WO2011016433A1 - Method for manufacturing led light emitting device - Google Patents

Method for manufacturing led light emitting device Download PDF

Info

Publication number
WO2011016433A1
WO2011016433A1 PCT/JP2010/063052 JP2010063052W WO2011016433A1 WO 2011016433 A1 WO2011016433 A1 WO 2011016433A1 JP 2010063052 W JP2010063052 W JP 2010063052W WO 2011016433 A1 WO2011016433 A1 WO 2011016433A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
light
emitting device
led
led element
Prior art date
Application number
PCT/JP2010/063052
Other languages
French (fr)
Japanese (ja)
Inventor
賢治 米田
Original Assignee
シーシーエス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シーシーエス株式会社 filed Critical シーシーエス株式会社
Publication of WO2011016433A1 publication Critical patent/WO2011016433A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape

Definitions

  • the present invention relates to an LED light-emitting device that can easily analyze, classify, and manage wavelength conversion members, easily control the light emission color and illuminance of the LED light-emitting device, has a high yield, and is excellent in moisture resistance and heat dissipation. Is.
  • a resin composition for a wavelength conversion member in which a phosphor is dispersed is prepared by adjusting a plurality of LED light emitting devices at one time and then using a predetermined amount.
  • the dispersion of the phosphor in the resin composition Since the state changes with time, even in the LED light emitting device having the same specification, the color of light emission and the illuminance slightly vary from lot to lot. Moreover, there are variations in the emission color and illuminance of the LED elements, which also causes variations in the emission color and illuminance of the LED light-emitting device that is the final product. And when using the obtained LED light-emitting device as a light source for an inspection apparatus, if there is even such slight variation, the reliability of the inspection result is impaired, which is a problem.
  • a heat sink is laid under the LED element to dissipate heat.
  • the phosphor when the phosphor is excited by, for example, ultraviolet rays, the phosphor generates significant heat.
  • the present inventor discovered for the first time through intensive studies the fact that the deterioration of the material was promoted.
  • an LED element is mounted on a heat dissipation substrate, covered with a sealing member, and further covered with a wavelength conversion member, an experiment was conducted under conditions of an applied voltage of 3.5 V and a current of 300 mA.
  • the temperature of the upper surface of the wavelength conversion member is 65 ° C. despite the fact that the temperature is lowered such that the portion is 85 ° C. and the upper surface of the sealing member is 55 ° C. It was confirmed that the exotherm of was remarkable.
  • the LED light-emitting device includes a base having a recess opening in the upper end surface, an LED element mounted on the bottom surface of the recess, and a sealing member that has translucency and seals the LED element. And a light-transmitting substrate provided on the sealing member so as to hermetically seal the sealing member in the recess, and a phosphor. And a wavelength conversion member provided on the top.
  • the wavelength conversion member is formed so that a plurality of wavelength conversion members 6 are collectively produced on a large substrate B having a size corresponding to a plurality of translucent substrates 5.
  • the phosphor-containing resin composition 6 for 6 is printed using an inkjet printer or the like. At this time, the red phosphor-containing resin composition 6R containing the red phosphor 61R, the green phosphor-containing resin composition 6G containing the green phosphor 61G, and the blue phosphor-containing resin composition containing the blue phosphor 61B.
  • the product 6B is printed separately in this order.
  • the LED element 3 is mounted on the bottom surface 221 of the concave portion 22 of the base 2, and the translucent resin 4 for the sealing member 4 is filled in a larger amount than necessary so that the surface swells there. To do.
  • the filled translucent resin 4 tends to scoop up the side surface 222 of the recess 22. Increases the amount of crawls compared to those without. Then, even if the filling amount of the translucent resin 4 is strictly controlled, the substantial filling amount of the translucent resin 4 depends on the rising amount and it is extremely difficult to make the rising amount constant. For this reason, there is a possibility that the height of the surface of the central portion of the translucent resin 4 may vary. In order to suppress this phenomenon and manage the height to be constant, in this embodiment, the amount of the translucent resin 4 is increased, and when the lid is covered with the laminate 7, it is overflowing.
  • the translucent resin 4 When the opening of the recess 22 is completely covered with the laminate 7, the translucent resin 4 slightly protrudes between the laminate 7 and the base 2, but the translucent resin 4 such as silicone resin is transparent. There is almost no influence on the appearance and function (FIG. 4B).
  • the translucent resin 4 that overflows from the recess 22 and protrudes between the laminate 7 and the base 2 also serves to adhere the laminate 7 and the base 2.
  • the LED light-emitting device 1 can be obtained by curing the translucent resin 4 by heating or the like.
  • cures by mounting the laminated body 7 on the translucent resin 4 so that the opening part of the recessed part 22 may be covered.
  • the distance between the LED element 3 and the phosphor 61 (wavelength conversion member 6) can be managed with good reproducibility. For this reason, the distance between the LED element 3 and the phosphor 61 (wavelength conversion member 6) is controlled so that the light extraction efficiency from the LED element 3 and the influence of the heat received by the phosphor 61 are in an optimal balance. be able to.
  • the translucent resin 4 is filled in the concave portion 22 more than necessary so that the surface of the translucent resin 4 bulges. Since the contact area between the translucent resin 4 and the laminate 7 gradually increases in contact with the laminate 7, bubbles are not easily formed between the translucent resin 4 and the laminate 7.
  • the visible light V traveling in the wavelength conversion member 6 may be totally reflected at the interface between the wavelength conversion member 6 and the air and may reversely travel into the wavelength conversion member 6.
  • a transparent plate 8 made of a high refractive index material such as sapphire is further provided on the wavelength conversion member 6, and an antireflection coating or fine irregularities are provided on the surface exposed from the LED light emitting device 1. If antireflection treatment such as roughening to be formed is performed, total reflection as described above can be prevented and light extraction efficiency can be improved.
  • an ultraviolet cut layer may be provided on the upper or lower surface of the transparent plate-like body 8 made of the high refractive index material as necessary.
  • a plurality of recesses 22 are formed in one base body 2, as shown in FIG. 11, a plurality of recesses 22 each mounted with a near-ultraviolet-excited LED element 3 are set as one set, and R ⁇ You may make it cover with the single laminated body 7 in which the several wavelength conversion member 6 which changed the mixture ratio of G * B was formed.
  • the color temperature can be freely changed by changing the current value supplied to the LED elements 3 and mixing the visible light V derived from the LED elements 3.
  • the white light emitting device 1 having excellent color rendering properties in which the color temperature changes along the black body locus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

Disclosed is a method for manufacturing an LED light emitting device which achieves easy analysis, classification, and management of a wavelength conversion member, easy control of the emission color and illumination of the LED light emitting device, and high yield. Specifically disclosed is a method for manufacturing an LED light emitting device which is provided with a base having a recessed portion that is open at the upper end surface thereof, and an LED element mounted on the bottom surface of the recessed portion, and which is provided with a sealing member that has a light transmissive property and seals the LED element, and a wavelength conversion member that contains phosphor in this order from the bottom surface side of the recessed portion. The method is provided with: a laminating step for fabricating a laminated body in which the wavelength conversion member is laminated on a light transmissive substrate; a mounting step for mounting the LED element on the bottom surface of the recessed portion of the base; a sealing step for sealing the LED element by filling a light transmissive resin for the sealing member into the recessed portion of the base in which the LED element is mounted; and a loading step for, before curing the light transmissive resin, covering the opening of the recessed portion of the base, into which the light transmissive resin is filled, with the laminated body such that the light transmissive substrate faces to the bottom surface side of the recessed portion.

