器42の内部を所定の圧力まで減圧する。圧力制御部16は、処理容器42の内圧を検出する図示しない真空計の出力に基づいて、処理容器42の内圧が所定の圧力となるように制御する。すなわち、処理容器42は、内部にプラズマPを発生させる領域を有し、大気圧よりも減圧された雰囲気を維持できるようになっている。
 処理容器42の側壁上部には、流量制御部(Mass Flow Controller:MFC)13を介してガス供給部4が接続されている。そして、ガス供給部4から流量制御部13を介して処理容器42内のプラズマPを発生させる領域にプロセスガスGを供給することができるようになっている。また、制御部41により流量制御部13を制御することで、プロセスガスGの供給量が調整できるようになっている。
 処理容器42の壁面には検出窓19、19aが設けられている。また、検出窓19、19aは透明材料からなり光が透過できるようになっている。検出窓19、19aは、下部電極48の上面(載置面)に載置された被処理物Wの表面を臨むことができる位置に設けられている。例えば、図4に例示をしたように処理容器42の側壁に検出窓19、19aを設けるようにすることができる。ただし、検出窓19、19aを設ける位置は処理容器42の側壁に限定されるわけではなく、下部電極48の上面(載置面)に載置された被処理物Wの表面を臨むことができる位置、例えば、処理容器42の天井などに適宜設けるようにすることができる。 検出窓19を介して下部電極48の上面(載置面)に載置された被処理物Wの表面を臨むことができる位置には、干渉光検出部7が設けられている。 
 また、光源21から出射し、被処理物Wの表面で反射した光が干渉光検出部7に入射可能な位置に検出窓19a、光源21が設けられている。
 本実施の形態においても、干渉光検出部7の受光面には複数の受光素子が設けられ、検出領域からエッチング部分(レジストマスクの開口部分)を抽出することができるようになっている。そして、抽出したエッチング部分(レジストマスクの開口部分)における干渉光の強度に基づいてエッチングの終点を検出するようにしている。
 プラズマPを発生させる領域において発生させたプラズマPからの光を利用して干渉光を発生させることができる。そのため、光源21は必ずしも設ける必要はない。ただし、プラズマPからの光の強度が変動することを考慮すると光源21を設けるようにすることが好ましい。光源21としては特に限定されるわけではなく、例えば、メタルハライドランプやハロゲンランプなどを備えたものやレーザ光を出射可能なものなどを例示することができる。 
 なお、レーザ光を用いる場合には、走査されたレーザ光が被処理物Wの表面に照射されるようにすることが好ましい。
 制御部41は、減圧部3、ガス供給部4、電源45、圧力制御部16、流量制御部13、光源21などの制御を行う。 
 また、制御部41は、干渉光検出部7に設けられた受光素子からの電気信号に基づいて検出領域からエッチング部分(レジストマスクの開口部分)を抽出する。そして、抽出したエッチング部分(レジストマスクの開口部分)における干渉光の強度に基づいてエッチングの終点を検出する。すなわち、制御部41は、所定の広さを有する検出領域からエッチング部分(レジストマスクの開口部分)を抽出し、エッチング部分(レジストマスクの開口部分)における干渉光の強度に基づいてエッチングの終点を検出する。なお、エッチング部分(レジストマスクの開口部分)の抽出やエッチングの終点の検出に関する詳細は前述したものと同様のため省略する。
 次に、プラズマエッチング装置40の作用とともに本実施の形態に係るプラズマエッチング方法について例示をする。  
 まず、図示しない搬送装置により被処理物W(例えば、半導体ウェーハやガラス基板など)が、処理容器42内に搬入され、下部電極48上に載置、保持される。 
 次に、処理容器42内が減圧部3により所定圧力まで減圧される。この際、圧力制御部16により処理容器42内の圧力が調整される。
 次に、プラズマ発生部43により中性活性種を含むプラズマ生成物が生成される。すなわち、まず、ガス供給部4から所定量のプロセスガスG(例えば、CFなど)が、流量制御部13を介して処理容器42内のプラズマPを発生させる領域に供給される。 
 一方、電源部44より100KHz~100MHz程度の高周波電力が下部電極48に印加される。すると、下部電極48と上部電極49とが平行平板電極を構成するため、電極間に放電が起こりプラズマPが発生する。発生したプラズマPによりプロセスガスGが励起、活性化されて中性活性種、イオン、電子などのプラズマ生成物が生成される。この生成されたプラズマ生成物が、処理容器42内を下降して被処理物Wの表面に到達し、エッチング処理が行われる。
 この場合、生成されたイオンと電子のうち、質量の軽い電子は動きが速く、下部電極48と上部電極49にすぐに到達する。下部電極48に到達した電子は、ブロッキングコンデンサ46により移動を阻止され下部電極48を帯電させる。下部電極48の帯電圧は400V~1000V程度に達するが、これを「陰極降下」という。一方、上部電極49は接地されているため、到達した電子は移動が阻止されず、上部電極49はほとんど帯電しない。
