JP2013038215A - Wavelength conversion member - Google Patents

Wavelength conversion member Download PDF

Info

Publication number
JP2013038215A
JP2013038215A JP2011172925A JP2011172925A JP2013038215A JP 2013038215 A JP2013038215 A JP 2013038215A JP 2011172925 A JP2011172925 A JP 2011172925A JP 2011172925 A JP2011172925 A JP 2011172925A JP 2013038215 A JP2013038215 A JP 2013038215A
Authority
JP
Japan
Prior art keywords
light
wavelength conversion
conversion member
emitting device
spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011172925A
Other languages
Japanese (ja)
Inventor
Kenji Yoneda
賢治 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CCS Inc
Original Assignee
CCS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CCS Inc filed Critical CCS Inc
Priority to JP2011172925A priority Critical patent/JP2013038215A/en
Publication of JP2013038215A publication Critical patent/JP2013038215A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wavelength conversion member which accurately and easily adjusts the thickness of a phosphor layer and is excellent in heat radiation performance, which is combined with an LED element fitted in the wavelength conversion member to control the luminescent color and the luminance of a light emitting device and which improves the yield of the light emitting device.SOLUTION: A wavelength conversion member includes: a pair of heat radiation translucent plates which are provided so as to face each other; a spacer disposed between the pair of heat radiation translucent plates; and a phosphor layer including a phosphor formed in a space closed by the pair of heat radiation translucent plates and the spacer.

Description

本発明は、LED素子を備えた発光装置に用いる波長変換部材に関する。   The present invention relates to a wavelength conversion member used for a light emitting device including an LED element.

従来、窒化ガリウム系化合物半導体を用いて青色光又は紫外線を放射するLED素子と種々の蛍光体とを組み合わせることにより、白色をはじめとするLED素子の発光色とは異なる色の光を発する発光装置が開発されている(特許文献1)。LED素子を用いたこのような発光装置は、小型、省電力、長寿命等の長所があり、表示用光源や照明用光源として広く用いられている。特に近時では高出力、高輝度のLED素子が開発されてきており、その用途は益々拡大の一途にある。   Conventionally, a light emitting device that emits light of a color different from that of LED elements such as white by combining blue light or ultraviolet light emitting LED elements and various phosphors using a gallium nitride compound semiconductor Has been developed (Patent Document 1). Such a light emitting device using an LED element has advantages such as small size, power saving and long life, and is widely used as a light source for display and a light source for illumination. In particular, recently, LED elements with high output and high brightness have been developed, and their uses are increasingly expanding.

このような発光装置は、蛍光体を含有する波長変換部材を備えているが、当該波長変換部材は、例えば、LED素子が実装された基体の凹部内に、LED素子封止用の透明樹脂を充填し硬化させてから、その上に蛍光体が分散した樹脂組成物を注入することにより形成される。   Such a light-emitting device includes a wavelength conversion member containing a phosphor. For example, the wavelength conversion member includes a transparent resin for sealing an LED element in a concave portion of a base on which the LED element is mounted. After filling and curing, it is formed by injecting a resin composition in which a phosphor is dispersed.

この際、波長変換部材の厚さが変わると発光装置の発光色(色温度)も変化するので、波長変換部材の厚さを制御し管理することは極めて重要である。   At this time, since the emission color (color temperature) of the light emitting device changes when the thickness of the wavelength conversion member changes, it is extremely important to control and manage the thickness of the wavelength conversion member.

また、通常、蛍光体が分散した樹脂組成物は、発光装置の複数個分に相当する量を一時に調製してから、所定量ずつ注入するものであるが、当該樹脂組成物中の蛍光体の分散状態は経時的に変化するので、同じロットの発光装置であっても、発光色の色目や照度には若干のバラツキが生じる。また、LED素子の発光色や照度にもバラツキがあり、このことも最終製品である発光装置の発光色や照度のバラツキの原因となる。しかし、得られた発光装置を検査装置用の光源として用いる場合には、僅かであってもこのようなバラツキがあると検査結果の信頼性が損なわれるのでその影響は甚大である。   In addition, the resin composition in which the phosphor is dispersed is usually prepared by temporarily preparing an amount corresponding to a plurality of light emitting devices, and then injecting the predetermined amount. The phosphor in the resin composition Since the dispersion state changes with time, even in the light emitting devices of the same lot, there are slight variations in the color of the emitted color and the illuminance. Moreover, there are variations in the emission color and illuminance of the LED elements, and this also causes variations in the emission color and illuminance of the light emitting device as the final product. However, when the obtained light-emitting device is used as a light source for an inspection apparatus, even if there is even a slight variation, the reliability of the inspection result is impaired, and the influence is significant.

更に、このような発光装置に用いられる蛍光体は熱に脆弱であり、蛍光体自らの発熱やLED素子からの伝熱によって熱劣化する。そして、LED素子が高出力化すると、その発熱量も増大するため、LED素子の高出力化が進む昨今では、熱劣化による蛍光体の発光効率や輝度の低下の解決も急がれている。   Furthermore, the phosphor used in such a light-emitting device is vulnerable to heat, and is thermally deteriorated due to the heat generated by the phosphor itself or the heat transfer from the LED element. When the output of the LED element is increased, the amount of generated heat is also increased. Therefore, in recent years when the output of the LED element is increased, there is an urgent need to solve the decrease in luminous efficiency and luminance of the phosphor due to thermal degradation.

特開2005−191197号公報JP 2005-191197 A

本発明はかかる問題点に鑑みなされたものであって、蛍光層の厚さの調節が正確かつ容易に行えるうえ、放熱性に優れ、更に、適合するLED素子と組み合わせて発光装置の発光色や照度を制御し、発光装置の歩留まりを高めることができる波長変換部材を提供することをその主たる所期課題としたものである。   The present invention has been made in view of such a problem, and the thickness of the fluorescent layer can be adjusted accurately and easily, and it has excellent heat dissipation. An object of the present invention is to provide a wavelength conversion member that can control the illuminance and increase the yield of the light emitting device.

