WO2011012119A1 - Procédé et dispositif pour détecter le mouvement et l'agglutination de cellules et de particules sur des couches cellulaires, tissulaires et d'implant lors de la simulation de conditions de circulation physiologique - Google Patents

Procédé et dispositif pour détecter le mouvement et l'agglutination de cellules et de particules sur des couches cellulaires, tissulaires et d'implant lors de la simulation de conditions de circulation physiologique Download PDF

Info

Publication number
WO2011012119A1
WO2011012119A1 PCT/DE2010/000900 DE2010000900W WO2011012119A1 WO 2011012119 A1 WO2011012119 A1 WO 2011012119A1 DE 2010000900 W DE2010000900 W DE 2010000900W WO 2011012119 A1 WO2011012119 A1 WO 2011012119A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
particles
cell
tissue
interaction zone
Prior art date
Application number
PCT/DE2010/000900
Other languages
German (de)
English (en)
Inventor
Sandy Mosig
Knut Rennert
Original Assignee
Universitätsklinikum Jena
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitätsklinikum Jena filed Critical Universitätsklinikum Jena
Publication of WO2011012119A1 publication Critical patent/WO2011012119A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/02Membranes; Filters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/10Perfusion

Definitions

  • the invention relates to a method and a device for detecting movement and attachment processes of cells and particles at cell, tissue and implant layers in the simulation of flow conditions.
  • Such movement and attachment processes of the cells and particles are important for the study of cell and tissue physiology and effects caused by drugs, pathogens or other agents and the behavior of these cells and particles as they flow through the Influence organism.
  • the simulation devices should be able to simulate the flow conditions occurring in the body as realistically as possible in order to
  • TM Bocan Animal Mode of Atherosclerosis and Interpretation of Drug Intervention Studies, Curr Pharm Des 4, 1998, 37-52, AC McMahon, L. Critharides and HC Lowe Cardiovasc Haematol Disord 5, 2005, 433-440, JC Russell and S. Proctor: Small Animal Mode of Cardiovascular Disease: Tools for the Study of the Role of Metabolic Syndrome, dyslipidemia, and atherosclerosis, Cardiovasc Pathol 15, 2006, 318-330).
  • the microscope with condenser is directed to a focal plane above the interaction surface and can only look at this plane.
  • the observation is, however, restricted exclusively to this defined level, so that the cells are persecuted in their movement does not continuously in real time "can. In the considered level, it is only possible to detect the cells essentially as a static size of individual measurements.
  • the deliberately chosen flow rate in the flow chamber in DE 100 19 833 C2 allows the adjustment of flow and pressure conditions only to a very limited extent due to the device.
  • laminar flow conditions can not be built up and evaluated at the interaction surface.
  • Single observations of cells are not spatially resolvable due to the high dynamics of the cell movement.
  • this device only reproduces the flow conditions of the bloodstream and can thus observe cells that move in this simulated bloodstream and possibly hang on the wall and attach. Cells, however, which migrate through this wall and thus can be found below the interaction surface, can not be detected and evaluated and are thus not accessible to the investigation. However, such a statement is of great interest for the analysis of, for example, drug delivery for pharmaceuticals.
  • Endothelial cells Single cell layers of endothelial cells cultured in commercially available cell culture inserts. Before the start of the experiment, the endothelial cells are incubated with the substances to be tested by placing them directly on the cells. Subsequently, the substances are washed away and the actual attempt is started. The flow of the medium is generated via a syringe pump. Adhesion and transmigration are observed by a phase-contrast microscope placed at a perpendicular angle above the interaction surface. Endothelial cells need time to adapt to flow conditions.
  • Endothelial cells grown under static conditions have a different physiology than cells produced under the influence of flow conditions (eg BJT Butcher, AM Penrod, AJ Garcia and RM Nerem: Unique morphology and focal adhesion development of valvular endothelial cells in static and fluid flow environments, Arterioscler Thromb Vase Biol 24, 2004, 1429-1434).
  • flow conditions eg BJT Butcher, AM Penrod, AJ Garcia and RM Nerem: Unique morphology and focal adhesion development of valvular endothelial cells in static and fluid flow environments, Arterioscler Thromb Vase Biol 24, 2004, 1429-1434).
  • the devices provide no requirement to attract the cells under flow conditions. There is thus no possibility for longer cultivation of endothelial cells under flow conditions and the results are only very limited comparable with the in vivo situation.