 そして、陰極降下により発生する垂直な電界に沿ってイオンが下部電極48(被処理物W)方向に移動し、被処理物Wの表面に入射することで物理的なエッチング処理(異方性エッチング処理)が行われる。なお、中性活性種は、ガス流や重力により下降して被処理物Wの表面に到達し、化学的なエッチング処理(等方性エッチング処理)が行われる。
 また、エッチング処理の終点が検出される。 
 まず、前述したように、エッチングされる膜の表面で反射された光と、エッチングされる膜と下地との界面で反射された光と、による干渉光の強度が干渉光検出部7により検出される。この場合、干渉光検出部7からの電気信号は制御部41に送られ、各画素(各受光素子)ごとに干渉光の強度が検出される。そして、干渉光の強度の違いからエッチング部分(レジストマスクの開口部分)を抽出する。
 次に、干渉光の強度の変動量が最も大きい部分を検出対象とし、この部分の干渉光の強度変化の周期を検出し、周期と、光の波長、エッチングされる膜の屈折率や膜厚と、の相関関係から膜厚を演算することでエッチングが終了する時点、すなわち、エッチングの終点を検出する。   
 なお、エッチング処理の終点検出の際に、光源21から検出対象部分に向けて光を照射するようにすることができる。この場合、プラズマPを発生させる領域において発生させたプラズマPからの光を利用して干渉光を発生させることもできる。ただし、プラズマPからの光の強度が変動することを考慮すると、光源21から検出対象部分に向けて光を照射するようにすることが好ましい。
 制御部41により、エッチング処理が終了したと判定された場合には、プラズマ発生部43によるプラズマ生成物の生成が停止される。  
 エッチング処理が終了した被処理物Wは、図示しない搬送装置により処理容器42外に搬出される。この後、必要があれば、前述したエッチング処理が繰り返される。
 以上に例示をしたように、本実施の形態に係るプラズマエッチング方法は、大気圧よりも減圧された雰囲気においてプラズマPを発生させ、プラズマPに向けて供給されたプロセスガスGを励起させてプラズマ生成物を生成し、生成されたプラズマ生成物を用いて被処理物Wに対するエッチング処理を行うプラズマエッチング方法であって、受光面に複数の受光素子を有する干渉光検出部7を用いて被処理物Wからの干渉光を検出する工程と、所定の広さを有する検出領域7aからエッチング部分(レジストマスクの開口部分)を抽出し、エッチング部分(レジストマスクの開口部分)における干渉光の強度に基づいてエッチングの終点を検出する工程と、を備えている。 
 また、前述したものと同様に、エッチングの終点を検出する工程において、干渉光の強度の変動量が大きい領域を検出対象とし、この領域における干渉光の強度の平均値に基づいてエッチングの終点を検出するようにすることもできる。
 本実施の形態によれば、複数の受光素子を有する干渉光検出部7を設け、所定の広さを有する検出領域7aからエッチング部分(レジストマスクの開口部分)を抽出するようにしているので、検出対象(エッチング部分)を特定することができる。そのため、レジストマスクのレジスト部分(非エッチング部分)の影響を抑制することができる。また、ノイズなどの影響を低減させることができる。また、エッチング部分(レジストマスクの開口部分)が微小であっても検出対象の特定(検出の位置合わせ)を容易とすることができる。そのため、エッチングの終点の検出精度を向上させることができる。 
 また、干渉光の強度の変動量が大きい領域を検出対象とし、この領域における干渉光の強度の平均値に基づいてエッチングの終点を検出するようにすれば、ノイズなどの影響をさらに低減させることができる。 
 また、生産性、歩留まり、品質などの向上を図ることができる。
 以上、本実施の形態について例示をした。しかし、本発明はこれらの記述に限定されるものではない。 
 前述の実施の形態に関して、当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。 
 例えば、プラズマエッチング装置1、プラズマエッチング装置30、プラズマエッチング装置40が備える各要素の形状、寸法、材質、配置などは、例示をしたものに限定されるわけではなく適宜変更することができる。 
 また、マイクロ波励起型、容量結合型のプラズマエッチング装置を例に挙げて説明したが、プラズマの発生方式はこれらに限定されるわけではなく適宜変更することができる。 また、前述した各実施の形態が備える各要素は、可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。
1   プラズマエッチング装置
2   プラズマ発生部
3   減圧部
4   ガス供給部
5   マイクロ波発生部
6   処理容器
7   干渉光検出部
8   制御部
9   放電管
10  導入導波管
14  輸送管
15  載置部
16  圧力制御部
19  検出窓
19a 検出窓
30  プラズマエッチング装置
31  プラズマ発生部
32  処理容器
33  制御部
34  透過窓
35  導入導波管
40  プラズマエッチング装置
41  制御部
42  処理容器
43  プラズマ発生部
44  電源部
45  電源
46  ブロッキングコンデンサ
48  下部電極
49  上部電極
M   マイクロ波
P   プラズマ
W   被処理物

