WO2011001969A1 - カーボンナノチューブ配向集合体の製造装置 - Google Patents

カーボンナノチューブ配向集合体の製造装置 Download PDF

Info

Publication number
WO2011001969A1
WO2011001969A1 PCT/JP2010/061042 JP2010061042W WO2011001969A1 WO 2011001969 A1 WO2011001969 A1 WO 2011001969A1 JP 2010061042 W JP2010061042 W JP 2010061042W WO 2011001969 A1 WO2011001969 A1 WO 2011001969A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
catalyst
growth
furnace
unit
Prior art date
Application number
PCT/JP2010/061042
Other languages
English (en)
French (fr)
Inventor
明慶 渋谷
賢治 畠
湯村 守雄
Original Assignee
日本ゼオン株式会社
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社, 独立行政法人産業技術総合研究所 filed Critical 日本ゼオン株式会社
Priority to JP2011520925A priority Critical patent/JP5649225B2/ja
Priority to CN201080028714.3A priority patent/CN102471065B/zh
Priority to US13/381,034 priority patent/US9227171B2/en
Priority to EP10794138.7A priority patent/EP2450310B1/en
Publication of WO2011001969A1 publication Critical patent/WO2011001969A1/ja
Priority to US14/949,697 priority patent/US9682863B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J15/00Chemical processes in general for reacting gaseous media with non-particulate solids, e.g. sheet material; Apparatus specially adapted therefor
    • B01J15/005Chemical processes in general for reacting gaseous media with non-particulate solids, e.g. sheet material; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/0073Sealings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/22Stationary reactors having moving elements inside in the form of endless belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/164Preparation involving continuous processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0209Pretreatment of the material to be coated by heating
    • C23C16/0218Pretreatment of the material to be coated by heating in a reactive atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4408Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber by purging residual gases from the reaction chamber or gas lines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00159Controlling the temperature controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/08Aligned nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Definitions

  • the present invention relates to an apparatus for producing an aligned aggregate of carbon nanotubes on a substrate while continuously conveying the substrate carrying a catalyst.
  • a carbon nanotube (hereinafter also referred to as CNT) is a carbon structure having a structure in which a carbon sheet formed by arranging carbon atoms in a hexagonal shape in a plane is closed in a cylindrical shape.
  • CNT carbon nanotube
  • single-walled CNTs have electrical characteristics (very high current density), thermal characteristics (thermal conductivity comparable to diamond), optical characteristics (light emission in the optical communication band wavelength region), hydrogen storage capacity, and metals.
  • electrical characteristics very high current density
  • thermal characteristics thermal conductivity comparable to diamond
  • optical characteristics light emission in the optical communication band wavelength region
  • hydrogen storage capacity and metals.
  • metals In addition to being excellent in various properties such as catalyst supporting ability, and having both properties of a semiconductor and a metal, it has been attracting attention as a material for nanoelectronic devices, nanooptical elements, and energy storage bodies.
  • a bundle, a film, or a mass of aggregates in which a plurality of CNTs are aligned in a specific direction are formed. It is desirable to exhibit any optical functionality. Moreover, it is desirable that the length (height) of the CNT aggregate is much larger. If such an aligned CNT aggregate is created, the application field of CNT is expected to expand dramatically.
  • a chemical vapor deposition method (hereinafter also referred to as a CVD method) is known (refer to Patent Document 1).
  • This method is characterized in that a gas containing carbon (hereinafter referred to as source gas) is brought into contact with metal fine particles of the catalyst in a high temperature atmosphere of about 500 ° C. to 1000 ° C., and the type and arrangement of the catalyst or the carbon compound It is possible to produce CNTs in various ways such as the type and the reaction conditions, and is attracting attention as being suitable for producing a large amount of CNTs.
  • this CVD method can produce both single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT), and by using a substrate carrying a catalyst, a large number of CNTs oriented perpendicular to the substrate surface. It has the advantage that it can be manufactured.
  • the CNT synthesis process in the CVD method may be divided into two processes, a formation process and a growth process.
  • the metal catalyst supported on the substrate in the formation process is reduced by being exposed to high-temperature hydrogen gas (hereinafter referred to as a reducing gas), and in the subsequent growth process, the source gas containing the catalyst activator is used.
  • CNT is grown by contacting with a catalyst.
  • the synthesis is generally performed in a low carbon concentration atmosphere in which the volume fraction of the source gas during CVD is suppressed to about 0.1 to 1%. Since the supply amount of the source gas is proportional to the production amount of CNT, synthesis in an atmosphere with a carbon concentration as high as possible directly leads to an improvement in production efficiency.
  • Non-patent document 1 a catalyst activation material such as water is brought into contact with the catalyst together with a raw material gas to thereby significantly increase the activity and life of the catalyst (hereinafter referred to as super growth method.
  • the catalyst activator is considered to have an effect of removing the carbon-based impurities covering the catalyst fine particles to clean the catalyst background, and it is considered that the activity of the catalyst is remarkably improved and the life is extended. Therefore, the catalytic activity is not lost even in a high carbon concentration environment where the catalyst is normally deactivated (the volume fraction of the source gas during CVD is about 2 to 20%), and the production efficiency of CNTs is significantly improved. Has succeeded.
  • the CNT synthesized by applying the super-growth method to the substrate carrying the catalyst has a high specific surface area and forms an aggregate in which each CNT is aligned in a regular direction. In addition, it has a feature that the bulk density is low (hereinafter referred to as an aligned CNT aggregate).
  • a CNT aggregate is a one-dimensional elongated flexible material with a very high aspect ratio, and because of the strong van der Waals force, it is disordered, non-oriented and has a small specific surface area. Easy to configure. And since it is extremely difficult to reconstruct the orientation of the aggregate once disordered and non-oriented, it was difficult to produce a CNT aggregate having a high specific surface area orientation with molding processability. .
  • the super-growth method makes it possible to produce aligned CNT aggregates that have a high specific surface area, have orientation properties, and can be processed into various shapes and shapes. It is considered that it can be applied to various uses such as capacitor electrodes and heat transfer / heat dissipation materials with directivity.
  • CNTs are produced by a continuous conveyance method or a continuous batch method using a conveying means such as a belt conveyor or a turntable.
  • a conveying means such as a belt conveyor or a turntable.
  • One of the most important things in the production of aligned CNT aggregates is to control the amount of raw material gas and catalyst activator supplied to the catalyst within an appropriate range. For this purpose, it is necessary to uniformly control the concentration distribution and flow velocity distribution of the raw material gas and / or catalyst activator on the base material within a range suitable for the production of CNTs. In particular, since the concentration range of the catalyst activator suitable for the production of CNT is extremely small, precise control is required.
  • gas turbulence and retention in the growth furnace also affect the production of aligned CNT aggregates. It is also required to control the gas flow pattern so that the gas flow in the growth furnace is quickly exhausted without disturbing it as much as possible.
  • the present invention has been devised to eliminate such disadvantages of the prior art, and its main purpose is to produce an aligned aggregate of carbon nanotubes while continuously conveying a substrate carrying a catalyst.
  • the concentration distribution and flow velocity distribution on the substrate of the raw material gas and / or catalyst activator are uniformly controlled within a range suitable for the production of CNT, and the gas in the growth furnace is controlled.
  • An object of the present invention is to provide an apparatus for continuously producing aligned CNT aggregates that does not disturb the flow as much as possible.
  • an apparatus for producing an aligned carbon nanotube assembly includes a growth unit including a growth unit for growing an aligned carbon nanotube assembly on a substrate carrying a catalyst on the surface.
  • the apparatus includes first gas mixing prevention means for preventing gas outside the growth furnace from being mixed into the gas inside the growth furnace, and the first gas mixing prevention means includes the growth gas.
  • a first seal gas injection section for injecting a seal gas along an opening surface of at least one of the opening for inserting the substrate and the opening for removing the substrate; and the growth of the seal gas from the opening
  • a first exhaust unit that sucks out of the furnace and exhausts the outside of the manufacturing apparatus.
  • the present invention is a method for producing an aligned carbon nanotube aggregate on which a carbon nanotube aligned aggregate is grown on a substrate carrying a catalyst on its surface, and includes a growth furnace for growing the aligned carbon nanotube aggregate.
  • a growth unit ; and a first gas mixing prevention means including a first seal gas injection part and a first exhaust part for preventing gas outside the growth furnace from being mixed into the gas inside the growth furnace.
  • the seal gas is injected from the first seal gas injection section along the opening surface of at least one of the inlet for inserting the base material and the outlet for taking out the base material of the growth furnace. Is prevented from entering the growth furnace through the port, and is prevented from entering the growth furnace and exhausted from the first exhaust unit to the outside of the manufacturing apparatus, and in the growth unit.
  • a growth step of growing the aligned carbon nanotube aggregates, the manufacturing method of the aligned carbon nanotube aggregates which comprises performing encompassed.
  • an apparatus for producing an aligned carbon nanotube assembly comprising a growth unit including a growth furnace for growing an aligned carbon nanotube assembly on a substrate carrying a catalyst on the surface
  • the gas outside the growth furnace is A first gas mixing prevention means for preventing the gas in the growth furnace from being mixed, wherein the first gas mixing prevention means includes a port for inserting the base material of the growth furnace and a port for extracting the base material;
  • a first seal gas injection section for injecting a seal gas along an opening surface of at least one of the openings, and suctioning the seal gas so as not to enter the growth furnace from the opening;
  • a first exhaust part for exhausting.
  • CNT aligned aggregate The carbon nanotube aligned aggregate produced in the present invention (hereinafter sometimes referred to as “CNT aligned aggregate”) refers to a structure in which a large number of CNTs grown from a substrate are aligned in a specific direction.
  • the preferred specific surface area of the aligned CNT aggregate is 600 m 2 / g or more when the CNT is mainly unopened, and 1300 m 2 / g or more when the CNT is mainly opened.
  • impurities such as metals or carbon impurities can be kept lower than several tens percent (about 40%) of the weight. It is preferable because it is possible.