  • transmigrated cells are collected in a container. When penetrating the interaction surface, however, transmigrated cells remain attached to their underside, which are ignored in the evaluation. Gravity is not enough to cause all transmigrated cells to fall down in order to be completely quantitatively evaluated. Thus, adhesion and migration processes are only inaccurately detectable.
  • transmigrant cells can not be detected and analyzed after adhesion.
  • the cell examination is given only on the said monocell layer.
  • the pressure and flow conditions in the capillary system can only be influenced to a limited extent. Even with this method, no long-term studies are possible.
  • transmigrating cells also escape elimination of the observation and the subsequent evaluation in this device as well. Again, only monolayers are used for investigation. Real-time analysis of cell observation is also not possible. The adjustment and adjustment of temperature and pH are not given. The cell layer can be incubated with the substances to be tested only from the apical side before starting the experiment. No dynamic perfusion is possible during the experiment.
  • the disadvantages of the animal experiments are, in particular, that the animals are killed during or at the end of the experiments and that a reproducible local effect of pathogens, drugs and other agents on disease patterns at defined points of the body even when using inbred strains, due to the individual Differences of the individual animals used, are very difficult to reproduce. This leads to the necessity of carrying out a large number of individual experiments in order to compensate for this disadvantage by using statistical aids.
  • the individual observation of flowing and accumulating cells in standardisable examination devices causes great difficulties due to the one-level visual observability and the high dynamics of the cell movement, so that the evaluation essentially amounts to the acquisition of statistical quantities ,
  • the invention is therefore based on the task of more accurately and completely detecting the movement and attachment processes of cells and particles in the simulation of flow conditions.
  • the movement and attachment processes should be able to be simulated and evaluated under conditions that are much closer to the pressure and flow behavior in the organism to be replanted or the body's own vessel, even for long-term investigations.
  • the adhesion and migration behavior of the cells and particles should also be able to be detected as completely as possible and with high evaluation accuracy.
  • Implant layer optically recorded and evaluated in the entire at least one interaction zone (and not only by view from above).
  • Detection is preferably carried out by several
  • Interaction zone in an area not only above, but also within and possibly below the same visually spatially resolved and fully monitored.
  • This monitoring may also be accompanied by spectroscopic detection of the movement and attachment of the cells and particles, including the zone of interaction with their cell, tissue and implant layers themselves, in that a spectroscopy unit is coupled to at least one of said observation beam paths.
  • Cells and particles transmigrating through the cell, tissue and implant layer of this at least one interaction zone which can be optically traced and possibly analyzed spectrometrically, are collected in at least one perfusion chamber below the interaction zone and can thus be fed to a further evaluation.
  • the flow conditions of the flow medium for the flow through the interaction zone for example by adjusting the pH, temperature, oxygen saturation and nutrient supply for the cells and particles, specially adjusted, for example by a metered control.
  • the invention allows an individual adaptation of physiological or even pathological flow conditions for the cells to be examined over desired periods of time.
  • this system allows the freely controllable addition of various substances not only from the apical but also from the basolateral side of the cell / tissue or implant layer. This is important because z. B. subcellular bioactive substances, such as modified LDL, have a strong influence on the interaction of leukocytes with the entire tissue association.
  • the study of the effects of various drugs, biologically active molecules, chemical noxae and microbiological organisms, such as bacteria, parasites and fungi is not limited only to the interaction of cells in the flow medium with the apical cells of the vascular wall, but also allowed an investigation of the vascular wall transmigrating and / or tissue differentiating cells.
  • the perfusion chambers integrated in the invention and the cell traps contained therein it is possible to absorb completely migrated cells vigorously and to make subsequent analytical and / or functional examinations accessible.
  • the invention has a freely controllable control of the environmental parameters pH value, temperature, amount of oxygen and nutrient addition, which physiological conditions can be adjusted or by the adjustable environmental parameters related pathological events, such as alkalosis, acidosis, nutrient restriction, hypoxia standardized and close to the in vivo situation can be analyzed.
