WO2011013526A1 - すべり軸受 - Google Patents

すべり軸受 Download PDF

Info

Publication number
WO2011013526A1
WO2011013526A1 PCT/JP2010/062073 JP2010062073W WO2011013526A1 WO 2011013526 A1 WO2011013526 A1 WO 2011013526A1 JP 2010062073 W JP2010062073 W JP 2010062073W WO 2011013526 A1 WO2011013526 A1 WO 2011013526A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy layer
bearing alloy
bearing
mass
layer
Prior art date
Application number
PCT/JP2010/062073
Other languages
English (en)
French (fr)
Inventor
籠原 幸彦
知之 韮澤
保科 毅
Original Assignee
大同メタル工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大同メタル工業株式会社 filed Critical 大同メタル工業株式会社
Priority to US13/387,880 priority Critical patent/US20120128285A1/en
Priority to DE112010003120T priority patent/DE112010003120T5/de
Priority to KR1020127001184A priority patent/KR101336053B1/ko
Priority to GB1203585.3A priority patent/GB2485719A/en
Publication of WO2011013526A1 publication Critical patent/WO2011013526A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/003Alloys based on aluminium containing at least 2.6% of one or more of the elements: tin, lead, antimony, bismuth, cadmium, and titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/018Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of a noble metal or a noble metal alloy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/20Alloys based on aluminium