Description

LED発光デバイスの製造方法Manufacturing method of LED light emitting device
 本発明は、波長変換部材の分析・分類・管理が容易で、LED発光デバイスの発光色や照度を制御し易く、歩留まりが高い上に、更に耐湿性及び放熱性にも優れたLED発光デバイスに関するものである。 The present invention relates to an LED light-emitting device that can easily analyze, classify, and manage wavelength conversion members, easily control the light emission color and illuminance of the LED light-emitting device, has a high yield, and is excellent in moisture resistance and heat dissipation. Is.
 従来、窒化ガリウム系化合物半導体を用いて青色光又は紫外線を放射するLED素子と種々の蛍光体とを組み合わせることにより、白色をはじめとするLED素子の発光色とは異なる色の光を発するLED発光デバイスが開発されている。LED素子を用いた、このようなLED発光デバイスは、小型、省電力、長寿命等の長所があり、表示用光源や照明用光源として広く用いられている。 Conventionally, LED light emission that emits light of a color different from the light emission color of LED elements including white by combining LED elements that emit blue light or ultraviolet rays with various phosphors using a gallium nitride compound semiconductor A device is being developed. Such LED light-emitting devices using LED elements have advantages such as small size, power saving, and long life, and are widely used as display light sources and illumination light sources.
 このようなLED発光デバイスとしては、凹部が形成された基体の前記凹部内にLED素子が実装され、LED素子を覆う透光性の封止部材と、蛍光体を含有する波長変換部材とがLED素子側からこの順に設けられているものが知られており(特許文献1)、当該LED発光デバイスは、封止層が備わっていることにより、LED素子からの光の取り出し効率に優れ、また、蛍光体の熱劣化を防止することができる。 As such an LED light emitting device, an LED element is mounted in the concave portion of the base in which the concave portion is formed, and a translucent sealing member that covers the LED element and a wavelength conversion member that contains a phosphor are LEDs. What is provided in this order from the element side is known (Patent Document 1), and the LED light emitting device is provided with a sealing layer, so that it has excellent light extraction efficiency from the LED element, Thermal degradation of the phosphor can be prevented.
 当該LED発光デバイスを製造するには、LED素子が実装された基体の凹部内に、封止部材用の透光性樹脂を充填し硬化させてから、その上に波長変換部材用の蛍光体含有樹脂組成物を注入する。 In order to manufacture the LED light-emitting device, a light-transmitting resin for a sealing member is filled and cured in a concave portion of a substrate on which an LED element is mounted, and then a phosphor for a wavelength conversion member is contained thereon. A resin composition is injected.
 蛍光体が分散した波長変換部材用の樹脂組成物は、複数個のLED発光デバイス分を一時に調整してから、所定量ずつ使用するものであるが、当該樹脂組成物中の蛍光体の分散状態は経時的に変化するので、同じ仕様のLED発光デバイスであっても、発光色の色目や照度にはロット毎に若干のバラツキが生じる。また、LED素子の発光色や照度にもバラツキがあり、このことも最終製品であるLED発光デバイスの発光色や照度のバラツキの原因となる。そして、得られたLED発光デバイスを検査装置用の光源として用いる場合には、僅かでもこのようなバラツキがあると検査結果の信頼性が損なわれるので問題となる。 A resin composition for a wavelength conversion member in which a phosphor is dispersed is prepared by adjusting a plurality of LED light emitting devices at one time and then using a predetermined amount. The dispersion of the phosphor in the resin composition Since the state changes with time, even in the LED light emitting device having the same specification, the color of light emission and the illuminance slightly vary from lot to lot. Moreover, there are variations in the emission color and illuminance of the LED elements, which also causes variations in the emission color and illuminance of the LED light-emitting device that is the final product. And when using the obtained LED light-emitting device as a light source for an inspection apparatus, if there is even such slight variation, the reliability of the inspection result is impaired, which is a problem.
 このため、従来は、最終製品であるLED発光デバイスについて発光色の色目や照度の検査を行い、許容範囲から逸脱するものを排除している。 For this reason, conventionally, the LED light emitting device, which is the final product, is inspected for the color and illuminance of the emitted color, and those that deviate from the allowable range are excluded.
 また、近時LED素子が高出力化することによって、LED素子の発熱量が著しく増大し、その熱によってLED素子そのものが劣化するという問題が生じている。また、蛍光体も熱に脆弱であることから、LED素子からの伝熱によって蛍光体が熱劣化すると考えられている。 Also, recently, the output of the LED element has been increased, so that the amount of heat generated by the LED element is remarkably increased, and the LED element itself is deteriorated by the heat. Further, since the phosphor is also vulnerable to heat, it is considered that the phosphor is thermally deteriorated by heat transfer from the LED element.
 そこで、従来は、LED素子の下に放熱板を敷き、ここから熱を発散させるようにしているが、実際には、例えば紫外線により蛍光体を励起させると、蛍光体が顕著に熱を発し自身の劣化を促進しているという事実を本発明者は鋭意検討により初めて発見した。LED素子を放熱基板上に搭載し、その上を封止部材で覆い、更にその上を波長変換部材で覆い、印加電圧3.5V、電流300mAの条件で実験したところ、LED素子の上面発光層部分が85℃、封止部材の上面が55℃と言うように温度が下がっているにも拘わらず、波長変換部材の上面温度は65℃になっており、従来、軽視されていた蛍光体での発熱が顕著であることが確認された。 Therefore, conventionally, a heat sink is laid under the LED element to dissipate heat. However, in practice, when the phosphor is excited by, for example, ultraviolet rays, the phosphor generates significant heat. The present inventor discovered for the first time through intensive studies the fact that the deterioration of the material was promoted. When an LED element is mounted on a heat dissipation substrate, covered with a sealing member, and further covered with a wavelength conversion member, an experiment was conducted under conditions of an applied voltage of 3.5 V and a current of 300 mA. The temperature of the upper surface of the wavelength conversion member is 65 ° C. despite the fact that the temperature is lowered such that the portion is 85 ° C. and the upper surface of the sealing member is 55 ° C. It was confirmed that the exotherm of was remarkable.
特開2005-191197号公報JP 2005-191197 A
 本発明はかかる問題点に鑑みなされたものであって、波長変換部材の分析・分類・管理が容易で、LED発光デバイスの発光色や照度を制御し易く、歩留まりの高いLED発光デバイスを提供することをその主たる所期課題としたものである。 The present invention has been made in view of the above problems, and provides an LED light emitting device that can easily analyze, classify, and manage wavelength conversion members, easily control the emission color and illuminance of the LED light emitting device, and has a high yield. This is the main intended issue.
 すなわち本発明に係るLED発光デバイスの製造方法は、上端面に開口する凹部を有した基体と、前記凹部の底面に実装されたLED素子とを具備し、透光性を有し前記LED素子を封止する封止部材と、蛍光体を含有する波長変換部材とが、前記凹部の底面側からこの順に設けられているLED発光デバイスを製造する方法であって、前記波長変換部材が透光性基板上に積層している積層体を作製する積層工程と、前記基体の凹部の底面にLED素子を実装する実装工程と、前記LED素子が実装された前記基体の凹部に封止部材用の透光性樹脂を充填して前記LED素子を封止する封止工程と、前記透光性樹脂を硬化させる前に、前記透光性樹脂が充填された前記基体の凹部の開口部を、前記透光性基板が前記凹部の底面側を向くように前記積層体で覆う搭載工程とを備えていることを特徴とする。 That is, the manufacturing method of the LED light-emitting device according to the present invention includes a base body having a recess opening in an upper end surface, and an LED element mounted on the bottom surface of the recess, and has translucency and the LED element. A method of manufacturing an LED light emitting device in which a sealing member to be sealed and a wavelength conversion member containing a phosphor are provided in this order from the bottom surface side of the recess, the wavelength conversion member being translucent A laminating process for producing a laminate laminated on a substrate, a mounting process for mounting an LED element on the bottom surface of the recess of the substrate, and a sealing member transparent member in the recess of the substrate on which the LED element is mounted. A sealing step of sealing the LED element by filling with a light-transmitting resin, and an opening of the concave portion of the base body filled with the light-transmitting resin before the light-transmitting resin is cured; The optical substrate faces the bottom side of the recess. Characterized in that it includes a mounting step of covering with the laminate.
 上述のとおり、波長変換部材用の蛍光体含有樹脂組成物は、複数個のLED発光デバイス分を一時に調整するものであるが、蛍光体含有樹脂組成物中の蛍光体の分散状態は経時的に変化するので、同じ仕様のLED発光デバイスであっても、発光色の色目や照度にはロット毎に若干のバラツキが生じる。また、LED素子の発光色や照度にもバラツキがあり、このことが最終製品であるLED発光デバイスの発光色や照度のバラツキの原因となっている。 As described above, the phosphor-containing resin composition for the wavelength conversion member adjusts a plurality of LED light emitting devices at a time, but the dispersion state of the phosphor in the phosphor-containing resin composition is temporal. Therefore, even if the LED light emitting device has the same specification, the color of light emission and the illuminance slightly vary from lot to lot. Moreover, there are variations in the emission color and illuminance of the LED elements, and this causes variations in the emission color and illuminance of the LED light emitting device as the final product.
 これに対して、本発明では、前記波長変換部材と前記透光性基板との積層体を、前記LED素子が実装された基体とは別体として作製してから、前記LED素子が実装された基体に前記積層体を搭載するので、波長と光強度が予め定められた、例えば近紫外線を発する基準光源を使用して、前記積層体の発光色や照度等を測定し、バラツキのある前記積層体群を発光色や照度等に従い分類・管理し、所望の発光色や照度等を有するものを選び出して、適合するLED素子と組み合わせて所期の性能を有するLED発光デバイスを作製することができる。このため、最終製品であるLED発光デバイスの発光色や照度等のバラツキを極力抑えることができる。 On the other hand, in the present invention, the laminate of the wavelength conversion member and the translucent substrate is manufactured separately from the base on which the LED element is mounted, and then the LED element is mounted. Since the laminate is mounted on the substrate, the wavelength and light intensity are determined in advance, for example, a reference light source that emits near ultraviolet rays is used to measure the emission color, illuminance, and the like of the laminate, and the laminate having variations Classification and management of body groups according to luminescent color, illuminance, etc., selecting those having the desired luminescent color, illuminance, etc., and combining them with suitable LED elements can produce LED light emitting devices with the expected performance . For this reason, it is possible to suppress variations in the emission color, illuminance, and the like of the LED light emitting device that is the final product as much as possible.
 また、前記透光性基板は、前記波長変換部材及び前記封止部材の放熱作用も発揮するので、前記波長変換部材中の蛍光体が熱劣化することに起因するLED発光デバイスの発光色の変化を良好に抑制することができる。 Further, since the light-transmitting substrate also exhibits a heat dissipation action of the wavelength conversion member and the sealing member, a change in emission color of the LED light-emitting device due to thermal deterioration of the phosphor in the wavelength conversion member. Can be suppressed satisfactorily.
 更に、前記封止部材用の透光性樹脂としては気体透過率が高いシリコーン樹脂が使用されることがあるが、前記封止部材を前記透光性基板で覆うことにより、前記凹部内への気体の侵入を抑制することができるので、前記凹部の側面及び底面に銀等の金属薄膜からなるリフレクタが形成されていても、当該金属薄膜の酸化、硫化、塩化等による腐食等を防止することができる。また、前記透光性基板は防水機能も発現しうる。 Furthermore, a silicone resin having a high gas permeability may be used as the translucent resin for the sealing member, but by covering the sealing member with the translucent substrate, Since the intrusion of gas can be suppressed, even if a reflector made of a metal thin film such as silver is formed on the side surface and bottom surface of the recess, the metal thin film is prevented from being corroded by oxidation, sulfidation, chloride, etc. Can do. Further, the translucent substrate can also exhibit a waterproof function.