  • Diseases such as cancer and sepsis, whose spread through blood flow, can be studied much more accurately, thoroughly and comprehensively with this invention than with previous in vitro methods.
  • the invention makes it possible to replicate the metastasis of tumor cells in a cost-efficient, standardized manner and without the use of animal models.
  • physiological conditions can be simulated to obtain a comprehensive picture of the spread of tumor cells in vivo.
  • Fig. 1 chamber body with three below the interaction zone
  • Fig. 2 frontal view of the chamber body with indicated supervisory Lens and Tubussystem
  • Fig. 3 lateral view of the chamber body in the longitudinal axis with indicated supervisory and lateral objective
  • Tube systems including fluorescence unit
  • FIG. 4 shows a lateral view of the chamber body in the longitudinal axis with indicated objective lens and tube systems and lateral Raman microscope and laser.
  • FIG. 5 schematic representation of the liquid circulations
  • Fig. 1 shows a chamber body 1 with three interaction zones 2, 3, 4, each consisting of a human body replicated cell, tissue and implant layer.
  • the chamber body 1 has an inflow 5, via which a flow medium 6 with the cells to be examined and particles (indicated by arrow) is introduced into the chamber body 1, so that the cells and particles of the inflowing flow medium 6 successively the interaction zones 2, 3, 4, under which three perfusion chambers 7, 8, 9 arranged are, flow through and come into contact with the respective cell, tissue and implant layer.
  • the flow medium exits via a drain 10 again.
  • the chamber body is heated by an integrated heating / cooling water channel system 11.
  • the interaction of the cells and particles of the flow medium with the interaction zones 2, 3, 4 can be observed by a microscope system 12 arranged laterally or on the side (see Fig. 2).
  • a microscope system 12 both stereomicroscope systems and confocal laser scanning microscopes or other microscope and spectroscopy systems can be used in a conventional manner.
  • the observation of the interaction zones 2, 3, 4 by the microscope system 12 is effected by interchangeable glass or quartz inserts 13, 14, 15 provided in the chamber body 1 and assigned to the interaction zones 2, 3, 4.
  • the microscope system 12 (means not shown in the drawing for reasons of clarity, for example rail-like guide elements known per se for transversal position change and also pivoting or rotation elements known per se for changing the angular position, via the side of the chamber body 1 with the glass body). or quartz inserts 13, 14, 15.
  • the microscope system 12 can monitor and evaluate the adhesion, migration and differentiation of the cells and particles of the flow medium and the cell, tissue and implant layers of the interaction zones 2, 3, 4 in real time.
  • FIG. 3 shows two microscope systems 12 which observe the interaction zones 2, 3, 4 of the chamber body 1, both in the direction of supervision and as well as laterally (observation beam path 36).
  • the two microscope systems 12 are each coupled via a camera port 16 or 17 to a computer system 18 (see FIG.
  • tissue and implant layers of the interaction zones 2, 3, 4 and / or the perfusion chambers 7, 8, 9, these areas are stimulated by a suitable and fluorescent dyes Light source 19 irradiated.
  • tissue and implant layers of the interaction zones 2, 3, 4 and / or the perfusion chambers 7, 8, 9, spectroscopy measurements can also be carried out.
  • the optical excitation by a laser 20 see Fig .. 4).
  • the measurement of the spectra is carried out by a detector 21, which can be integrated into the system, for example in the form of a known Raman microscope.
  • the detector 21 is coupled to a transducer system 22 for signal digitization, which is also in communication with the computer system 18 for data evaluation.
  • a cell reservoir 23 is used, which is coupled to a heatable / coolable medium reservoir 24 (see schematic illustration FIG.
  • a control of pH value and pO 2 value can be effected by gassing systems which may be integrated in the medium reservoir 24 or also in the cell reservoir 23 (not shown explicitly in the drawing for reasons of clarity).
  • An addition of substances into the flow medium can take place through a substance application valve 25.
  • FIG. 5 shows this medium circuit 26, in which also a sensor chamber 27 with sensor elements for detecting the cell culture parameters, such as pH values, temperature and Nutrient supply, is arranged for the existing in the flow medium 5 cells and particles.
  • the said cell culture parameters are controlled in the medium circuit 26 and, for example, as mentioned above, can be controlled in an application-specific manner via the abovementioned fumigation systems of the medium reservoir 24 or of the cell reservoir 23.
  • perfusion chambers 30, 31, 32 are arranged (see also perfusion chambers 7, 8, 9 in Fig. 1) are attached to the same (corresponding to the three said interaction zones), to each of which a reservoir 33, 34, 35 for additionally introduced into the medium circuit 26 test substances and other applications is connected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