  • the weight density is 0.002 g / cm 3 to 0.2 g / cm 3 . If the weight density is 0.2 g / cm 3 or less, the connection between the CNTs constituting the aligned CNT aggregate is weakened, so it is easy to uniformly disperse the aligned CNT aggregate in a solvent or the like. become. That is, when the weight density is 0.2 g / cm 3 or less, it is easy to obtain a homogeneous dispersion. Further, when the weight density is 0.002 g / cm 3 or more, the integrity of the aligned CNT aggregate can be improved and the variation can be suppressed, so that handling becomes easy.
  • An aligned CNT aggregate oriented in a specific direction has high anisotropy.
  • the degree of orientation is 1.
  • a diffraction peak pattern showing the presence of anisotropy appears when X-ray diffraction intensity is measured (Laue method) using a two-dimensional diffraction pattern image obtained by X-ray incidence from a direction perpendicular to the longitudinal direction of CNT. To do.
  • the Herman orientation coefficient is greater than 0 and less than 1 using the X-ray diffraction intensity obtained by the ⁇ -2 ⁇ method or the Laue method. More preferably, it is 0.25 or more and 1 or less.
  • the height (length) of the aligned CNT aggregate is preferably in the range of 10 ⁇ m to 10 cm.
  • the orientation is improved.
  • the production can be performed in a short time, so that adhesion of carbon-based impurities can be suppressed and the specific surface area can be improved.
  • the base material may be any member that can carry a catalyst of carbon nanotubes on its surface, and a base material that can maintain its shape even at a high temperature of 400 ° C. or higher is preferable.
  • the material of the base material include iron, nickel, chromium, molybdenum, tungsten, titanium, aluminum, manganese, cobalt, copper, silver, gold, platinum, niobium, tantalum, lead, zinc, gallium, indium, gallium, and germanium.
  • metals such as arsenic, indium, phosphorus, and antimony, and alloys and oxides containing these metals, or non-metals such as silicon, quartz, glass, mica, graphite, and diamond, and ceramics.
  • the metal material is preferable because it is low in cost compared to silicon and ceramic, and in particular, Fe—Cr (iron-chromium) alloy, Fe—Ni (iron-nickel) alloy, Fe—Cr—Ni (iron-chromium—). Nickel) alloys are preferred.
  • the substrate may be in the form of a thin film, block, or powder in addition to the flat plate, but is particularly advantageous in the case of producing a large amount of the surface area with respect to the volume.
  • a carburizing prevention layer may be formed on the front surface and / or the back surface of the substrate. It is desirable that carburization prevention layers are formed on both the front and back surfaces.
  • This carburizing prevention layer is a protective layer for preventing the base material from being carburized and deformed in the carbon nanotube production process.
  • the carburizing prevention layer is preferably made of a metal or a ceramic material, and particularly preferably a ceramic material having a high carburizing prevention effect.
  • the metal include copper and aluminum.
  • the ceramic material include aluminum oxide, silicon oxide, zirconium oxide, magnesium oxide, titanium oxide, silica alumina, chromium oxide, boron oxide, calcium oxide, zinc oxide, and other nitrides, and nitrides such as aluminum nitride and silicon nitride.
  • aluminum oxide and silicon oxide are preferable because they have a high effect of preventing carburization.
  • a catalyst is supported on the base material or the carburizing prevention layer.
  • the catalyst for example, any material capable of producing CNTs may be used, and examples thereof include iron, nickel, cobalt, molybdenum, and chlorides and alloys thereof, and these further include aluminum, alumina, titania, nitriding. It may be compounded or layered with titanium or silicon oxide.
  • iron-molybdenum thin film, alumina-iron thin film, alumina-cobalt thin film, alumina-iron-molybdenum thin film, aluminum-iron thin film, aluminum-iron-molybdenum thin film and the like can be exemplified.
  • the amount of the catalyst for example, it may be used in a range that has been proven in the production of conventional CNTs.
  • the film thickness is preferably 0.1 nm or more and 100 nm or less, and 0.5 nm.
  • the thickness is more preferably 5 nm or less and particularly preferably 0.8 nm or more and 2 nm or less.
  • the formation of the catalyst on the substrate surface may be performed by either a wet process or a dry process. Specifically, a sputtering deposition method, a liquid coating / firing method in which metal fine particles are dispersed in an appropriate solvent, and the like can be applied.
  • the catalyst can be formed into an arbitrary shape by using in combination with patterning using well-known photolithography or nanoimprinting.
  • the patterning of the catalyst to be formed on the substrate and the growth time of the CNTs, a thin film shape, a cylindrical shape, a prismatic shape, and other complicated shapes can be arbitrarily controlled.
  • a thin-film aligned CNT aggregate has an extremely small thickness (height) dimension compared to its length and width dimension, but the length and width dimension can be arbitrarily controlled by patterning the catalyst.
  • the thickness dimension can be arbitrarily controlled by the growth time of each CNT constituting the aligned CNT aggregate.
  • the reducing gas is generally a gas that is gaseous at the growth temperature and has at least one of the effects of reducing the catalyst, promoting atomization suitable for the growth of the CNT of the catalyst, and improving the activity of the catalyst. Any reducing gas may be used as long as it can produce CNTs.
  • the reducing gas is a gas having a reducing property.
  • hydrogen gas, ammonia, water vapor, and a mixed gas thereof can be applied.
  • a mixed gas obtained by mixing hydrogen gas with an inert gas such as helium gas, argon gas, or nitrogen gas may be used.
  • the reducing gas is generally used in the formation process, but may be appropriately used in the growth process.
  • the raw material used for the production of CNTs only needs to be capable of producing CNTs, for example, a gas having a raw material carbon source at the growth temperature.
  • a gas having a raw material carbon source at the growth temperature hydrocarbons such as methane, ethane, ethylene, propane, butane, pentane, hexane, heptanepropylene, and acetylene are preferable.
  • lower alcohols such as methanol and ethanol, and oxygen-containing compounds having a low carbon number such as acetone and carbon monoxide may be used. Mixtures of these can also be used.
  • the source gas may be diluted with an inert gas.
  • the inert gas may be any gas that is inert at the temperature at which CNT grows, does not decrease the activity of the catalyst, and does not react with the growing CNT.
  • a gas that can be used for the production of CNTs may be used as appropriate, and examples thereof include helium, argon, nitrogen, neon, and krypton, and mixed gases thereof, and nitrogen, helium, argon, and mixed gases thereof are particularly preferable.
  • the catalyst activator used here is, for example, a substance containing oxygen and is preferably a substance that does not significantly damage CNT at the growth temperature.
  • the catalyst activator used here is, for example, a substance containing oxygen and is preferably a substance that does not significantly damage CNT at the growth temperature.
  • water, hydrogen sulfide, oxygen, ozone, acid gas, nitrogen oxide, one Low-carbon oxygenates such as carbon oxide and carbon dioxide; alcohols such as ethanol and methanol; ethers such as tetrahydrofuran; ketones such as acetone; aldehydes; esters; and mixtures thereof are more effective. It is. Among these, water, oxygen, carbon dioxide, carbon monoxide, and ethers such as tetrahydrofuran are preferable, and water is particularly preferable.
  • the amount of the catalyst activator added is not particularly limited, but may be a very small amount, and in the case of water, for example, it may be in the range of 10 ppm to 10000 ppm, preferably 50 ppm to 1000 ppm, and more preferably 100 ppm to 700 ppm.
  • the mechanism of the function of the catalyst activator is presumed as follows at present.
  • the catalyst In the CNT growth process, if secondary carbon generated amorphous carbon, graphite, etc. adhere to the catalyst, the catalyst is deactivated and the growth of the CNT is inhibited.
  • gasification is achieved by oxidizing amorphous carbon, graphite, etc. to carbon monoxide, carbon dioxide, etc., so that the catalyst is cleaned, increasing the activity of the catalyst and extending the active life. It is considered that (catalyst activation action) is expressed.
  • this catalyst activator increases the activity of the catalyst and extends its life.
  • the growth of CNTs completed in about 2 minutes at most is continued for several tens of minutes by addition, and the growth rate is increased 100 times or more, and further 1000 times.
  • an aligned CNT aggregate whose height is remarkably increased is obtained.
  • the high carbon concentration environment means a growth atmosphere in which the ratio of the raw material gas to the total flow rate is about 2 to 20%.
  • the chemical vapor deposition method that does not use a catalyst activator, if the carbon concentration is increased, carbon-based impurities generated during the CNT synthesis process cover the catalyst fine particles, the catalyst is easily deactivated, and CNT cannot be efficiently grown.
  • the synthesis is performed in a growth atmosphere (low carbon concentration environment) in which the ratio of the raw material gas to the total flow rate is about 0.1 to 1%.
  • the catalytic activity is remarkably improved. Therefore, even in a high carbon concentration environment, the catalyst does not lose its activity, and CNT can be grown for a long time and the growth rate is remarkably improved.
  • a larger amount of carbon contamination adheres to the furnace wall or the like than in a low carbon concentration environment.
  • Internal furnace pressure 10 2 Pa or more and 10 7 Pa (100 atm) or less are preferable, and 10 4 Pa or more and 3 ⁇ 10 5 Pa (3 atmospheric pressure) or less are more preferable.
  • reaction temperature The reaction temperature for growing CNTs is appropriately determined in consideration of the metal catalyst, raw material carbon source, reaction pressure, etc., but a catalyst activator is added to eliminate by-products that cause catalyst deactivation.
  • a catalyst activator is added to eliminate by-products that cause catalyst deactivation.
  • the most desirable temperature range is the temperature at which the catalyst activator can remove by-products such as amorphous carbon and graphite as the lower limit, and the temperature at which the main product CNT is not oxidized by the catalyst activator is the upper limit. It is to do.
  • the catalyst activator when water is used as the catalyst activator, it is preferably 400 ° C. or higher and 1000 ° C. or lower. When the temperature is 400 ° C. or higher, the effect of the catalyst activation material is favorably expressed.
  • the temperature is more preferably 400 ° C. or higher and 1100 ° C. or lower.
  • the effect of the catalyst activation material is well expressed at 400 ° C. or higher, and the reaction of the catalyst activation material with CNT can be suppressed at 1100 ° C. or lower.
  • the formation step is a step of heating at least one of the catalyst and the reducing gas while setting the ambient environment of the catalyst supported on the base material as a reducing gas environment.