すなわち本発明に係る波長変換部材は、互いに対向して設けられた一対の放熱性透光板と、前記一対の放熱性透光板の間に介在するスペーサと、前記一対の放熱性透光板と前記スペーサとにより閉塞された空間に形成された蛍光体を含有する蛍光層と、を備えていることを特徴とする。   That is, the wavelength conversion member according to the present invention includes a pair of heat radiating light transmitting plates provided to face each other, a spacer interposed between the pair of heat radiating light transmitting plates, the pair of heat radiating light transmitting plates, and the And a fluorescent layer containing a phosphor formed in a space closed by a spacer.

このようなものであれば、2枚の放熱性透光板間の距離をスペーサにより定めることができるので、その間に形成される蛍光層の厚さを正確かつ容易に制御し管理することができる。このため、発光装置の発光色(色温度)を再現性よく管理することが可能となる。   If it is such, since the distance between two heat-radiating translucent plates can be determined by the spacer, the thickness of the fluorescent layer formed between them can be controlled and managed accurately and easily. . For this reason, it becomes possible to manage the emission color (color temperature) of the light emitting device with good reproducibility.

また、本発明によれば、蛍光層を取り囲む2枚の放熱性透光板とスペーサとを介して、効率的に蛍光層の熱を放出することができるので、前記蛍光層に含まれる蛍光体の発光効率や輝度の低下等の熱劣化を効果的に防ぐことができる。   In addition, according to the present invention, since the heat of the fluorescent layer can be efficiently released through the two heat dissipating transparent plates surrounding the fluorescent layer and the spacer, the phosphor included in the fluorescent layer It is possible to effectively prevent thermal deterioration such as a decrease in luminous efficiency and luminance.

更に、本発明によれば、予め波長変換部材を作製してから、当該波長変換部材とLED素子とを組み合わせて発光装置を組み立てるので、波長と光強度が予め定められた、例えば近紫外線を発する基準光源を使用して波長変換部材の発光色や照度等を測定し、バラツキのある一群の波長変換部材を発光色や照度等に従い分類・管理し、所望の発光色や照度等を有するものを選び出して、適合するLED素子と組み合わせて所期の性能を有する発光装置を作製することができる。このため、得られる発光装置の発光色や照度等のバラツキを極力抑えることができる。   Further, according to the present invention, since the wavelength conversion member is prepared in advance and the light emitting device is assembled by combining the wavelength conversion member and the LED element, the wavelength and the light intensity are set in advance, for example, near ultraviolet rays are emitted. Using a reference light source, measure the emission color, illuminance, etc. of the wavelength conversion member, classify and manage a group of wavelength conversion members with variations according to the emission color, illuminance, etc., and have the desired emission color, illuminance, etc. A light emitting device having a desired performance can be manufactured by selecting and combining with a suitable LED element. For this reason, it is possible to suppress variations in the emission color, illuminance, and the like of the obtained light emitting device as much as possible.

前記スペーサは、前記放熱性透光板の少なくともいずれか一方と一体となっていてもよい。このような放熱性透光板は、例えば、凹部が形成されているものであり、その中に蛍光体が分散した樹脂組成物を充填することにより蛍光層を形成することができる。   The spacer may be integrated with at least one of the heat radiating light transmitting plates. Such a heat-radiating light-transmitting plate has, for example, a recess, and a fluorescent layer can be formed by filling a resin composition in which a phosphor is dispersed therein.

前記一対の放熱性透光板の一方は、紫外線及び短波長の可視光線を反射してより長波長の可視光線を透過する長波長透過フィルタであることが好ましい。前記一対の放熱性透光板の一方に長波長透過フィルタを用い、発光装置の組み立て後には当該長波長透過フィルタが光射出面側に位置するように波長変換部材を設置することにより、LED素子から発して蛍光体に当たらなかった紫外線や短波長の可視光線を、当該長波長透過フィルタにより蛍光層側に反射して戻し、長波長の可視光線への変換効率を向上させることができる。また、長波長透過フィルタを用いることにより、有害な近紫外光が発光装置外に放射されるのを防ぐことができるとともに、長波長透過フィルタの誘電体多層膜が反射防止コーティングとしても機能するので、長波長の可視光線を効率的に装置外に導出することもできる。   One of the pair of heat-radiating light-transmitting plates is preferably a long-wavelength transmission filter that reflects ultraviolet rays and short-wavelength visible rays and transmits longer-wavelength visible rays. A long wavelength transmission filter is used for one of the pair of heat radiating light transmission plates, and after assembling the light emitting device, a wavelength conversion member is installed so that the long wavelength transmission filter is located on the light emission surface side, thereby providing an LED element. The ultraviolet rays and short-wavelength visible light emitted from the light and not hitting the phosphor are reflected back to the fluorescent layer side by the long-wavelength transmission filter, and the conversion efficiency into long-wavelength visible light can be improved. In addition, by using a long wavelength transmission filter, harmful near ultraviolet light can be prevented from being emitted outside the light emitting device, and the dielectric multilayer film of the long wavelength transmission filter also functions as an antireflection coating. In addition, visible light having a long wavelength can be efficiently led out of the apparatus.

本発明に係る波長変換部材とLED素子とを組み合わせて得られた発光装置もまた、本発明の1つである。   The light emitting device obtained by combining the wavelength conversion member and the LED element according to the present invention is also one aspect of the present invention.