L'invention vise à détecter de manière plus précise et complète les processus de mouvement et d'agglutination de cellules et particules lors de la simulation de conditions de circulation physiologique. Selon l'invention, le mouvement et l'agglutination des cellules et particules sont observés, surveillés et évalués de manière optique dans leur totalité dans au moins une zone d'interaction (2, 3, 4), les cellules et particules transmigrantes sont capturées (7, 8, 9) à des fins de contrôle et d'évaluation et, notamment pour des analyses prolongées, les conditions de culture du milieu destiné à circuler dans la zone d'interaction (2, 3, 4) sont régulées par exemple par ajustement de la valeur du pH, de la température et de l'apport en nutriments pour les cellules et particules. L'invention est utilisée par exemple pour tester des produits pharmaceutiques, des substances pathogènes et diverses substances actives.
PCT/DE2010/000900 2009-07-30 2010-07-29 Procédé et dispositif pour détecter le mouvement et l'agglutination de cellules et de particules sur des couches cellulaires, tissulaires et d'implant lors de la simulation de conditions de circulation physiologique WO2011012119A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009035502.2 2009-07-30
DE102009035502A DE102009035502A1 (de) 2009-07-30 2009-07-30 Verfahren und Vorrichtung zur Erfassung der Bewegung und Anlagerung von Zellen und Partikeln an Zell-, Gewebe- und Implantatschichten bei der Simulation von Flussbedingungen