 また、LED素子は点光源であるので、光の取り出し効率を上げるためには、LED素子と蛍光体とは近接していることが好ましいが、蛍光体はLED素子からの熱により劣化してしまうので、そのバランスが最適になるように蛍光体とLED素子との距離を管理することが必要である。しかしながら、従来のように、LED素子が実装された基体の凹部内に透光性樹脂を充填し硬化させてから、その上に蛍光体含有樹脂組成物を注入するようにする方法では、凹部の側面の状態や透光性樹脂の粘度等によっては、透光性樹脂が基体凹部の側面をせり上がり、封止部材と波長変換部材の界面が窪んだ状態で硬化することがあるので、透光性樹脂の充填量を厳密に管理しても、LED素子と蛍光体(波長変換部材)との距離を再現性よく管理することは難しい。これに対して、本発明では、前記波長変換部材と前記透光性基板との積層体を、前記LED素子が実装された基体とは別体として作製し、かつ、前記基体の凹部に充填した透光性樹脂が硬化する前に、前記凹部の開口部を覆うように、前記積層体を前記透光性樹脂の上に載置することにより、予め作製された積層体から波長変換部材の厚さが所望のものを選び出すことができるので、LED素子と蛍光体(波長変換部材)との距離を再現性よく管理することができる。このため、例えば、蛍光体の熱劣化への対応も容易となる。 Further, since the LED element is a point light source, in order to increase the light extraction efficiency, it is preferable that the LED element and the phosphor are close to each other, but the phosphor is deteriorated by heat from the LED element. Therefore, it is necessary to manage the distance between the phosphor and the LED element so that the balance is optimal. However, as in the prior art, in the method in which the light-transmitting resin is filled and cured in the concave portion of the substrate on which the LED element is mounted, and then the phosphor-containing resin composition is injected thereon, Depending on the state of the side surface and the viscosity of the translucent resin, the translucent resin may rise up the side surface of the substrate recess and harden in a state where the interface between the sealing member and the wavelength conversion member is depressed. Even if the filling amount of the functional resin is strictly managed, it is difficult to manage the distance between the LED element and the phosphor (wavelength conversion member) with good reproducibility. On the other hand, in the present invention, the laminate of the wavelength conversion member and the translucent substrate is produced as a separate body from the base on which the LED element is mounted, and the concave portion of the base is filled. Before the translucent resin is cured, by placing the laminate on the translucent resin so as to cover the opening of the concave portion, the thickness of the wavelength conversion member from the prefabricated laminate is increased. Therefore, the distance between the LED element and the phosphor (wavelength conversion member) can be managed with good reproducibility. For this reason, for example, it becomes easy to cope with thermal deterioration of the phosphor.
 前記積層工程としては、具体的には、例えば、蛍光体含有樹脂組成物を前記透光性基板上に塗布し、当該蛍光体含有樹脂組成物を硬化させる工程が挙げられ、なかでも、ポッティングにより前記蛍光体含有樹脂組成物を塗布すると、前記蛍光体含有樹脂組成物の塗布量の管理が容易になる。なお、前記蛍光体含有樹脂組成物を硬化させるとは、硬化前の前記透光性樹脂よりも硬い状態にすることを意味する。 Specific examples of the laminating step include a step of applying a phosphor-containing resin composition onto the light-transmitting substrate and curing the phosphor-containing resin composition. When the phosphor-containing resin composition is applied, management of the coating amount of the phosphor-containing resin composition becomes easy. In addition, hardening the said fluorescent substance containing resin composition means making it a harder state than the said translucent resin before hardening.
 前記積層体は、複数個を一括して作製してもよく、この場合、前記積層工程が、複数個分の前記透光性基板が一体となった大基板上に、波長変換部材用の蛍光体含有樹脂組成物を、複数個の前記波長変換部材が形成されるように、例えばインクジェットプリンター等を用いて印刷し、当該蛍光体含有樹脂組成物を硬化させて、複数個の前記積層体を一体として作製する工程と、その上に複数個の前記波長変換部材が形成された大基板を切断して、複数個の前記積層体を切り出す工程とからなることが好ましい。 A plurality of the laminates may be produced in a lump, and in this case, the lamination step is performed on a large substrate on which a plurality of the light-transmitting substrates are integrated. The phosphor-containing resin composition is printed using, for example, an ink jet printer so that a plurality of the wavelength conversion members are formed, and the phosphor-containing resin composition is cured to form a plurality of the laminates. It is preferable that the manufacturing method includes a step of manufacturing as a single body, and a step of cutting a large substrate on which a plurality of the wavelength conversion members are formed to cut out the plurality of laminated bodies.
 この際、赤色光を発する蛍光体(以下、赤色蛍光体という。)を含有する蛍光体含有樹脂組成物と、緑色光を発する蛍光体(以下、緑色蛍光体という。)を含有する蛍光体含有樹脂組成物と、青色光を発する蛍光体(以下、青色蛍光体という。)を含有する蛍光体含有樹脂組成物とを別々に重ねて印刷してもよく、とりわけ、赤色蛍光体含有樹脂組成物と、緑色蛍光体含有樹脂組成物と、青色蛍光体含有樹脂組成物とをこの順に重ねて印刷すると、青色蛍光体が発した青色光や緑色蛍光体が発した緑色光が他の蛍光体に吸収されず、光の取り出し効率やエネルギー変換効率を高くすることができるので好ましい。 In this case, a phosphor-containing resin composition containing a phosphor that emits red light (hereinafter referred to as a red phosphor) and a phosphor containing a phosphor that emits green light (hereinafter referred to as a green phosphor). A resin composition and a phosphor-containing resin composition containing a phosphor that emits blue light (hereinafter referred to as a blue phosphor) may be printed separately, and in particular, a red phosphor-containing resin composition. When the green phosphor-containing resin composition and the blue phosphor-containing resin composition are printed in this order, the blue light emitted from the blue phosphor and the green light emitted from the green phosphor are transferred to other phosphors. This is preferable because the light extraction efficiency and energy conversion efficiency can be increased without being absorbed.
 前記封止工程においては、前記透光性樹脂の表面が膨出するように、前記基体の凹部に前記透光性樹脂を充填してもよい。なお、本発明において「前記透光性樹脂の表面が膨出する」とは、前記透光性樹脂の表面上の1点が頂点となるように、充填した前記透光性樹脂が盛り上がっていることをいう。 In the sealing step, the light-transmitting resin may be filled in the recesses of the base so that the surface of the light-transmitting resin swells. In the present invention, “the surface of the translucent resin swells” means that the filled translucent resin is raised so that one point on the surface of the translucent resin is a vertex. That means.
 このようなものであれば、前記凹部の開口部を前記積層体で覆う際に、最初に前記透光性樹脂の表面上の頂点が前記積層体と接し、前記頂点を起点として連続的に前記透光性樹脂と前記積層体との接触面積が拡大していくので、前記透光性樹脂と前記積層体との間に気泡が形成されにくい。 If it is such, when covering the opening of the concave portion with the laminate, the vertex on the surface of the translucent resin is first in contact with the laminate, and continuously from the vertex as the starting point. Since the contact area between the translucent resin and the laminate increases, bubbles are not easily formed between the translucent resin and the laminate.
 また、前記搭載工程の前に、前記積層体の表面のうち前記透光性基板側の表面に、前記透光性樹脂を付着させる樹脂付着工程を、更に備えていてもよい。前記積層体の前記透光性基板側の表面に、ポッティング等により透光性樹脂を付着させて、膨出部を形成し、当該膨出部が、凹部内に充填した透光性樹脂と最初に接するように、前記凹部の開口部を前記積層体で覆うことにより、前記膨出部から連続的に前記透光性樹脂と前記積層体との接触面積が拡大していくので、前記透光性樹脂と前記積層体との間に気泡が形成されにくい。 Further, prior to the mounting step, a resin attaching step of attaching the translucent resin to the surface of the laminated body on the translucent substrate side may be further provided. A translucent resin is adhered to the surface of the laminated body on the translucent substrate side by potting or the like to form a bulge portion, and the bulge portion and the translucent resin filled in the recess are first By covering the opening of the recess with the laminated body so as to come into contact, the contact area between the translucent resin and the laminated body is continuously expanded from the bulged portion. Air bubbles are hardly formed between the functional resin and the laminate.
 このような製造方法により得られるLED発光デバイスもまた、本発明の1つである。すなわち本発明に係るLED発光デバイスは、上端面に開口する凹部を有する基体と、前記凹部の底面に実装されたLED素子と、透光性を有し前記LED素子を封止する封止部材と、前記封止部材を前記凹部内に気密的に封ずるように、前記封止部材の上に設けられた透光性基板と、蛍光体を含有するものであって、前記透光性基板の上に設けられた波長変換部材とを備えていることを特徴とする。 An LED light-emitting device obtained by such a manufacturing method is also one aspect of the present invention. That is, the LED light-emitting device according to the present invention includes a base having a recess opening in the upper end surface, an LED element mounted on the bottom surface of the recess, and a sealing member that has translucency and seals the LED element. And a light-transmitting substrate provided on the sealing member so as to hermetically seal the sealing member in the recess, and a phosphor. And a wavelength conversion member provided on the top.
 本発明に係るLED発光デバイスとしては、具体的には、前記LED素子が、紫外線又は短波長の可視光線を発するものであり、前記蛍光体が、赤色蛍光体、緑色蛍光体、及び、青色蛍光体であるものが挙げられる。 Specifically, as the LED light emitting device according to the present invention, the LED element emits ultraviolet light or visible light having a short wavelength, and the phosphor is a red phosphor, a green phosphor, and a blue phosphor. The thing which is a body is mentioned.
 前記透光性基板としては特に限定されないが、例えば、紫外線及び短波長の可視光線を透過して、より長波長の可視光線を反射する短波長透過フィルタを用いた場合は、前記LED素子が発した紫外線や短波長の可視光線により励起された前記蛍光体が発する可視光線のうち、前記LED素子が実装された基体に向かって進行したものは、前記短波長透過フィルタで反射して、進行方向を変えて装置外に射出される。このため、蛍光体により変換された可視光線を効率的に装置外に取り出すことができる。 The translucent substrate is not particularly limited. For example, when a short-wavelength transmission filter that transmits ultraviolet rays and short-wavelength visible rays and reflects longer-wavelength visible rays is used, the LED element emits light. Of the visible light emitted from the phosphor excited by ultraviolet light or short wavelength visible light, the light traveling toward the substrate on which the LED element is mounted is reflected by the short wavelength transmission filter and travels in the direction of travel. It is injected out of the device by changing. For this reason, the visible light converted by the phosphor can be efficiently taken out of the apparatus.
 前記LED素子としては、具体的には、430nm以下に放射ピークを有するものが好適に用いられ、より好ましくは360~430nmの近紫外領域に放射ピークを有するものである。 As the LED element, specifically, those having a radiation peak at 430 nm or less are preferably used, and more preferably those having a radiation peak in the near ultraviolet region of 360 to 430 nm.
 前記短波長透過フィルタとしては、具体的には、光の反射率と透過率との高低が逆転する境界を、前記LED素子の放射ピーク波長より10nm以上大きく、かつ、440nm以下の波長領域に有する誘電体多層膜が好適に用いられる。誘電体多層膜は、金属酸化物等の誘電体のなかでも透明性の高い物質からなる薄膜から、屈折率の異なる2つ以上のものを選択して積層してなるものであり、熱伝導性にも優れるものである。 Specifically, the short wavelength transmission filter has a boundary where the light reflectance and transmittance are reversed in a wavelength region of 10 nm or more larger than the emission peak wavelength of the LED element and 440 nm or less. A dielectric multilayer film is preferably used. A dielectric multilayer film is formed by selecting and laminating two or more films having different refractive indexes from a thin film made of a highly transparent substance such as a metal oxide. It is also excellent.
