WO2011013526A1 - すべり軸受 - Google Patents
すべり軸受 Download PDFInfo
- Publication number
- WO2011013526A1 WO2011013526A1 PCT/JP2010/062073 JP2010062073W WO2011013526A1 WO 2011013526 A1 WO2011013526 A1 WO 2011013526A1 JP 2010062073 W JP2010062073 W JP 2010062073W WO 2011013526 A1 WO2011013526 A1 WO 2011013526A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alloy layer
- bearing alloy
- bearing
- mass
- layer
- Prior art date
Links
- 239000001996 bearing alloy Substances 0.000 claims abstract description 83
- 229910000765 intermetallic Inorganic materials 0.000 claims abstract description 60
- 239000002245 particle Substances 0.000 claims abstract description 11
- 229910052748 manganese Inorganic materials 0.000 claims description 16
- 229910052726 zirconium Inorganic materials 0.000 claims description 16
- 229910052751 metal Inorganic materials 0.000 claims description 15
- 229910052720 vanadium Inorganic materials 0.000 claims description 15
- 229910052804 chromium Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 12
- 229910052710 silicon Inorganic materials 0.000 claims description 12
- 229910052742 iron Inorganic materials 0.000 claims description 11
- 229910052759 nickel Inorganic materials 0.000 claims description 8
- 229910052719 titanium Inorganic materials 0.000 claims description 8
- 229910052750 molybdenum Inorganic materials 0.000 claims description 7
- 239000011856 silicon-based particle Substances 0.000 claims description 7
- 229910052721 tungsten Inorganic materials 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 abstract 1
- 239000010931 gold Substances 0.000 abstract 1
- 229910052737 gold Inorganic materials 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 22
- 239000011159 matrix material Substances 0.000 description 21
- 238000005452 bending Methods 0.000 description 18
- 239000000047 product Substances 0.000 description 14
- 238000000137 annealing Methods 0.000 description 8
- QQHSIRTYSFLSRM-UHFFFAOYSA-N alumanylidynechromium Chemical compound [Al].[Cr] QQHSIRTYSFLSRM-UHFFFAOYSA-N 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 238000009661 fatigue test Methods 0.000 description 5
- 229910018580 Al—Zr Inorganic materials 0.000 description 4
- 238000005266 casting Methods 0.000 description 4
- 238000003754 machining Methods 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910018125 Al-Si Inorganic materials 0.000 description 1
- 229910018520 Al—Si Inorganic materials 0.000 description 1
- 229910008813 Sn—Si Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/003—Alloys based on aluminium containing at least 2.6% of one or more of the elements: tin, lead, antimony, bismuth, cadmium, and titanium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/018—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of a noble metal or a noble metal alloy
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/12—Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/12—Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
- F16C33/121—Use of special materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2204/00—Metallic materials; Alloys
- F16C2204/20—Alloys based on aluminium
Definitions
- the present invention relates to a plain bearing provided with a back metal layer, an Al base intermediate layer, and an Al base bearing alloy layer.
- a plain bearing lined with an Al-based bearing alloy is generally configured as a bimetal by bonding an Al-based bearing alloy layer and a back metal layer through an Al-based intermediate layer. And a plain bearing is manufactured by machining this comprised bimetal.
- Such a plain bearing has relatively good initial conformability, and has excellent fatigue resistance and wear resistance at a high surface pressure. As a result, plain bearings are used in bearings for high-power engines of automobiles and general industrial machines.
- Japanese Unexamined Patent Publication No. 2000-17363 is known as a plain bearing with improved fatigue resistance.
- an Al—Sn—Si bearing alloy layer is used as the Al-based bearing alloy layer.
- Cr and Zr are further added to the Al-based bearing alloy layer.
- an Al—Cr binary intermetallic compound is precipitated at the Al grain boundary of the Al-based bearing alloy layer.
- the present invention has been made in view of the above-described circumstances, and an object thereof is to provide a slide bearing having excellent fatigue resistance and conformability under high surface pressure.
- the present inventor speculated that the reason why the intermetallic compounds of Al—Cr and Al—Zr are detached from the matrix is that the bond between these intermetallic compounds and the matrix is weak. The present inventor speculated that if the bond is strong, the intermetallic compound will not be detached and the bending fatigue strength will be improved. Furthermore, based on this assumption, the present inventor added two or more elements to the Al-based bearing alloy layer to form a multicomponent intermetallic compound of Al and these two or more elements. It was found that the intermetallic compound was firmly bonded to the matrix and difficult to separate. In this case, it was also investigated that the function of firmly bonding to the matrix and preventing plastic deformation needs to be small in particle size and distributed at a certain density or higher.
- the present inventor has adjusted the hardness of the Al-based bearing alloy layer containing a multi-component intermetallic compound of Al and two or more kinds of metal elements so that the Al-based bearing alloy layer has high fatigue resistance. It was also found that the familiarity was improved.