Publications (1)

Publication Number Publication Date
WO2011012119A1 true WO2011012119A1 (fr) 2011-02-03

Family

ID=43014204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2010/000900 WO2011012119A1 (fr) 2009-07-30 2010-07-29 Procédé et dispositif pour détecter le mouvement et l'agglutination de cellules et de particules sur des couches cellulaires, tissulaires et d'implant lors de la simulation de conditions de circulation physiologique

Country Status (2)

Country Link
DE (1) DE102009035502A1 (fr)
WO (1) WO2011012119A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013200613A1 (de) * 2013-01-16 2014-07-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Bestimmen einer Stärke einer Adhäsion eines biologischen Materials
DE102014106423A1 (de) 2014-05-08 2015-11-12 Universitätsklinikum Jena Verfahren und Vorrichtungen zur In-vitro-Herstellung von Anordnungen von Zellschichten

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4443902C1 (de) * 1994-12-01 1996-04-18 Will Prof Dr Minuth Kammer zur Kultivierung von Zellen, insbesondere Mikroskopkammer
US5665599A (en) * 1994-12-01 1997-09-09 Minuth; Will Chamber for cultivating cells
DE10019833C2 (de) 2000-04-20 2003-07-03 Acm Biotech Gmbh Vorrichtung und Verfahren zur Simulation von Fluidströmungsverhältnissen
DE10244859A1 (de) * 2002-09-20 2004-04-15 Institut Für Polymerforschung Dresden E.V. Bioreaktor mit modularem Aufbau, insbesondere zur ex-vivo Zellvermehrung
CA2503203A1 (fr) 2002-10-22 2004-05-06 Surface Logix, Inc. Dispositif et procede pour surveiller la migration des leucocytes
US20070212773A1 (en) * 2006-02-16 2007-09-13 Teruo Fujii Electrical signal measuring device for cells in culture and electrical signal measuring method that uses same device
US20080032380A1 (en) * 2006-07-07 2008-02-07 The University Of Houston System Method and apparatus for a miniature bioreactor system for long-term cell culture

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1919628C3 (de) * 1969-04-18 1975-04-10 Wolfgang Prof. Dr. Dittrich Anordnung zum automatischen Zählen und/oder Klassifizieren von in einem strömungsfähigen Medium dispergierten Teilchen
DE2508637C3 (de) * 1975-02-28 1979-11-22 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V., 3400 Goettingen Anordnung zur optischen Messung von Blutgasen
DE2632556C2 (de) * 1976-07-20 1984-09-20 Max Planck Gesellschaft zur Förderung der Wissenschaften e.V., 3400 Göttingen Lichtzuführung für eine Vorrichtung zur optischen Messung von Stoffkonzentrationen
DD218959A1 (de) * 1983-07-04 1985-02-20 Univ Leipzig Vorrichtung zur photometrischen messung mechanischer eigenschaften von biologischen partikeln
DE3736027A1 (de) * 1987-10-24 1989-05-03 Gerhard Dipl Phys Artmann Verfahren zur ermittlung der zu einem bestimmten zeitpunkt vorliegenden form von zellen und einrichtung zur durchfuehrung des verfahrens
US5278048A (en) * 1988-10-21 1994-01-11 Molecular Devices Corporation Methods for detecting the effect of cell affecting agents on living cells
WO1994006010A1 (fr) * 1992-09-02 1994-03-17 Reinhard Teichmann Procede et dispositif de controle in vitro d'influences sur des structures biologiques
US5363052A (en) * 1993-02-16 1994-11-08 Solid State Farms, Inc. Permittivity spectroscopy apparatus and method
DE4305405C1 (de) * 1993-02-22 1994-05-26 Hering Steffen Dr Sc Med Vorrichtung zum Untersuchen eines Objekts, das sich in einer ein Substrat bedeckenden Perfusionsflüssigkeit befindet
US5919712A (en) * 1993-05-18 1999-07-06 University Of Utah Research Foundation Apparatus and methods for multi-analyte homogeneous fluoro-immunoassays
WO1996002627A1 (fr) * 1994-07-14 1996-02-01 Smithkline Beecham Corporation Systeme de chambre de diffusion et procede pour realiser des etudes de transport
DE4440383A1 (de) * 1994-11-11 1996-05-15 Stephan Prof Dr Rer Nat Nees Verfahren und Einrichtung zur Durchführung von in vitro Untersuchungen zum mikrorheologischen Verhalten von humanem Blut in Gegenwart gezüchteter Endothelzellen
US5601997A (en) * 1995-02-03 1997-02-11 Tchao; Ruy Chemotaxis assay procedure
DE19610146C1 (de) * 1996-03-15 1997-06-12 Wolf Prof Dr Bertling Vorrichtung zur Untersuchung von biologischen und medizinischen Proben
US5827729A (en) * 1996-04-23 1998-10-27 Advanced Tissue Sciences Diffusion gradient bioreactor and extracorporeal liver device using a three-dimensional liver tissue
US6485905B2 (en) * 1998-02-02 2002-11-26 Signature Bioscience, Inc. Bio-assay device
GB9812783D0 (en) * 1998-06-12 1998-08-12 Cenes Ltd High throuoghput screen
US6562616B1 (en) * 1999-06-21 2003-05-13 The General Hospital Corporation Methods and devices for cell culturing and organ assist systems
DE10027524A1 (de) * 2000-06-02 2001-12-13 Max Planck Gesellschaft Vorrichtung und Verfahren zur Bearbeitung von substratgebundenen Proben
JP4745056B2 (ja) * 2002-07-20 2011-08-10 アセア バイオサイエンシーズ,インク. インピーダンスによる細胞と微粒子の測定装置及び方法
WO2004020573A1 (fr) * 2002-08-27 2004-03-11 Vanderbilt University Bioreacteurs comprenant un groupement de chambres et une conduite d'alimentation commune
WO2005056788A1 (fr) * 2003-12-08 2005-06-23 Excellin Life Sciences, Inc. Dispositif et procede d'electroporation et d'apports moleculaires regules a des cellules et des tissus
US20090042215A1 (en) * 2004-05-12 2009-02-12 Colin John Ingham Cell Permeability Assay in a Living Array of Multiple Cell Types and Multiple Layers of a Porous Substrate
WO2007106868A2 (fr) * 2006-03-14 2007-09-20 University Of Rochester dispositifs de culture cellulaire ayant une membrane ultra-poreuse et leurs utilisations