Definitions

  • the present invention relates to a plain bearing provided with a back metal layer, an Al base intermediate layer, and an Al base bearing alloy layer.
  • a plain bearing lined with an Al-based bearing alloy is generally configured as a bimetal by bonding an Al-based bearing alloy layer and a back metal layer through an Al-based intermediate layer. And a plain bearing is manufactured by machining this comprised bimetal.
  • Such a plain bearing has relatively good initial conformability, and has excellent fatigue resistance and wear resistance at a high surface pressure. As a result, plain bearings are used in bearings for high-power engines of automobiles and general industrial machines.
  • Japanese Unexamined Patent Publication No. 2000-17363 is known as a plain bearing with improved fatigue resistance.
  • an Al—Sn—Si bearing alloy layer is used as the Al-based bearing alloy layer.
  • Cr and Zr are further added to the Al-based bearing alloy layer.
  • an Al—Cr binary intermetallic compound is precipitated at the Al grain boundary of the Al-based bearing alloy layer.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide a slide bearing having excellent fatigue resistance and conformability under high surface pressure.
  • the present inventor speculated that the reason why the intermetallic compounds of Al—Cr and Al—Zr are detached from the matrix is that the bond between these intermetallic compounds and the matrix is weak. The present inventor speculated that if the bond is strong, the intermetallic compound will not be detached and the bending fatigue strength will be improved. Furthermore, based on this assumption, the present inventor added two or more elements to the Al-based bearing alloy layer to form a multicomponent intermetallic compound of Al and these two or more elements. It was found that the intermetallic compound was firmly bonded to the matrix and difficult to separate. In this case, it was also investigated that the function of firmly bonding to the matrix and preventing plastic deformation needs to be small in particle size and distributed at a certain density or higher.
  • the present inventor has adjusted the hardness of the Al-based bearing alloy layer containing a multi-component intermetallic compound of Al and two or more kinds of metal elements so that the Al-based bearing alloy layer has high fatigue resistance. It was also found that the familiarity was improved.
  • the plain bearing according to claim 1 of the present invention includes a backing metal layer, an Al-based intermediate layer, and an Al-based bearing alloy layer, and the Al-based bearing alloy layer includes at least one kind of Al and two or more other elements.
  • the abundance ratio X1 / X2 of the element X1 and the element X2 is 1 or more and 10 or less
  • the hardness of the Al-based bearing alloy layer is 50 or more in terms of Vickers hardness It is characterized by being 80 or less.
  • the elements X1, X2,..., Xn do not contain Al.
  • the abundance ratio in the present invention is the mass ratio of each element X1, X2,..., Xn in each intermetallic compound.
  • the relationship between the abundance ratios of the elements X1 (1), X2 (1),..., Xn (1) forming the first intermetallic compound is X1 ( 1) ⁇ X2 (1) ⁇ ⁇ ⁇ ⁇ ⁇ Xn (1), and the abundance ratio X1 (1) / X2 (1) of the element X1 (1) and the element X2 (1) is 1 or more and 10 or less
  • Xn (2) abundance ratios of elements X1 (2), X2 (2),..., Xn (2) forming the second intermetallic compound are X1 (2) ⁇ X2 (2) ⁇ ...
  • the abundance ratio X1 (2) / X2 (2) of the element X1 (2) and the element X2 (2) is 1 or more and 10 or less. That is, when generating m types of intermetallic compounds (m is a natural number), the abundance ratio of the elements X1 (m), X2 (m),..., Xn (m) forming the mth intermetallic compound The relationship is X1 (m) ⁇ X2 (m) ⁇ ... Xn (m), and the abundance ratio X1 (m) / X2 (m) of the element X1 (m) and the element X2 (m) is 1 or more. 10 or less.
  • the elements X1 (1) and X1 (m) can be the same element or different elements. However, for example, the elements X1 (1) and Xn (1) are different elements. Hereinafter, (m) and the like may be omitted for convenience.
  • the basic form of the plain bearing of the present invention is shown in FIG.
  • the plain bearing 1 of FIG. 1 has a three-layer structure of a back metal layer 2 made of, for example, steel, and an Al base bearing alloy layer 4 provided on the back metal layer 2 through an Al base intermediate layer 3.
  • two or more kinds of elements are added to the Al-based bearing alloy layer, and these elements form Al and a multi-component intermetallic compound, and are dissolved in an Al matrix. Since the constituent elements other than two or more types of Al of the multi-component intermetallic compound are also present in the matrix, the multi-component intermetallic compound can increase the bond strength with the matrix. For this reason, even if a bending stress is repeatedly applied to the slide bearing, the multi-component intermetallic compound is unlikely to be detached from the matrix, the Al-based bearing alloy layer is unlikely to undergo plastic deformation, and the bending fatigue strength of the slide bearing is improved.
  • the elements that form an intermetallic compound by combining with Al are metal elements such as Mn, Cr, Ni, V, Zr, Ti, Mo, Fe, Co, W, and Si, for example.
  • metal elements such as Mn, Cr, Ni, V, Zr, Ti, Mo, Fe, Co, W, and Si
  • Mn and V are selected among these metal elements
  • these elements generate Al—Mn—V multi-component intermetallic compounds, that is, ternary intermetallic compounds, and Mn and V are contained in the matrix.
  • Cr, Si, Fe these elements are Al—Cr (X1 (1)) — Si (X2 (1)) — Fe (X3 (1)) multi-element intermetallic compounds, that is, 4
  • Cr, Si and Fe can be dissolved in the matrix.
  • any of Cr, Si, and Fe may be X1 (1), X2 (1), and X3 (1).
  • Ni, Zr, Ti, or Mo is selected.
  • the abundance ratio X1 / X2 of the element X1 and the element X2 when the relationship of the abundance ratio of the elements forming the intermetallic compound is X1 ⁇ X2 ⁇ .
  • a strong bond strength between the multi-component intermetallic compound and the matrix can be reliably realized.
  • the abundance ratio X1 / X2 is 8 or less.
  • the function of the multi-component intermetallic compound to prevent plastic deformation of the matrix is effective when the multi-component intermetallic compound is a fine one with a size of less than 0.5 ⁇ m and the distribution density is 8 or more per 1 ⁇ m 2. Is done.
  • it if it is a multi-component intermetallic compound within this range, it can be toughened without impairing the elongation of the matrix.
  • the distribution density is preferably 15 to 70 per 1 ⁇ m 2 .
  • the hardness of the Al-based bearing alloy layer can be changed by changing the proportion of the component of the Al-based bearing alloy layer, for example, the component of the multi-component intermetallic compound. And by making the hardness of the Al-based bearing alloy layer 50 or more in terms of Vickers hardness, it is difficult to cause fatigue even under the action of a high load when the Al-based bearing alloy layer is applied to a high-power engine. Can do. Moreover, favorable conformability can be obtained by setting the hardness of the Al-based bearing alloy layer to 80 or less in terms of Vickers hardness. From the viewpoint of fatigue resistance and conformability, the hardness of the Al-base bearing alloy layer is preferably 60 to 70 in terms of Vickers hardness.
  • the plain bearing of the present invention is manufactured through a casting process, a rolling process, a pressure welding process, a heat treatment (annealing) process, and a machining process. That is, in the casting process, an Al base bearing alloy (Al base bearing alloy layer) is melted and cast into a plate shape. The cast plate-like Al-based bearing alloy is rolled in a rolling process, and is pressed into a steel plate (back metal layer) through a thin Al-based alloy plate (Al-based intermediate layer) in a pressure-welding process to form a plate for bearing formation. .
  • the bearing forming plate is annealed, and finally, the bearing forming plate is machined to form a semi-cylindrical or cylindrical bearing.
  • a fine intermetallic compound having a particle size of less than 0.5 ⁇ m can be deposited through rolling of the Al-based bearing alloy after casting and annealing of the plate material for bearing formation.
  • the particle size referred to in this specification is the maximum length per crystal of an intermetallic compound obtained by analysis with an electron microscope.
  • the plain bearing according to claim 2 of the present invention is characterized in that the hardness of the Al-based intermediate layer is 70% or more and 90% or less with respect to the hardness of the Al-based bearing alloy layer.
  • the hardness of the Al-based intermediate layer is more than 70% of the hardness of the Al-based bearing alloy layer, so that it is more stable to the high load received through the Al-based bearing alloy layer.
  • the sliding bearing does not protrude from the end in the width direction, and the fatigue resistance of the entire sliding bearing can be improved.
  • the hardness of the Al-based intermediate layer is set to 90% or less of the hardness of the Al-based bearing alloy layer, the cushion when the load applied to the Al-based bearing alloy layer is changed. And the conformability of the Al-based bearing alloy layer can be improved.
  • the plain bearing according to claim 3 of the present invention includes Fe in the Al-based intermediate layer and the Al-based bearing alloy layer, and the Fe component content in the Al-based intermediate layer is 0.5 mass% or more and 1.5 mass%. It is the following, and it is characterized by exceeding twice the amount of the Fe component contained in the Al-based bearing alloy layer.