- the plain bearing according to claim 1 of the present invention includes a backing metal layer, an Al-based intermediate layer, and an Al-based bearing alloy layer, and the Al-based bearing alloy layer includes at least one kind of Al and two or more other elements.
- the abundance ratio X1 / X2 of the element X1 and the element X2 is 1 or more and 10 or less
- the hardness of the Al-based bearing alloy layer is 50 or more in terms of Vickers hardness It is characterized by being 80 or less.
- the elements X1, X2,..., Xn do not contain Al.
- the abundance ratio in the present invention is the mass ratio of each element X1, X2,..., Xn in each intermetallic compound.
- the relationship between the abundance ratios of the elements X1 (1), X2 (1),..., Xn (1) forming the first intermetallic compound is X1 ( 1) ⁇ X2 (1) ⁇ ⁇ ⁇ ⁇ ⁇ Xn (1), and the abundance ratio X1 (1) / X2 (1) of the element X1 (1) and the element X2 (1) is 1 or more and 10 or less
- Xn (2) abundance ratios of elements X1 (2), X2 (2),..., Xn (2) forming the second intermetallic compound are X1 (2) ⁇ X2 (2) ⁇ ...
- the abundance ratio X1 (2) / X2 (2) of the element X1 (2) and the element X2 (2) is 1 or more and 10 or less. That is, when generating m types of intermetallic compounds (m is a natural number), the abundance ratio of the elements X1 (m), X2 (m),..., Xn (m) forming the mth intermetallic compound The relationship is X1 (m) ⁇ X2 (m) ⁇ ... Xn (m), and the abundance ratio X1 (m) / X2 (m) of the element X1 (m) and the element X2 (m) is 1 or more. 10 or less.
- the elements X1 (1) and X1 (m) can be the same element or different elements. However, for example, the elements X1 (1) and Xn (1) are different elements. Hereinafter, (m) and the like may be omitted for convenience.
- the basic form of the plain bearing of the present invention is shown in FIG.
- the plain bearing 1 of FIG. 1 has a three-layer structure of a back metal layer 2 made of, for example, steel, and an Al base bearing alloy layer 4 provided on the back metal layer 2 through an Al base intermediate layer 3.
- two or more kinds of elements are added to the Al-based bearing alloy layer, and these elements form Al and a multi-component intermetallic compound, and are dissolved in an Al matrix. Since the constituent elements other than two or more types of Al of the multi-component intermetallic compound are also present in the matrix, the multi-component intermetallic compound can increase the bond strength with the matrix. For this reason, even if a bending stress is repeatedly applied to the slide bearing, the multi-component intermetallic compound is unlikely to be detached from the matrix, the Al-based bearing alloy layer is unlikely to undergo plastic deformation, and the bending fatigue strength of the slide bearing is improved.
- the elements that form an intermetallic compound by combining with Al are metal elements such as Mn, Cr, Ni, V, Zr, Ti, Mo, Fe, Co, W, and Si, for example.
- metal elements such as Mn, Cr, Ni, V, Zr, Ti, Mo, Fe, Co, W, and Si
- Mn and V are selected among these metal elements
- these elements generate Al—Mn—V multi-component intermetallic compounds, that is, ternary intermetallic compounds, and Mn and V are contained in the matrix.
- Cr, Si, Fe these elements are Al—Cr (X1 (1)) — Si (X2 (1)) — Fe (X3 (1)) multi-element intermetallic compounds, that is, 4
- Cr, Si and Fe can be dissolved in the matrix.
- any of Cr, Si, and Fe may be X1 (1), X2 (1), and X3 (1).
- Ni, Zr, Ti, or Mo is selected.
- the abundance ratio X1 / X2 of the element X1 and the element X2 when the relationship of the abundance ratio of the elements forming the intermetallic compound is X1 ⁇ X2 ⁇ .
- a strong bond strength between the multi-component intermetallic compound and the matrix can be reliably realized.
- the abundance ratio X1 / X2 is 8 or less.
- the function of the multi-component intermetallic compound to prevent plastic deformation of the matrix is effective when the multi-component intermetallic compound is a fine one with a size of less than 0.5 ⁇ m and the distribution density is 8 or more per 1 ⁇ m 2. Is done.
- it if it is a multi-component intermetallic compound within this range, it can be toughened without impairing the elongation of the matrix.
- the distribution density is preferably 15 to 70 per 1 ⁇ m 2 .
- the hardness of the Al-based bearing alloy layer can be changed by changing the proportion of the component of the Al-based bearing alloy layer, for example, the component of the multi-component intermetallic compound. And by making the hardness of the Al-based bearing alloy layer 50 or more in terms of Vickers hardness, it is difficult to cause fatigue even under the action of a high load when the Al-based bearing alloy layer is applied to a high-power engine. Can do. Moreover, favorable conformability can be obtained by setting the hardness of the Al-based bearing alloy layer to 80 or less in terms of Vickers hardness. From the viewpoint of fatigue resistance and conformability, the hardness of the Al-base bearing alloy layer is preferably 60 to 70 in terms of Vickers hardness.