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4443902C1 (de) * 1994-12-01 1996-04-18 Will Prof Dr Minuth Kammer zur Kultivierung von Zellen, insbesondere Mikroskopkammer
US5665599A (en) * 1994-12-01 1997-09-09 Minuth; Will Chamber for cultivating cells
DE10019833C2 (de) 2000-04-20 2003-07-03 Acm Biotech Gmbh Vorrichtung und Verfahren zur Simulation von Fluidströmungsverhältnissen
DE10244859A1 (de) * 2002-09-20 2004-04-15 Institut Für Polymerforschung Dresden E.V. Bioreaktor mit modularem Aufbau, insbesondere zur ex-vivo Zellvermehrung
CA2503203A1 (fr) 2002-10-22 2004-05-06 Surface Logix, Inc. Dispositif et procede pour surveiller la migration des leucocytes
US20070212773A1 (en) * 2006-02-16 2007-09-13 Teruo Fujii Electrical signal measuring device for cells in culture and electrical signal measuring method that uses same device
US20080032380A1 (en) * 2006-07-07 2008-02-07 The University Of Houston System Method and apparatus for a miniature bioreactor system for long-term cell culture

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
A. C. MCMAHON; L. KRITHARIDES; H. C. LOWE: "Animal models of atherosclerosis progression: current concepts", CURR DRUG TARGETS CARDIOVASC HAEMATOL DISORD, vol. 5, 2005, pages 433 - 440
C. DONG; M. J. SLATTERY ET AL.: "In vitro characterization and micromechanics of tumor cell chemotactic protrusion, locomotion, and extravasation", ANN BIOMED ENG, vol. 30, no. 3, 2002, pages 344 - 55
G. CINAMON; R. ALON: "A real time in vitro assay for studying leukocyte transendothelial migration under physiological flow conditions", J IMMUNOL METHODS, vol. 273, no. 1-2, 2003, pages 53 - 62
J. C. RUSSELL; S. PROCTOR: "Small animal models of cardiovascular disease: tools for the study of the roles of metabolic syndrome, dyslipidemia, and atherosclerosis", CARDIOVASC PATHOL, vol. 15, 2006, pages 318 - 330
J. J. CHIU; C. N. CHEN ET AL.: "Analysis of the effect of disturbed flow on monocytic adhesion to endothelial cells", J BIOMECH, vol. 36, no. 12, 2003, pages 1883 - 95
J. J. CHIU; D. L. WANG ET AL.: "Effects of disturbed flow on endothelial cells", J BIOMECH ENG, vol. 120, no. 1, 1998, pages 2 - 8
J. T. BUTCHER; A. M. PENROD; A. J. GARCIA; R. M. NEREM: "Unique morphology and focal adhesion development of valvular endothelial cells in static and fluid flow environments", ARTERIOSCLER THROMB VASE BIOL, vol. 24, 2004, pages 1429 - 1434
T. M. BOCAN: "Animal models of atherosclerosis and interpretation of drug intervention studies", CURR PHARM DES, vol. 4, 1998, pages 37 - 52
T. SCHREIBER; V. SHINDER ET AL.: "Shear flow-dependent integration of apical and subendothelial chemokines in T-cell transmigration: implications for locomotion and the multistep paradigm", BLOOD, vol. 109, no. 4, 2007, pages 1381 - 1386