Claims (10)

  1.  大気圧よりも減圧された雰囲気を維持可能な処理容器と、
     前記処理容器の内部を所定の圧力まで減圧する減圧部と、
     前記処理容器の内部に設けられた被処理物を載置する載置部と、
     内部にプラズマを発生させる領域を有し、前記処理容器から離隔された位置に設けられた放電管と、
     マイクロ波発生部から放射されたマイクロ波を伝播させて、前記プラズマを発生させる領域にマイクロ波を導入する導入導波管と、
     前記プラズマを発生させる領域にプロセスガスを供給するガス供給部と、
     前記放電管と、前記処理容器と、を連通させる輸送管と、
     前記処理容器の壁面に設けられた光を透過させる検出窓と、
     前記載置部に載置された被処理物の表面から発せられる干渉光を受光する受光面に複数の受光素子を有する干渉光検出部と、
     前記干渉光検出部からの出力に基づいてエッチングの終点を検出する制御部と、
     を備え、
     前記制御部は、前記干渉光検出部の検出領域における前記受光素子からの出力よりエッチング部分に相当する部分の前記受光素子の出力を抽出し、前記エッチング部分に相当する部分の受光素子の出力から求められた干渉光の強度に基づいてエッチングの終点を検出すること、を特徴とするプラズマエッチング装置。
  2.  内部にプラズマを発生させる領域を有し、大気圧よりも減圧された雰囲気を維持可能な処理容器と、
     前記処理容器の内部を所定の圧力まで減圧する減圧部と、
     前記処理容器の内部に設けられた被処理物を載置する載置部と、
     前記プラズマを発生させる領域に電磁エネルギーを供給することでプラズマを発生させるプラズマ発生部と、
     前記プラズマを発生させる領域にプロセスガスを供給するガス供給部と、
     前記処理容器の壁面に設けられた光を透過させる検出窓と、
     前記載置部に載置された被処理物の表面から発せられる干渉光を受光する受光面に複数の受光素子を有する干渉光検出部と、
     前記干渉光検出部からの出力に基づいてエッチングの終点を検出する制御部と、
     を備え、
     前記制御部は、前記干渉光検出部の検出領域における前記受光素子からの出力よりエッチング部分に相当する部分の前記受光素子の出力を抽出し、前記エッチング部分に相当する部分の受光素子の出力から求められた干渉光の強度に基づいてエッチングの終点を検出すること、を特徴とするプラズマエッチング装置。
  3.  大気圧よりも減圧された雰囲気を維持可能な処理容器と、
     前記処理容器の内部を所定の圧力まで減圧する減圧部と、
     前記処理容器の内部に設けられた被処理物を載置する載置部と、
     内部にプラズマを発生させる領域を有し、前記処理容器から離隔された位置に設けられた放電管と、
     マイクロ波発生部から放射されたマイクロ波を伝播させて、前記プラズマを発生させる領域にマイクロ波を導入する導入導波管と、
     前記プラズマを発生させる領域にプロセスガスを供給するガス供給部と、
     前記放電管と、前記処理容器と、を連通させる輸送管と、
     前記処理容器の壁面に設けられた光を透過させる検出窓と、
     前記検出窓を介して前記載置部に載置された被処理物の表面に光を照射する光源と、
     前記載置部に載置された被処理物の表面から発せられる干渉光を受光する受光面に複数の受光素子を有する干渉光検出部と、
     前記干渉光検出部からの出力に基づいてエッチングの終点を検出する制御部と、
     を備え、
     前記制御部は、前記干渉光検出部の検出領域における前記受光素子からの出力よりエッチング部分に相当する部分の前記受光素子の出力を抽出し、前記エッチング部分に相当する部分の受光素子の出力から求められた干渉光の強度に基づいてエッチングの終点を検出すること、を特徴とするプラズマエッチング装置。
  4.  内部にプラズマを発生させる領域を有し、大気圧よりも減圧された雰囲気を維持可能な処理容器と、
     前記処理容器の内部を所定の圧力まで減圧する減圧部と、