- the plain bearing of the present invention is manufactured through a casting process, a rolling process, a pressure welding process, a heat treatment (annealing) process, and a machining process. That is, in the casting process, an Al base bearing alloy (Al base bearing alloy layer) is melted and cast into a plate shape. The cast plate-like Al-based bearing alloy is rolled in a rolling process, and is pressed into a steel plate (back metal layer) through a thin Al-based alloy plate (Al-based intermediate layer) in a pressure-welding process to form a plate for bearing formation. .
- the bearing forming plate is annealed, and finally, the bearing forming plate is machined to form a semi-cylindrical or cylindrical bearing.
- a fine intermetallic compound having a particle size of less than 0.5 ⁇ m can be deposited through rolling of the Al-based bearing alloy after casting and annealing of the plate material for bearing formation.
- the particle size referred to in this specification is the maximum length per crystal of an intermetallic compound obtained by analysis with an electron microscope.
- the plain bearing according to claim 2 of the present invention is characterized in that the hardness of the Al-based intermediate layer is 70% or more and 90% or less with respect to the hardness of the Al-based bearing alloy layer.
- the hardness of the Al-based intermediate layer is more than 70% of the hardness of the Al-based bearing alloy layer, so that it is more stable to the high load received through the Al-based bearing alloy layer.
- the sliding bearing does not protrude from the end in the width direction, and the fatigue resistance of the entire sliding bearing can be improved.
- the hardness of the Al-based intermediate layer is set to 90% or less of the hardness of the Al-based bearing alloy layer, the cushion when the load applied to the Al-based bearing alloy layer is changed. And the conformability of the Al-based bearing alloy layer can be improved.
- the plain bearing according to claim 3 of the present invention includes Fe in the Al-based intermediate layer and the Al-based bearing alloy layer, and the Fe component content in the Al-based intermediate layer is 0.5 mass% or more and 1.5 mass%. It is the following, and it is characterized by exceeding twice the amount of the Fe component contained in the Al-based bearing alloy layer.
- the heat resistance of the Al base intermediate layer and the Al base bearing alloy layer is improved by including an appropriate amount of Fe in the Al base intermediate layer and the Al base bearing alloy layer. Accordingly, the strength can be maintained even in a high temperature environment during actual use of the slide bearing. Further, when an appropriate amount of Fe is contained in the Al-based intermediate layer and the Al-based bearing alloy layer, the Al-based intermediate layer and the Al-based bearing alloy layer are difficult to work harden. Therefore, the conformability of the Al-based bearing alloy layer is improved, and accumulation of metal fatigue in the Al-based intermediate layer and the Al-based bearing alloy layer can be suppressed.
- Heat resistance and fatigue resistance can be further improved by making the amount of Fe component contained in the Al-based intermediate layer 0.5% by mass or more.
- the amount of Fe component contained in the Al-based intermediate layer 1.5% by mass or less, the hardness of the Al-based intermediate layer can be easily reduced to 75 or less in terms of Vickers hardness, and the conformability becomes better.
- the sliding heat generated by the sliding of the counterpart material and the Al-based bearing alloy layer on the surface of the Al-based bearing alloy layer is transferred from the surface of the Al-based bearing alloy layer toward the back metal layer. Therefore, in a slide bearing in which the hardness of the Al-based intermediate layer is 70% or more and 90% or less with respect to the hardness of the Al-based bearing alloy layer, when the Al-based intermediate layer is in a high temperature state due to sliding heat, particularly Al The strength of the base intermediate layer may be insufficient. Therefore, in the present invention, the amount of Fe contained in the Al-based intermediate layer exceeds twice the amount of Fe contained in the Al-based bearing alloy layer. Thereby, the Al-based intermediate layer is difficult to soften even at a high temperature, and the strength of the Al-based intermediate layer can be maintained.
- the plain bearing according to claim 4 of the present invention is characterized in that the Al-based bearing alloy layer contains Si particles having a particle size exceeding 0.5 ⁇ m.
- Si particles having a particle diameter of more than 0.5 ⁇ m in the Al-based bearing alloy layer it can be expected that the Si particles exert a wrapping action on the counterpart shaft. Thereby, the non-seizure property of the slide bearing is improved.
- Si can also form an intermetallic compound, but in general, it is dissolved in a matrix or crystallized as hard Si particles. Therefore, the strength of the Al-based bearing alloy layer is increased by including Si in the Al-based bearing alloy layer. Thereby, the fatigue resistance of the slide bearing is improved.