 前記波長変換部材には、赤色光を発する蛍光体を含有する層と、緑色を発する蛍光体を含有する層と、青色を発する蛍光体を含有する層とが、前記LED素子側からこの順に形成されていてもよい。 In the wavelength conversion member, a layer containing a phosphor emitting red light, a layer containing a phosphor emitting green, and a layer containing a phosphor emitting blue light are formed in this order from the LED element side. May be.
 このような構成の本発明によれば、波長変換部材の分析・分類・管理が容易で、LED発光デバイスの発光色や照度を制御し易く、LED発光デバイスを高い歩留まりで製造することができる。更に、LED発光デバイスの耐湿性や放熱性を向上することもできる。 According to the present invention having such a configuration, the wavelength conversion member can be easily analyzed, classified, and managed, the light emission color and illuminance of the LED light emitting device can be easily controlled, and the LED light emitting device can be manufactured with a high yield. Furthermore, the moisture resistance and heat dissipation of the LED light-emitting device can be improved.
本発明の一実施形態に係るLED発光デバイスの模式的縦断面図である。It is a typical longitudinal cross-sectional view of the LED light-emitting device which concerns on one Embodiment of this invention. 同実施形態における短波長透過フィルタの透過率及び反射率の概要を示すグラフである。It is a graph which shows the outline | summary of the transmittance | permeability and reflectance of the short wavelength transmission filter in the embodiment. 同実施形態における切断前の積層体を示す平面図(a)及び縦断面図(b)である。It is the top view (a) and longitudinal cross-sectional view (b) which show the laminated body before the cutting | disconnection in the same embodiment. 同実施形態に係るLED発光デバイスの製造工程を示す図である。It is a figure which shows the manufacturing process of the LED light-emitting device which concerns on the embodiment. 同実施形態に係るLED発光デバイスの一部の光路を示す光路説明図である。It is optical path explanatory drawing which shows the one part optical path of the LED light-emitting device which concerns on the embodiment. 他の実施形態に係るLED発光デバイスの製造工程を示す図である。It is a figure which shows the manufacturing process of the LED light-emitting device which concerns on other embodiment. 他の実施形態に係るLED発光デバイスの模式的縦断面図である。It is a typical longitudinal cross-sectional view of the LED light-emitting device which concerns on other embodiment. 他の実施形態に係るLED発光デバイスの模式的縦断面図である。It is a typical longitudinal cross-sectional view of the LED light-emitting device which concerns on other embodiment. 他の実施形態における切断前の積層体を示す平面図である。It is a top view which shows the laminated body before cutting | disconnection in other embodiment. 他の実施形態に係るLED発光デバイスの斜視図である。It is a perspective view of the LED light-emitting device which concerns on other embodiment. 他の実施形態に係るLED発光デバイスの斜視図である。It is a perspective view of the LED light-emitting device which concerns on other embodiment.
 以下に本発明の一実施形態について図面を参照して説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
 まず、本実施形態に係るLED発光デバイス1について説明する。LED発光デバイス1は、図1に示すように、上端面21に開口する凹部22を有した基体2と、凹部22の底面221に実装されたLED素子3と、LED素子3を封止する封止部材4と、封止部材4の上に設けられて凹部22の開口部を覆う透光性基板5と、透光性基板5の上に設けられた波長変換部材6とを備えたものである。 First, the LED light emitting device 1 according to the present embodiment will be described. As shown in FIG. 1, the LED light emitting device 1 includes a base body 2 having a recess 22 that opens to an upper end surface 21, an LED element 3 mounted on a bottom surface 221 of the recess 22, and a seal that seals the LED element 3. It is provided with a stop member 4, a translucent substrate 5 provided on the sealing member 4 and covering the opening of the recess 22, and a wavelength conversion member 6 provided on the translucent substrate 5. is there.
 以下に各部を詳述する。
 基体2は、上端面21に開口し、底面221から開口部に向けて拡開する切頭円錐形状をなす凹部22を有するものであり、例えば、アルミナや窒化アルミニウム等の熱伝導率が高い絶縁材料を成型してなるものである。
Each part is described in detail below.
The base 2 has a recess 22 having a truncated conical shape that opens to the upper end surface 21 and expands from the bottom surface 221 toward the opening. For example, insulating material having high thermal conductivity such as alumina or aluminum nitride. It is made by molding a material.
 基体2は、その凹部22の底面221に後述するLED素子3を実装するものであるが、当該底面221には、LED素子3が電気的に接続されるための配線導体(図示しない。)が形成されている。この配線導体が基体2内部に形成された配線層(図示しない。)を介してLED発光デバイス1の外表面に導出されて外部電気回路基板に接続されることにより、LED素子3と外部電気回路基板とが電気的に接続される。 The base body 2 mounts an LED element 3 to be described later on the bottom surface 221 of the recess 22, and a wiring conductor (not shown) for electrically connecting the LED element 3 to the bottom surface 221. Is formed. This wiring conductor is led to the outer surface of the LED light emitting device 1 through a wiring layer (not shown) formed inside the base 2 and connected to the external electric circuit board, whereby the LED element 3 and the external electric circuit are connected. The substrate is electrically connected.
 基体2の凹部22の側面222及び底面221を含む内面には、銀等の金属メッキ等が施されることにより高反射率の金属薄膜23が形成されており、リフレクタとして機能している。 The metal thin film 23 with high reflectivity is formed on the inner surface including the side surface 222 and the bottom surface 221 of the concave portion 22 of the base 2 by applying metal plating such as silver, and functions as a reflector.
 LED素子3は、紫外線や短波長の可視光線を発するものであり、例えば360~430nmに放射ピークを有するものである。このようなLED素子3は、例えば、サファイア基板や窒化ガリウム基板の上に窒化ガリウム系化合物半導体がn型層、発光層及びp型層の順に積層したものである。 The LED element 3 emits ultraviolet rays or short-wavelength visible light, and has a radiation peak at 360 to 430 nm, for example. For example, the LED element 3 is formed by laminating a gallium nitride-based compound semiconductor in the order of an n-type layer, a light-emitting layer, and a p-type layer on a sapphire substrate or a gallium nitride substrate.
 LED素子3は、窒化ガリウム系化合物半導体を下(凹部22の底面221側)にして凹部22の底面221に半田バンプや金バンプ等(図示しない。)を用いてフリップチップ実装されている。 The LED element 3 is flip-chip mounted on the bottom surface 221 of the concave portion 22 using solder bumps, gold bumps (not shown) with the gallium nitride compound semiconductor facing down (the bottom surface 221 side of the concave portion 22).
 封止部材4は、凹部22に充実されてLED素子3を封止しており、例えば、透光性及び耐熱性に優れ、LED素子3との屈折率差が小さいシリコーン樹脂等の透光性樹脂4からなるものである。このような封止部材4が備わっていると、LED素子3からの光の取り出し効率が向上し、また、波長変換部材6中の蛍光体61の熱劣化を防止することができる。 The sealing member 4 is filled in the concave portion 22 and seals the LED element 3. For example, the sealing member 4 is excellent in translucency and heat resistance, and has a translucency such as a silicone resin having a small refractive index difference from the LED element 3. It is made of resin 4. When such a sealing member 4 is provided, the light extraction efficiency from the LED element 3 can be improved, and thermal deterioration of the phosphor 61 in the wavelength conversion member 6 can be prevented.
 透光性基板5は、製造工程において波長変換部材6の塗装基板として機能するものであり、封止部材4の上に設けられて、凹部22の開口部を覆っており、封止部材4を凹部22内に気密的に封じている。封止部材4を構成するシリコーン樹脂は気体透過率が高いところ、凹部22の開口部を透光性基板5で覆うことにより、凹部22内への気体の侵入を抑制することができるので、凹部22の内面に形成された金属薄膜23の酸化、硫化、塩化等による腐食等を防止することができる。また、透光性基板5は防水機能も発現しうる。 The translucent substrate 5 functions as a coated substrate for the wavelength conversion member 6 in the manufacturing process, and is provided on the sealing member 4 to cover the opening of the recess 22. The recess 22 is hermetically sealed. Since the silicone resin constituting the sealing member 4 has a high gas permeability, it is possible to suppress the intrusion of gas into the recess 22 by covering the opening of the recess 22 with the translucent substrate 5. Corrosion due to oxidation, sulfidation, chlorination, etc. of the metal thin film 23 formed on the inner surface of 22 can be prevented. Moreover, the translucent board | substrate 5 can also express a waterproof function.
 本実施形態では、透光性基板5として、可視光線を反射して、紫外領域から近紫外領域の光のみを選択的に透過する短波長透過フィルタが用いられている。当該短波長透過フィルタは、具体的には、例えば、図2に示すように、430nm近傍を境界として、光の透過率と反射率とが逆転する誘電体多層膜である。このような誘電体多層膜は、例えばガラス基板等に膜材料を付着させることにより形成される。 In this embodiment, a short wavelength transmission filter that reflects visible light and selectively transmits only light from the ultraviolet region to the near ultraviolet region is used as the translucent substrate 5. Specifically, for example, as shown in FIG. 2, the short wavelength transmission filter is a dielectric multilayer film in which the light transmittance and the reflectance are reversed around 430 nm as a boundary. Such a dielectric multilayer film is formed, for example, by attaching a film material to a glass substrate or the like.
 波長変換部材6は、内部に蛍光体61が分散しているものであり、透光性基板5の上に設けられている。このような波長変換部材6としては、例えば、透光性及び耐熱性に優れ、封止部材4との屈折率差が小さいシリコーン樹脂等の透光性樹脂中に蛍光体61が分散しているものが挙げられる。 The wavelength conversion member 6 has a phosphor 61 dispersed therein, and is provided on the translucent substrate 5. As such a wavelength conversion member 6, for example, the phosphor 61 is dispersed in a translucent resin such as a silicone resin that is excellent in translucency and heat resistance and has a small refractive index difference from the sealing member 4. Things.
 波長変換部材6は、本実施形態では、赤色蛍光体61R、緑色蛍光体61G、青色蛍光体61Bを含有しており、それぞれの蛍光体61を含有する層が、LED素子3側から、赤色蛍光体含有層6R、緑色蛍光体含有層6G、青色蛍光体含有層6Bの順に形成されている。 In this embodiment, the wavelength conversion member 6 includes a red phosphor 61R, a green phosphor 61G, and a blue phosphor 61B, and the layers containing the respective phosphors 61 are red fluorescent from the LED element 3 side. The body-containing layer 6R, the green phosphor-containing layer 6G, and the blue phosphor-containing layer 6B are formed in this order.
 赤色蛍光体61R、緑色蛍光体61G及び青色蛍光体61Bが、LED素子3が発した紫外線や短波長の可視光線によって励起されると、各蛍光体61が発する赤色光、緑色光及び青色光が混ざり合って白色光が発せられる。そして、LED素子3が発する紫外線や短波長の可視光線はLED発光デバイス1の発光色である白色に実質的に影響しにくい。このため、例えば、LED素子3が青色光を発するものであって、当該青色光が蛍光体61から発した光と混ざり合うように構成してある場合は、LED発光デバイス1の発光面において光路長の差に由来する色調むらが生じやすいが、LED素子3が紫外線や短波長の可視光線を発するものであって、蛍光体61が、赤色蛍光体61R、緑色蛍光体61G及び青色蛍光体61BであるLED発光デバイス1では、このような色調むらが生じにくい。 When the red phosphor 61R, the green phosphor 61G, and the blue phosphor 61B are excited by ultraviolet rays or short-wavelength visible light emitted from the LED element 3, red light, green light, and blue light emitted from the phosphors 61 are emitted. It mixes and emits white light. And the ultraviolet-ray and short wavelength visible light which LED element 3 emits cannot affect the white which is the luminescent color of LED light-emitting device 1 substantially. For this reason, for example, when the LED element 3 emits blue light and the blue light is configured to mix with the light emitted from the phosphor 61, the optical path on the light emitting surface of the LED light emitting device 1. Although the color tone unevenness due to the difference in length is likely to occur, the LED element 3 emits ultraviolet rays or visible light having a short wavelength, and the phosphor 61 is composed of a red phosphor 61R, a green phosphor 61G, and a blue phosphor 61B. In such an LED light-emitting device 1, such uneven color tone is unlikely to occur.