     前記処理容器の内部に設けられた被処理物を載置する載置部と、
     前記プラズマを発生させる領域に電磁エネルギーを供給することでプラズマを発生させるプラズマ発生部と、
     前記プラズマを発生させる領域にプロセスガスを供給するガス供給部と、
     前記処理容器の壁面に設けられた光を透過させる検出窓と、
     前記検出窓を介して前記載置部に載置された被処理物の表面に光を照射する光源と、
     前記載置部に載置された被処理物の表面から発せられる干渉光を受光する受光面に複数の受光素子を有する干渉光検出部と、
     前記干渉光検出部からの出力に基づいてエッチングの終点を検出する制御部と、
     を備え、
     前記制御部は、前記干渉光検出部の検出領域における前記受光素子からの出力よりエッチング部分に相当する部分の前記受光素子の出力を抽出し、前記エッチング部分に相当する部分の受光素子の出力から求められた干渉光の強度に基づいてエッチングの終点を検出すること、を特徴とするプラズマエッチング装置。
  5.  前記制御部は、前記干渉光の強度の変動量が大きい領域を検出対象とし、前記領域における前記干渉光の強度の平均値に基づいてエッチングの終点を検出すること、を特徴とする請求項1記載のプラズマエッチング装置。
  6.  前記制御部は、前記干渉光の強度の変動量が大きい領域を検出対象とし、前記領域における前記干渉光の強度の平均値に基づいてエッチングの終点を検出すること、を特徴とする請求項2記載のプラズマエッチング装置。
  7.  前記制御部は、前記干渉光の強度の変動量が大きい領域を検出対象とし、前記領域における前記干渉光の強度の平均値に基づいてエッチングの終点を検出すること、を特徴とする請求項3記載のプラズマエッチング装置。
  8.  前記制御部は、前記干渉光の強度の変動量が大きい領域を検出対象とし、前記領域における前記干渉光の強度の平均値に基づいてエッチングの終点を検出すること、を特徴とする請求項4記載のプラズマエッチング装置。
  9.  大気圧よりも減圧された雰囲気においてプラズマを発生させ、前記プラズマに向けて供給されたプロセスガスを励起させてプラズマ生成物を生成し、前記プラズマ生成物を用いて被処理物に対するエッチング処理を行うプラズマエッチング方法であって、
     受光面に複数の受光素子を有する干渉光検出部を用いて前記被処理物からの干渉光を検出する工程と、
     前記干渉光検出部の検出領域における前記受光素子からの出力よりエッチング部分に相当する部分の前記受光素子の出力を抽出し、前記エッチング部分に相当する部分の受光素子の出力から求められた干渉光の強度に基づいてエッチングの終点を検出する工程と、
     を備えたことを特徴とするプラズマエッチング方法。
  10.  前記エッチングの終点を検出する工程において、前記干渉光の強度の変動量が大きい領域を検出対象とし、前記領域における前記干渉光の強度の平均値に基づいてエッチングの終点を検出すること、を特徴とする請求項9記載のプラズマエッチング方法。
PCT/JP2010/063306 2009-08-06 2010-08-05 プラズマエッチング装置及びプラズマエッチング方法 WO2011016525A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011525934A JP5665746B2 (ja) 2009-08-06 2010-08-05 プラズマエッチング装置及びプラズマエッチング方法
KR1020127005676A KR101293799B1 (ko) 2009-08-06 2010-08-05 플라즈마 에칭 장치 및 플라즈마 에칭 방법
US13/389,181 US20120132617A1 (en) 2009-08-06 2010-08-05 Plasma etching apparatus and plasma etching method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009183600 2009-08-06
JP2009-183600 2009-08-06