  • the heat resistance of the Al base intermediate layer and the Al base bearing alloy layer is improved by including an appropriate amount of Fe in the Al base intermediate layer and the Al base bearing alloy layer. Accordingly, the strength can be maintained even in a high temperature environment during actual use of the slide bearing. Further, when an appropriate amount of Fe is contained in the Al-based intermediate layer and the Al-based bearing alloy layer, the Al-based intermediate layer and the Al-based bearing alloy layer are difficult to work harden. Therefore, the conformability of the Al-based bearing alloy layer is improved, and accumulation of metal fatigue in the Al-based intermediate layer and the Al-based bearing alloy layer can be suppressed.
  • Heat resistance and fatigue resistance can be further improved by making the amount of Fe component contained in the Al-based intermediate layer 0.5% by mass or more.
  • the amount of Fe component contained in the Al-based intermediate layer 1.5% by mass or less, the hardness of the Al-based intermediate layer can be easily reduced to 75 or less in terms of Vickers hardness, and the conformability becomes better.
  • the sliding heat generated by the sliding of the counterpart material and the Al-based bearing alloy layer on the surface of the Al-based bearing alloy layer is transferred from the surface of the Al-based bearing alloy layer toward the back metal layer. Therefore, in a slide bearing in which the hardness of the Al-based intermediate layer is 70% or more and 90% or less with respect to the hardness of the Al-based bearing alloy layer, when the Al-based intermediate layer is in a high temperature state due to sliding heat, particularly Al The strength of the base intermediate layer may be insufficient. Therefore, in the present invention, the amount of Fe contained in the Al-based intermediate layer exceeds twice the amount of Fe contained in the Al-based bearing alloy layer. Thereby, the Al-based intermediate layer is difficult to soften even at a high temperature, and the strength of the Al-based intermediate layer can be maintained.
  • the plain bearing according to claim 4 of the present invention is characterized in that the Al-based bearing alloy layer contains Si particles having a particle size exceeding 0.5 ⁇ m.
  • Si particles having a particle diameter of more than 0.5 ⁇ m in the Al-based bearing alloy layer it can be expected that the Si particles exert a wrapping action on the counterpart shaft. Thereby, the non-seizure property of the slide bearing is improved.
  • Si can also form an intermetallic compound, but in general, it is dissolved in a matrix or crystallized as hard Si particles. Therefore, the strength of the Al-based bearing alloy layer is increased by including Si in the Al-based bearing alloy layer. Thereby, the fatigue resistance of the slide bearing is improved.
  • the Al-based bearing alloy layer has at least one of 3-20 mass% of Sn, 1.5-8 mass% of Si, and Cu, Zn, Mg. , Xn (n is a natural number) that forms an intermetallic compound of Al and a metal element having a total amount of 0.1 to 7% by mass ) And Al containing impurities that are inevitably contained in the remainder, and the element X1 is selected from Mn, Cr, Ni, V, Zr, and Si, and includes Mn, Cr, Ni, V, and Zr.
  • the total amount is 0.01 to 2% by mass
  • the element X2 is selected from elements different from the element X1 among V, Ti, Zr, Mo, Fe, Co, W, Mn, and Si.
  • V, Ti, Zr, Mo, Fe, Co, W, Mn The total amount of is characterized in that from 0.01 to 2 wt%. The said amount is the mass% in an Al base bearing alloy layer.
  • the Al-based bearing alloy layer By including 3 mass% or more of Sn in the Al-based bearing alloy layer, it is possible to improve the conformability, non-seizure property, foreign matter embedding property, etc. as a slide bearing, and the Sn content is 20 mass% or less. By making it, fatigue resistance can be improved.
  • the above-mentioned performance of Si can be sufficiently exerted, and by making the Si content 8% by mass or less, fatigue resistance is achieved. Can be improved. In order to exhibit the effect as said Si particle
  • Cu, Zn, Mg elements are dissolved in the matrix. Thereby, the matrix strength can be increased.
  • the total amount of elements formed by selecting at least one of Cu, Zn, and Mg to be 0.1% by mass, the above-described effect can be sufficiently exerted, and the total amount is 7% by mass or less. By making it, conformability can be made favorable.
  • Element X1 is selected from Mn, Cr, Ni, V, Zr, and Si
  • element X2 is an element different from element X1 in V, Ti, Zr, Mo, Fe, Co, W, Mn, and Si
  • element X1 and element X2 combine with Al to produce one or more ternary (or higher multi-component) intermetallic compounds.
  • the total amount of the element X1 when selecting from among Mn, Cr, Ni, V, and Zr, and the total amount of the element X2 when selecting from among V, Ti, Zr, Mo, Fe, Co, W, and Mn is 0.
  • generation of the intermetallic compound mentioned above can be increased, and fatigue resistance can be made favorable by making it 2 mass% or less.
  • the annealing temperature, annealing time, etc. are adjusted to control the amount of Si forming an intermetallic compound as element X1, the amount of solid solution, and the amount of crystallization as Si particles.
  • the plain bearing of the present invention (Examples 1 to 4) using an Al-based bearing alloy layer and an Al alloy intermediate layer having the composition shown in Table 1, and a conventional plain bearing ( Samples of comparative example products 1 to 4) were manufactured and subjected to fatigue resistance test (bending fatigue test) and conformability test.
  • the production methods of the example products 1 to 4 are as follows. First, for example, an Al-based bearing alloy plate material having the components shown in Table 1 was manufactured by a belt casting apparatus excellent in mass productivity. Thereafter, a thin plate material constituting the Al-based intermediate layer composed of the components shown in Table 1 is pressed against the cast Al-based bearing alloy to produce a multi-layer aluminum alloy plate. A plate for forming a bearing (so-called bimetal) was manufactured by pressing against the steel plate constituting the layer. Then, the bearing forming plate material was annealed at a temperature of more than 350 ° C. and not more than 450 ° C. for 1 to 10 hours in accordance with each composition.
  • Example 1 As shown in Table 1, a small number of intermetallic compounds were present in the Al-based bearing alloy layer thus obtained.
  • Fatigue resistance test (bending fatigue test) Test pieces (Examples 1 to 4 and Comparative Examples 1 to 4) were manufactured by machining the bearing forming plate after the annealing, and a bending fatigue test was performed to check fatigue resistance. This test piece has a total thickness of 1.5 mm and a back metal layer thickness of 1.2 mm, and the total thickness of the Al-based bearing alloy layer and the Al-based intermediate layer is 0.3 mm.
  • the conformability of the slide bearing can be confirmed by applying the load on the shaft to the end of the slide bearing in the circumferential direction.
  • the load was gradually increased to the evaluation load of 30 MPa, and the time from when the evaluation load was reached until the slide bearing was damaged was measured.
  • type X1 / X2 means that when the intermetallic compound is composed of a multi-element including Al, two types of elements (element X1 and X1) having a large abundance ratio other than Al among the multi-element in the intermetallic compound. Element X2) is shown.
  • types X1 / X2 When there are a plurality of types of intermetallic compounds, a plurality of “types X1 / X2” are described.
  • “Ratio X1 / X2” indicates the abundance ratio X1 / X2, and is a value obtained by dividing the element X1 by the element X2 when the element X1 and the element X2 are represented by a mass ratio in the intermetallic compound.
  • Hardness ratio is obtained by calculating the hardness of the Al-based bearing alloy layer and the hardness of the Al-based intermediate layer by Vickers hardness, and calculating the Vickers hardness HV (b) of the Al-based intermediate layer by the Al-based bearing alloy layer. Dividing by Vickers hardness HV (a), the value is expressed in percentage.
  • the example products 1 to 4 are superior in fatigue resistance because they have superior bending fatigue strength over a long period of time compared with the comparative products 1 to 4. it can.
  • the number of intermetallic compounds having an abundance ratio X1 / X2 of 1 to 10 and a particle size of less than 0.5 ⁇ m is 8 per 1 ⁇ m 2.
  • these intermetallic compounds can suppress the movement of dislocations in the matrix, improve the bending fatigue strength, and the hardness of the Al-based bearing alloy layer is 50 or more in terms of Vickers hardness. As a result, it is considered that extremely excellent fatigue resistance could be provided.
  • the amount of Fe component contained in the Al-based intermediate layer is equal to the amount of Fe component contained in the Al-based bearing alloy layer. Since it exceeds twice, even if heat is generated in the Al-based intermediate layer by repeatedly applying reciprocating bending, the Al-based intermediate layer is hardly softened, and it is considered that extremely good fatigue resistance was obtained.
  • the hardness of the Al-based bearing alloy layer is 80 or less in terms of Vickers hardness, it is possible to satisfactorily avoid the local contact between the counterpart material and the sample piece. It is considered that good conformability could be obtained.
  • Inventive products 1 to 4 having the above-described configuration obtained good conformability while having high fatigue resistance.
  • the example products 1, 2, and 4 From comparison between the example products 1, 2, and 4 and the example product 3, the example products 1, 2, and 4 have 90% of the hardness of the Al-based intermediate layer with respect to the hardness of the Al-based bearing alloy layer. Since it was made below, it is considered that very good conformability could be obtained.
  • the present invention can be implemented with appropriate modifications within a range not departing from the gist.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