  • this step at least one of the effects of reducing the catalyst, promoting atomization in a state suitable for the growth of the catalyst CNT, and improving the activity of the catalyst appears.
  • the catalyst is an alumina-iron thin film
  • the iron catalyst is reduced into fine particles, and a large number of nanometer-sized iron fine particles are formed on the alumina layer.
  • the catalyst is prepared as a catalyst suitable for the production of the aligned CNT aggregate. Even if this step is omitted, CNTs can be produced. However, by performing this step, the production amount and quality of the aligned CNT aggregate can be dramatically improved.
  • the growth process means that the surrounding environment of the catalyst that has been made suitable for the production of the aligned CNT aggregate by the formation process is used as a raw material gas environment, and at least one of the catalyst and the raw material gas is heated, thereby aligning the aligned CNT aggregate. Is a process of growing
  • the cooling gas an inert gas is preferable, and nitrogen is particularly preferable from the viewpoint of safety and cost.
  • FIG. 1 shows an embodiment of an apparatus for producing an aligned CNT aggregate according to the present invention.
  • the manufacturing apparatus 100 generally includes an inlet purge unit 1, a formation unit 2, a growth unit 3, a transport unit 6, gas mixing prevention means 11, 12, 13, connection units 7, 8, 9 and a cooling unit. 4 and an outlet purge unit 5. Each configuration will be described below.
  • the inlet purge unit 1 is a set of devices for preventing outside air from being mixed into the furnace of the manufacturing apparatus 100 from the base material inlet. It has a function of replacing the surrounding environment of the catalyst substrate 10 (base material carrying the catalyst on the surface) conveyed into the manufacturing apparatus 100 with a purge gas. Specifically, a furnace or a chamber for holding the purge gas, an injection unit for injecting the purge gas, and the like are provided.
  • the purge gas is preferably an inert gas, and nitrogen is particularly preferable from the viewpoints of safety and cost.
  • the inlet of the catalyst substrate 10 is always open, such as a belt conveyor system, it is preferable to use a gas curtain device that injects purge gas in a shower form from above and below as the purge gas injection unit to prevent outside air from being mixed in from the device inlet. .
  • a gas curtain device that injects purge gas in a shower form from above and below as the purge gas injection unit to prevent outside air from being mixed in from the device inlet.
  • the inlet purge unit 1 it is preferable to include the inlet purge unit 1 in order to improve the safety of the apparatus.
  • the formation unit 2 is a set of apparatuses for realizing the formation process.
  • the environment surrounding the catalyst formed on the surface of the catalyst substrate 10 is a reducing gas environment, and at least one of the catalyst and the reducing gas is used. Has the function of heating.
  • the heater 2c for heating one side etc. are mentioned.
  • the heater 2c is preferably one that can be heated in a range of 400 ° C. or higher and 1100 ° C. or lower, and examples thereof include a resistance heater, an infrared heater, and an electromagnetic induction heater.
  • the growth unit 3 is a set of apparatuses for realizing the growth process.
  • the surrounding environment of the catalyst that is in a state suitable for the production of the aligned CNT aggregate by the formation process is used as a raw material gas environment, and the catalyst and It has a function of growing an aligned CNT aggregate by heating at least one of the source gases.
  • the growth furnace 3a for maintaining the raw material gas environment
  • the raw material gas injection unit 3b for injecting the raw material gas
  • the exhaust hood 3d for exhausting the gas in the growth furnace 3a
  • the heater 3c for heating at least one is mentioned.
  • At least one source gas injection unit 3b and exhaust hood 3d are provided, and the total gas flow rate injected from all source gas injection units 3b and the total gas flow rate exhausted from all exhaust hoods 3d are as follows: It is preferable that they are approximately the same amount or the same amount. This prevents the source gas from flowing out of the growth furnace 3a and prevents the gas outside the growth furnace 3a from flowing into the growth furnace 3a.
  • the concentration distribution, flow velocity distribution, and gas flow pattern in the growth furnace 3a of the source gas and / or the catalyst activation material on the catalyst substrate 10 are It becomes possible to control in any way by the design of the raw material gas injection unit 3b and the exhaust hood 3d.
  • the heater 3c is preferably one that can be heated in the range of 400 ° C. to 1100 ° C., and examples thereof include a resistance heater, an infrared heater, and an electromagnetic induction heater. Furthermore, it is preferable to provide a catalyst activation material addition means for adding a catalyst activation material in the growth furnace 3a.
  • the alignment of the aligned CNT aggregate it is more preferable for the production of the aligned CNT aggregate to provide the units for realizing the formation process and the growth process separately because it prevents the carbon dirt from adhering to the inner wall of the formation furnace 2a. .
  • the transport unit 6 is a set of apparatuses necessary for transporting the catalyst substrate 10 from at least the formation unit 2 to the growth unit 3. Specifically, a mesh belt 6a in a belt conveyor system, a belt driving unit 6b using an electric motor with a speed reducer, and the like can be given.
  • the gas mixing prevention means 11, 12, 13 are a mixture of outside air and gas in the furnace of the manufacturing apparatus 100, or a furnace (for example, a formation furnace 2 a, a growth furnace 3 a, a cooling furnace 4 a) in the manufacturing apparatus 100. ) Is a set of apparatuses for realizing the function of preventing gas from intermingling with each other, and connects the vicinity of the entrance / exit for transporting the catalyst substrate 10 or the space in the manufacturing apparatus 100. Installed in the connecting parts 7, 8 and 9.
  • the gas mixing prevention means 11, 12, and 13 include seal gas injection portions 11b, 12b, and 13b for injecting seal gas along the opening surfaces of the inlet and outlet of the catalyst substrate 10 in each furnace, and seals that are mainly injected. At least one or more exhaust parts 11a, 12a, and 13a that suck gas (and other nearby gases) so as not to enter each furnace and exhaust the gas to the outside of the manufacturing apparatus 100 are provided.
  • the seal gas is injected along the opening surface of the furnace, so that the seal gas closes the entrance of the furnace and prevents gas outside the furnace from entering the furnace. Further, by exhausting the seal gas out of the manufacturing apparatus 100, the seal gas is prevented from being mixed into the furnace.
  • the seal gas is preferably an inert gas, and nitrogen is particularly preferable from the viewpoints of safety and cost.
  • one exhaust part may be arranged adjacent to one seal gas injection part, or a seal is sandwiched between mesh belts.
  • the exhaust part may be arranged so as to face the gas injection part, the seal gas injection part and the exhaust part are arranged so that the overall configuration of the gas mixing prevention means is a symmetric structure in the furnace length direction. Is preferred.
  • two seal gas injection parts may be disposed at both ends of one exhaust part, and the structure may be symmetrical in the furnace length direction with the exhaust part as the center.
  • the total gas flow rate injected from the seal gas injection units 11b, 12b, and 13b and the total gas flow rate exhausted from the exhaust unit are substantially the same amount.
  • By installing such gas mixing preventing means 12 and 13 at both ends of the growth furnace 3a it is possible to prevent the seal gas flow and the gas flow in the growth furnace 3a from interfering with each other.
  • the concentration distribution, flow velocity distribution, and gas flow pattern in the growth furnace 3a of the source gas and / or catalyst activator on the catalyst substrate 10 depend on the design of the source gas injection unit 3b and the exhaust hood 3d of the growth unit 3. It can be controlled in any way. Further, the disturbance of the gas flow due to the inflow of the seal gas into the growth furnace 3a is also prevented. Therefore, the manufacturing apparatus 100 suitable for continuous manufacture of the aligned CNT aggregate can be realized.
  • the degree of gas mixing prevented by the gas mixing preventing means 11, 12, 13 is preferably such that it does not hinder the production of the aligned CNT aggregate.
  • the carbon atom number concentration in the reducing gas environment in the formation furnace 2a is maintained at 5 ⁇ 10 22 atoms / m 3 or less, more preferably 1 ⁇ 10 22 atoms / m 3 or less. It is preferable that the gas mixture preventing means 11 and 12 prevent the raw material gas from being mixed into the formation furnace 2a.
  • the gas mixing prevention means 12 and 13 in the present embodiment function as the first gas mixing prevention means provided in the manufacturing apparatus according to the present invention (that is, the exhaust parts 12a and 13a are the first in the present invention. 1, the gas exhaust prevention units 11 and 12 in the present embodiment are manufactured according to the present invention.
  • the device functions as a second gas mixing prevention means provided in the apparatus (that is, the exhaust portions 11a and 12a are the second exhaust portions in the present invention, and the seal gas injection portions 11b and 12b are the second seal gases in the present invention. It functions as an injection part). That is, since the first gas mixing prevention means and the second gas mixing prevention means can be realized with the same configuration, one gas mixing prevention means 12 is used as the first gas mixing prevention means and the second gas mixing prevention means.
  • the exhaust part 12a and the seal gas injection part 12b function as a first exhaust part and a second exhaust part, and a first seal gas injection part and a second seal gas injection part, respectively. To do).
  • a catalyst activator addition means (not shown) is for adding a catalyst activator, for example, adding it to a seal gas or a raw material gas, or activating the catalyst in the surrounding environment of the catalyst in the space in the growth furnace 3a.
  • the means for supplying the catalyst activation material is not particularly limited.
  • supply by a bubbler supply by vaporizing a solution containing the catalyst activation material, supply as a gas, and solid catalyst activation material
  • Examples include liquefied and vaporized supply, and a supply system using various supply devices such as a vaporizer, a mixer, a stirrer, a diluter, a sprayer, a pump, and a compressor can be constructed.
  • the catalyst activator addition means is provided in the gas mixing prevention means 12 and / or the growth unit 3, and is connected to the connection portion 8 and / or the growth furnace 3a, respectively.
  • the catalyst activator addition means may be provided in only one of the gas mixing prevention means 12 and the growth unit 3, but at least in the growth unit 3 from the viewpoint that the production efficiency of the aligned CNT aggregate can be further increased. It is preferable to provide, and it is more preferable to provide both in the gas mixing prevention means 12 and the growth unit 3.