本発明に係る発光装置が、前記波長変換部材を支持する基体を備えている場合は、前記スペーサと前記基体とが一体となっていてもよい。   When the light emitting device according to the present invention includes a base body that supports the wavelength conversion member, the spacer and the base body may be integrated.

このような構成の本発明によれば、発光装置の発光色(色温度)に影響を与える蛍光層の厚さの調節を高い精度でかつ容易に行うことができる。また、本発明によれば、熱による蛍光体の変化も良好に抑制することができる。更に、本発明によれば、得られた波長変換部材を分類・管理して、適合するLED素子と組み合わせて用いることにより、発光装置の発光色や照度を制御し易く、バラツキを抑えて高い歩留まりで発光装置を製造することができる。   According to the present invention having such a configuration, the thickness of the fluorescent layer that affects the emission color (color temperature) of the light emitting device can be easily adjusted with high accuracy. Moreover, according to this invention, the change of the fluorescent substance by a heat | fever can also be suppressed favorably. Furthermore, according to the present invention, by classifying and managing the obtained wavelength conversion member and using it in combination with a suitable LED element, it is easy to control the emission color and illuminance of the light-emitting device, and suppresses variation and high yield. A light emitting device can be manufactured.

本発明の一実施形態に係る発光装置の縦断面図である。It is a longitudinal cross-sectional view of the light-emitting device which concerns on one Embodiment of this invention. 同実施形態に係る発光装置の平面図である。It is a top view of the light-emitting device concerning the embodiment. 同実施形態における長波長透過フィルタの透過率及び反射率の概要を示すグラフである。It is a graph which shows the outline | summary of the transmittance | permeability and reflectance of the long wavelength transmission filter in the embodiment. 同実施形態における波長変換部材の製造工程(a)〜(c)を示す図である。It is a figure which shows the manufacturing process (a)-(c) of the wavelength conversion member in the embodiment. 同実施形態における波長変換部材の製造工程(d)〜(f)を示す図である。It is a figure which shows the manufacturing process (d)-(f) of the wavelength conversion member in the embodiment. 同実施形態に係る発光装置の製造工程(a)〜(b)を示す図である。It is a figure which shows the manufacturing process (a)-(b) of the light-emitting device based on the embodiment. 同実施形態に係る発光装置の製造工程(c)〜(d)を示す図である。It is a figure which shows the manufacturing process (c)-(d) of the light-emitting device concerning the embodiment. 他の実施形態に係る発光装置の縦断面図である。It is a longitudinal cross-sectional view of the light-emitting device which concerns on other embodiment. 他の実施形態に係る発光装置の縦断面図である。It is a longitudinal cross-sectional view of the light-emitting device which concerns on other embodiment.

以下に本発明の一実施形態について図面を参照して説明する。   An embodiment of the present invention will be described below with reference to the drawings.

本実施形態に係る発光装置1は、図1及び図2に示すように、LED素子3と、LED素子3を封止する封止部材4と、封止部材4の上方に設けられた波長変換部材5とを備えているものであり、LED素子3と封止部材4と波長変換部材5とは基体2内に収容され保持されている。   As shown in FIGS. 1 and 2, the light emitting device 1 according to this embodiment includes an LED element 3, a sealing member 4 that seals the LED element 3, and a wavelength conversion provided above the sealing member 4. The LED element 3, the sealing member 4, and the wavelength conversion member 5 are accommodated and held in the base 2.

以下に各部を詳述する。
基体2は、上端面に開口する凹部を有するものであり、例えば、アルミナや窒化アルミニウム等の熱伝導率が高い絶縁材料を成型してなるものが挙げられる。
Each part is described in detail below.
The base body 2 has a concave portion opened at the upper end surface, and examples thereof include those formed by molding an insulating material having a high thermal conductivity such as alumina or aluminum nitride.

基体2の凹部の側面には環状をなす突条部21が形成されており、当該突条部21の上端面上には波長変換部材5が載置されている。なお、基体2の凹部には、図2に示すように、四隅に角取り孔22が形成されており、凹部内に波長変換部材5を嵌め込む際にその角部が妨げとならないようにしてある。また、基体2の凹部の側面及び底面を含む内面には、銀、アルミニウム、金等の金属メッキ等が施されることにより高反射率の金属薄膜が形成されており、リフレクタとして機能している。そして、長波長透過フィルタからなる上部放熱性透光板53で下方向に反射され、蛍光層52と下部放熱性透光板51とを透過した紫外線や短波長の可視光線を、当該金属薄膜により、再度、蛍光層52に向けて反射することができる。   An annular ridge portion 21 is formed on the side surface of the concave portion of the base 2, and the wavelength conversion member 5 is placed on the upper end surface of the ridge portion 21. As shown in FIG. 2, the recesses of the base 2 are formed with chamfering holes 22 at the four corners so that the corners do not interfere when the wavelength conversion member 5 is fitted into the recesses. is there. Also, a metal thin film with high reflectivity is formed on the inner surface including the side surface and the bottom surface of the concave portion of the base 2 by applying metal plating such as silver, aluminum, gold, etc., and functions as a reflector. . Then, ultraviolet rays or short-wavelength visible rays reflected downward by the upper heat radiating light transmitting plate 53 made of a long wavelength transmission filter and transmitted through the fluorescent layer 52 and the lower heat radiating light transmitting plate 51 are reflected by the metal thin film. Again, it can be reflected toward the fluorescent layer 52.

LED素子3は、紫外線や短波長の可視光線を発するものであり、例えば360〜430nmに放射ピークを有するものである。このようなLED素子3は、例えば、サファイア基板や窒化ガリウム基板の上に窒化ガリウム系化合物半導体がn型層、発光層及びp型層の順に積層してなるものである。   The LED element 3 emits ultraviolet rays or short-wavelength visible light, and has a radiation peak at 360 to 430 nm, for example. Such an LED element 3 is formed, for example, by laminating a gallium nitride compound semiconductor in the order of an n-type layer, a light emitting layer, and a p-type layer on a sapphire substrate or a gallium nitride substrate.