 裏金層と、Al基中間層と、Al基軸受合金層とを備えるすべり軸受である。前記Al基軸受合金層は、Alと他の2種類以上の元素とから成る1種類以上の金属間化合物であって粒径が0.5μm未満の金属間化合物を、8個/μm2以上含む。前記金属間化合物を形成する前記元素X1,X2,・・・,Xn(nは自然数)の存在比の関係は、X1≧X2≧・・・≧Xnである。前記元素X1及び前記元素X2の存在比率X1/X2は、1以上10以下である。前記Al基軸受合金層の硬さは、ビッカース硬さで50以上80以下である。

Description

すべり軸受
 本発明は、裏金層、Al基中間層、Al基軸受合金層を備えるすべり軸受に関する。
 Al基軸受合金を内張りしたすべり軸受は、一般に、Al基軸受合金層と裏金層とを、Al基中間層を介して接着しバイメタルとして構成される。そして、すべり軸受は、この構成されたバイメタルを機械加工することにより製造される。
 このようなすべり軸受は、初期なじみ性が比較的良好であり、高面圧で優れた耐疲労性及び耐摩耗性を有している。これにより、すべり軸受は、自動車や一般産業機械の高出力エンジンの軸受に用いられている。
 ところが近年、更なるエンジンの高性能化によって、より高面圧に耐え得る耐疲労性に優れたすべり軸受が要望されている。
 耐疲労性を向上させたすべり軸受として、例えば特開2000-17363号公報が公知である。このすべり軸受は、Al基軸受合金層としてAl-Sn-Si系軸受合金層が用いられる。そして、すべり軸受は、そのAl基軸受合金層に、更にCr,Zrが添加されている。特開2000-17363号公報の場合、Al基軸受合金層にCr,Zrを添加することにより、Al基軸受合金層のAlの結晶粒界にAl-Crの2元系金属間化合物が析出するとともに、Al結晶粒内の亜粒界にAl-Zrの2元系金属間化合物が析出する。そして、特開2000-17363号公報は、析出したこれらの金属間化合物が、すべり軸受の耐疲労性の向上に作用することを開示している。
 ところで、最近ではエンジンの軽量化が計られ、コンロッド等のすべり軸受が組み付けられるハウジングは薄肉化が図られている。ハウジングの薄肉化に伴い、ハウジングの剛性は低下し、ハウジング自身は変形し易くなっている。そのため、ハウジングは、すべり軸受が支えるクランクシャフト等の相手軸の動荷重等によって変形し易く、結果としてすべり軸受自体も変形し易くなっている。その結果、すべり軸受は、曲げ応力が繰り返し作用し、疲労が生じ易い。このような曲げ応力が繰り返し作用する環境下で使用する軸受は、高い曲げ疲労強度が必要である。しかしながら、特開2000-17363号公報の場合、Al基軸受合金層は、強度および伸びが得られるものの、曲げ応力を繰り返し受けると塑性変形し易く、早期に疲労するという問題がある。
 又、ハウジングの変形によってすべり軸受自身が変形すると、すべり軸受と相手軸との間に局部的な接触を生じることがある。このとき、すべり軸受のなじみ性が低い場合、焼付を招くという問題も生じる。
 本発明は上記した事情に鑑みてなされたものであり、その目的は、高面圧下で優れた耐疲労性及びなじみ性を有するすべり軸受を提供することにある。
 特開2000-17363号公報のAl基軸受合金層は、マトリクスの結晶粒界にAl-Crの金属間化合物が析出し、結晶粒内の亜粒界にAl-Zrの金属間化合物が析出している。結晶粒内の亜粒界に金属間化合物が析出すると、マトリクスが強化され、耐疲労性は向上する。しかし、本発明者の鋭意実験により、Al基軸受合金層に繰り返し曲げ応力を作用させた場合、Al-Cr,Al-Zrの金属間化合物がマトリクスから離脱し、金属間化合物の存在による塑性変形の阻止を図れず、疲労に至ることがわかった。
 本発明者は、Al-Cr,Al-Zrの金属間化合物がマトリクスから離脱する原因が、これらの金属間化合物とマトリクスとの結合が弱いからであると推測した。そして、本発明者は、結合が強固であるならば、金属間化合物が離脱することはなく、曲げ疲労強度が向上するであろうと推測した。さらに、本発明者は、この推測に基づいて、Al基軸受合金層に2種類以上の元素を添加してAlとそれら2種類以上の元素との多元系金属間化合物を形成すると、その多元系金属間化合物がマトリクスと強固に結合し、離脱し難いことを究明した。この場合、マトリクスと強固に結合して塑性変形を阻止する機能は、粒径が小さく、且つ、ある密度以上で分布している必要があることも併せて究明した。
 更に、本発明者は、Alと2種類以上の金属元素との多元系金属間化合物を含むAl基軸受合金層の硬さを調整することにより、Al基軸受合金層が高い耐疲労性を有しながらなじみ性が良好になることも究明した。
 本発明の請求項1のすべり軸受は、裏金層、Al基中間層及びAl基軸受合金層を備え、Al基軸受合金層に、Alと他の2種類以上の元素とから成る1種類以上の金属間化合物であって粒径が0.5μm未満の金属間化合物を8個/μm2以上含み、金属間化合物を形成する元素X1,X2,・・・,Xn(nは自然数)の存在比の関係がX1≧X2≧・・・≧Xnであって、元素X1及び元素X2の存在比率X1/X2が1以上10以下であり、Al基軸受合金層の硬さがビッカース硬さで50以上80以下であることを特徴としている。
 元素X1,X2,・・・,Xnには、Alは含まれない。尚、本発明における存在比とは、各金属間化合物中における各元素X1,X2,・・・,Xnの質量比である。又、金属間化合物を例えば2種類生成する場合は、第1の金属間化合物を形成する元素X1(1),X2(1),・・・,Xn(1)の存在比の関係がX1(1)≧X2(1)≧・・・≧Xn(1)であって、元素X1(1)及び元素X2(1)の存在比率X1(1)/X2(1)が1以上10以下であり、第2の金属間化合物を形成する元素X1(2),X2(2),・・・,Xn(2)の存在比の関係がX1(2)≧X2(2)≧・・・≧Xn(2)であって、元素X1(2)及び元素X2(2)の存在比率X1(2)/X2(2)が1以上10以下である。即ち、金属間化合物をm(mは自然数)種類生成する場合は、第mの金属間化合物を形成する元素X1(m),X2(m),・・・,Xn(m)の存在比の関係がX1(m)≧X2(m)≧・・・≧Xn(m)であって、元素X1(m)及び元素X2(m)の存在比率X1(m)/X2(m)が1以上10以下である。元素の選択により、例えば元素X1(1)とX1(m)とを同じ元素とすることも異なる元素とすることもできる。しかし、例えば元素X1(1)とXn(1)とは異なる元素である。以下、(m)等を便宜上省略する場合がある。
 本発明のすべり軸受の基本形態を、図1に示す。図1のすべり軸受1は、例えば鋼から成る裏金層2と、裏金層2上にAl基中間層3を介して接着されて設けられたAl基軸受合金層4との3層構造である。
 本発明では、Al基軸受合金層に2種類以上の元素を添加して、これらの元素でAlと多元系金属間化合物を構成させるほか、Alのマトリクス中に固溶させる。上記多元系金属間化合物の2種類以上のAl以外の構成元素をマトリクス中にも存在させているため、多元系金属間化合物はマトリクスとの結合強度を高めることができる。このため、すべり軸受に繰り返し曲げ応力が作用しても、多元系金属間化合物はマトリクスから離脱し難く、Al基軸受合金層は塑性変形を生じ難く、すべり軸受の曲げ疲労強度は向上する。