 そして、本実施形態のような、LED素子3として紫外線や短波長の可視光線を発するものを用い、蛍光体61として、赤色蛍光体61R、緑色蛍光体61G及び青色蛍光体61Bを用いたLED発光デバイス1が発する混合光は、プランク軌跡上を移動するものであって、太陽光に極めて近い自然な白色である。 Then, LED emission using ultraviolet light or short wavelength visible light as the LED element 3 as in the present embodiment, and red phosphor 61R, green phosphor 61G and blue phosphor 61B as the phosphor 61 is used. The mixed light emitted from the device 1 moves on the Planck locus and is a natural white color very close to sunlight.
 次に、本実施形態に係るLED発光デバイス1の製造方法について、図3及び図4を参照して説明する。 Next, a method for manufacturing the LED light emitting device 1 according to this embodiment will be described with reference to FIGS.
 まず、図3に示すように、複数個分の透光性基板5に相当する大きさの大基板B上に、複数個の波長変換部材6が一括して作製されるように、波長変換部材6用の蛍光体含有樹脂組成物6をインクジェットプリンター等を用いて印刷する。この際、赤色蛍光体61Rを含有する赤色蛍光体含有樹脂組成物6Rと、緑色蛍光体61Gを含有する緑色蛍光体含有樹脂組成物6Gと、青色蛍光体61Bを含有する青色蛍光体含有樹脂組成物6Bとを別々に、この順に重ねて印刷する。 First, as shown in FIG. 3, the wavelength conversion member is formed so that a plurality of wavelength conversion members 6 are collectively produced on a large substrate B having a size corresponding to a plurality of translucent substrates 5. The phosphor-containing resin composition 6 for 6 is printed using an inkjet printer or the like. At this time, the red phosphor-containing resin composition 6R containing the red phosphor 61R, the green phosphor-containing resin composition 6G containing the green phosphor 61G, and the blue phosphor-containing resin composition containing the blue phosphor 61B. The product 6B is printed separately in this order.
 その後、加熱したり光(紫外線を含む)照射したりして大基板B上に印刷された蛍光体含有樹脂組成物6を硬化させて、波長変換部材6が透光性基板5上に積層してなる積層体7を、複数個分を一体として作製する。次いで、その上に複数個の波長変換部材6が一体として形成された大基板Bをレーザ等により切断して、複数個の積層体7を切り出す。 Thereafter, the phosphor-containing resin composition 6 printed on the large substrate B is cured by heating or irradiation with light (including ultraviolet rays), and the wavelength conversion member 6 is laminated on the translucent substrate 5. A plurality of laminated bodies 7 are manufactured as a unit. Next, the large substrate B on which the plurality of wavelength conversion members 6 are integrally formed is cut with a laser or the like, and a plurality of laminated bodies 7 are cut out.
 続いて、基体2の凹部22の底面221にLED素子3を実装して、そこに封止部材4用の透光性樹脂4を、その表面が膨出するように、必要量より多めに充填する。 Subsequently, the LED element 3 is mounted on the bottom surface 221 of the concave portion 22 of the base 2, and the translucent resin 4 for the sealing member 4 is filled in a larger amount than necessary so that the surface swells there. To do.
 ところで、凹部22の側面222に電気パターンが形成されている場合は、透光性樹脂4の粘度が低いと、充填した透光性樹脂4が凹部22の側面222を這い上がりやすくなり、電気パターンがないものと比べて這い上がり量が増える。そうすると、透光性樹脂4の充填量を厳密に管理したとしても、実質的な透光性樹脂4の充填量が這い上がり量によって左右され、かつその這い上がり量を一定にすることは極めて難しいことから、透光性樹脂4の中央部表面の高さがまちまちとなる恐れが多分にある。この現象を抑制し、高さを一定に管理するために、本実施形態では透光性樹脂4の量を多めにして積層体7で蓋をしたときに敢えて溢れさせているわけであるが、透光性樹脂4に、例えば100mm/s以上といった粘度の高い樹脂を用いれば、前記這い上がり量がそもそも減少するため、溢れさせる量、つまり透光性樹脂4の当初充填量をより少なく抑えることが可能になり、凹部22の側面222に電気パターンが形成されているものには特に好ましいものとなる。 By the way, when the electrical pattern is formed on the side surface 222 of the recess 22, if the viscosity of the translucent resin 4 is low, the filled translucent resin 4 tends to scoop up the side surface 222 of the recess 22. Increases the amount of crawls compared to those without. Then, even if the filling amount of the translucent resin 4 is strictly controlled, the substantial filling amount of the translucent resin 4 depends on the rising amount and it is extremely difficult to make the rising amount constant. For this reason, there is a possibility that the height of the surface of the central portion of the translucent resin 4 may vary. In order to suppress this phenomenon and manage the height to be constant, in this embodiment, the amount of the translucent resin 4 is increased, and when the lid is covered with the laminate 7, it is overflowing. If a resin having a high viscosity of, for example, 100 mm 2 / s or more is used for the translucent resin 4, the amount of scooping is reduced in the first place. Therefore, the amount of overflow, that is, the initial filling amount of the translucent resin 4 is reduced. This is particularly preferable when the electric pattern is formed on the side surface 222 of the recess 22.
 そして、透光性樹脂4を硬化させる前に、透光性樹脂4が充填された凹部22の開口部を、透光性基板5が凹部22の底面221側を向くように積層体7で覆う(図4(a))。 And before hardening the translucent resin 4, the opening part of the recessed part 22 with which the translucent resin 4 was filled is covered with the laminated body 7 so that the translucent board | substrate 5 may face the bottom face 221 side of the recessed part 22. FIG. (FIG. 4A).
 上述のとおり、凹部22の側面222の状態や透光性樹脂4の粘度等によっては、凹部22内に充填した透光性樹脂4が凹部22の側面222を這い上がることがあるので、透光性樹脂4の凹部22内への充填量を厳密に管理しても、その界面の高さを管理することは難しい。これに対して、本実施形態では、凹部22内に透光性樹脂4を多めに充填して、次いで、透光性樹脂4が充填された凹部22の開口部を積層体7で覆うので、波長変換部材6(蛍光体61)とLED素子3との距離を容易に管理することができる。 As described above, depending on the state of the side surface 222 of the recess 22 and the viscosity of the translucent resin 4, the translucent resin 4 filled in the recess 22 may crawl up the side surface 222 of the recess 22. Even if the filling amount of the functional resin 4 into the recess 22 is strictly controlled, it is difficult to control the height of the interface. On the other hand, in the present embodiment, the concave portion 22 is filled with a large amount of the translucent resin 4, and then the opening of the concave portion 22 filled with the translucent resin 4 is covered with the laminate 7, The distance between the wavelength conversion member 6 (phosphor 61) and the LED element 3 can be easily managed.
 また、透光性樹脂4の表面が膨出するように、透光性樹脂4を必要量より多めに充填すると、まず初めに膨出部41の頂点が積層体7と接し、透光性樹脂4と積層体7との接触面積が徐々に拡大していく。 Further, when the translucent resin 4 is filled more than necessary so that the surface of the translucent resin 4 swells, the apex of the bulging portion 41 first comes into contact with the laminate 7, and the translucent resin The contact area between 4 and the laminate 7 gradually increases.
 凹部22の開口部を完全に積層体7で覆うと、積層体7と基体2との間に僅かに透光性樹脂4がはみ出すが、シリコーン樹脂等の透光性樹脂4は透明であるので外観や機能に与える影響はほとんどない(図4(b))。なお、凹部22から溢れ出し、積層体7と基体2との間にはみ出した透光性樹脂4は、積層体7と基体2とを接着させる機能も果たす。 When the opening of the recess 22 is completely covered with the laminate 7, the translucent resin 4 slightly protrudes between the laminate 7 and the base 2, but the translucent resin 4 such as silicone resin is transparent. There is almost no influence on the appearance and function (FIG. 4B). The translucent resin 4 that overflows from the recess 22 and protrudes between the laminate 7 and the base 2 also serves to adhere the laminate 7 and the base 2.
 最後に、加熱等して透光性樹脂4を硬化することにより、LED発光デバイス1を得ることができる。 Finally, the LED light-emitting device 1 can be obtained by curing the translucent resin 4 by heating or the like.
 このような実施形態であれば、波長変換部材6が透光性基板5上に積層してなる積層体7を、LED素子3が実装された基体2とは別体として作製してから、LED素子3が実装された基体2に積層体7を搭載することより、基準光源を使用して積層体7の発光色や照度等を分析し、バラツキのある積層体7群を発光色や照度等に従い分類・管理し、所望の発光色や照度等を有するものを選び出して、適合するLED素子3と組み合わせて所期の性能を有するLED発光デバイス1を作製することができる。 If it is such embodiment, after producing the laminated body 7 in which the wavelength conversion member 6 is laminated | stacked on the translucent board | substrate 5, as a different body from the base | substrate 2 with which the LED element 3 was mounted, LED By mounting the laminated body 7 on the substrate 2 on which the element 3 is mounted, the emission color, illuminance, and the like of the laminated body 7 are analyzed using a reference light source, and the group of the laminated bodies 7 having variations is emitted. The LED light-emitting device 1 having the desired performance can be manufactured by combining and classifying and managing the light-emitting elements having the desired emission color, illuminance, and the like and combining them with the suitable LED elements 3.
 また、本実施形態では、凹部22に充填した透光性樹脂4が硬化する前に、凹部22の開口部を覆うように、透光性樹脂4の上に積層体7を載置することにより、LED素子3と蛍光体61(波長変換部材6)との距離を再現性よく管理できる。このため、LED素子3からの光の取り出し効率と蛍光体61が受ける熱の影響とが最適なバランスとなるように、LED素子3と蛍光体61(波長変換部材6)との距離を制御することができる。 Moreover, in this embodiment, before the translucent resin 4 with which the recessed part 22 was filled hardens | cures, by mounting the laminated body 7 on the translucent resin 4 so that the opening part of the recessed part 22 may be covered. The distance between the LED element 3 and the phosphor 61 (wavelength conversion member 6) can be managed with good reproducibility. For this reason, the distance between the LED element 3 and the phosphor 61 (wavelength conversion member 6) is controlled so that the light extraction efficiency from the LED element 3 and the influence of the heat received by the phosphor 61 are in an optimal balance. be able to.
 また、本実施形態では、透光性樹脂4を、その表面が膨出するように、必要量より多めに凹部22に充填するので、最初に透光性樹脂4の膨出部41の頂点が積層体7と接し、透光性樹脂4と積層体7との接触面積が徐々に拡大していくので、透光性樹脂4と積層体7との間に気泡が形成されにくい。 In the present embodiment, the translucent resin 4 is filled in the concave portion 22 more than necessary so that the surface of the translucent resin 4 bulges. Since the contact area between the translucent resin 4 and the laminate 7 gradually increases in contact with the laminate 7, bubbles are not easily formed between the translucent resin 4 and the laminate 7.
 また、本実施形態で得られたLED発光デバイス1は、凹部22の開口部を覆う透光性基板5を備えているので、凹部2内のリフレクタ23や、LED素子3、封止部材4を水分やガス等の外部環境因子の影響から守ることができ、耐蝕性に優れたものとなる。また、透光性基板5は波長変換部材6及び封止部材4の放熱部材としても機能するので、蛍光体61の熱劣化に起因する照射光の色調変化や出力低下等を良好に抑制することができる。 Moreover, since the LED light-emitting device 1 obtained in this embodiment includes the translucent substrate 5 that covers the opening of the recess 22, the reflector 23, the LED element 3, and the sealing member 4 in the recess 2 are provided. It can be protected from the influence of external environmental factors such as moisture and gas, and has excellent corrosion resistance. Moreover, since the translucent board | substrate 5 functions also as a heat radiating member of the wavelength conversion member 6 and the sealing member 4, it suppresses the color tone change of the irradiated light, the output fall, etc. resulting from the thermal deterioration of the fluorescent substance 61 favorably. Can do.