  • the growth furnace provided in the manufacturing apparatus according to the present invention, and the first seal gas injection unit for injecting the seal gas along the opening surface of the opening for inserting the substrate of the growth furnace has the catalyst activation material adding means. In the form provided, the activation effect of the catalyst can be further improved.
  • the supply apparatus which supplies a catalyst activation material to the gas mixing prevention means 12 and / or the growth unit 3, and a supply pipe for connection are mentioned, for example.
  • the supply device and the supply pipe may be provided in each of the gas mixing prevention means 12 and the growth unit 3, and the supply equipment is shared by the gas mixing prevention means 12 and the growth unit 3, and the supply pipe is branched to prevent the gas mixing prevention means. It is good also as a structure which adds a catalyst activation material to each of 12 and the growth unit 3.
  • a catalyst activation material concentration measuring device may be provided in a catalyst activation material supply pipe or the like. By performing feedback control using this output value, it is possible to supply a stable catalyst activation material with little change over time.
  • the CNT growth is adversely affected.
  • the raw material is mixed by the gas mixing prevention means 11 and 12 It is preferable to prevent gas from being mixed into the formation furnace 2a.
  • N A is calculated by the following formula (1).
  • the production amount and quality of CNTs can be kept good.
  • the carbon atom number concentration is 5 ⁇ 10 22 atoms / m 3 or more, at least one of the effects of catalyst reduction, promotion of atomization suitable for the growth of catalyst CNTs, and improvement of catalyst activity is inhibited in the formation process. In the growth process, the production amount of CNT is reduced and the quality is deteriorated.
  • the cooling unit 4 is a set of apparatuses necessary for cooling the catalyst substrate 10 on which the aligned CNT aggregate has grown. It has a function to realize oxidation prevention and cooling of the aligned CNT aggregate, catalyst and substrate after the growth process.
  • the cooling furnace 4a for holding the cooling gas in the case of the water cooling type, the water cooling cooling pipe 4c arranged so as to surround the cooling furnace inner space, and in the case of the air cooling type, the cooling gas is injected into the cooling furnace inner space.
  • the cooling gas injection part 4b to perform is mentioned.
  • the outlet purge unit 5 is a set of apparatuses for preventing outside air from being mixed into the apparatus furnace from the outlet of the catalyst substrate 10. It has a function of setting the ambient environment of the catalyst substrate 10 to a purge gas environment. Specifically, a furnace or chamber for maintaining a purge gas environment, an injection unit for injecting purge gas, and the like can be given.
  • the purge gas is preferably an inert gas, and nitrogen is particularly preferable from the viewpoints of safety and cost.
  • the outlet of the catalyst substrate 10 is always open, such as a belt conveyor system, it is preferable to use a gas curtain device that injects purge gas in a shower form from above and below as the purge gas injection unit to prevent outside air from entering from the device outlet. .
  • a gas curtain device that injects purge gas in a shower form from above and below as the purge gas injection unit to prevent outside air from entering from the device outlet.
  • a shower head provided with a plurality of ejection holes provided at a position facing the catalyst formation surface of the catalyst substrate 10 may be used as the injection portion of the reducing gas, the raw material gas, and the catalyst activation material.
  • the facing position is provided such that the angle formed by the injection axis of each ejection hole with the normal of the catalyst substrate 10 is 0 or more and less than 90 °. That is, the direction of the gas flow ejected from the ejection holes provided in the shower head is set to be substantially orthogonal to the catalyst substrate 10.
  • the reducing gas can be uniformly distributed on the catalyst substrate 10 and the catalyst can be efficiently reduced.
  • the uniformity of the aligned CNT aggregates grown on the catalyst substrate 10 can be enhanced, and the consumption of the reducing gas can be reduced.
  • the raw material gas can be uniformly dispersed on the catalyst substrate 10 and the raw material gas can be consumed efficiently.
  • the uniformity of the aligned CNT aggregates grown on the catalyst substrate 10 can be enhanced, and the consumption of the raw material gas can be reduced.
  • the catalyst activation material can be uniformly distributed on the catalyst substrate 10, and the activity of the catalyst is increased and the life is extended. It can be continued for a long time. This is the same even when a catalyst activator is added to the raw material gas and a shower head is used as an injection section.
  • the exhaust hoods 2d and 3d of the formation unit 2 and the growth unit 3 preferably have a structure capable of uniformly exhausting the reducing gas or the raw material gas and the catalyst activation material from the catalyst substrate 10.
  • a plurality of exhaust holes may be provided on both side walls of the furnace, and an exhaust hood that collects the gas exhausted from each exhaust hole into one exhaust pipe may be installed outside both side surfaces of the furnace.
  • the catalyst substrate 10 placed on the mesh belt 6a is transported from the apparatus inlet to the furnace of the inlet purge unit 1.
  • the inlet purge unit 1 sprays purge gas from above and below in a shower shape, thereby preventing outside air from being mixed into the furnace of the manufacturing apparatus 100 from the inlet.
  • the inlet purge unit 1 and the formation unit 2 are spatially connected by a connection unit 7 and a gas mixing prevention means 11 is arranged.
  • the seal gas injection unit 11b injects the seal gas and the exhaust unit 11a Nearby gas is exhausted. This prevents the purge gas from being mixed into the internal space of the formation furnace 2a and the reducing gas from being mixed into the inlet purge section 1 and the seal gas is prevented from flowing into the inlet purge section 1 and the formation furnace 2a.
  • the catalyst substrate 10 carrying the catalyst is subjected to a formation process in the formation furnace 2a while being transported by the mesh belt 6a.
  • the formation unit 2 and the growth unit 3 are spatially connected to each other by a connecting portion 8 and a gas mixing prevention means 12 is disposed.
  • the gas is exhausted. This prevents the raw material gas from being mixed into the formation furnace 2a and the reducing gas from being mixed into the growth furnace 3a, and prevents the seal gas from flowing into the formation furnace 2a and the growth furnace 3a. While the catalyst substrate 10 carrying the catalyst is conveyed by the mesh belt 6a, a growth process is performed in the growth furnace 3a to grow an aligned CNT aggregate.
  • the growth unit 3 and the cooling unit 4 are spatially connected to each other by a connection portion 9 and a gas mixing prevention means 13 is disposed.
  • the seal gas is injected from the seal gas injection portion 13b and the seal gas and the vicinity thereof are discharged from the exhaust portion 13a.
  • the gas is exhausted. Thereby, mixing of the raw material gas into the cooling furnace 4a space and mixing of the cooling gas into the growth furnace 3a space are prevented, and the inflow of the seal gas into the cooling furnace 4a and the growth furnace 3a is prevented.
  • the catalyst substrate 10 on which the aligned CNT aggregate is grown is cooled to 200 ° C. or less in the cooling furnace 4a while being transported by the mesh belt 6a.
  • the catalyst substrate 10 that has been cooled to 200 ° C. or less and grown the aligned CNT aggregate is placed on the mesh belt 6 a and carried out of the manufacturing apparatus 100.
  • the outlet of the apparatus is provided with an outlet purge section 5 having a structure substantially similar to that of the inlet purge section 1. By injecting purge gas from above and below in a shower shape, outside air is mixed into the cooling furnace 4a from the outlet. It is preventing.
  • FIG. 2 shows a conceptual diagram of a gas flow pattern in the furnace of the manufacturing apparatus 100.
  • FIG. 2A is a conceptual diagram of a gas flow pattern in the aligned CNT aggregate manufacturing apparatus according to the present invention.
  • gas mixing prevention means 11, 12, and 13 are shown in FIG. , 12a, 13a is a conceptual diagram of the gas flow pattern when not having.
  • gas mixing prevention means 12 and 13 for injecting seal gas and exhausting the seal gas and nearby gas are installed at both ends of the growth furnace 3a.
  • the mutual mixing of the gas between the formation furnace 2a and the growth furnace 3a and the mutual mixing of the gas between the growth furnace 3a and the cooling furnace 4a are prevented, and the outflow of the seal gas into the growth furnace 3a is also prevented. Yes.
  • the gas in the growth furnace 3a is not disturbed by the seal gas, but is controlled by the raw material gas injection unit 3b and the exhaust hood 3d of the growth unit 3.
  • a shower head provided with a plurality of ejection holes provided so as to face the catalyst formation surface of the catalyst substrate 10 is used, and a plurality of gases in the growth furnace 3a are provided on both side walls of the furnace.
  • the concentration distribution and flow velocity distribution of the source gas and / or catalyst activation material on the catalyst substrate 10 are uniform within a range suitable for the production of CNTs.
  • the gas flow pattern is controlled so that the gas used for the growth of the CNTs is quickly exhausted. Therefore, a production apparatus suitable for continuously producing the aligned CNT aggregate has been realized.
  • FIG. 2 (b) shows a case where the gas mixing prevention means 11, 12, 13 are performed only by injection of seal gas.
  • the seal gas injected from the gas mixing preventing means 12 and 13 flows into the growth furnace 3a and is mixed with the raw material gas injected from the raw material gas injection unit 3b. Therefore, the concentration distribution and flow velocity distribution of the raw material gas and / or catalyst activator on the catalyst substrate 10 become non-uniform, and the inflowing seal gas disturbs the flow of gas in the furnace, making it difficult to continuously produce aligned CNT aggregates. become.
  • the parts such as the seal gas injection parts 11b, 12b, 13b of 12, 13 and the exhaust parts 11a, 12a, 13a and the furnaces of the connection parts 7, 8, 9 are exposed to reducing gas or source gas.
  • a heat-resistant alloy is preferable from the viewpoints of high-temperature processing accuracy, flexibility, and cost.
  • heat-resistant alloy examples include heat-resistant steel, stainless steel, nickel-base alloy and the like.
  • a steel whose main component is Fe and whose other alloy concentration is 50% or less is generally called heat-resistant steel.
  • steel containing Fe as a main component and other alloy concentration of 50% or less and containing Cr of about 12% or more is generally called stainless steel.
  • nickel base alloy the alloy which added Mo, Cr, Fe, etc. to Ni is mentioned.
  • SUS310, Inconel 600, Inconel 601, Inconel 625, Incoloy 800, MC alloy, Haynes 230 alloy and the like are preferable from the viewpoints of heat resistance, mechanical strength, chemical stability, and low cost.