LED素子3は、窒化ガリウム系化合物半導体を下にして基板31に半田バンプや金バンプ等(図示しない。)を用いてフリップチップ実装されている。なお、LED素子3は基板31に設けられた配線導体にワイヤボンディングを用いて接続されていてもよい。また、本実施形態においては、複数個(9個)のLED素子3が搭載されているが、LED素子3の数はこの限りではなく、目的・用途に応じて適宜変更することができる。   The LED element 3 is flip-chip mounted on the substrate 31 using solder bumps, gold bumps or the like (not shown) with the gallium nitride compound semiconductor facing down. The LED element 3 may be connected to a wiring conductor provided on the substrate 31 using wire bonding. In the present embodiment, a plurality (9) of LED elements 3 are mounted. However, the number of LED elements 3 is not limited to this, and can be appropriately changed according to the purpose and application.

基板31は、アルミナ等のセラミックスや窒化アルミニウム等の熱伝導率が高い絶縁性材料からなるものであり、基板31の上面には、LED素子3が電気的に接続されるための、例えば銀パターン等からなる配線導体(図示しない。)が形成されている。この配線導体が基体2内部に形成された配線層(図示しない。)を介して発光装置1の外表面に導出されて外部電気回路基板に接続されることにより、LED素子3と外部電気回路基板とが電気的に接続される。   The substrate 31 is made of an insulating material having high thermal conductivity such as ceramics such as alumina or aluminum nitride. For example, a silver pattern for electrically connecting the LED element 3 to the upper surface of the substrate 31 is used. A wiring conductor (not shown) is formed. This wiring conductor is led to the outer surface of the light emitting device 1 through a wiring layer (not shown) formed inside the base body 2 and connected to the external electric circuit board, whereby the LED element 3 and the external electric circuit board are connected. Are electrically connected.

封止部材4は、LED素子3を封止するためのものであり、LED素子3から封止部材4へ効率良く光を取り出すためには、透光性及び耐熱性に優れるとともに、LED素子3との屈折率差が小さい、例えばシリコーン樹脂等の透明樹脂からなるものであることが好ましい。   The sealing member 4 is for sealing the LED element 3. In order to efficiently extract light from the LED element 3 to the sealing member 4, the sealing member 4 is excellent in translucency and heat resistance, and the LED element 3. The refractive index difference is preferably made of a transparent resin such as a silicone resin.

波長変換部材5は、下部放熱性透光板51と上部放熱性透光板53との間にスペーサSとともに蛍光層52が挟まれてなる積層体状のものである。   The wavelength conversion member 5 is a laminated body in which a fluorescent layer 52 is sandwiched between a lower heat transmissive plate 51 and an upper heat transmissive plate 53 together with a spacer S.

蛍光層52は、内部に蛍光体521を含有しているものであり、例えば、透光性及び耐熱性に優れた、シリコーン樹脂、フッ素樹脂、低融点ガラス等からなるマトリックス中に蛍光体521が分散しているものが挙げられる。   The fluorescent layer 52 contains the fluorescent substance 521 inside. For example, the fluorescent substance 521 is contained in a matrix made of a silicone resin, a fluororesin, a low-melting glass, etc. having excellent translucency and heat resistance. Examples are dispersed.

蛍光層52が含有する蛍光体521としては特に限定されず、例えば、赤色蛍光体、緑色蛍光体、青色蛍光体、黄色蛍光体等が挙げられる。このうち、赤色蛍光体、緑色蛍光体及び青色蛍光体を併用すると、白色光を発する発光装置1を構成することができる。   The phosphor 521 contained in the phosphor layer 52 is not particularly limited, and examples thereof include a red phosphor, a green phosphor, a blue phosphor, and a yellow phosphor. Among these, when the red phosphor, the green phosphor, and the blue phosphor are used in combination, the light emitting device 1 that emits white light can be configured.

スペーサSは、例えば、銅、アルミニウム等の熱伝導率が高い金属からなり、蛍光層52を形成するための貫通孔S1が設けられた平板状のものである。   The spacer S is made of a metal having high thermal conductivity such as copper or aluminum, and has a flat plate shape provided with a through hole S1 for forming the fluorescent layer 52.

下部放熱性透光板51は、蛍光層52の下側に配置されており、例えば、水晶、サファイア、ダイアモンド、窒化アルミニウム等の熱伝導率が高く透光性に優れた材料からなるものである。このような材料からなる下部放熱性透光板51は、例えば、その表面に銅やアルミニウム等の熱伝導性に優れた金属をライン状や格子状等に蒸着することによって、透光性を担保しながら熱伝導性をより一層向上させることができる。   The lower heat-radiating light-transmitting plate 51 is disposed below the fluorescent layer 52 and is made of a material having high heat conductivity and excellent light-transmitting properties such as crystal, sapphire, diamond, and aluminum nitride. . The lower heat radiating translucent plate 51 made of such a material secures translucency by evaporating, for example, a metal having excellent thermal conductivity such as copper or aluminum on the surface thereof in a line shape or a lattice shape. However, the thermal conductivity can be further improved.