 また、本実施形態では、透光性基板5として短波長透過フィルタを用いているので、図5に示すように、LED素子3が発した紫外線や短波長の可視光線Uにより励起された蛍光体61が発する可視光線Vのうち、基体2に向かって進行したものは、短波長透過フィルタで反射されて、LED発光デバイス1外に射出される。従って、透光性基板5として短波長透過フィルタを用いることにより、変換された可視光線Vを効率的にLED発光デバイス1外に取り出すことができる。 In the present embodiment, since a short wavelength transmission filter is used as the translucent substrate 5, as shown in FIG. 5, the phosphor excited by ultraviolet rays or short wavelength visible light U emitted from the LED element 3. Of the visible light V emitted by 61, the light traveling toward the substrate 2 is reflected by the short wavelength transmission filter and emitted outside the LED light emitting device 1. Therefore, by using a short wavelength transmission filter as the translucent substrate 5, the converted visible light V can be efficiently taken out of the LED light emitting device 1.
また、本実施形態では、波長変換部材6中で、赤色蛍光体61R、緑色蛍光体61G、青色蛍光体61Bをそれぞれの含有する層が、LED素子3側から、赤色蛍光体含有層6R、緑色蛍光体含有層6G、青色蛍光体含有層6Bの順に形成されているので、青色蛍光体61Bが発した青色光や緑色蛍光体61Gが発した緑色光が他の蛍光体61に吸収されず、このため、エネルギー変換効率、光の取り出し効率を向上することができる。 In the present embodiment, the layers containing the red phosphor 61R, the green phosphor 61G, and the blue phosphor 61B in the wavelength conversion member 6 are respectively arranged from the LED element 3 side to the red phosphor containing layer 6R, green. Since the phosphor-containing layer 6G and the blue phosphor-containing layer 6B are formed in this order, the blue light emitted from the blue phosphor 61B and the green light emitted from the green phosphor 61G are not absorbed by the other phosphors 61, For this reason, energy conversion efficiency and light extraction efficiency can be improved.
 なお、本発明は前記実施形態に限られるものではない。 The present invention is not limited to the above embodiment.
 例えば、透光性基板5に蛍光体含有樹脂組成物6を塗布する方法は印刷に限られず、ポッティングや、ディッピング等であってもよい。また、複数個の積層体7を一括して作製せずに、1個ずつ作製してもよい。 For example, the method of applying the phosphor-containing resin composition 6 to the translucent substrate 5 is not limited to printing, and may be potting or dipping. Moreover, you may produce one by one, without producing the several laminated body 7 collectively.
 また、図6に示すように、積層体7の透光性基板5側の表面にポッティング等により透光性樹脂4を付着させて、膨出部42を形成してもよい。このように膨出部42を形成し、当該膨出部42が、凹部22内に充填した透光性樹脂4と最初に接するように、凹部22の開口部を積層体7で覆うことにより、膨出部42から連続的に透光性樹脂4と積層体7との接触面積が拡大していくので、透光性樹脂4と積層体7との間に気泡が形成されにくい。 Further, as shown in FIG. 6, the bulging portion 42 may be formed by attaching the translucent resin 4 to the surface of the laminated body 7 on the translucent substrate 5 side by potting or the like. By forming the bulging portion 42 in this way and covering the opening of the concave portion 22 with the laminate 7 so that the bulging portion 42 first contacts the translucent resin 4 filled in the concave portion 22, Since the contact area between the translucent resin 4 and the laminate 7 continuously increases from the bulging portion 42, it is difficult for bubbles to be formed between the translucent resin 4 and the laminate 7.
 LED素子3は、紫外線や短波長の可視光線を発するものに限定されず、青色光を発するものであってもよい。また、LED素子3はフリップチップ実装されていなくともよく、基体2に設けられた配線導体にワイヤボンディングを用いて接続されていてもよい。 The LED element 3 is not limited to one that emits ultraviolet rays or short-wavelength visible light, and may emit blue light. Further, the LED element 3 may not be flip-chip mounted, and may be connected to a wiring conductor provided on the base 2 using wire bonding.
 透光性基板5は、短波長透過フィルタに限定されず、透光性を有するものであれば他のものを用いることもでき、例えば、ダイヤモンド、サファイア、水晶、ガラス、プラスチック等からなるものであってもよい。なかでも、透光性基板5がダイヤモンド、サファイア、水晶等の水晶以上の高い熱伝導率を有する材料からなる場合は、波長変換部材6の熱を透光性基板5を通して効率的に放出することができるので、波長変換部材6に含まれる蛍光体61の熱変性や熱劣化を効果的に防ぐことができる。 The translucent substrate 5 is not limited to a short-wavelength transmission filter, and any other translucent substrate can be used as long as it has translucency, such as diamond, sapphire, crystal, glass, plastic, or the like. There may be. In particular, when the translucent substrate 5 is made of a material having a higher thermal conductivity than that of quartz, such as diamond, sapphire, or quartz, the heat of the wavelength conversion member 6 can be efficiently released through the translucent substrate 5. Therefore, thermal denaturation and thermal degradation of the phosphor 61 included in the wavelength conversion member 6 can be effectively prevented.
 波長変換部材6は、蛍光体61の種類毎に分かれた層状構造を有していなくてもよく、赤色蛍光体61R、緑色蛍光体61G及び青色蛍光体61Bが、一層からなる波長変換部材6中に混在していてもよい。また、波長変換部材6が含有する蛍光体61は、赤色蛍光体61R、緑色蛍光体61G、青色蛍光体61Bに限定されず、黄色蛍光体であってもよい。黄色蛍光体を含有する波長変換部材6と、青色光を発するLED素子3とを組み合わせて用いることによっても、LED発光デバイス1に白色光を射出させることができる。 The wavelength conversion member 6 does not have to have a layered structure divided for each type of the phosphor 61, and the red phosphor 61R, the green phosphor 61G, and the blue phosphor 61B are included in the wavelength conversion member 6 including one layer. May be mixed. The phosphor 61 contained in the wavelength conversion member 6 is not limited to the red phosphor 61R, the green phosphor 61G, and the blue phosphor 61B, and may be a yellow phosphor. White light can also be emitted to the LED light-emitting device 1 by using a combination of the wavelength conversion member 6 containing a yellow phosphor and the LED element 3 that emits blue light.
 基体2は、凹部22が底面221から開口部に向けて拡開する切頭円錐形状をなすものに限定されず、例えば、凹部22が円柱形状をなすものであってもよい。また、基体2は、図7に示すように、凹部22の側面222に段部24が形成されていて、当該段部24の上端面に、透光性基板5側の周縁部が載置されるように積層体7を配設することにより、積層体7が基体2に対し、光軸方向にも軸直交方向にも位置決めされるように構成してあってもよい。 The base body 2 is not limited to one having a truncated cone shape in which the concave portion 22 expands from the bottom surface 221 toward the opening portion. For example, the concave portion 22 may have a cylindrical shape. Further, as shown in FIG. 7, the base body 2 has a stepped portion 24 formed on the side surface 222 of the concave portion 22, and a peripheral portion on the translucent substrate 5 side is placed on the upper end surface of the stepped portion 24. By disposing the laminated body 7 as described above, the laminated body 7 may be configured to be positioned with respect to the base 2 both in the optical axis direction and in the axis orthogonal direction.
 また、波長変換部材6内を進行して来た可視光線Vが、波長変換部材6と空気との界面で全反射して波長変換部材6内に逆進してしまうことがあるが、図8に示すように、波長変換部材6の上に更に、サファイア等の高屈折率材料からなる透明板状体8を設け、そのLED発光デバイス1から露出する面に、反射防止コーティングや微細な凹凸を形成する粗面化等の反射防止処理を施せば、上述のような全反射を防いで、光の取り出し効率を向上することができる。 Further, the visible light V traveling in the wavelength conversion member 6 may be totally reflected at the interface between the wavelength conversion member 6 and the air and may reversely travel into the wavelength conversion member 6. FIG. As shown in FIG. 4, a transparent plate 8 made of a high refractive index material such as sapphire is further provided on the wavelength conversion member 6, and an antireflection coating or fine irregularities are provided on the surface exposed from the LED light emitting device 1. If antireflection treatment such as roughening to be formed is performed, total reflection as described above can be prevented and light extraction efficiency can be improved.
 LED素子3が紫外線を放射するものである場合では、必要に応じて、上記の高屈折率材料からなる透明板状体8の上面又は下面に紫外線カット層を設けてもよい。 When the LED element 3 emits ultraviolet rays, an ultraviolet cut layer may be provided on the upper or lower surface of the transparent plate-like body 8 made of the high refractive index material as necessary.
 大基板B上に波長変換部材6を形成するに際しては、複数個の波長変換部材6を一体として形成しなくともよく、図9に示すように、複数個の波長変換部材6を所定の間隔を空けて大基板B上に形成してもよい。このように所定の間隔を空けて複数個の波長変換部材6を大基板B上に形成することにより、大基板Bを切断して複数個の積層体7を切り出すのが容易になる。 When forming the wavelength conversion member 6 on the large substrate B, the plurality of wavelength conversion members 6 do not have to be formed integrally, and as shown in FIG. It may be formed on the large substrate B in a space. By forming a plurality of wavelength conversion members 6 on the large substrate B at a predetermined interval in this way, it becomes easy to cut the large substrate B and cut a plurality of laminated bodies 7.
 1つの基体2に形成される凹部22は1つに限られず、図10に示すように、1つの基体2に複数の凹部22が形成されて、各凹部22内にそれぞれLED素子3(図示しない)が実装され、各凹部22の開口部がそれぞれ積層体7で覆われていてもよい。 The number of recesses 22 formed in one base 2 is not limited to one. As shown in FIG. 10, a plurality of recesses 22 are formed in one base 2, and each LED element 3 (not shown) is formed in each recess 22. ) May be mounted, and the opening of each recess 22 may be covered with the laminate 7.
 また、1つの基体2に複数の凹部22が形成されている場合、図11に示すように、近紫外励起のLED素子3がそれぞれ実装された複数の凹部22を1組として、それらをR・G・Bの混合比を変えた複数個の波長変換部材6が形成された単一の積層体7で覆うようにしてもよい。そして、LED素子3へ供給する電流値を変化させて、各LED素子3に由来する可視光線Vを混ぜ合わせることにより、色温度を自由に変えることができる。例えば、図11に示す実施形態において、発光装置1の一のユニット11が3000Kの色温度の白色を発するものとし、発光装置1の他のユニット12が6000Kの色温度の白色を発するものとすることにより、黒体軌跡に沿って色温度が変化する演色性に優れた白色光発光装置1を構成することができる。 Further, when a plurality of recesses 22 are formed in one base body 2, as shown in FIG. 11, a plurality of recesses 22 each mounted with a near-ultraviolet-excited LED element 3 are set as one set, and R · You may make it cover with the single laminated body 7 in which the several wavelength conversion member 6 which changed the mixture ratio of G * B was formed. The color temperature can be freely changed by changing the current value supplied to the LED elements 3 and mixing the visible light V derived from the LED elements 3. For example, in the embodiment shown in FIG. 11, it is assumed that one unit 11 of the light emitting device 1 emits white having a color temperature of 3000K, and the other unit 12 of the light emitting device 1 emits white having a color temperature of 6000K. Thus, it is possible to configure the white light emitting device 1 having excellent color rendering properties in which the color temperature changes along the black body locus.
 その他、本発明は上記の各実施形態に限られず、本発明の趣旨を逸脱しない限り、前述した種々の構成の一部又は全部を適宜組み合わせて構成してもよい。 In addition, the present invention is not limited to the above-described embodiments, and may be configured by appropriately combining some or all of the various configurations described above without departing from the spirit of the present invention.
 本発明によれば、波長変換部材の分析・分類・管理が容易で、LED発光デバイスの発光色や照度を制御し易く、LED発光デバイスを高い歩留まりで製造することができる。更に、LED発光デバイスの耐湿性や放熱性を向上することもできる。 According to the present invention, the wavelength conversion member can be easily analyzed, classified, and managed, the light emission color and illuminance of the LED light emitting device can be easily controlled, and the LED light emitting device can be manufactured with a high yield. Furthermore, the moisture resistance and heat dissipation of the LED light-emitting device can be improved.
1・・・LED発光デバイス
2・・・基体
3・・・LED素子
4・・・封止部材(封止部材用の透光性樹脂)
5・・・透光性基板
6・・・波長変換部材(波長変換部材用の蛍光体含有樹脂組成物)
DESCRIPTION OF SYMBOLS 1 ... LED light emitting device 2 ... Base | substrate 3 ... LED element 4 ... Sealing member (Translucent resin for sealing members)
5 ... Translucent substrate 6 ... Wavelength conversion member (phosphor-containing resin composition for wavelength conversion member)