  • the molten aluminum plating process refers to a process of forming an aluminum or aluminum alloy layer on the surface of a material to be plated by immersing a material to be plated in a molten aluminum bath.
  • the treatment method involves washing the surface of the material to be plated (base material) (pretreatment) and then immersing it in a molten aluminum bath at about 700 ° C. to cause diffusion of the molten aluminum into the surface of the base material.
  • base material pretreatment
  • a molten aluminum bath at about 700 ° C. to cause diffusion of the molten aluminum into the surface of the base material.
  • an alloy of the base material and aluminum is produced, and aluminum is adhered to the alloy layer when pulled up from the bath.
  • the surface alumina layer and the aluminum layer may be subjected to a low temperature thermal diffusion treatment to expose the underlying Fe—Al alloy layer.
  • polishing process As a polishing method for making the heat-resistant alloy an arithmetic average roughness Ra ⁇ 2 ⁇ m, mechanical polishing represented by buff polishing, chemical polishing using chemicals, electrolytic polishing in which an electric current is passed in an electrolytic solution, Examples thereof include composite electropolishing that combines mechanical polishing and electropolishing.
  • the catalyst is formed on the substrate surface by a film forming apparatus different from the manufacturing apparatus 100, but the catalyst film forming unit is provided upstream of the formation unit.
  • the manufacturing apparatus 100 may be configured so that the base material passes through the catalyst film forming unit prior to the formation unit.
  • each unit is provided in order of the formation unit 2, the growth unit 3, and the cooling unit 4, and each furnace space is connected spatially by the connection parts 7, 8, and 9.
  • connection parts 7, 8, and 9 it is also possible to add a plurality of units that realize other processes other than the formation process, the growth process, and the cooling process somewhere, and connect the space in the furnace of each unit spatially at the connection part.
  • the transport unit 6 has been described using the belt conveyor system, but is not limited thereto, and may be, for example, a robot arm system, a turntable system, a lifting system, or the like. .
  • the arrangement of the formation unit 2, the growth unit 3, and the cooling unit 4 has been described by two methods of a linear arrangement and an annular arrangement. For example, they may be sequentially arranged in the vertical direction.
  • the production method according to the present invention is a method for producing an aligned carbon nanotube aggregate on which a carbon nanotube aligned aggregate is grown on a substrate carrying a catalyst on its surface, the growth furnace for growing the aligned carbon nanotube aggregate
  • a seal gas is injected from the first seal gas injection unit along an opening surface of at least one of the opening for inserting the substrate and the opening for extracting the substrate of the growth furnace.
  • a growth step of growing the aligned carbon nanotube aggregates in the growth unit includes performing.
  • the manufacturing method according to the present invention can be suitably realized by using, for example, the manufacturing apparatus 100 described so far.
  • the growth process is as described above, and can be suitably realized using the growth unit 3, for example.
  • the gas mixing prevention process can be suitably realized by using, for example, the gas mixing preventing means 12 and 13 described above.
  • the seal gas is injected from the seal gas injection portions 12b and 13b along the opening surface of at least one of the opening for inserting the catalyst substrate 10 and the opening for removing the catalyst substrate 10 in the growth furnace 3a. Suction is performed so as not to enter the growth furnace 3a, and the exhaust is exhausted from the exhaust units 12a and 13a to the outside of the manufacturing apparatus 100.
  • the gas mixing prevention process is preferably performed in parallel with the growth process, and more preferably the gas mixing prevention process is started before the growth process is performed.
  • the manufacturing method according to the present invention it is more preferable to include a formation step.
  • the formation process is as described above, and can be suitably realized using the formation unit 2.
  • the formation process may be performed before the growth process.
  • a catalyst activator in the growth furnace in the growth process.
  • the addition of the catalyst activation material into the growth furnace can be suitably realized by the catalyst activation material addition means provided in the growth furnace 3a.
  • the growth unit includes a source gas injection unit that injects a source gas and an exhaust hood that exhausts the growth furnace gas. Is more preferable.
  • a formation unit including a formation furnace for heating at least one of the catalyst and the reducing gas while making the environment surrounding the catalyst supported on the base material a reducing gas environment.
  • a second gas mixing prevention means for preventing gas outside the formation furnace from mixing into the gas in the formation furnace, and the second gas mixing prevention means includes the base material of the formation furnace.
  • a second seal gas injection unit for injecting seal gas along an opening surface of at least one of the inlet and the outlet for taking out the base material; and the seal gas does not enter the formation furnace from the port It is more preferable to include a second exhaust unit that sucks and exhausts the outside of the manufacturing apparatus.
  • the growth unit includes a catalyst activator addition means for adding a catalyst activator to the growth furnace.
  • the first gas mixing prevention unit is configured to inject a seal gas along an opening surface of a port into which the base material of the growth furnace is inserted, and the seal gas is supplied from the port. It is more preferable to include a first exhaust unit that sucks the exhaust gas so as not to enter the growth furnace and exhausts the gas outside the manufacturing apparatus.
  • the first seal gas injection unit includes a catalyst activation material adding means for adding a catalyst activation material.
  • the manufacturing method according to the present invention includes a formation unit including a formation furnace for heating at least one of the catalyst and the reducing gas, while setting a surrounding environment of the catalyst supported on the base material as a reducing gas environment.
  • the formation environment for heating at least one of the catalyst and the reducing gas may be performed before the growth step while setting the environment surrounding the catalyst supported on the base material as a reducing gas environment. More preferred.
  • the gas mixing prevention step injects a seal gas from a first seal gas injection unit that injects a seal gas along an opening surface of a port into which the substrate of the growth furnace is placed, and the seal gas It is more preferable to include sucking from the mouth so as not to enter the growth furnace and exhausting the outside of the manufacturing apparatus.
  • the specific surface area is a value measured by the Brunauer, Emmett, and Teller method from an adsorption / desorption isotherm of liquid nitrogen measured at 77K.
  • the specific surface area was measured using a BET specific surface area measuring device (HM model-1210 manufactured by Mountec Co., Ltd.).
  • the G / D ratio is an index generally used for evaluating the quality of CNTs.
  • the G band is a vibration mode derived from a hexagonal lattice structure of graphite, which is a cylindrical surface of CNT
  • the D band is a vibration mode derived from a crystal defect. Therefore, the higher the peak intensity ratio (G / D ratio) between the G band and the D band, the lower the amount of defects and the higher the quality of the CNT.
  • Example 1 The manufacturing conditions of the catalyst substrate will be described below.
  • a 90 mm square and 0.3 mm thick Fe—Ni—Cr alloy YEF426 (manufactured by Hitachi Metals, Ni 42%, Cr 6%) was used as the substrate.
  • the surface roughness was measured using a laser microscope, the arithmetic average roughness Ra ⁇ 2.1 ⁇ m.
  • An alumina film having a thickness of 20 nm was formed on both the front and back surfaces of the substrate using a sputtering apparatus, and then an iron film (catalyst metal layer) having a thickness of 1.0 nm was formed only on the surface using a sputtering apparatus.
  • the manufacturing apparatus used in this example is the manufacturing apparatus 100 shown in FIG. 1 described in the above embodiment.
  • the manufacturing apparatus 100 includes an inlet purge unit 1, a formation unit 2, a growth unit 3, a cooling unit 4, an outlet purge unit 5, a transport unit 6, connection units 7 to 9, and gas mixing prevention means 11 to 13.
  • Each material of 12b, 13b, mesh belt 6a, and connecting portions 7, 8, and 9 was SUS310, and the surface thereof was subjected to hot-dip aluminum plating.
  • the catalyst substrate produced as described above was placed on the mesh belt 6a, and an aligned CNT aggregate was produced on each catalyst substrate 10 while changing the conveying speed of the mesh belt 6a.
  • the conditions of the inlet purge unit 1, formation unit 2, gas mixing prevention means 11, 12, 13, growth unit 3, cooling unit 4, and outlet purge unit 5 of the manufacturing apparatus 100 were set as follows.
  • Inlet purge section 1 Purge gas: Nitrogen 60sLm Formation unit 2 -Furnace temperature: 830 ° C ⁇ Reducing gas: nitrogen 11.2 sLm, hydrogen 16.8 sLm ⁇ Exhaust hood 2d displacement: 28sLm ⁇ Processing time: 28 minutes Growth unit 3 -Furnace temperature: 830 ° C Source gas: nitrogen 16.04 sLm, ethylene 1.8 sLm, Steam-containing nitrogen 0.16sLm (water content 16000ppmv) ⁇ Exhaust hood 3d displacement: 18sLm ⁇ Processing time: 11 minutes Cooling unit 4 ⁇ Cooling water temperature: 30 ° C ⁇ Inert gas: Nitrogen 10sLm ⁇ Cooling time: 30 minutes Outlet purge section 5 ⁇ Purge gas: Nitrogen 50sLm Gas mixing prevention means 11 ⁇ Exhaust part 11a displacement: 20 sLm Seal gas injection unit 11b: nitrogen 20sLm Gas mixing prevention means 12 -Exhaust part 12a displacement: 25
  • the reducing gas being manufactured was sampled from the gas sampling port installed in the vicinity of the reducing gas injection section 2b, and the component analysis was performed with an FTIR analyzer (Thermo Fisher Scientific Nicolet 6700 FT-IR). As a result, it was confirmed that the ethylene concentration in the formation furnace 2a was suppressed to 50 ppmv by the gas mixing prevention means 11 and 12. In terms of the carbon atom number concentration, it is about 3 ⁇ 10 21 atoms / m 3 .
  • the properties of the aligned CNT aggregate produced by this example are as follows: density: 0.03 g / cm 3 , average outer diameter: 2.9 nm (half width: 2 nm), carbon purity: 99.9%, Herman's orientation The coefficient was 0.7, the yield was 2.0 mg / cm 2 , the G / D ratio was 6.3, and the BET specific surface area was 1100 m 2 / g.
  • the aligned CNT aggregate can be manufactured by the manufacturing apparatus 100 of this example.