 Alと結合して金属間化合物を構成する元素は、例えばMn,Cr,Ni,V,Zr,Ti,Mo,Fe,Co,W,Siの金属元素である。例えば、この金属元素の中でMn,Vを選択した場合、これらの元素はAl-Mn-Vの多元系金属間化合物、即ち3元系金属間化合物を生成するほか、Mn及びVがマトリクス中に固溶することができる。又、Cr,Si,Feを選択した場合、これらの元素はAl-Cr(X1(1))-Si(X2(1))-Fe(X3(1))の多元系金属間化合物、即ち4元系金属間化合物を生成するほか、Cr,Si及びFeがマトリクス中に固溶することができる。Al-Cr(X1(2))-Si(X2(2))やAl-Cr(X1(3))-Fe(X2(3))やAl-Si(X1(4))-Fe(X2(4))の3元系金属間化合物を生成することもできる。Cr,Si,Feの質量比が同じ場合、Cr,Si,FeのどれをX1(1),X2(1),X3(1)にしても良い。Ni,Zr,Ti,Moを選択した場合等も同様である。
 そして、金属間化合物を形成する元素の存在比の関係がX1≧X2≧・・・≧Xnであるときの元素X1及び元素X2の存在比率X1/X2を1以上10以下に制御することよって、多元系金属間化合物とマトリクスの強固な結合強度を確実に実現させることができる。好ましくは、存在比率X1/X2は8以下である。多元系金属間化合物がマトリクスの塑性変形を阻止する機能は、多元系金属間化合物が0.5μm未満の微細なもので、その分布密度が1μm2当たり8個以上の場合に、効果的に発揮される。又、この範囲内の多元系金属間化合物であれば、マトリクスの伸びを損なわずに強靭化できる。分布密度は、1μm2当たり15~70個が好ましい。
 更に、Al基軸受合金層の成分、例えば多元系金属間化合物の成分の割合を変更することにより、Al基軸受合金層の硬さを変えることができる。そして、Al基軸受合金層の硬さを、ビッカース硬さで50以上にすることにより、Al基軸受合金層が高出力エンジンに適用された場合における高荷重の作用下でも疲労を生じ難くすることができる。又、Al基軸受合金層の硬さを、ビッカース硬さで80以下にすることにより、良好ななじみ性を得ることができる。耐疲労性及びなじみ性の面からAl基軸受合金層の硬さは、ビッカース硬さで60~70が好ましい。
 よって、上述の構成からなるすべり軸受なので、高面圧下で優れた耐疲労性及びなじみ性を同時に実現させることができる。
 本発明のすべり軸受は、鋳造工程、圧延工程、圧接工程、熱処理(焼鈍)工程、機械加工工程を経て製造される。即ち、鋳造工程では、Al基軸受合金(Al基軸受合金層)を溶融して板状に鋳造する。鋳造された板状のAl基軸受合金は、圧延工程で圧延し、圧接工程で鋼板(裏金層)に薄いAl基合金板(Al基中間層)を介して圧接して軸受形成用板材にする。その後、軸受形成用板材を焼鈍し、最後に、軸受形成用板材を機械加工して半円筒状又は円筒状の軸受に形成する。この製造工程において、鋳造後のAl基軸受合金の圧延から軸受形成用板材の焼鈍のプロセスを経て粒径が0.5μm未満の微細な金属間化合物を析出させることができる。
 尚、この明細書でいう粒径とは、電子顕微鏡で解析して得られた金属間化合物の結晶1個当たりの最大長さのことである。
 本発明の請求項2のすべり軸受は、Al基中間層の硬さがAl基軸受合金層の硬さに対して70%以上90%以下であることを特徴としている。
 上述の特徴を有しながらAl基中間層の硬さを、Al基軸受合金層の硬さに対して70%以上にすることにより、Al基軸受合金層を介して受ける高荷重にもより安定して耐えることができ、又、すべり軸受の幅方向の端部からはみ出ることも無くなり、すべり軸受全体の耐疲労性を向上させることができる。又、Al基中間層の硬さを、Al基軸受合金層の硬さに対して90%以下にすることにより、Al基中間層を、Al基軸受合金層に加わる荷重が変化した時のクッションとして機能させることができ、Al基軸受合金層のなじみ性をより良好にすることができる。
 本発明の請求項3のすべり軸受は、Al基中間層及びAl基軸受合金層にFeを含み、Al基中間層に含まれるFeの成分量が、0.5質量%以上1.5質量%以下であり、且つ、Al基軸受合金層に含まれるFeの成分量の2倍を超えていることを特徴としている。
 Al基中間層及びAl基軸受合金層にFeを適切量含ませることにより、Al基中間層及びAl基軸受合金層の耐熱性が向上する。従って、すべり軸受の実使用時の高温環境下においても強度を維持することができる。又、Al基中間層及びAl基軸受合金層にFeを適切量含ませると、Al基中間層及びAl基軸受合金層は加工硬化し難くなる。そのため、Al基軸受合金層のなじみ性が向上し、Al基中間層及びAl基軸受合金層への金属疲労の蓄積を抑制させることができる。
 Al基中間層に含まれるFeの成分量を0.5質量%以上にすることにより、耐熱性及び耐疲労性をより向上させることができる。Al基中間層に含まれるFeの成分量を1.5質量%以下にすることにより、Al基中間層の硬さをビッカース硬さで75以下にし易くなり、なじみ性はより良好になる。
 ここで、Al基軸受合金層の表面において相手材とAl基軸受合金層との摺動で発生する摺動熱は、Al基軸受合金層の表面から裏金層方向へ伝熱する。そのため、Al基中間層の硬さがAl基軸受合金層の硬さに対して70%以上90%以下にしたすべり軸受においては、摺動熱でAl基中間層が高温状態になると、特にAl基中間層の強度が不足することがある。そのため、本発明では、Al基中間層に含まれるFeの成分量をAl基軸受合金層に含まれるFeの成分量の2倍を超えるようにしている。これにより、Al基中間層は高温でも軟化し難くなり、Al基中間層の強度を維持することができる。
 本発明の請求項4のすべり軸受は、Al基軸受合金層に、粒径が0.5μmを超えているSi粒子を含むことを特徴としている。
 Al基軸受合金層に、粒径が0.5μmを超えているSi粒子を含ませることにより、Si粒子が相手軸に対してラッピング作用を発揮することを期待できる。これにより、すべり軸受の非焼付性が良好になる。又、Siは、金属間化合物を形成することもできるが、一般に、マトリクスに固溶し、或いは、硬いSi粒子として晶出する。従って、Al基軸受合金層にSiを含ませることにより、Al基軸受合金層の強度は高くなる。これにより、すべり軸受の耐疲労性は向上する。
 本発明の請求項5のすべり軸受は、Al基軸受合金層が、3~20質量%のSnと、1.5~8質量%のSiと、Cu,Zn,Mgの内から少なくとも1種類以上を選択して成る金属元素であって、その総量が0.1~7質量%である金属元素と、Alとの金属間化合物を形成する元素X1,X2,・・・,Xn(nは自然数)と、残りが不可避的に含まれる不純物を含むAlとから成り、元素X1はMn,Cr,Ni,V,Zr,Siの内から選択して成り、Mn,Cr,Ni,V,Zrの内から選択する場合はその総量が0.01~2質量%であり、元素X2はV,Ti,Zr,Mo,Fe,Co,W,Mn,Siの内の元素X1と異なる元素から選択して成り、V,Ti,Zr,Mo,Fe,Co,W,Mnの内から選択する場合はその総量が0.01~2質量%であることを特徴としている。上記量は、Al基軸受合金層における質量%である。
 Al基軸受合金層にSnを3質量%以上含ませることにより、すべり軸受としてのなじみ性、非焼付性、異物埋収性等を良好にすることができ、Snの含有量を20質量%以下にすることにより、耐疲労性を良好にすることができる。