Claims (14)

  1.  上端面に開口する凹部を有した基体と、前記凹部の底面に実装されたLED素子とを具備し、透光性を有し前記LED素子を封止する封止部材と、蛍光体を含有する波長変換部材とが、前記凹部の底面側からこの順に設けられているLED発光デバイスを製造する方法であって、
     前記波長変換部材が透光性基板上に積層している積層体を作製する積層工程と、
     前記基体の凹部の底面にLED素子を実装する実装工程と、
     前記LED素子が実装された前記基体の凹部に封止部材用の透光性樹脂を充填して前記LED素子を封止する封止工程と、
     前記透光性樹脂を硬化させる前に、前記透光性樹脂が充填された前記基体の凹部の開口部を、前記透光性基板が前記凹部の底面側を向くように前記積層体で覆う搭載工程とを備えていることを特徴とするLED発光デバイスの製造方法。
    A substrate having a recess opening in the upper end surface, and an LED element mounted on the bottom surface of the recess, having a light-transmitting sealing member for sealing the LED element, and a phosphor The wavelength conversion member is a method of manufacturing an LED light emitting device provided in this order from the bottom surface side of the recess,
    A laminating step for producing a laminate in which the wavelength conversion member is laminated on a light-transmitting substrate;
    A mounting step of mounting the LED element on the bottom surface of the concave portion of the substrate;
    A sealing step of sealing the LED element by filling a light-transmitting resin for a sealing member into a concave portion of the base on which the LED element is mounted;
    Prior to curing the translucent resin, the mounting body covers the opening of the concave portion of the base body filled with the translucent resin with the laminate so that the translucent substrate faces the bottom surface of the concave portion. And a process for producing an LED light-emitting device.
  2.  前記積層工程が、波長変換部材用の蛍光体含有樹脂組成物を前記透光性基板上に塗布し、当該蛍光体含有樹脂組成物を硬化させる工程である請求項1記載のLED発光デバイスの製造方法。 The LED light-emitting device manufacturing method according to claim 1, wherein the laminating step is a step of applying a phosphor-containing resin composition for a wavelength conversion member on the translucent substrate and curing the phosphor-containing resin composition. Method.
  3.  前記蛍光体含有樹脂組成物をポッティングにより塗布する請求項2記載のLED発光デバイスの製造方法。 The manufacturing method of the LED light-emitting device of Claim 2 which apply | coats the said fluorescent substance containing resin composition by potting.
  4.  前記積層工程が、複数個分の前記透光性基板が一体となった大基板上に、波長変換部材用の蛍光体含有樹脂組成物を、複数個の前記波長変換部材が形成されるように印刷し、当該蛍光体含有樹脂組成物を硬化させて、複数個の前記積層体を一体として作製する工程と、
     その上に複数個の前記波長変換部材が形成された大基板を切断して、複数個の前記積層体を切り出す工程とからなる請求項1記載のLED発光デバイスの製造方法。
    In the laminating step, a phosphor-containing resin composition for a wavelength conversion member is formed on a large substrate in which a plurality of the translucent substrates are integrated, so that the plurality of wavelength conversion members are formed. Printing, curing the phosphor-containing resin composition, and producing a plurality of the laminates as a unit;
    The method of manufacturing an LED light-emitting device according to claim 1, further comprising a step of cutting a large substrate on which a plurality of the wavelength conversion members are formed, and cutting the plurality of laminated bodies.
  5.  前記印刷が、赤色光を発する蛍光体を含有する蛍光体含有樹脂組成物と、緑色光を発する蛍光体を含有する蛍光体含有樹脂組成物と、青色光を発する蛍光体を含有する蛍光体含有樹脂組成物とを別々に重ねて印刷するものである請求項4記載のLED発光デバイスの製造方法。 A phosphor-containing resin composition containing a phosphor that emits red light, a phosphor-containing resin composition that contains a phosphor that emits green light, and a phosphor containing a phosphor that emits blue light The method for manufacturing an LED light-emitting device according to claim 4, wherein the resin composition and the resin composition are printed separately.
  6.  前記印刷が、赤色光を発する蛍光体を含有する蛍光体含有樹脂組成物と、緑色光を発する蛍光体を含有する蛍光体含有樹脂組成物と、青色光を発する蛍光体を含有する蛍光体含有樹脂組成物とをこの順に重ねて印刷するものである請求項4記載のLED発光デバイスの製造方法。 A phosphor-containing resin composition containing a phosphor that emits red light, a phosphor-containing resin composition that contains a phosphor that emits green light, and a phosphor containing a phosphor that emits blue light The method for producing an LED light-emitting device according to claim 4, wherein the resin composition and the resin composition are printed in this order.
  7.  前記封止工程において、前記透光性樹脂の表面が膨出するように、前記基体の凹部に前記透光性樹脂を充填する請求項1記載のLED発光デバイスの製造方法。 The method for manufacturing an LED light-emitting device according to claim 1, wherein, in the sealing step, the light-transmitting resin is filled in the concave portion of the base so that the surface of the light-transmitting resin swells.
  8.  前記搭載工程の前に、更に、前記積層体の表面のうち前記透光性基板側の表面に、前記透光性樹脂を付着させる樹脂付着工程を備えている請求項1記載のLED発光デバイスの製造方法。 2. The LED light emitting device according to claim 1, further comprising a resin attaching step of attaching the translucent resin to a surface of the laminated body on the translucent substrate side before the mounting step. Production method.
  9.  上端面に開口する凹部を有する基体と、
     前記凹部の底面に実装されたLED素子と、
     透光性を有し前記LED素子を封止する封止部材と、
     前記封止部材を前記凹部内に気密的に封ずるように、前記封止部材の上に設けられた透光性基板と、
     蛍光体を含有するものであって、前記透光性基板の上に設けられた波長変換部材とを備えていることを特徴とするLED発光デバイス。
    A substrate having a recess opening in the upper end surface;
    LED elements mounted on the bottom surface of the recess,
    A sealing member having translucency and sealing the LED element;
    A translucent substrate provided on the sealing member so as to hermetically seal the sealing member in the recess;
    An LED light-emitting device comprising a phosphor and comprising a wavelength conversion member provided on the translucent substrate.
  10.  前記LED素子が、紫外線又は短波長の可視光線を発するものであり、
     前記蛍光体が、赤色光を発する蛍光体、緑色光を発する蛍光体、及び、青色光を発する蛍光体である請求項9記載のLED発光デバイス。
    The LED element emits ultraviolet rays or visible light having a short wavelength,
    The LED light-emitting device according to claim 9, wherein the phosphor is a phosphor that emits red light, a phosphor that emits green light, and a phosphor that emits blue light.
  11.  前記透光性基板が、紫外線及び短波長の可視光線を透過して、より長波長の可視光線を反射する短波長透過フィルタである請求項9記載のLED発光デバイス。 10. The LED light-emitting device according to claim 9, wherein the translucent substrate is a short-wavelength transmission filter that transmits ultraviolet light and short-wavelength visible light and reflects longer-wavelength visible light.
  12.  前記LED素子が、430nm以下に放射ピークを有するものである請求項9記載のLED発光デバイス。 The LED light-emitting device according to claim 9, wherein the LED element has a radiation peak at 430 nm or less.
  13.  前記短波長透過フィルタが、光の反射率と透過率との高低が逆転する境界を、前記LED素子の放射ピーク波長より10nm以上大きく、かつ、440nm以下の波長領域に有する誘電体多層膜である請求項11記載のLED発光デバイス。 The short-wavelength transmission filter is a dielectric multilayer film having a boundary where the level of reflectance and transmittance of light is reversed in a wavelength region that is 10 nm or more larger than the emission peak wavelength of the LED element and 440 nm or less. The LED light-emitting device according to claim 11.
  14.  前記波長変換部材が、赤色光を発する蛍光体を含有する層と、緑色を発する蛍光体を含有する層と、青色を発する蛍光体を含有する層とが、前記LED素子側からこの順に形成されているものである請求項9記載のLED発光デバイス。 The wavelength conversion member includes a layer containing a phosphor emitting red light, a layer containing a phosphor emitting green light, and a layer containing a phosphor emitting blue light in this order from the LED element side. The LED light-emitting device according to claim 9.
PCT/JP2010/063052 2009-08-03 2010-08-03 Method for manufacturing led light emitting device WO2011016433A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-180706 2009-08-03
JP2009180706A JP2011035198A (en) 2009-08-03 2009-08-03 Method of manufacturing led light-emitting device