  • Inlet purge section 1 Purge gas: Nitrogen 60sLm Formation unit 2 -Furnace temperature: 830 ° C ⁇ Reducing gas: nitrogen 11.2 sLm, hydrogen 16.8 sLm ⁇ Exhaust hood 2d displacement: 28sLm ⁇ Processing time: 28 minutes Growth unit 3 -Furnace temperature: 830 ° C Source gas: nitrogen 16.04 sLm, ethylene 1.8 sLm, Steam-containing nitrogen 0.16sLm (water content 16000ppmv) ⁇ Exhaust hood 3d displacement: 18sLm ⁇ Processing time: 11 minutes Cooling unit 4 ⁇ Cooling water temperature: 30 ° C ⁇ Inert gas: Nitrogen 10sLm ⁇ Cooling time: 30 minutes Outlet purge section 5 ⁇ Purge gas: Nitrogen 50sLm Gas mixing prevention means 11 ⁇ Exhaust part 11a displacement: 0 sLm Seal gas injection unit 11b: nitrogen 20sLm Gas mixing prevention means 12 -Exhaust part 12a displacement:
  • Example 2 The manufacturing apparatus 100 and the catalyst substrate 10 are the same as those in Example 1 except that the catalyst activation material adding unit is provided in the seal gas injection unit 12b, and the inlet purge unit 1, the formation unit 2, and the gas mixing prevention unit 11, 12, 13 are used.
  • the aligned CNT aggregate was manufactured by setting the conditions of the growth unit 3, the cooling unit 4, and the outlet purge unit 5 as follows.
  • Inlet purge section 1 Purge gas: Nitrogen 60sLm Formation unit 2 -Furnace temperature: 830 ° C ⁇ Reducing gas: nitrogen 11.2 sLm, hydrogen 16.8 sLm ⁇ Exhaust hood 2d displacement: 28sLm ⁇ Processing time: 28 minutes Growth unit 3 -Furnace temperature: 830 ° C Source gas: nitrogen 16.04 sLm, ethylene 1.8 sLm, Steam-containing nitrogen 0.16sLm (water content 16000ppmv) ⁇ Exhaust hood 3d displacement: 18sLm ⁇ Processing time: 11 minutes Cooling unit 4 ⁇ Cooling water temperature: 30 ° C ⁇ Inert gas: Nitrogen 10sLm ⁇ Cooling time: 30 minutes Outlet purge section 5 ⁇ Purge gas: Nitrogen 50sLm Gas mixing prevention means 11 ⁇ Exhaust part 11a displacement: 20 sLm Seal gas injection unit 11b: nitrogen 20sLm Gas mixing prevention means 12 -Exhaust part 12a displacement: 28
  • the ethylene concentration in the formation furnace 2a was suppressed to 50 ppmv by the gas mixing prevention means 11 and 12.
  • the carbon atom number concentration it is about 3 ⁇ 10 21 atoms / m 3 .
  • the properties of the aligned CNT aggregate produced by this example are as follows: density: 0.03 g / cm 3 , average outer diameter: 2.9 nm (half width: 2 nm), carbon purity: 99.9%, Herman's orientation The coefficient was 0.7, the yield was 2.8 mg / cm 2 , the G / D ratio was 6.3, and the BET specific surface area was 1100 m 2 / g.
  • the present invention can produce an aligned CNT aggregate with high production efficiency, it can be suitably used in fields such as electronic device materials, optical element materials, and conductive materials.
  • Gas mixing prevention means (second gas mixing prevention means) 12 Gas mixing prevention means (first gas mixing prevention means / second gas mixing prevention means) 13 Gas mixing prevention means (first gas mixing prevention means) 11a Exhaust part (second exhaust part) 12a Exhaust part (first exhaust part / second exhaust part) 13a Exhaust part (first exhaust part) 11b Seal gas injection part (second seal gas injection part) 12b Seal gas injection unit (first seal gas injection unit / second seal gas injection unit) 13b Seal gas injection unit (first seal gas injection unit) 100 Production equipment (Production equipment for aligned carbon nanotube assemblies)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 成長炉(3a)外のガスが成長炉(3a)内のガスに混入することを防止するガス混入防止手段(12、13)を備え、ガス混入防止手段(12、13)は、成長炉(3a)の触媒基板(10)を入れる口及び取り出す口の開口面に沿ってシールガスを噴射するシールガス噴射部(12b、13b)と、当該シールガスが当該口から成長炉(3a)の中に入らないように吸引して製造装置(100)の外部に排気する排気部(12a、13a)とを備えることにより、触媒を担持した基材を連続的に搬送しながらカーボンナノチューブ配向集合体を製造する装置において、外気混入を防止するとともに、原料ガス及び/又は触媒賦活物質の基材上における濃度分布、流速分布をCNTの製造に適した範囲内で均一に制御するとともに、成長炉内におけるガスの流れをできるだけ乱さないCNT配向集合体の連続製造装置を提供する。

Description

カーボンナノチューブ配向集合体の製造装置
 本発明は、触媒を担持した基材を連続的に搬送しながら、基材上にカーボンナノチューブ配向集合体を製造する装置に関するものである。
 カーボンナノチューブ(以下、CNTともいう)は、炭素原子が平面的に六角形状に配置されて構成された炭素シートが円筒状に閉じた構造を有する炭素構造体である。このCNTには、多層のもの及び単層のものがあるが、いずれもその力学的強度、光学特性、電気特性、熱特性、分子吸着機能などの面から、電子デバイス材料、光学素子材料、導電性材料などの機能性材料としての展開が期待されている。
 CNTの中でも単層CNTは、電気的特性(極めて高い電流密度)、熱的特性(ダイヤモンドに匹敵する熱伝導度)、光学特性(光通信帯波長域での発光)、水素貯蔵能、及び金属触媒担持能などの各種特性に優れている上、半導体と金属との両特性を備えているため、ナノ電子デバイス、ナノ光学素子、及びエネルギー貯蔵体などの材料として注目されている。
 これらの用途にCNTを有効利用する場合、複数本のCNTが特定の方向に配向して集まった束状、膜状、あるいは塊状の集合体をなし、そのCNT集合体が、電気・電子的、及び光学的などの機能性を発揮することが望ましい。また、CNT集合体は、その長さ(高さ)がより一層大きいことが望ましい。このような配向したCNT集合体が創製されれば、CNTの応用分野が飛躍的に拡大するものと予測される。
 このCNTの製造方法の一つに、化学気相成長法(以下、CVD法とも称する)が知られている(特許文献1などを参照されたい)。この方法は、約500℃~1000℃の高温雰囲気下で炭素を含むガス(以下、原料ガスと称す)を触媒の金属微粒子と接触させることを特徴としており、触媒の種類及び配置、あるいは炭素化合物の種類及び反応条件といった態様を様々に変化させた中でのCNTの製造が可能であり、CNTを大量に製造するのに適したものとして注目されている。またこのCVD法は、単層カーボンナノチューブ(SWCNT)と多層カーボンナノチューブ(MWCNT)とのいずれも製造可能である上、触媒を担持した基板を用いることで、基板面に垂直に配向した多数のCNTを製造することができる、という利点を備えている。
 CVD法におけるCNT合成工程はフォーメーション工程と成長工程の2つの工程に分けて行われることもある。その場合、フォーメーション工程にて基板に担持された金属触媒は高温の水素ガス(以下、還元ガスと称す)に曝されることで還元され、その後の成長工程にて触媒賦活物質を含む原料ガスを触媒に接触させることでCNTを成長させる。