- the Al-based bearing alloy layer has at least one of 3-20 mass% of Sn, 1.5-8 mass% of Si, and Cu, Zn, Mg. , Xn (n is a natural number) that forms an intermetallic compound of Al and a metal element having a total amount of 0.1 to 7% by mass ) And Al containing impurities that are inevitably contained in the remainder, and the element X1 is selected from Mn, Cr, Ni, V, Zr, and Si, and includes Mn, Cr, Ni, V, and Zr.
- the total amount is 0.01 to 2% by mass
- the element X2 is selected from elements different from the element X1 among V, Ti, Zr, Mo, Fe, Co, W, Mn, and Si.
- V, Ti, Zr, Mo, Fe, Co, W, Mn The total amount of is characterized in that from 0.01 to 2 wt%. The said amount is the mass% in an Al base bearing alloy layer.
- the Al-based bearing alloy layer By including 3 mass% or more of Sn in the Al-based bearing alloy layer, it is possible to improve the conformability, non-seizure property, foreign matter embedding property, etc. as a slide bearing, and the Sn content is 20 mass% or less. By making it, fatigue resistance can be improved.
- the above-mentioned performance of Si can be sufficiently exerted, and by making the Si content 8% by mass or less, fatigue resistance is achieved. Can be improved. In order to exhibit the effect as said Si particle
- Cu, Zn, Mg elements are dissolved in the matrix. Thereby, the matrix strength can be increased.
- the total amount of elements formed by selecting at least one of Cu, Zn, and Mg to be 0.1% by mass, the above-described effect can be sufficiently exerted, and the total amount is 7% by mass or less. By making it, conformability can be made favorable.
- Element X1 is selected from Mn, Cr, Ni, V, Zr, and Si
- element X2 is an element different from element X1 in V, Ti, Zr, Mo, Fe, Co, W, Mn, and Si
- element X1 and element X2 combine with Al to produce one or more ternary (or higher multi-component) intermetallic compounds.
- the total amount of the element X1 when selecting from among Mn, Cr, Ni, V, and Zr, and the total amount of the element X2 when selecting from among V, Ti, Zr, Mo, Fe, Co, W, and Mn is 0.
- generation of the intermetallic compound mentioned above can be increased, and fatigue resistance can be made favorable by making it 2 mass% or less.
- the annealing temperature, annealing time, etc. are adjusted to control the amount of Si forming an intermetallic compound as element X1, the amount of solid solution, and the amount of crystallization as Si particles.
- the plain bearing of the present invention (Examples 1 to 4) using an Al-based bearing alloy layer and an Al alloy intermediate layer having the composition shown in Table 1, and a conventional plain bearing ( Samples of comparative example products 1 to 4) were manufactured and subjected to fatigue resistance test (bending fatigue test) and conformability test.
- the production methods of the example products 1 to 4 are as follows. First, for example, an Al-based bearing alloy plate material having the components shown in Table 1 was manufactured by a belt casting apparatus excellent in mass productivity. Thereafter, a thin plate material constituting the Al-based intermediate layer composed of the components shown in Table 1 is pressed against the cast Al-based bearing alloy to produce a multi-layer aluminum alloy plate. A plate for forming a bearing (so-called bimetal) was manufactured by pressing against the steel plate constituting the layer. Then, the bearing forming plate material was annealed at a temperature of more than 350 ° C. and not more than 450 ° C. for 1 to 10 hours in accordance with each composition.
- Example 1 As shown in Table 1, a small number of intermetallic compounds were present in the Al-based bearing alloy layer thus obtained.
- Fatigue resistance test (bending fatigue test) Test pieces (Examples 1 to 4 and Comparative Examples 1 to 4) were manufactured by machining the bearing forming plate after the annealing, and a bending fatigue test was performed to check fatigue resistance. This test piece has a total thickness of 1.5 mm and a back metal layer thickness of 1.2 mm, and the total thickness of the Al-based bearing alloy layer and the Al-based intermediate layer is 0.3 mm.
- the conformability of the slide bearing can be confirmed by applying the load on the shaft to the end of the slide bearing in the circumferential direction.
- the load was gradually increased to the evaluation load of 30 MPa, and the time from when the evaluation load was reached until the slide bearing was damaged was measured.
- type X1 / X2 means that when the intermetallic compound is composed of a multi-element including Al, two types of elements (element X1 and X1) having a large abundance ratio other than Al among the multi-element in the intermetallic compound. Element X2) is shown.
- types X1 / X2 When there are a plurality of types of intermetallic compounds, a plurality of “types X1 / X2” are described.
- “Ratio X1 / X2” indicates the abundance ratio X1 / X2, and is a value obtained by dividing the element X1 by the element X2 when the element X1 and the element X2 are represented by a mass ratio in the intermetallic compound.