上部放熱性透光板53は、紫外線や短波長の可視光線を反射して、長波長の可視光線を選択的に透過する長波長透過フィルタ(ハイパスフィルタ)であり、蛍光層52の上側に重ねて設けられている。このような上部放熱性透光板53としては、例えば、図3に示すように、430nm近傍を境界として、光の反射率と透過率とが逆転する誘電体多層膜を備えたものを用いることができる。このような誘電体多層膜は、例えば、ガラス、水晶、サファイア等からなる基板に膜材料を付着させることにより形成される。上部放熱性透光板53は、いずれの側の面が蛍光層52に接するように配置されていてもよいが、例えば、基板側の面(誘電体多層膜が形成されていない側の面)が蛍光層52に接するように上部放熱性透光板53を配置することにより、上部放熱性透光板53の誘電体多層膜が反射防止コーティングとしても機能するので、長波長の可視光線を効率的に外部に導出することができる。また、この場合、誘電体多層膜の基板が水晶やサファイア等の熱伝導性に優れた材質からなるものであれば、蛍光層52(蛍光体521)から発した熱を効率的に基体2に伝達して発光装置1外に放出することもできる。更に、上述したように、基板の表面に銅やアルミニウム等の熱伝導性に優れた金属をライン状や格子状等に蒸着することにより、透光性を担保しながら基板の熱伝導性を向上させることができる。しかしながら、例えば、誘電体多層膜の放熱性に着目するならば、誘電体多層膜が形成された側の面が蛍光層52に接するようにしてもよい。   The upper heat dissipating translucent plate 53 is a long wavelength transmission filter (high pass filter) that reflects ultraviolet rays and short wavelength visible rays and selectively transmits long wavelength visible rays, and is superimposed on the fluorescent layer 52. Is provided. As such an upper heat dissipating light transmitting plate 53, for example, as shown in FIG. 3, the one having a dielectric multilayer film in which the light reflectance and transmittance are reversed with the vicinity of 430 nm as a boundary is used. Can do. Such a dielectric multilayer film is formed, for example, by attaching a film material to a substrate made of glass, quartz, sapphire, or the like. The upper heat dissipating translucent plate 53 may be arranged so that either side of the surface is in contact with the fluorescent layer 52, for example, a substrate side surface (a surface on which the dielectric multilayer film is not formed). By disposing the upper heat radiating light transmitting plate 53 so as to be in contact with the fluorescent layer 52, the dielectric multilayer film of the upper heat radiating light transmitting plate 53 also functions as an anti-reflection coating, so that long wavelength visible light is efficiently used. Can be derived externally. In this case, if the substrate of the dielectric multilayer film is made of a material having excellent thermal conductivity such as quartz or sapphire, the heat generated from the fluorescent layer 52 (phosphor 521) is efficiently applied to the base 2. It can also be transmitted to the outside of the light emitting device 1. In addition, as described above, metal with excellent thermal conductivity such as copper and aluminum is deposited on the surface of the substrate in a line shape or a lattice shape, thereby improving the thermal conductivity of the substrate while ensuring translucency. Can be made. However, for example, if attention is paid to the heat dissipation of the dielectric multilayer film, the surface on which the dielectric multilayer film is formed may be in contact with the fluorescent layer 52.

このような発光装置1では、蛍光体521に当たらずに蛍光層52を通過した紫外線や短波長の可視光線は、上部放熱性透光板53で反射して戻り、再度、蛍光層52内を進行する。このため、紫外線や短波長の可視光線が蛍光体521に当たる確率が向上するので、より多くの紫外線や短波長の可視光線が長波長の可視光線に変換され、その結果、発光装置1からの発光量が増加する。また、蛍光体521が発する長波長の可視光線のうち、LED素子3側に向かって逆進したものは、基板2の凹部内面に形成されたリフレクタ(金属薄膜)で反射し、進行方向を変えて上部放熱性透光板53に向かい、これを透過して発光装置1外に射出されるので、長波長の可視光線の取り出し効率も向上する。このため、本発光装置1によれば、紫外線や短波長の可視光線を効率的に長波長の可視光線に変換し、更に、変換された可視光線を効率的に発光装置1外に取り出すことができる。   In such a light-emitting device 1, ultraviolet rays or short-wavelength visible rays that have passed through the fluorescent layer 52 without hitting the phosphor 521 are reflected by the upper heat-transmitting light-transmitting plate 53, and again pass through the fluorescent layer 52. proceed. For this reason, since the probability that ultraviolet rays or short-wavelength visible light hits the phosphor 521 is improved, more ultraviolet rays or short-wavelength visible light is converted into long-wavelength visible light, and as a result, light emission from the light emitting device 1 The amount increases. Further, among the long-wavelength visible light emitted from the phosphor 521, the backward light traveling toward the LED element 3 is reflected by the reflector (metal thin film) formed on the inner surface of the concave portion of the substrate 2 to change the traveling direction. Then, the light passes through the upper heat radiating light-transmitting plate 53, passes through the light-emitting device 1, and is emitted to the outside of the light emitting device 1, so that the extraction efficiency of visible light having a long wavelength is also improved. For this reason, according to the light emitting device 1, ultraviolet rays and short-wavelength visible light can be efficiently converted into long-wavelength visible light, and the converted visible light can be efficiently taken out of the light-emitting device 1. it can.

また、封止部材4や蛍光層52を構成するシリコーン樹脂等は気体透過率が高いが、本実施形態では上部放熱性透光板53により基体2の凹部内への気体や水分の侵入を抑制することができるので、基体2の凹部内面に形成された金属薄膜の酸化、硫化、塩化等による腐食等を防止することができる。   Moreover, although the silicone resin etc. which comprise the sealing member 4 and the fluorescent layer 52 have a high gas permeability, in this embodiment, the upper heat-radiating light-transmitting plate 53 suppresses the entry of gas and moisture into the recesses of the base 2. Therefore, corrosion of the metal thin film formed on the inner surface of the concave portion of the base 2 due to oxidation, sulfurization, chlorination, or the like can be prevented.

次に、本実施形態に係る発光装置1の製造方法について、図4〜7を参照して説明する。   Next, a method for manufacturing the light emitting device 1 according to the present embodiment will be described with reference to FIGS.