 Al基軸受合金層にSiを1.5質量%以上含ませることにより、上記のSiの性能を十分に発揮することができ、Siの含有量を8質量%以下にすることにより、耐疲労性を良好にすることができる。上記のSi粒子としての効果をより効率的に発揮させるには、2質量%超えが好ましい。
 Cu,Zn,Mgの元素は、マトリクスに固溶する。これにより、マトリクス強度を高めることができる。又、Cu,Zn,Mgの内から少なくとも1種類以上を選択して成る元素の総量を0.1質量%にすることにより、上記作用を十分に発揮させることができ、総量を7質量%以下にすることにより、なじみ性を良好にすることができる。
 元素X1がMn,Cr,Ni,V,Zr,Siの内から選択して成り、元素X2がV,Ti,Zr,Mo,Fe,Co,W,Mn,Siの内の元素X1と異なる元素から選択して成る場合、元素X1及び元素X2は、Alと結合して、3元系(又はそれ以上の多元系)の金属間化合物を1種類以上生成する。Mn,Cr,Ni,V,Zrの内から選択する場合の元素X1及びV,Ti,Zr,Mo,Fe,Co,W,Mnの内から選択する場合の元素X2のそれぞれの総量を0.01質量%以上にすることにより、上述した金属間化合物の生成を多くすることができ、2質量%以下にすることにより、耐疲労性を良好にすることができる。焼鈍温度や焼鈍時間等を調整して、Siが元素X1等として金属間化合物を形成する量と固溶する量とSi粒子として晶出する量とを制御する。
すべり軸受の断面図 なじみ性試験に用いられる試験機への半割軸受の取付け状態を示す図
 本発明の効果を確認するために、表1に示す組成のAl基軸受合金層及びAl合金中間層を用いた本発明のすべり軸受(実施例品1~4)、並びに従来構成のすべり軸受(比較例品1~4)の試料片を製作し、耐疲労性試験(曲げ疲労試験)及びなじみ性試験を行った。
Figure JPOXMLDOC01-appb-T000001
 実施例品1~4の製造方法は次の通りである。まず、例えば量産性に優れたベルト鋳造装置によって表1に示す成分から成るAl基軸受合金の板材を製造した。その後、この鋳造されたAl基軸受合金に、表1に示す成分から成るAl基中間層を構成する薄い板材を圧接して複層アルミニウム合金板を製造し、この複層アルミニウム合金板を、裏金層を構成する鋼板に圧接して軸受形成用板材(いわゆるバイメタル)を製造した。そして、軸受形成用板材に350度を超え450度以下の温度にて1~10時間加熱する焼鈍をそれぞれの組成に合わせて行った。
 上記軸受形成用板材の焼鈍により、Al基軸受合金層のマトリクス中に金属間化合物が析出する。そして、析出した金属間化合物の大きさを電子顕微鏡による組織写真から解析したところ、粒径が0.5μm未満の大きさのものが、1μm2当たり、表1に示す個数存在していた。
 一方、比較例品1~4の製造方法は、上記実施例品1~4の製造方法と相違し、軸受形成用板材の焼鈍温度を従来から行われているような300℃以上350℃以下で行うものである。
 このようにして得られたAl基軸受合金層での金属間化合物の存在は、表1に示すように少個数であった。
 このような実施例品1~4、比較例品1~4に対して行った耐疲労性試験(曲げ疲労試験)及びなじみ性試験は次のようなものである。
(1)耐疲労性試験(曲げ疲労試験)
 焼鈍を行った後の軸受形成用板材を機械加工して試験片(実施例品1~4、比較例品1~4)を製作し、耐疲労性を見るための曲げ疲労試験を実施した。この試験片は、総厚1.5mm、裏金層の厚さ1.2mmであり、Al基軸受合金層の厚さとAl基中間層との合計の厚さは0.3mmである。試験条件は、Al基軸受合金層の表面の歪みが一定となるようにして、往復曲げをAl基軸受合金層の表面にクラックが発生するまで繰り返した。この耐疲労性試験(曲げ疲労試験)における試料片のAl基軸受合金層の表面にクラックが発生するまでの往復曲げの繰り返し回数の結果を表1に示す。
(2)なじみ性試験
 なじみ性を確認するために、焼鈍を行った後の軸受形成用板材を機械加工してすべり軸受を製造して得た実施例品1~4及び比較例品1~4に対してなじみ性試験を行った。なじみ性試験は、半割軸受状にした2個の試料片となるすべり軸受を、図2に示すように、径方向にΔL、本試験では30μmずらして合わせ、回転荷重試験機に取付け、この状態で、表2に示す試験条件でなじみ性試験を行った。本試験は、回転荷重試験機によって、軸の遠心力により軸受内周面に回転荷重を付加することによって行う。
 このように、すべり軸受をずらして組付けることにより、軸の荷重をすべり軸受の周方向の端部辺りに加えることによって、すべり軸受のなじみ性を確認することができる。この試験では、なじみ性が良好であれば、局部当たりによる影響を良好に回避することができ、長期にわたって焼付や疲労による損傷を防ぐとされている。尚、荷重は、評価荷重である30MPaまで徐々に上げていき、評価荷重になった状態からすべり軸受に損傷が発生するまでの時間を測定した。
Figure JPOXMLDOC01-appb-T000002
 表1において、「種類X1/X2」は、金属間化合物がAlを含む多元素から成る場合、その金属間化合物におけるこの多元素のうちAl以外の存在比が大きい2種類の元素(元素X1及び元素X2)を示している。複数種類の金属間化合物が存在する場合は、複数の「種類X1/X2」が記載されている。
 「比率X1/X2」は、存在比率X1/X2を示すものであり、元素X1及び元素X2を金属間化合物中における質量比で表した場合において元素X1を元素X2で除した値である。
 「硬さ比」は、Al基軸受合金層の硬さ及びAl基中間層の硬さをビッカース硬さで求め、Al基中間層のビッカース硬さHV(b)を、Al基軸受合金層のビッカース硬さHV(a)で除し、その値を百分率で表したものである。
 次に、上記試験の結果について解析する。
 耐疲労性試験の結果を考察するに、実施例品1~4は、比較例品1~4に比べて、長期にわたって優れた曲げ疲労強度を有することにより耐疲労性に優れていることが理解できる。
 実施例品1~4と、比較例品1~4との比較から、存在比率X1/X2が1以上10以下であって粒径が0.5μm未満の金属間化合物の数が1μm2当たり8個以上存在すると、これらの金属間化合物がマトリクス中の転位の移動を抑制し、曲げ疲労強度を向上させることができ、かつ、Al基軸受合金層の硬さをビッカース硬さで50以上にした結果、極めて優れた耐疲労性を持たせることができたと考えられる。
 実施例品1~3と、実施例品4との比較から、実施例品1~3は、Al基中間層に含まれるFeの成分量がAl基軸受合金層に含まれるFeの成分量の2倍を超えているので、往復の曲げが繰り返し加えられることによりAl基中間層に熱が生じても、Al基中間層は軟化し難く、極めて良好な耐疲労性が得られたと考えられる。
 なじみ性試験の結果を考察すると、実施例品1~4は、Al基軸受合金層の硬さがビッカース硬さで80以下であるため、相手材と試料片との局部当たりを良好に回避でき、良好ななじみ性を得ることができたと考えられる。上述の構成からなる実施例品1~4は、高い耐疲労性を有しながら良好ななじみ性を得ていた。
 実施例品1,2,4と、実施例品3との比較から、実施例品1,2,4は、Al基中間層の硬さをAl基軸受合金層の硬さに対して90%以下にしたので、極めて良好ななじみ性を得ることができたと考えられる。
 本発明は、要旨を逸脱しない範囲内で適宜変更して実施し得る。