- Hardness ratio is obtained by calculating the hardness of the Al-based bearing alloy layer and the hardness of the Al-based intermediate layer by Vickers hardness, and calculating the Vickers hardness HV (b) of the Al-based intermediate layer by the Al-based bearing alloy layer. Dividing by Vickers hardness HV (a), the value is expressed in percentage.
- the example products 1 to 4 are superior in fatigue resistance because they have superior bending fatigue strength over a long period of time compared with the comparative products 1 to 4. it can.
- the number of intermetallic compounds having an abundance ratio X1 / X2 of 1 to 10 and a particle size of less than 0.5 ⁇ m is 8 per 1 ⁇ m 2.
- these intermetallic compounds can suppress the movement of dislocations in the matrix, improve the bending fatigue strength, and the hardness of the Al-based bearing alloy layer is 50 or more in terms of Vickers hardness. As a result, it is considered that extremely excellent fatigue resistance could be provided.
- the amount of Fe component contained in the Al-based intermediate layer is equal to the amount of Fe component contained in the Al-based bearing alloy layer. Since it exceeds twice, even if heat is generated in the Al-based intermediate layer by repeatedly applying reciprocating bending, the Al-based intermediate layer is hardly softened, and it is considered that extremely good fatigue resistance was obtained.
- the hardness of the Al-based bearing alloy layer is 80 or less in terms of Vickers hardness, it is possible to satisfactorily avoid the local contact between the counterpart material and the sample piece. It is considered that good conformability could be obtained.
- Inventive products 1 to 4 having the above-described configuration obtained good conformability while having high fatigue resistance.
- the example products 1, 2, and 4 From comparison between the example products 1, 2, and 4 and the example product 3, the example products 1, 2, and 4 have 90% of the hardness of the Al-based intermediate layer with respect to the hardness of the Al-based bearing alloy layer. Since it was made below, it is considered that very good conformability could be obtained.
- the present invention can be implemented with appropriate modifications within a range not departing from the gist.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Sliding-Contact Bearings (AREA)
Abstract
Description
このようなすべり軸受は、初期なじみ性が比較的良好であり、高面圧で優れた耐疲労性及び耐摩耗性を有している。これにより、すべり軸受は、自動車や一般産業機械の高出力エンジンの軸受に用いられている。
耐疲労性を向上させたすべり軸受として、例えば特開2000-17363号公報が公知である。このすべり軸受は、Al基軸受合金層としてAl-Sn-Si系軸受合金層が用いられる。そして、すべり軸受は、そのAl基軸受合金層に、更にCr,Zrが添加されている。特開2000-17363号公報の場合、Al基軸受合金層にCr,Zrを添加することにより、Al基軸受合金層のAlの結晶粒界にAl-Crの2元系金属間化合物が析出するとともに、Al結晶粒内の亜粒界にAl-Zrの2元系金属間化合物が析出する。そして、特開2000-17363号公報は、析出したこれらの金属間化合物が、すべり軸受の耐疲労性の向上に作用することを開示している。
又、ハウジングの変形によってすべり軸受自身が変形すると、すべり軸受と相手軸との間に局部的な接触を生じることがある。このとき、すべり軸受のなじみ性が低い場合、焼付を招くという問題も生じる。
更に、本発明者は、Alと2種類以上の金属元素との多元系金属間化合物を含むAl基軸受合金層の硬さを調整することにより、Al基軸受合金層が高い耐疲労性を有しながらなじみ性が良好になることも究明した。