 通常のCVD法では、CNTの合成過程で発生する炭素系不純物が触媒微粒子を被覆し、触媒が容易に失活し、CNTが効率良く成長できない。そのため、CVD時の原料ガスの体積分率を0.1~1%程度に抑えた低炭素濃度雰囲気で合成を行なうのが一般的である。原料ガスの供給量とCNTの製造量は比例するため、できるだけ高い炭素濃度雰囲気で合成を行なうことが製造効率の向上に直結する。
 近年になって、CVD法において、原料ガスと共に水などの触媒賦活物質を触媒に接触させることにより、触媒の活性及び寿命を著しく増大させた技術(以下、スーパーグロース法と称す。非特許文献1を参照されたい)が提案されている。触媒賦活物質は触媒微粒子を覆った炭素系不純物を取り除いて触媒の地肌を清浄化する効果があると考えられおり、それによって、著しく触媒の活性が向上すると共に寿命が延びると考えられている。そのため、通常では触媒が失活してしまうような高炭素濃度環境(CVD時の原料ガスの体積分率を2~20%程度)でも触媒活性が失われず、CNTの製造効率を著しく向上することに成功している。触媒を担持した基板にスーパーグロース法を適用することで合成されるCNTは、比表面積が高く、一本一本のCNTが規則的な方向に配向して集まった集合体を形成していて、かつ嵩密度が低いという特徴を持っている(以下、CNT配向集合体と称す)。
 従来、CNT集合体は、非常にアスペクト比が高い一次元の細長い柔軟性がある物質であり、かつ強いファン・デア・ワールス力のために、無秩序・無配向でかつ比表面積の小さい集合体を構成し易い。そしていったん無秩序・無配向となった集合体の配向性を再構築することは、極めて困難であるため、成形加工性を有する高比表面積の配向性を持つCNT集合体の製造は困難であった。しかし、スーパーグロース法によって、比表面積が高く、配向性を持ち、かつ様々な形態・形状への成形加工性を持つCNT配向集合体の製造ができるようになり、物質・エネルギー貯蔵材料として、スーパーキャパシターの電極及び指向性を持つ伝熱・放熱材料などの様々な用途に応用できると考えられている。
 従来、CVD法によるCNTの連続製造を実現させるための製造装置として、様々な提案がなされており、例えば、ベルトコンベア、ターンテーブルなどの搬送手段を用いて、連続搬送方式もしくは連続バッチ方式でCNTを連続製造する装置が提案されている(特許文献2~6を参照されたい)。しかしながら、スーパーグロース法を用いて、CNT配向集合体を連続製造する場合、従来の合成法ではみられなかった高炭素環境下及び/又は触媒賦活物質などから由来する特有の技術課題が発生することが判明した。
日本国公開特許公報「特開2003-171108号公報(2003年6月17日公開)」 日本国公開特許公報「特開2004-332093号公報(2004年11月25日公開)」 日本国公開特許公報「特開2006-117527号公報(2006年5月11日公開)」 日本国公開特許公報「特開2007-91556号公報(2007年4月12日公開)」 日本国公開特許公報「特開2007-92152号公報(2007年4月12日公開)」 日本国公開特許公報「特開2008-63196号公報(2008年3月21日公開)」
Kenji Hata et. al., Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes, SCIENCE, 2004.11.19, VOl.306, p.1362-1364
 CNT配向集合体の製造において最も重要なことの1つとして、触媒に供給される原料ガスと触媒賦活物質の量を適正な範囲に制御することがあげられる。そのためには原料ガス及び/又は触媒賦活物質の基材上での濃度分布及び流速分布を、CNTの製造に適した範囲内で均一に制御することが必要である。特に、CNTの製造に適した触媒賦活物質の濃度範囲は極微量であるため精密な制御が要求される。
 また、成長炉内におけるガスの乱流及び滞留もCNT配向集合体の製造に影響を及ぼすことが経験的に知られている。成長炉内のガスの流れをできるだけ乱さずに、速やかに排気するようなガスの流れパターンに制御することも要求される。
 しかしながら、従来知られているCNTの連続製造装置、特に触媒を担持させた基材をベルトコンベアなどで連続的に搬送する方式の場合(特許文献2及び4~6を参照されたい)、原料ガス及び/又は触媒賦活物質の濃度分布、流速分布を基材上で均一に且つ適切な範囲内で制御すること、及び成長炉内におけるガス流れパターンを制御することは困難であった。従来知られているようなCNT連続製造装置では、外気混入を防止するために装置開口部において不活性ガスを噴射する。そのため、炉内へ不活性ガスが流入し、基材上での原料ガス及び/又は触媒賦活物質の濃度分布、流速分布が不均一化し易く、また流入した不活性ガスが炉内のガスの流れを乱す要因にもなり、結果としてCNT配向集合体の連続製造を困難なものとしていた。
 本発明は、このような従来技術の不都合を解消すべく案出されたものであり、その主な目的は、触媒を担持した基材を連続的に搬送しながらカーボンナノチューブ配向集合体を製造する装置において、外気混入を防止するとともに、原料ガス及び/又は触媒賦活物質の基材上における濃度分布、流速分布をCNTの製造に適した範囲内で均一に制御するとともに、成長炉内におけるガスの流れをできるだけ乱さないCNT配向集合体の連続製造装置を提供することにある。
 このような目的を達成するために本発明のカーボンナノチューブ配向集合体の製造装置は、表面に触媒を担持した基材上にカーボンナノチューブ配向集合体を成長させる成長炉を含む成長ユニットを備えるカーボンナノチューブ配向集合体の製造装置において、前記成長炉外のガスが当該成長炉内のガスに混入することを防止する第1のガス混入防止手段を備え、前記第1のガス混入防止手段は、前記成長炉の前記基材を入れる口及び前記基材を取り出す口のうち少なくとも一つの口の開口面に沿ってシールガスを噴射する第1のシールガス噴射部と、当該シールガスが当該口から当該成長炉の中に入らないように吸引して前記製造装置の外部に排気する第1の排気部とを備えることを特徴とする。
 また、本発明には、表面に触媒を担持した基材上にカーボンナノチューブ配向集合体を成長させるカーボンナノチューブ配向集合体の製造方法であって、前記カーボンナノチューブ配向集合体を成長させる成長炉を含む成長ユニットと、前記成長炉外のガスが当該成長炉内のガスに混入することを防止する、第1のシールガス噴射部および第1の排気部を備えた第1のガス混入防止手段とを用い、前記成長炉の前記基材を入れる口及び前記基材を取り出す口のうち少なくとも一つの口の開口面に沿って前記第1のシールガス噴射部からシールガスを噴射するとともに、当該シールガスが当該口から当該成長炉の中に入らないように吸引して前記製造装置の外部に前記第1の排気部から排気するガス混入防止工程と、前記成長ユニットにおいてカーボンナノチューブ配向集合体を成長させる成長工程とを、行なうことを含むカーボンナノチューブ配向集合体の製造方法も包含される。
 本発明のさらなる目的又はその他の特徴は、以下添付図面を参照して説明される好ましい実施の形態によって明らかにされるであろう。
 本発明によれば、表面に触媒を担持した基材上にカーボンナノチューブ配向集合体を成長させる成長炉を含む成長ユニットを備えるカーボンナノチューブ配向集合体の製造装置において、前記成長炉外のガスが当該成長炉内のガスに混入することを防止する第1のガス混入防止手段を備え、前記第1のガス混入防止手段は、前記成長炉の前記基材を入れる口及び前記基材を取り出す口のうち少なくとも一つの口の開口面に沿ってシールガスを噴射する第1のシールガス噴射部と、当該シールガスが当該口から当該成長炉の中に入らないように吸引して前記製造装置の外部に排気する第1の排気部とを備える。
 これによって、外気混入を防止するとともに、シールガスの流れと成長炉内のガスの流れが相互に干渉することを防止することが可能になる。よって、原料ガス及び/又は触媒賦活物質の基材上における濃度分布、流速分布をCNTの製造に適した範囲内で均一に制御するとともに、成長炉内におけるガスの流れをできるだけ乱さないことが可能になる。よって、CNT配向集合体の連続製造に好適な製造装置とすることができる。
本発明のカーボンナノチューブ配向集合体の製造装置の一実施形態の構造を模式的に示す図である。 本発明のカーボンナノチューブ配向集合体の製造装置の一実施形態において、炉内におけるガス流れパターンの概念を示す図である。
 以下に本発明を実施するための形態について詳細に説明する。
 (CNT配向集合体)
 本発明において製造されるカーボンナノチューブ配向集合体(以下、「CNT配向集合体」ということもある。)とは、基材から成長した多数のCNTが特定の方向に配向した構造体をいう。CNT配向集合体の好ましい比表面積は、CNTが主として未開口のものにあっては、600m/g以上であり、CNTが主として開口したものにあっては、1300m/g以上である。比表面積が600m/g以上の未開口のもの、若しくは1300m/g以上の開口したものは、金属などの不純物、若しくは炭素不純物を重量の数十パーセント(40%程度)より低く抑えることができるので好ましい。
 重量密度は0.002g/cm~0.2g/cmである。重量密度が0.2g/cm以下であれば、CNT配向集合体を構成するCNT同士の結びつきが弱くなるので、CNT配向集合体を溶媒などに攪拌した際に、均質に分散させることが容易になる。つまり、重量密度が0.2g/cm以下とすることで、均質な分散液を得ることが容易となる。また重量密度が0.002g/cm以上であれば、CNT配向集合体の一体性を向上させ、バラけることを抑制できるため取扱いが容易になる。
 特定方向に配向したCNT配向集合体は高い異方性を有している。その配向度は、
  1.CNTの長手方向に平行な第1方向と、第1方向に直交する第2方向とからX線を入射してX線回折強度を測定(θ-2θ法)した場合に、第2方向からの反射強度が、第1方向からの反射強度より大きくなるθ角と反射方位とが存在し、且つ第1方向からの反射強度が、第2方向からの反射強度より大きくなるθ角と反射方位とが存在すること。
  2.CNTの長手方向に直交する方向からX線を入射して得られた2次元回折パターン像でX線回折強度を測定(ラウエ法)した場合に、異方性の存在を示す回折ピークパターンが出現すること。
  3.ヘルマンの配向係数が、θ-2θ法又はラウエ法で得られたX線回折強度を用いると0より大きく1より小さいこと。より好ましくは0.25以上、1以下であること。
 以上の1.から3.の少なくともいずれか1つの方法によって評価することができる。また、前述のX線回折法において、単層CNT間のパッキングに起因する(CP)回折ピーク、(002)ピークの回折強度及び単層CNTを構成する炭素六員環構造に起因する(100)、(110)ピークの平行と垂直との入射方向の回折ピーク強度の度合いが互いに異なるという特徴も有している。
 CNT配向集合体が配向性、及び高比表面積を示すためには、CNT配向集合体の高さ(長さ)は10μm以上、10cm以下の範囲にあることが好ましい。高さが10μm以上であると、配向性が向上する。また高さが10cm以下であると、生成を短時間で行なえるため炭素系不純物の付着を抑制でき、比表面積を向上できる。
 (基材)