Publications (1)

Publication Number Publication Date
WO2011016525A1 true WO2011016525A1 (ja) 2011-02-10

Family

ID=43544420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063306 WO2011016525A1 (ja) 2009-08-06 2010-08-05 プラズマエッチング装置及びプラズマエッチング方法

Country Status (5)

Country Link
US (1) US20120132617A1 (ja)
JP (1) JP5665746B2 (ja)
KR (1) KR101293799B1 (ja)
TW (1) TWI498965B (ja)
WO (1) WO2011016525A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020510311A (ja) * 2017-03-13 2020-04-02 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 反射終点検出を有するエッチング処理システム
JP2021509227A (ja) * 2018-06-20 2021-03-18 エルジー・ケム・リミテッド 回折格子導光板用モールドの製造方法および回折格子導光板の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6650258B2 (ja) * 2015-12-17 2020-02-19 株式会社日立ハイテクノロジーズ プラズマ処理装置及びプラズマ処理装置の運転方法
US20180286643A1 (en) * 2017-03-29 2018-10-04 Tokyo Electron Limited Advanced optical sensor, system, and methodologies for etch processing monitoring
US10978278B2 (en) * 2018-07-31 2021-04-13 Tokyo Electron Limited Normal-incident in-situ process monitor sensor
KR20210158856A (ko) 2019-05-23 2021-12-31 도쿄엘렉트론가부시키가이샤 초분광 이미징을 사용하는 반도체 공정의 광학적 진단
JP2021118045A (ja) * 2020-01-22 2021-08-10 東京エレクトロン株式会社 プラズマ観測システム及びプラズマ観測方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001249050A (ja) * 2000-03-07 2001-09-14 Toshiba Corp 温度測定装置、成膜装置、エッチング装置および温度測定方法、エッチング方法
JP2002270588A (ja) * 2001-03-09 2002-09-20 Sony Corp エッチング装置およびエッチング方法
JP2005302771A (ja) * 2004-04-06 2005-10-27 Renesas Technology Corp 半導体デバイスの製造装置および製造方法
JP2006528428A (ja) * 2003-07-22 2006-12-14 ラム リサーチ コーポレーション スペクトル反射率計の光信号の電子空間フィルタリングのための方法および装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5450205A (en) * 1993-05-28 1995-09-12 Massachusetts Institute Of Technology Apparatus and method for real-time measurement of thin film layer thickness and changes thereof
JP3121486B2 (ja) * 1993-12-13 2000-12-25 日本真空技術株式会社 プラズマ処理装置における放電管冷却機構
AU2002219847A1 (en) * 2000-11-15 2002-05-27 Real Time Metrology, Inc. Optical method and apparatus for inspecting large area planar objects
US6809809B2 (en) * 2000-11-15 2004-10-26 Real Time Metrology, Inc. Optical method and apparatus for inspecting large area planar objects
JP2003100708A (ja) * 2001-09-27 2003-04-04 Mitsubishi Electric Corp 終点判別方法、半導体処理装置および半導体装置の製造方法
US7821655B2 (en) * 2004-02-09 2010-10-26 Axcelis Technologies, Inc. In-situ absolute measurement process and apparatus for film thickness, film removal rate, and removal endpoint prediction
US7662646B2 (en) * 2006-03-17 2010-02-16 Tokyo Electron Limited Plasma processing method and plasma processing apparatus for performing accurate end point detection
US8158526B2 (en) * 2006-10-30 2012-04-17 Applied Materials, Inc. Endpoint detection for photomask etching
JP5026363B2 (ja) * 2008-01-17 2012-09-12 東京エレクトロン株式会社 エッチング量算出方法、記憶媒体及びエッチング量算出装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001249050A (ja) * 2000-03-07 2001-09-14 Toshiba Corp 温度測定装置、成膜装置、エッチング装置および温度測定方法、エッチング方法
JP2002270588A (ja) * 2001-03-09 2002-09-20 Sony Corp エッチング装置およびエッチング方法
JP2006528428A (ja) * 2003-07-22 2006-12-14 ラム リサーチ コーポレーション スペクトル反射率計の光信号の電子空間フィルタリングのための方法および装置
JP2005302771A (ja) * 2004-04-06 2005-10-27 Renesas Technology Corp 半導体デバイスの製造装置および製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020510311A (ja) * 2017-03-13 2020-04-02 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 反射終点検出を有するエッチング処理システム
US11022877B2 (en) 2017-03-13 2021-06-01 Applied Materials, Inc. Etch processing system having reflective endpoint detection
JP7051888B2 (ja) 2017-03-13 2022-04-11 アプライド マテリアルズ インコーポレイテッド 反射終点検出を有するエッチング処理システム
JP2021509227A (ja) * 2018-06-20 2021-03-18 エルジー・ケム・リミテッド 回折格子導光板用モールドの製造方法および回折格子導光板の製造方法
JP7305246B2 (ja) 2018-06-20 2023-07-10 エルジー・ケム・リミテッド 回折格子導光板用モールドの製造方法および回折格子導光板の製造方法