本発明のすべり軸受は、鋳造工程、圧延工程、圧接工程、熱処理(焼鈍)工程、機械加工工程を経て製造される。即ち、鋳造工程では、Al基軸受合金(Al基軸受合金層)を溶融して板状に鋳造する。鋳造された板状のAl基軸受合金は、圧延工程で圧延し、圧接工程で鋼板(裏金層)に薄いAl基合金板(Al基中間層)を介して圧接して軸受形成用板材にする。その後、軸受形成用板材を焼鈍し、最後に、軸受形成用板材を機械加工して半円筒状又は円筒状の軸受に形成する。この製造工程において、鋳造後のAl基軸受合金の圧延から軸受形成用板材の焼鈍のプロセスを経て粒径が0.5μm未満の微細な金属間化合物を析出させることができる。
本発明の請求項2のすべり軸受は、Al基中間層の硬さがAl基軸受合金層の硬さに対して70%以上90%以下であることを特徴としている。
Al基軸受合金層に、粒径が0.5μmを超えているSi粒子を含ませることにより、Si粒子が相手軸に対してラッピング作用を発揮することを期待できる。これにより、すべり軸受の非焼付性が良好になる。又、Siは、金属間化合物を形成することもできるが、一般に、マトリクスに固溶し、或いは、硬いSi粒子として晶出する。従って、Al基軸受合金層にSiを含ませることにより、Al基軸受合金層の強度は高くなる。これにより、すべり軸受の耐疲労性は向上する。
上記軸受形成用板材の焼鈍により、Al基軸受合金層のマトリクス中に金属間化合物が析出する。そして、析出した金属間化合物の大きさを電子顕微鏡による組織写真から解析したところ、粒径が0.5μm未満の大きさのものが、1μm2当たり、表1に示す個数存在していた。
一方、比較例品1~4の製造方法は、上記実施例品1~4の製造方法と相違し、軸受形成用板材の焼鈍温度を従来から行われているような300℃以上350℃以下で行うものである。
このような実施例品1~4、比較例品1~4に対して行った耐疲労性試験(曲げ疲労試験)及びなじみ性試験は次のようなものである。
(1)耐疲労性試験(曲げ疲労試験)
焼鈍を行った後の軸受形成用板材を機械加工して試験片(実施例品1~4、比較例品1~4)を製作し、耐疲労性を見るための曲げ疲労試験を実施した。この試験片は、総厚1.5mm、裏金層の厚さ1.2mmであり、Al基軸受合金層の厚さとAl基中間層との合計の厚さは0.3mmである。試験条件は、Al基軸受合金層の表面の歪みが一定となるようにして、往復曲げをAl基軸受合金層の表面にクラックが発生するまで繰り返した。この耐疲労性試験(曲げ疲労試験)における試料片のAl基軸受合金層の表面にクラックが発生するまでの往復曲げの繰り返し回数の結果を表1に示す。
(2)なじみ性試験
なじみ性を確認するために、焼鈍を行った後の軸受形成用板材を機械加工してすべり軸受を製造して得た実施例品1~4及び比較例品1~4に対してなじみ性試験を行った。なじみ性試験は、半割軸受状にした2個の試料片となるすべり軸受を、図2に示すように、径方向にΔL、本試験では30μmずらして合わせ、回転荷重試験機に取付け、この状態で、表2に示す試験条件でなじみ性試験を行った。本試験は、回転荷重試験機によって、軸の遠心力により軸受内周面に回転荷重を付加することによって行う。
「比率X1/X2」は、存在比率X1/X2を示すものであり、元素X1及び元素X2を金属間化合物中における質量比で表した場合において元素X1を元素X2で除した値である。
「硬さ比」は、Al基軸受合金層の硬さ及びAl基中間層の硬さをビッカース硬さで求め、Al基中間層のビッカース硬さHV(b)を、Al基軸受合金層のビッカース硬さHV(a)で除し、その値を百分率で表したものである。
耐疲労性試験の結果を考察するに、実施例品1~4は、比較例品1~4に比べて、長期にわたって優れた曲げ疲労強度を有することにより耐疲労性に優れていることが理解できる。
実施例品1~4と、比較例品1~4との比較から、存在比率X1/X2が1以上10以下であって粒径が0.5μm未満の金属間化合物の数が1μm2当たり8個以上存在すると、これらの金属間化合物がマトリクス中の転位の移動を抑制し、曲げ疲労強度を向上させることができ、かつ、Al基軸受合金層の硬さをビッカース硬さで50以上にした結果、極めて優れた耐疲労性を持たせることができたと考えられる。
なじみ性試験の結果を考察すると、実施例品1~4は、Al基軸受合金層の硬さがビッカース硬さで80以下であるため、相手材と試料片との局部当たりを良好に回避でき、良好ななじみ性を得ることができたと考えられる。上述の構成からなる実施例品1~4は、高い耐疲労性を有しながら良好ななじみ性を得ていた。
本発明は、要旨を逸脱しない範囲内で適宜変更して実施し得る。
Claims (5)
- 裏金層と、Al基中間層と、Al基軸受合金層とを備えるすべり軸受において、
前記Al基軸受合金層に、Alと他の2種類以上の元素とから成る1種類以上の金属間化合物であって粒径が0.5μm未満の金属間化合物を、8個/μm2以上含み、
前記金属間化合物を形成する前記元素X1,X2,・・・,Xn(nは自然数)の存在比の関係がX1≧X2≧・・・≧Xnであって、前記元素X1及び前記元素X2の存在比率X1/X2は、1以上10以下であり、
前記Al基軸受合金層の硬さは、ビッカース硬さで50以上80以下であることを特徴とするすべり軸受。 - 前記Al基中間層の硬さは、前記Al基軸受合金層の硬さに対して70%以上90%以下であることを特徴とする請求の範囲第1項記載のすべり軸受。
- 前記Al基中間層及び前記Al基軸受合金層は、Feを含み、
前記Al基中間層に含まれるFeの成分量は、0.5質量%以上1.5質量%以下であり、且つ、前記Al基軸受合金層に含まれるFeの成分量の2倍を超えていることを特徴とする請求の範囲第1項又は第2項記載のすべり軸受。 - 前記Al基軸受合金層は、粒径が0.5μmを超えているSi粒子を含むことを特徴とする請求の範囲第1項から第3項のいずれか一項記載のすべり軸受。
- 前記Al基軸受合金層は、
3~20質量%のSnと、
1.5~8質量%のSiと、
Cu,Zn,Mgの内から少なくとも1種類以上を選択して成る金属元素であって、その総量が0.1~7質量%である金属元素と、
Alとの金属間化合物を形成する元素X1,X2,・・・,Xn(nは自然数)と、
残りが不可避的に含まれる不純物を含むAlとから成り、
前記元素X1は、Mn,Cr,Ni,V,Zr,Siの内から選択して成り、Mn,Cr,Ni,V,Zrの内から選択する場合はその総量が0.01~2質量%であり、
前記元素X2は、V,Ti,Zr,Mo,Fe,Co,W,Mn,Siの内の前記元素X1と異なる元素から選択して成り、V,Ti,Zr,Mo,Fe,Co,W,Mnの内から選択する場合はその総量が0.01~2質量%であることを特徴とする請求の範囲第1項から第4項のいずれか一項記載のすべり軸受。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/387,880 US20120128285A1 (en) | 2009-07-29 | 2010-07-16 | Sliding bearing |
DE112010003120T DE112010003120T5 (de) | 2009-07-29 | 2010-07-16 | Gleitlager |