本実施形態に係る発光装置1を製造するに際しては、予め、波長変換部材5を作製しておく。   When manufacturing the light emitting device 1 according to this embodiment, the wavelength conversion member 5 is prepared in advance.

まず、複数個分の下部放熱性透光板51(又は上部放熱性透光板53)に相当する大きさの大型基板上に、複数個分のスペーサSに相当する大きさの多数の貫通孔S1が設けられた金属板を重ねて配置する(図4(a))。ここで、当該スペーサSにより、波長変換部材5を突条部21の上端面上に配置した際に、基体2の上端面と上部放熱性透光板53の上面とが略面一になるように、波長変換部材5の高さが調節される。   First, a large number of through-holes having a size corresponding to a plurality of spacers S are formed on a large substrate having a size corresponding to a plurality of lower heat-transmitting light-transmitting plates 51 (or upper heat-transmitting light-transmitting plates 53). The metal plates provided with S1 are stacked and arranged (FIG. 4A). Here, when the wavelength conversion member 5 is disposed on the upper end surface of the protruding portion 21 by the spacer S, the upper end surface of the base 2 and the upper surface of the upper heat radiating light transmitting plate 53 are substantially flush with each other. Further, the height of the wavelength conversion member 5 is adjusted.

次いで、貫通孔S1に内に、蛍光体521が分散した樹脂組成物52を所定量充填する(図4(b)〜(c))。   Next, a predetermined amount of the resin composition 52 in which the phosphor 521 is dispersed is filled in the through-hole S1 (FIGS. 4B to 4C).

その後、スペーサS上に複数個分の上部放熱性透光板53(又は下部放熱性透光板51)に相当する大きさの大型基板を重ねて配置する(図5(d))。   After that, a large substrate having a size corresponding to a plurality of upper heat radiating light transmitting plates 53 (or lower heat radiating light transmitting plates 51) is placed on the spacer S in an overlapping manner (FIG. 5D).

そして、必要に応じて加熱等して樹脂組成物52を硬化させることにより、下部放熱性透光板51と上部放熱性透光板53との間にスペーサSとともに蛍光層52が挟まれてなる波長変換部材5の複数個分が一体となった積層体を得ることができる(図5(e))。   Then, if necessary, the resin composition 52 is cured by heating or the like, whereby the fluorescent layer 52 is sandwiched together with the spacer S between the lower heat transmissive plate 51 and the upper heat transmissive plate 53. A laminate in which a plurality of wavelength conversion members 5 are integrated can be obtained (FIG. 5E).

このようにして得られた複数個の波長変換部材5が一体となった積層体を切断して、一個ずつ切り離すことにより、複数個の波長変換部材5を一度に作製することができる(図5(f))。   A plurality of wavelength conversion members 5 can be produced at one time by cutting the laminate in which the plurality of wavelength conversion members 5 obtained in this way are integrated and separating one by one (FIG. 5). (F)).

そして、得られた波長変換部材5を用いて以下のようにして本実施形態に係る発光装置1を組み立てる。   And the light-emitting device 1 which concerns on this embodiment is assembled as follows using the obtained wavelength conversion member 5. FIG.

まず、図6(a)〜(b)に示すように、基体2の凹部内に、突条部21の上端面より膨出する程度に若干多めに透明樹脂4を充填する。しかる後、図7(c)〜(d)に示すように、予め作製された波長変換部材5を、突条部21の上端面上にその周縁部が載置されるように配設する。すると、溢れた透明樹脂4が突条部21の上端面と波長変換部材5の下面との間に浸み出して、基体2と波長変換部材5とを接着する接着剤として機能する。   First, as shown in FIGS. 6A to 6B, the transparent resin 4 is filled in the concave portion of the base body 2 so as to bulge from the upper end surface of the protrusion 21. Thereafter, as shown in FIGS. 7C to 7D, the wavelength conversion member 5 prepared in advance is disposed on the upper end surface of the protrusion 21 so that the peripheral edge thereof is placed. Then, the overflowing transparent resin 4 oozes out between the upper end surface of the protruding portion 21 and the lower surface of the wavelength conversion member 5 and functions as an adhesive that bonds the base 2 and the wavelength conversion member 5 together.

このような本実施形態に係る発光装置1によれば、下部及び上部の放熱性透光板51、53間の距離がスペーサSにより定められるので、その間に形成される蛍光層52の厚さを高い精度で容易に制御し管理することができる。このため、発光装置1の発光色(色温度)も再現性よく管理することが可能となる。   According to the light emitting device 1 according to the present embodiment, since the distance between the lower and upper heat transmissive plates 51 and 53 is determined by the spacer S, the thickness of the fluorescent layer 52 formed therebetween is reduced. Easy to control and manage with high accuracy. For this reason, the light emission color (color temperature) of the light emitting device 1 can be managed with good reproducibility.

また、本実施形態では、蛍光層52が、下部及び上部の放熱性透光板51、53とスペーサSとにより閉塞された空間に形成されているので、スペーサSと下部及び上部の放熱性透光板51、53とを介して、蛍光層52から発した熱を効率的に基体2に伝達し放出することができる。このため、蛍光層52に含まれる蛍光体521の発光効率や輝度の低下等の熱劣化を、効果的に防ぐことができる。   In the present embodiment, since the fluorescent layer 52 is formed in a space closed by the lower and upper heat-transmitting light-transmitting plates 51 and 53 and the spacer S, the spacer S and the lower and upper heat-transmitting transparent plates are formed. The heat generated from the fluorescent layer 52 can be efficiently transmitted to the substrate 2 through the optical plates 51 and 53 and released. For this reason, it is possible to effectively prevent thermal degradation such as a decrease in luminous efficiency and luminance of the phosphor 521 included in the phosphor layer 52.