Publications (1)

Publication Number Publication Date
WO2011016433A1 true WO2011016433A1 (en) 2011-02-10

Family

ID=43544328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063052 WO2011016433A1 (en) 2009-08-03 2010-08-03 Method for manufacturing led light emitting device

Country Status (3)

Country Link
JP (1) JP2011035198A (en)
TW (1) TW201119092A (en)
WO (1) WO2011016433A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10141482B2 (en) 2015-08-03 2018-11-27 Alpad Corporation Semiconductor light emitting device
US10608150B2 (en) 2017-05-31 2020-03-31 Nichia Corporation Light-emitting device and method of manufacturing same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012199539A (en) * 2011-03-08 2012-10-18 Mitsubishi Chemicals Corp Light-emitting device and luminaire equipped with light-emitting device
JP5864367B2 (en) * 2011-06-16 2016-02-17 日東電工株式会社 Fluorescent adhesive sheet, light-emitting diode element with phosphor layer, light-emitting diode device, and manufacturing method thereof
KR20130022595A (en) * 2011-08-25 2013-03-07 서울옵토디바이스주식회사 Light emitting device for high current operation
JP2013252413A (en) * 2011-12-13 2013-12-19 Mignon Belle:Kk Flat panel narrow band monochromatic light emitting device and shell type led narrow band monochromatic light emitting device
JP6275965B2 (en) * 2013-07-03 2018-02-07 株式会社小糸製作所 Lighting device
FR3011383B1 (en) * 2013-09-30 2017-05-26 Commissariat Energie Atomique METHOD FOR MANUFACTURING OPTOELECTRONIC DEVICES WITH ELECTROLUMINESCENT DIODES
TWI610465B (en) 2013-10-07 2018-01-01 晶元光電股份有限公司 Light-emitting diode assembly and manufacturing method thereof
JP6742684B2 (en) * 2014-09-30 2020-08-19 日亜化学工業株式会社 Optical component, method of manufacturing the same, light emitting device, and method of manufacturing the same
TWI612694B (en) * 2014-11-18 2018-01-21 錼創科技股份有限公司 Method for manufacturing light emitting device
US9705051B2 (en) 2014-11-18 2017-07-11 PlayNitride Inc. Light emitting device
CN110235260A (en) * 2017-01-31 2019-09-13 晶化成半导体公司 For enhancing the method and encapsulation of the reliability of ultraviolet light emitting device
JP2018137381A (en) * 2017-02-23 2018-08-30 日本電気硝子株式会社 Light emitting device and method of manufacturing the same
WO2018163691A1 (en) * 2017-03-10 2018-09-13 日本電気硝子株式会社 Wavelength conversion member and light emitting device
JP2018151610A (en) * 2017-03-10 2018-09-27 日本電気硝子株式会社 Wavelength conversion member and light emitting device
JP7227076B2 (en) * 2019-05-27 2023-02-21 京セラ株式会社 Lighting device and lighting system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004056075A (en) * 2002-05-31 2004-02-19 Stanley Electric Co Ltd Light-emitting device and method of manufacturing the same
JP2005093681A (en) * 2003-09-17 2005-04-07 Toyoda Gosei Co Ltd Light-emitting device
JP2009071005A (en) * 2007-09-13 2009-04-02 Sony Corp Wavelength-converting member and production method thereof, and light-emitting device using wavelength converting member

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3492178B2 (en) * 1997-01-15 2004-02-03 株式会社東芝 Semiconductor light emitting device and method of manufacturing the same
JP2004031843A (en) * 2002-06-28 2004-01-29 Kyocera Corp Light-emitting diode
JP4317478B2 (en) * 2004-03-31 2009-08-19 三菱化学株式会社 Phosphor-type light emitting device and endoscope device using the same as an illumination source
JP2006186022A (en) * 2004-12-27 2006-07-13 Toyoda Gosei Co Ltd Light emitting device
JP2007059864A (en) * 2005-07-29 2007-03-08 Toshiba Lighting & Technology Corp Lighting device and light emitting diode device
JP2007173561A (en) * 2005-12-22 2007-07-05 Matsushita Electric Works Ltd Method for manufacturing light emitting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004056075A (en) * 2002-05-31 2004-02-19 Stanley Electric Co Ltd Light-emitting device and method of manufacturing the same
JP2005093681A (en) * 2003-09-17 2005-04-07 Toyoda Gosei Co Ltd Light-emitting device
JP2009071005A (en) * 2007-09-13 2009-04-02 Sony Corp Wavelength-converting member and production method thereof, and light-emitting device using wavelength converting member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10141482B2 (en) 2015-08-03 2018-11-27 Alpad Corporation Semiconductor light emitting device
US10608150B2 (en) 2017-05-31 2020-03-31 Nichia Corporation Light-emitting device and method of manufacturing same
US11011685B2 (en) 2017-05-31 2021-05-18 Nichia Corporation Method of manufacturing light-emitting device
US11637226B2 (en) 2017-05-31 2023-04-25 Nichia Corporation Light-emitting device

Also Published As

Publication number Publication date
JP2011035198A (en) 2011-02-17
TW201119092A (en) 2011-06-01

Similar Documents

Publication Publication Date Title
WO2011016433A1 (en) Method for manufacturing led light emitting device
WO2010123059A1 (en) Method for manufacturing led light emitting device
JP6599295B2 (en) LIGHT EMITTING ELEMENT HAVING BELT ANGLE REFLECTOR AND MANUFACTURING METHOD
EP2811517B1 (en) Light emitting device
US7906892B2 (en) Light emitting device
TWI645583B (en) Led module with hermetic seal of wavelength conversion material
KR101251821B1 (en) Light emitting device package
JP5113820B2 (en) Light emitting device
JP5084324B2 (en) Light emitting device and lighting device
JP5648422B2 (en) Light emitting device and manufacturing method thereof
KR20090002835A (en) Nitride light emitting device and method of making the same
JP6107415B2 (en) Light emitting device
WO2011004795A1 (en) Light emitting device
JP2013038215A (en) Wavelength conversion member
JP6065408B2 (en) Light emitting device and manufacturing method thereof
WO2012053386A1 (en) Method for producing light-emitting device, and light-emitting device
JP5543386B2 (en) LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND LIGHTING DEVICE
JP2014067774A (en) Wavelength conversion member, and semiconductor light-emitting device using the same
JP6079544B2 (en) Light emitting device and method for manufacturing light emitting device
KR101202173B1 (en) Light emitting device having plurality of light-converting material laters
JP2015092622A (en) Light-emitting device
JP2008270390A (en) Front cover, light-emitting device and manufacturing method for front cover
JP6155932B2 (en) Light emitting device
WO2013108738A1 (en) Light-emitting device
KR101549827B1 (en) Led encaptulation structure and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10806432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10806432

Country of ref document: EP

Kind code of ref document: A1