KR1020127001184A KR101336053B1 (ko) | 2009-07-29 | 2010-07-16 | 슬라이딩 베어링 |
GB1203585.3A GB2485719A (en) | 2009-07-29 | 2010-07-16 | Sliding bearing |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009176413A JP2011027241A (ja) | 2009-07-29 | 2009-07-29 | すべり軸受 |
JP2009-176413 | 2009-07-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011013526A1 true WO2011013526A1 (ja) | 2011-02-03 |
Family
ID=43529184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/062073 WO2011013526A1 (ja) | 2009-07-29 | 2010-07-16 | すべり軸受 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20120128285A1 (ja) |
JP (1) | JP2011027241A (ja) |
KR (1) | KR101336053B1 (ja) |
DE (1) | DE112010003120T5 (ja) |
GB (1) | GB2485719A (ja) |
WO (1) | WO2011013526A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3037562A1 (en) * | 2014-03-19 | 2016-06-29 | Taiho Kogyo Co., Ltd | Sliding bearing |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011003797B3 (de) | 2011-02-08 | 2012-05-03 | Federal-Mogul Wiesbaden Gmbh | Gleitlagerverbundwerkstoff |
WO2014157650A1 (ja) * | 2013-03-29 | 2014-10-02 | 大豊工業株式会社 | アルミニウム合金、すべり軸受、およびすべり軸受の製造方法 |
DE102013210662B4 (de) * | 2013-06-07 | 2017-11-09 | Federal-Mogul Wiesbaden Gmbh | Gleitlagerverbundwerkstoff mit Aluminium-Lagermetallschicht |
DE102013218107A1 (de) * | 2013-09-10 | 2015-03-26 | Ks Gleitlager Gmbh | Gleitlagerverbundwerkstoff |
AT518875B1 (de) * | 2017-02-06 | 2018-02-15 | Miba Gleitlager Austria Gmbh | Mehrschichtgleitlagerelement |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06136475A (ja) * | 1992-10-26 | 1994-05-17 | Daido Metal Co Ltd | Al−Sn系軸受合金摺動層を有する耐疲労性、なじみ性に優れた多層すべり軸受 |
JP2001140890A (ja) * | 1999-11-10 | 2001-05-22 | Daido Metal Co Ltd | アルミニウム基軸受合金 |
JP2002038230A (ja) * | 2000-07-26 | 2002-02-06 | Daido Metal Co Ltd | アルミニウム系軸受合金 |
JP2002120047A (ja) * | 2000-09-11 | 2002-04-23 | Daido Metal Co Ltd | アルミニウム軸受合金の連続鋳造方法および連続鋳造装置 |
JP2002121631A (ja) * | 2000-10-18 | 2002-04-26 | Daido Metal Co Ltd | 多層軸受およびその製造方法 |
JP2003119530A (ja) * | 2001-10-10 | 2003-04-23 | Daido Metal Co Ltd | アルミニウム系軸受合金 |
JP2009228870A (ja) * | 2008-03-25 | 2009-10-08 | Daido Metal Co Ltd | すべり軸受 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06240399A (ja) * | 1993-02-16 | 1994-08-30 | Honda Motor Co Ltd | 切欠き疲労強度の優れた耐熱アルミニウム合金 |
JP3868630B2 (ja) | 1998-07-07 | 2007-01-17 | 大豊工業株式会社 | すべり軸受用アルミニウム合金及びすべり軸受 |
JP2001140990A (ja) | 1999-11-10 | 2001-05-22 | Ntt Docomo Hokkaido Inc | ワイヤロープ固定具 |
JP2004360779A (ja) * | 2003-06-04 | 2004-12-24 | Daido Metal Co Ltd | 多層アルミニウム基合金摺動部材 |
JP2008255461A (ja) * | 2007-04-09 | 2008-10-23 | Kyoto Univ | 金属間化合物分散型Al系材料及びその製造方法 |
-
2009
- 2009-07-29 JP JP2009176413A patent/JP2011027241A/ja active Pending
-
2010
- 2010-07-16 KR KR1020127001184A patent/KR101336053B1/ko not_active IP Right Cessation
- 2010-07-16 US US13/387,880 patent/US20120128285A1/en not_active Abandoned
- 2010-07-16 GB GB1203585.3A patent/GB2485719A/en not_active Withdrawn
- 2010-07-16 WO PCT/JP2010/062073 patent/WO2011013526A1/ja active Application Filing
- 2010-07-16 DE DE112010003120T patent/DE112010003120T5/de not_active Ceased