更に、本実施形態では、波長変換部材5を、LED素子3が実装された基体2とは別体として作製してから、それらを組み合わせることにより発光装置1を作製するので、基準光源を使用して波長変換部材5の発光色や照度等を分析し、バラツキのある一群の波長変換部材5を発光色や照度等に従い分類・管理し、所望の発光色や照度等を有するものを選び出して、適合するLED素子3と組み合わせることにより、所期の性能を有する発光装置1を得ることができる。   Furthermore, in this embodiment, since the wavelength conversion member 5 is manufactured as a separate body from the base 2 on which the LED element 3 is mounted, the light emitting device 1 is manufactured by combining them, so a reference light source is used. Analyzing the emission color, illuminance, etc. of the wavelength conversion member 5, classifying and managing a group of wavelength conversion members 5 with variations according to the emission color, illuminance, etc., selecting those having the desired emission color, illuminance, etc. By combining with a suitable LED element 3, it is possible to obtain the light emitting device 1 having the expected performance.

なお、本発明は前記実施形態に限られるものではない。   The present invention is not limited to the above embodiment.

例えば、図8に示すように、スペーサSが下部又は上部の放熱性透光板51、53と一体となっていて、下部又は上部の放熱性透光板51、53に凹部が形成されており凹部を囲む側周壁がスペーサSとして機能してもよい。なお、図8に示す実施形態では、スペーサSは、下部放熱性透光板51と一体となっているが、上部放熱性透光板53と一体となっていてもよい。   For example, as shown in FIG. 8, the spacer S is integrated with the lower or upper heat-transmitting light-transmitting plates 51 and 53, and the lower or upper heat-transmitting light-transmitting plates 51 and 53 are formed with recesses. The side peripheral wall surrounding the recess may function as the spacer S. In the embodiment shown in FIG. 8, the spacer S is integrated with the lower heat radiating light transmitting plate 51, but may be integrated with the upper heat radiating light transmitting plate 53.

また、図9に示すように、スペーサSが基体2と一体となっていて、基体2凹部の内側周面にスペーサSとして機能する突条部が形成されていてもよい。更に、基体2は、LED素子3が実装された下部基体2Aと、波長変換部材5を保持する上部基体2Bとに分かれていてもよい。   Further, as shown in FIG. 9, the spacer S may be integrated with the base body 2, and a protrusion that functions as the spacer S may be formed on the inner peripheral surface of the recess of the base body 2. Further, the base 2 may be divided into a lower base 2A on which the LED element 3 is mounted and an upper base 2B that holds the wavelength conversion member 5.

その他、本発明は上記の各実施形態に限られず、本発明の趣旨を逸脱しない限り、前述した種々の構成の一部又は全部を適宜組み合わせて構成してもよい。   In addition, the present invention is not limited to the above-described embodiments, and may be configured by appropriately combining some or all of the various configurations described above without departing from the spirit of the present invention.

1・・・発光装置
2・・・基体
3・・・LED素子
4・・・封止部材
5・・・波長変換部材
51・・・下部放熱性透光板
52・・・蛍光層
53・・・上部放熱性透光板
S・・・スペーサ
DESCRIPTION OF SYMBOLS 1 ... Light-emitting device 2 ... Base | substrate 3 ... LED element 4 ... Sealing member 5 ... Wavelength conversion member 51 ... Lower heat-radiating translucent plate 52 ... Fluorescent layer 53 ...・ Upper heat transmissive translucent plate S ・ ・ ・ Spacer

Claims (5)

互いに対向して設けられた一対の放熱性透光板と、
前記一対の放熱性透光板の間に介在するスペーサと、
前記一対の放熱性透光板と前記スペーサとにより閉塞された空間に形成された蛍光体を含有する蛍光層と、を備えていることを特徴とする波長変換部材。
A pair of heat-dissipating translucent plates provided opposite to each other;
A spacer interposed between the pair of heat radiating light transmitting plates;
A wavelength conversion member comprising: a fluorescent layer containing a phosphor formed in a space closed by the pair of heat radiating light transmitting plates and the spacer.
前記スペーサが、前記放熱性透光板の少なくともいずれか一方と一体となっている請求項1記載の波長変換部材。   The wavelength conversion member according to claim 1, wherein the spacer is integrated with at least one of the heat radiating light transmitting plates. 前記一対の放熱性透光板の一方が、紫外線及び短波長の可視光線を反射してより長波長の可視光線を透過する長波長透過フィルタである請求項1又は2記載の波長変換部材。   3. The wavelength conversion member according to claim 1, wherein one of the pair of heat-radiating light-transmitting plates is a long-wavelength transmission filter that reflects ultraviolet light and short-wavelength visible light and transmits longer-wavelength visible light. 請求項1、2又は3記載の波長変換部材と、LED素子と、を備えた発光装置。   The light-emitting device provided with the wavelength conversion member of Claim 1, 2, or 3, and an LED element. 前記波長変換部材を支持する基体を備えており、
前記スペーサと前記基体とが一体となっている請求項4記載の発光装置。
A substrate for supporting the wavelength conversion member;
The light-emitting device according to claim 4, wherein the spacer and the base are integrated.
JP2011172925A 2011-08-08 2011-08-08 Wavelength conversion member Withdrawn JP2013038215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011172925A JP2013038215A (en) 2011-08-08 2011-08-08 Wavelength conversion member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011172925A JP2013038215A (en) 2011-08-08 2011-08-08 Wavelength conversion member

Publications (1)

Publication Number Publication Date
JP2013038215A true JP2013038215A (en) 2013-02-21

Family

ID=47887541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011172925A Withdrawn JP2013038215A (en) 2011-08-08 2011-08-08 Wavelength conversion member

Country Status (1)