Also Published As

Publication number Publication date
JP5665746B2 (ja) 2015-02-04
US20120132617A1 (en) 2012-05-31
JPWO2011016525A1 (ja) 2013-01-17
TW201130034A (en) 2011-09-01
KR101293799B1 (ko) 2013-08-06
TWI498965B (zh) 2015-09-01
KR20120043049A (ko) 2012-05-03

Similar Documents

Publication Publication Date Title
JP5665746B2 (ja) プラズマエッチング装置及びプラズマエッチング方法
KR101308852B1 (ko) 플라즈마 처리 장치 및 플라즈마 처리 방법
KR101387067B1 (ko) 드라이 에칭 장치 및 드라이 에칭 방법
TWI622081B (zh) 電漿處理裝置及電漿處理方法
US6796269B2 (en) Apparatus and method for monitoring plasma processing apparatus
TWI620227B (zh) Plasma processing device and plasma etching method
US20160372933A1 (en) Method of Detecting Plasma Discharge in a Plasma Processing System
CN110494967A (zh) 用于远程等离子体监测的光学发射光谱仪(oes)
KR100380513B1 (ko) 플라즈마처리장치
JP5415420B2 (ja) 発光分光法により低圧ガスを分析するためのシステム
KR20180054495A (ko) 이중 주파수 표면파 플라즈마 소스
US20160216155A1 (en) Apparatus for optical emission spectroscopy
KR20090009369A (ko) 히터가 설치된 유도 결합 플라즈마 소스를 구비한 플라즈마반응기
KR101591961B1 (ko) 플라즈마 처리 챔버의 플라즈마 상태 분석 장치 및 방법
US6076484A (en) Apparatus and method for microwave plasma process
KR102411011B1 (ko) 표면파 플라즈마 소스에서의 동작 불안정성 검출을 위한 방법
KR101937335B1 (ko) 기판 처리 장치 및 방법
JP5774428B2 (ja) ドライエッチング方法およびプラズマエッチング装置
JP2013207210A (ja) プラズマ処理装置およびプラズマ処理方法
JP2011187507A (ja) プラズマ処理装置およびプラズマ処理方法
KR102232784B1 (ko) 기판 처리 장치 및 기판 처리 방법
JP2000164392A (ja) マイクロ波プラズマ処理装置
JP5363901B2 (ja) プラズマ処理装置及びプラズマ処理方法
JP4446966B2 (ja) マイクロ波プラズマ処理装置
JP2001044175A (ja) プラズマ処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10806524

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011525934

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13389181

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127005676

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10806524

Country of ref document: EP

Kind code of ref document: A1