Also Published As

Publication number Publication date
DE102009035502A1 (de) 2011-02-03

Similar Documents

Publication Publication Date Title
DE102006053540B3 (de) Vorrichtung und Verfahren zur Analyse biologischer Proben
DE102010023099B3 (de) Verfahren und Vorrichtung zum Charakterisieren von biologischen Objekten
EP1910806B1 (fr) Procede et dispositif d'analyse d'objets biologiques
EP3380825B1 (fr) Dispositif et procédé pour analyser des objets biologiques par spectroscopie raman
EP1846569B1 (fr) Procede pour detecter des germes
DE102005021034B4 (de) Verfahren zur Kultivierung einer Zellkultur in einem automatisierten Zellkultursystem sowie automatisiertes Zellkultursystem
EP0977980B1 (fr) Procede et dispositif de differenciation en ligne quantitative et qualitative de particules biotiques et abiotiques
DE102012211735B4 (de) Vorrichtung und Verfahren zur Charakterisierung von Zellen und deren Verwendung
WO2011012119A1 (fr) Procédé et dispositif pour détecter le mouvement et l'agglutination de cellules et de particules sur des couches cellulaires, tissulaires et d'implant lors de la simulation de conditions de circulation physiologique
DE102006010907A1 (de) Verfahren zur Bestimmung von Molekülen oder Molekülteilen in biologischen Proben
DE10019833C2 (de) Vorrichtung und Verfahren zur Simulation von Fluidströmungsverhältnissen
Peterson et al. Teaching dose-response relationships through aminoglycoside block of mechanotransduction channels in lateral line hair cells of larval zebrafish
DE102021005858B4 (de) Verfahren und Vorrichtung zur Echtzeitbestimmung einer Konzentrationsänderung von Mikroorganismen, Zellen in Suspensionskultur, Antigen-Antikörper-Komplexen und/oder partikulär vorliegenden, chemischen Reaktionsprodukten in flüssigen Proben
DE10326966B4 (de) Verfahren und Vorrichtung zur Bestimmung von ausdifferenzierten Säugerzellen
DE102018126486B4 (de) Betrachtungseinheit für Zellanalysen
DE102009038520B4 (de) Verfahren und Vorrichtung zur Zellprobendiagnostik
DE10128810B4 (de) Einrichtung zur Kultivierung von Zellen, insbesondere menschlicher oder tierischer Zellen
Bakhtina et al. Advanced Microfluidic Assays for C. elegans
DE202007014762U1 (de) Anordnung zur Aufbereitung von zu untersuchendem Gewebe sowie Objektträger für zu untersuchendes Gewebe
EP3334531B1 (fr) Dispositif de migration et procédé de fonctionnement d'un dispositif de migration
DE102014016993B3 (de) Vorrichtung und Verfahren zur Durchführung faseroptischer Messungen in Flüssigkeiten
WO2022248561A1 (fr) Procédé et dispositif permettant de déterminer l'état de particules en suspension et en mouvement
WO2019105893A1 (fr) Dispositif et procédé d'examen d'une suspension de cellules
WO2017013198A1 (fr) Dispositif pour observer la migration tridimensionnelle d'objets qui se trouvent dans un liquide
DE10202416A1 (de) Verfahren zur spektroskopischen Untersuchung menschlicher oder tierischer Zellen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10754672

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 10754672

Country of ref document: EP

Kind code of ref document: A1