Country Link
JP (1) JP2013038215A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021354A1 (en) * 2014-08-06 2016-02-11 シャープ株式会社 Light-emitting device, lighting device, and method for manufacturing light-emitting device
JPWO2015020205A1 (en) * 2013-08-09 2017-03-02 株式会社タムラ製作所 Light emitting device
WO2017078402A1 (en) * 2015-11-04 2017-05-11 엘지이노텍 주식회사 Optical plate, lighting element, and light source module
KR20170052207A (en) * 2015-11-04 2017-05-12 엘지이노텍 주식회사 Optical plate, lighting device, and lighting module
KR20170052201A (en) * 2015-11-04 2017-05-12 엘지이노텍 주식회사 Optical plate, lighting device, and lighting module
KR20170061921A (en) * 2015-11-27 2017-06-07 엘지이노텍 주식회사 Light emitting device and light unit having thereof
JP2018163947A (en) * 2017-03-24 2018-10-18 日本電気硝子株式会社 Wavelength conversion member and light-emitting device
JP2019050432A (en) * 2018-12-28 2019-03-28 日亜化学工業株式会社 Light transmitting member, method for manufacturing the same, light emitting device, and method for manufacturing the same
US10374137B2 (en) * 2014-03-11 2019-08-06 Osram Gmbh Light converter assemblies with enhanced heat dissipation
US10677437B2 (en) 2016-09-21 2020-06-09 Panasonic Intellectual Property Management Co., Ltd. Wavelength conversion device and lighting apparatus
JP2020120009A (en) * 2019-01-24 2020-08-06 スタンレー電気株式会社 Semiconductor light-emitting device and manufacturing method thereof

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10340429B2 (en) 2013-08-09 2019-07-02 Koha Co., Ltd. Light emitting device
JPWO2015020205A1 (en) * 2013-08-09 2017-03-02 株式会社タムラ製作所 Light emitting device
US10374137B2 (en) * 2014-03-11 2019-08-06 Osram Gmbh Light converter assemblies with enhanced heat dissipation
WO2016021354A1 (en) * 2014-08-06 2016-02-11 シャープ株式会社 Light-emitting device, lighting device, and method for manufacturing light-emitting device
KR20170052207A (en) * 2015-11-04 2017-05-12 엘지이노텍 주식회사 Optical plate, lighting device, and lighting module
KR102531846B1 (en) 2015-11-04 2023-05-31 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Optical plate, lighting device, and lighting module
US20180323352A1 (en) * 2015-11-04 2018-11-08 Lg Innotek Co., Ltd. Optical plate, lighting device, and light source module
KR20170052201A (en) * 2015-11-04 2017-05-12 엘지이노텍 주식회사 Optical plate, lighting device, and lighting module
KR102450123B1 (en) * 2015-11-04 2022-10-04 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Optical plate, lighting device, and lighting module
US10680143B2 (en) 2015-11-04 2020-06-09 Lg Innotek Co., Ltd. Optical plate, lighting device, and light source module
WO2017078402A1 (en) * 2015-11-04 2017-05-11 엘지이노텍 주식회사 Optical plate, lighting element, and light source module
KR20170061921A (en) * 2015-11-27 2017-06-07 엘지이노텍 주식회사 Light emitting device and light unit having thereof
KR102506737B1 (en) * 2015-11-27 2023-03-13 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Light emitting device and light unit having thereof
US10677437B2 (en) 2016-09-21 2020-06-09 Panasonic Intellectual Property Management Co., Ltd. Wavelength conversion device and lighting apparatus
US10859249B2 (en) 2016-09-21 2020-12-08 Panasonic Intellectual Property Management Co., Ltd. Wavelength conversion device and lighting apparatus
JP2018163947A (en) * 2017-03-24 2018-10-18 日本電気硝子株式会社 Wavelength conversion member and light-emitting device
JP2019050432A (en) * 2018-12-28 2019-03-28 日亜化学工業株式会社 Light transmitting member, method for manufacturing the same, light emitting device, and method for manufacturing the same
JP2020120009A (en) * 2019-01-24 2020-08-06 スタンレー電気株式会社 Semiconductor light-emitting device and manufacturing method thereof
JP7260309B2 (en) 2019-01-24 2023-04-18 スタンレー電気株式会社 semiconductor light emitting device

Similar Documents

Publication Publication Date Title
JP2013038215A (en) Wavelength conversion member
JP6299811B2 (en) Light emitting device
KR101193990B1 (en) A light emitting device having a transparent thermally conductive layer
JP5665160B2 (en) Light emitting device and lighting apparatus
JP5113820B2 (en) Light emitting device
JP5084324B2 (en) Light emitting device and lighting device
WO2011016433A1 (en) Method for manufacturing led light emitting device
JP2017108111A (en) Light emitting device having oblique reflector and manufacturing method of the same
JP2013074273A (en) Led light emitting device
WO2010123059A1 (en) Method for manufacturing led light emitting device
WO2010123052A1 (en) Light-emitting device
KR20100098660A (en) Light emitting device
JP2006237264A (en) Light emitting device and lighting apparatus
JP2008071954A (en) Light source device
JP2005093681A (en) Light-emitting device
WO2012053386A1 (en) Method for producing light-emitting device, and light-emitting device
JP4948841B2 (en) Light emitting device and lighting device
JP2008235827A (en) Light-emitting device
JP2014067774A (en) Wavelength conversion member, and semiconductor light-emitting device using the same
JP2011171504A (en) Light-emitting device
JP2006093399A (en) Light-emitting device, its manufacturing method and luminaire
JP2019201089A (en) Oblique angle chip reflector of chip scale packaging light emission device and manufacturing method of the same
JP2009141219A (en) Light emitting device
CN214176062U (en) Heat radiation structure, light source and lighting equipment
JP2013074274A (en) Led package

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104