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06136475A (ja) * | 1992-10-26 | 1994-05-17 | Daido Metal Co Ltd | Al−Sn系軸受合金摺動層を有する耐疲労性、なじみ性に優れた多層すべり軸受 |
JP2001140890A (ja) * | 1999-11-10 | 2001-05-22 | Daido Metal Co Ltd | アルミニウム基軸受合金 |
JP2002038230A (ja) * | 2000-07-26 | 2002-02-06 | Daido Metal Co Ltd | アルミニウム系軸受合金 |
JP2002120047A (ja) * | 2000-09-11 | 2002-04-23 | Daido Metal Co Ltd | アルミニウム軸受合金の連続鋳造方法および連続鋳造装置 |
JP2002121631A (ja) * | 2000-10-18 | 2002-04-26 | Daido Metal Co Ltd | 多層軸受およびその製造方法 |
JP2003119530A (ja) * | 2001-10-10 | 2003-04-23 | Daido Metal Co Ltd | アルミニウム系軸受合金 |
JP2009228870A (ja) * | 2008-03-25 | 2009-10-08 | Daido Metal Co Ltd | すべり軸受 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3037562A1 (en) * | 2014-03-19 | 2016-06-29 | Taiho Kogyo Co., Ltd | Sliding bearing |
EP3037562A4 (en) * | 2014-03-19 | 2017-05-17 | Taiho Kogyo Co., Ltd | Sliding bearing |
Also Published As
Publication number | Publication date |
---|---|
JP2011027241A (ja) | 2011-02-10 |
KR101336053B1 (ko) | 2013-12-16 |
GB201203585D0 (en) | 2012-04-11 |
DE112010003120T5 (de) | 2013-01-10 |
KR20120025608A (ko) | 2012-03-15 |
US20120128285A1 (en) | 2012-05-24 |
GB2485719A (en) | 2012-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5021536B2 (ja) | すべり軸受 | |
US6638375B2 (en) | Aluminum bearing alloy | |
WO2011013526A1 (ja) | すべり軸受 | |
JP5289941B2 (ja) | 滑り軸受複合材料、滑り軸受複合材料の用途及び滑り軸受複合材料の製造方法 | |
US6905779B2 (en) | Sliding material made of copper alloy, method of producing same, sliding bearing material, and method of producing same | |
US20090081471A1 (en) | Slide Bearing Composite Material, Use and Method of Production | |
US6692548B2 (en) | Copper-based sliding material, method of manufacturing the same, and sliding bearing | |
JPH06136475A (ja) | Al−Sn系軸受合金摺動層を有する耐疲労性、なじみ性に優れた多層すべり軸受 | |
JP5231312B2 (ja) | すべり軸受 | |
JP3580441B2 (ja) | Ni基超耐熱合金 | |
US7074496B2 (en) | Multilayer aluminum-base alloy slide member | |
JP5412530B2 (ja) | すべり軸受用アルミニウム合金、すべり軸受及びその製造方法 | |
JP5797624B2 (ja) | すべり軸受 | |
US7041387B2 (en) | Multi-layered aluminum-base bearing | |
US8241758B2 (en) | Plain bearing composite material, use thereof and production methods therefor | |
JP4422255B2 (ja) | アルミニウム基軸受合金 | |
JP2007084889A (ja) | アルミニウム合金及びその製造方法 | |
JP3776228B2 (ja) | 熱処理強化型アルミニウム系摺動材料およびその製造方法 | |
EP4015854B1 (en) | Method of manufacturing a strip for a bearing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10804272 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20127001184 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13387880 Country of ref document: US Ref document number: 1120100031207 Country of ref document: DE Ref document number: 112010003120 Country of ref document: DE |
|
ENP | Entry into the national phase |
Ref document number: 1203585 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20100716 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1203585.3 Country of ref document: GB |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10804272 Country of ref document: EP Kind code of ref document: A1 |