Claims (5)

  1.  裏金層と、Al基中間層と、Al基軸受合金層とを備えるすべり軸受において、
     前記Al基軸受合金層に、Alと他の2種類以上の元素とから成る1種類以上の金属間化合物であって粒径が0.5μm未満の金属間化合物を、8個/μm2以上含み、
     前記金属間化合物を形成する前記元素X1,X2,・・・,Xn(nは自然数)の存在比の関係がX1≧X2≧・・・≧Xnであって、前記元素X1及び前記元素X2の存在比率X1/X2は、1以上10以下であり、
     前記Al基軸受合金層の硬さは、ビッカース硬さで50以上80以下であることを特徴とするすべり軸受。
  2.  前記Al基中間層の硬さは、前記Al基軸受合金層の硬さに対して70%以上90%以下であることを特徴とする請求の範囲第1項記載のすべり軸受。
  3.  前記Al基中間層及び前記Al基軸受合金層は、Feを含み、
     前記Al基中間層に含まれるFeの成分量は、0.5質量%以上1.5質量%以下であり、且つ、前記Al基軸受合金層に含まれるFeの成分量の2倍を超えていることを特徴とする請求の範囲第1項又は第2項記載のすべり軸受。
  4.  前記Al基軸受合金層は、粒径が0.5μmを超えているSi粒子を含むことを特徴とする請求の範囲第1項から第3項のいずれか一項記載のすべり軸受。
  5.  前記Al基軸受合金層は、
     3~20質量%のSnと、
     1.5~8質量%のSiと、
     Cu,Zn,Mgの内から少なくとも1種類以上を選択して成る金属元素であって、その総量が0.1~7質量%である金属元素と、
     Alとの金属間化合物を形成する元素X1,X2,・・・,Xn(nは自然数)と、
     残りが不可避的に含まれる不純物を含むAlとから成り、
     前記元素X1は、Mn,Cr,Ni,V,Zr,Siの内から選択して成り、Mn,Cr,Ni,V,Zrの内から選択する場合はその総量が0.01~2質量%であり、
     前記元素X2は、V,Ti,Zr,Mo,Fe,Co,W,Mn,Siの内の前記元素X1と異なる元素から選択して成り、V,Ti,Zr,Mo,Fe,Co,W,Mnの内から選択する場合はその総量が0.01~2質量%であることを特徴とする請求の範囲第1項から第4項のいずれか一項記載のすべり軸受。
PCT/JP2010/062073 2009-07-29 2010-07-16 すべり軸受 WO2011013526A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/387,880 US20120128285A1 (en) 2009-07-29 2010-07-16 Sliding bearing
DE112010003120T DE112010003120T5 (de) 2009-07-29 2010-07-16 Gleitlager
KR1020127001184A KR101336053B1 (ko) 2009-07-29 2010-07-16 슬라이딩 베어링
GB1203585.3A GB2485719A (en) 2009-07-29 2010-07-16 Sliding bearing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009176413A JP2011027241A (ja) 2009-07-29 2009-07-29 すべり軸受
JP2009-176413 2009-07-29

Publications (1)

Publication Number Publication Date
WO2011013526A1 true WO2011013526A1 (ja) 2011-02-03

Family

ID=43529184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062073 WO2011013526A1 (ja) 2009-07-29 2010-07-16 すべり軸受

Country Status (6)

Country Link
US (1) US20120128285A1 (ja)
JP (1) JP2011027241A (ja)
KR (1) KR101336053B1 (ja)
DE (1) DE112010003120T5 (ja)
GB (1) GB2485719A (ja)
WO (1) WO2011013526A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3037562A1 (en) * 2014-03-19 2016-06-29 Taiho Kogyo Co., Ltd Sliding bearing

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011003797B3 (de) 2011-02-08 2012-05-03 Federal-Mogul Wiesbaden Gmbh Gleitlagerverbundwerkstoff
WO2014157650A1 (ja) * 2013-03-29 2014-10-02 大豊工業株式会社 アルミニウム合金、すべり軸受、およびすべり軸受の製造方法
DE102013210662B4 (de) * 2013-06-07 2017-11-09 Federal-Mogul Wiesbaden Gmbh Gleitlagerverbundwerkstoff mit Aluminium-Lagermetallschicht
DE102013218107A1 (de) * 2013-09-10 2015-03-26 Ks Gleitlager Gmbh Gleitlagerverbundwerkstoff
AT518875B1 (de) * 2017-02-06 2018-02-15 Miba Gleitlager Austria Gmbh Mehrschichtgleitlagerelement

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06136475A (ja) * 1992-10-26 1994-05-17 Daido Metal Co Ltd Al−Sn系軸受合金摺動層を有する耐疲労性、なじみ性に優れた多層すべり軸受
JP2001140890A (ja) * 1999-11-10 2001-05-22 Daido Metal Co Ltd アルミニウム基軸受合金
JP2002038230A (ja) * 2000-07-26 2002-02-06 Daido Metal Co Ltd アルミニウム系軸受合金
JP2002120047A (ja) * 2000-09-11 2002-04-23 Daido Metal Co Ltd アルミニウム軸受合金の連続鋳造方法および連続鋳造装置
JP2002121631A (ja) * 2000-10-18 2002-04-26 Daido Metal Co Ltd 多層軸受およびその製造方法
JP2003119530A (ja) * 2001-10-10 2003-04-23 Daido Metal Co Ltd アルミニウム系軸受合金
JP2009228870A (ja) * 2008-03-25 2009-10-08 Daido Metal Co Ltd すべり軸受

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06240399A (ja) * 1993-02-16 1994-08-30 Honda Motor Co Ltd 切欠き疲労強度の優れた耐熱アルミニウム合金
JP3868630B2 (ja) 1998-07-07 2007-01-17 大豊工業株式会社 すべり軸受用アルミニウム合金及びすべり軸受
JP2001140990A (ja) 1999-11-10 2001-05-22 Ntt Docomo Hokkaido Inc ワイヤロープ固定具
JP2004360779A (ja) * 2003-06-04 2004-12-24 Daido Metal Co Ltd 多層アルミニウム基合金摺動部材
JP2008255461A (ja) * 2007-04-09 2008-10-23 Kyoto Univ 金属間化合物分散型Al系材料及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06136475A (ja) * 1992-10-26 1994-05-17 Daido Metal Co Ltd Al−Sn系軸受合金摺動層を有する耐疲労性、なじみ性に優れた多層すべり軸受
JP2001140890A (ja) * 1999-11-10 2001-05-22 Daido Metal Co Ltd アルミニウム基軸受合金
JP2002038230A (ja) * 2000-07-26 2002-02-06 Daido Metal Co Ltd アルミニウム系軸受合金
JP2002120047A (ja) * 2000-09-11 2002-04-23 Daido Metal Co Ltd アルミニウム軸受合金の連続鋳造方法および連続鋳造装置
JP2002121631A (ja) * 2000-10-18 2002-04-26 Daido Metal Co Ltd 多層軸受およびその製造方法
JP2003119530A (ja) * 2001-10-10 2003-04-23 Daido Metal Co Ltd アルミニウム系軸受合金
JP2009228870A (ja) * 2008-03-25 2009-10-08 Daido Metal Co Ltd すべり軸受

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3037562A1 (en) * 2014-03-19 2016-06-29 Taiho Kogyo Co., Ltd Sliding bearing
EP3037562A4 (en) * 2014-03-19 2017-05-17 Taiho Kogyo Co., Ltd Sliding bearing

Also Published As

Publication number Publication date
JP2011027241A (ja) 2011-02-10
KR101336053B1 (ko) 2013-12-16
GB201203585D0 (en) 2012-04-11
DE112010003120T5 (de) 2013-01-10
KR20120025608A (ko) 2012-03-15
US20120128285A1 (en) 2012-05-24
GB2485719A (en) 2012-05-23

Similar Documents

Publication Publication Date Title
JP5021536B2 (ja) すべり軸受
US6638375B2 (en) Aluminum bearing alloy
WO2011013526A1 (ja) すべり軸受
JP5289941B2 (ja) 滑り軸受複合材料、滑り軸受複合材料の用途及び滑り軸受複合材料の製造方法
US6905779B2 (en) Sliding material made of copper alloy, method of producing same, sliding bearing material, and method of producing same
US20090081471A1 (en) Slide Bearing Composite Material, Use and Method of Production
US6692548B2 (en) Copper-based sliding material, method of manufacturing the same, and sliding bearing
JPH06136475A (ja) Al−Sn系軸受合金摺動層を有する耐疲労性、なじみ性に優れた多層すべり軸受
JP5231312B2 (ja) すべり軸受
JP3580441B2 (ja) Ni基超耐熱合金
US7074496B2 (en) Multilayer aluminum-base alloy slide member
JP5412530B2 (ja) すべり軸受用アルミニウム合金、すべり軸受及びその製造方法
JP5797624B2 (ja) すべり軸受
US7041387B2 (en) Multi-layered aluminum-base bearing
US8241758B2 (en) Plain bearing composite material, use thereof and production methods therefor
JP4422255B2 (ja) アルミニウム基軸受合金
JP2007084889A (ja) アルミニウム合金及びその製造方法
JP3776228B2 (ja) 熱処理強化型アルミニウム系摺動材料およびその製造方法
EP4015854B1 (en) Method of manufacturing a strip for a bearing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10804272

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127001184

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13387880

Country of ref document: US

Ref document number: 1120100031207

Country of ref document: DE

Ref document number: 112010003120

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 1203585

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20100716

WWE Wipo information: entry into national phase

Ref document number: 1203585.3

Country of ref document: GB

122 Ep: pct application non-entry in european phase

Ref document number: 10804272

Country of ref document: EP

Kind code of ref document: A1