 基材はその表面にカーボンナノチューブの触媒を担持することのできる部材であればよく、400℃以上の高温でも形状を維持できるものが好ましい。基材の材質としては、例えば、鉄、ニッケル、クロム、モリブデン、タングステン、チタン、アルミニウム、マンガン、コバルト、銅、銀、金、白金、ニオブ、タンタル、鉛、亜鉛、ガリウム、インジウム、ガリウム、ゲルマニウム、砒素、インジウム、燐、及びアンチモンなどの金属、並びにこれらの金属を含む合金及び酸化物、又はシリコン、石英、ガラス、マイカ、グラファイト、及びダイヤモンドなどの非金属、並びにセラミックなどが挙げられる。金属材料はシリコン及びセラミックと比較して、低コストであるから好ましく、特に、Fe-Cr(鉄-クロム)合金、Fe-Ni(鉄-ニッケル)合金、Fe-Cr-Ni(鉄-クロム-ニッケル)合金などは好適である。
 基材の態様としては、平板状以外に、薄膜状、ブロック状、あるいは粉末状などでもよいが、特に体積の割に表面積を大きくとれる態様が大量に製造する場合において有利である。
 (浸炭防止層)
 この基材の表面及び/又は裏面には、浸炭防止層が形成されてもよい。表面及び裏面の両面に浸炭防止層が形成されていることが望ましい。この浸炭防止層は、カーボンナノチューブの生成工程において、基材が浸炭されて変形してしまうのを防止するための保護層である。
 浸炭防止層は、金属又はセラミック材料によって構成されることが好ましく、特に浸炭防止効果の高いセラミック材料であることが好ましい。金属としては、銅及びアルミニウムなどが挙げられる。セラミック材料としては、例えば、酸化アルミニウム、酸化ケイ素、酸化ジルコニウム、酸化マグネシウム、酸化チタン、シリカアルミナ、酸化クロム、酸化ホウ素、酸化カルシウム、酸化亜鉛などの酸化物、窒化アルミニウム、窒化ケイ素などの窒化物が挙げられ、なかでも浸炭防止効果が高いことから、酸化アルミニウム、酸化ケイ素が好ましい。
 (触媒)
 基材又は浸炭防止層上には、触媒が担持されている。触媒としては、例えば、CNTの製造が可能なものであればよく、鉄、ニッケル、コバルト、モリブデン、並びに、これらの塩化物及び合金が挙げられ、またこれらが、さらにアルミニウム、アルミナ、チタニア、窒化チタン若しくは酸化シリコンと複合化又は層状になっていてもよい。例えば、鉄-モリブデン薄膜、アルミナ-鉄薄膜、アルミナ-コバルト薄膜、及びアルミナ-鉄-モリブデン薄膜、アルミニウム-鉄薄膜、アルミニウム-鉄-モリブデン薄膜などを例示することができる。触媒の存在量としては、例えば、これまでのCNTの製造に実績のある範囲で使用してもよく、鉄を用いる場合、製膜厚さは、0.1nm以上100nm以下が好ましく、0.5nm以上5nm以下がさらに好ましく、0.8nm以上2nm以下が特に好ましい。
 基材表面への触媒の形成は、ウェットプロセス又はドライプロセスのいずれを適用してもよい。具体的には、スパッタリング蒸着法、金属微粒子を適宜な溶媒に分散させた液体の塗布・焼成法などを適用することができる。また周知のフォトリソグラフィー又はナノインプリンティングなどを適用したパターニングを併用して触媒を任意の形状とすることもできる。
 本発明の製造装置を用いた製造方法においては、基材上に成膜する触媒のパターニング及びCNTの成長時間により、薄膜状、円柱状、角柱状、及びその他の複雑な形状をしたものなど、CNT配向集合体の形状を任意に制御することができる。特に薄膜状のCNT配向集合体は、その長さ及び幅寸法に比較して厚さ(高さ)寸法が極端に小さいが、長さ及び幅寸法は、触媒のパターニングによって任意に制御可能であり、厚さ寸法は、CNT配向集合体を構成する各CNTの成長時間によって任意に制御可能である。
 (還元ガス)
 還元ガスは、一般的には、触媒の還元、触媒のCNTの成長に適合した状態の微粒子化促進、触媒の活性向上の少なくとも一つの効果を持つ、成長温度において気体状のガスである。還元ガスとしては、CNTの製造が可能なものであればよく、典型的には還元性を有したガスであり、例えば水素ガス、アンモニア、水蒸気及びそれらの混合ガスを適用することができる。また、水素ガスをヘリウムガス、アルゴンガス、窒素ガスなどの不活性ガスと混合した混合ガスでもよい。還元ガスは、一般的には、フォーメーション工程で用いるが、適宜成長工程に用いてもよい。
 (原料ガス)
 本発明においてCNTの生成に用いる原料としては、CNTの製造が可能であればよく、例えば、成長温度において原料炭素源を有するガスである。なかでもメタン、エタン、エチレン、プロパン、ブタン、ペンタン、ヘキサン、ヘプタンプロピレン、及びアセチレンなどの炭化水素が好適である。この他にも、メタノール、エタノールなどの低級アルコール、及び、アセトン、一酸化炭素などの低炭素数の含酸素化合物でもよい。これらの混合物も使用可能である。またこの原料ガスは、不活性ガスで希釈されていてもよい。
 (不活性ガス)
 不活性ガスとしては、CNTが成長する温度で不活性であり、触媒の活性を低下させず、且つ成長するCNTと反応しないガスであればよく、例えば、CNTの製造に使用可能であるものを適宜用いてもよく、ヘリウム、アルゴン、窒素、ネオン、及びクリプトンなど、並びにこれらの混合ガスを例示でき、特に窒素、ヘリウム、アルゴン、及びこれらの混合ガスが好適である。
 (触媒賦活物質)
 CNTの成長工程及び/又は成長工程を行なう前において、触媒賦活物質を添加してもよい。触媒賦活物質の添加によって、カーボンナノチューブの製造効率及び純度をより一層改善することができる。ここで用いる触媒賦活物質としては、例えば酸素を含む物質であり、成長温度でCNTに多大なダメージを与えない物質が好ましく、例えば、水、硫化水素、酸素、オゾン、酸性ガス、酸化窒素、一酸化炭素、及び二酸化炭素などの低炭素数の含酸素化合物;エタノール、メタノールなどのアルコール類;テトラヒドロフランなどのエーテル類;アセトンなどのケトン類;アルデヒド類;エステル類;並びにこれらの混合物が、より有効である。この中でも、水、酸素、二酸化炭素、及び一酸化炭素、並びにテトラヒドロフランなどのエーテル類が好ましく、特に水が好適である。
 触媒賦活物質の添加量に格別な制限はないが、微量でよく、水の場合には、例えば10ppm以上10000ppm以下、好ましくは50ppm以上1000ppm以下、さらに好ましくは100ppm以上700ppm以下の範囲とするとよい。
 触媒賦活物質の機能のメカニズムは、現時点では以下のように推測される。CNTの成長過程において、副次的に発生したアモルファスカーボン、グラファイトなどが触媒に付着すると触媒は失活してしまいCNTの成長が阻害される。しかし、触媒賦活物質が存在すると、アモルファスカーボン、グラファイトなどを一酸化炭素、二酸化炭素などに酸化させることでガス化するため、触媒が清浄化され、触媒の活性を高めかつ活性寿命を延長させる作用(触媒賦活作用)が発現すると考えられている。
 この触媒賦活物質の添加により、触媒の活性が高められかつ寿命が延長する。添加しない場合は高々2分間程度で終了したCNTの成長が添加することによって数十分間継続する上、成長速度は100倍以上、さらには1000倍にも増大する。この結果、その高さが著しく増大したCNT配向集合体が得られることになる。
 (高炭素濃度環境)
 高炭素濃度環境とは、全流量に対する原料ガスの割合が2~20%程度の成長雰囲気のことをいう。触媒賦活物質を用いない化学気相成長法では、炭素濃度を高くするとCNTの合成過程で発生する炭素系不純物が触媒微粒子を被覆し、触媒が容易に失活し、CNTが効率良く成長できないので、全流量に対する原料ガスの割合が0.1~1%程度の成長雰囲気(低炭素濃度環境)で合成を行なう。
 触媒賦活物質存在下においては、触媒活性が著しく向上するため、高炭素濃度環境化においても、触媒は活性を失わず、長時間のCNTの成長が可能となると共に、成長速度が著しく向上する。しかしながら、高炭素濃度環境では低炭素濃度環境に比べ、炉壁などに炭素汚れが大量に付着する。
 (炉内圧力)
 10Pa以上、10Pa(100気圧)以下が好ましく、10Pa以上、3×10Pa(3大気圧)以下がさらに好ましい。
 (反応温度)
 CNTを成長させる反応温度は、金属触媒、原料炭素源、及び反応圧力などを考慮して適宜に定められるが、触媒失活の原因となる副次生成物を排除するために触媒賦活物質を添加する工程を含む場合は、その効果が十分に発現する温度範囲に設定することが望ましい。つまり、最も望ましい温度範囲としては、アモルファスカーボン、グラファイトなどの副次生成物を触媒賦活物質が除去し得る温度を下限値とし、主生成物であるCNTが触媒賦活物質によって酸化されない温度を上限値とすることである。
 具体的には、触媒賦活物質として水を用いる場合は、好ましくは400℃以上、1000℃以下とすることである。400℃以上で触媒賦活物質の効果が良好に発現され、1000℃以下では、触媒賦活物質がCNTと反応することを抑制できる。
 また触媒賦活物質として二酸化炭素を用いる場合は、400℃以上、1100℃以下とすることがより好ましい。400℃以上で触媒賦活物質の効果が良好に発現され、1100℃以下では、触媒賦活物質がCNTと反応することを抑制できる。
 (フォーメーション工程)
 フォーメーション工程とは、基材に担持された触媒の周囲環境を還元ガス環境とすると共に、触媒又は還元ガスの少なくとも一方を加熱する工程である。この工程により、触媒の還元、触媒のCNTの成長に適合した状態の微粒子化促進、触媒の活性向上の少なくとも一つの効果が現れる。例えば、触媒がアルミナ-鉄薄膜である場合、鉄触媒は還元されて微粒子化し、アルミナ層上にナノメートルサイズの鉄微粒子が多数形成される。これにより触媒はCNT配向集合体の製造に好適な触媒に調製される。この工程を省略してもCNTを製造することは可能であるが、この工程を行なうことでCNT配向集合体の製造量及び品質を飛躍的に向上させることができる。
 (成長工程)
 成長工程とは、フォーメーション工程によってCNT配向集合体の製造に好適な状態となった触媒の周囲環境を原料ガス環境とすると共に、触媒及び原料ガスの少なくとも一方を加熱することにより、CNT配向集合体を成長させる工程である。
 (冷却工程)
 成長工程後にCNT配向集合体、触媒、基材を冷却ガス下に冷却する工程。成長工程後のCNT配向集合体、触媒、基材は高温状態にあるため、酸素存在環境下に置かれると酸化してしまうおそれがある。それを防ぐために冷却ガス環境下でCNT配向集合体、触媒、基材を400℃以下、さらに好ましくは200℃以下に冷却する。冷却ガスとしては不活性ガスが好ましく、特に安全性、コストなどの点から窒素であることが好ましい。
 (製造装置)
 図1に本発明に係るCNT配向集合体製造装置の一実施形態を示す。本実施の形態に係る製造装置100は、大略、入口パージ部1、フォーメーションユニット2、成長ユニット3、搬送ユニット6、ガス混入防止手段11、12、13、接続部7、8、9、冷却ユニット4、出口パージ部5から構成されている。以下、各構成について説明する。
 (入口パージ部1)
 入口パージ部1とは基材入口から製造装置100の有する炉内へ外気が混入することを防止するための装置一式のことである。製造装置100内に搬送された触媒基板10(表面に触媒を担持した基材)の周囲環境をパージガスで置換する機能を有する。具体的には、パージガスを保持するための炉又はチャンバ、パージガスを噴射するための噴射部などが設けられている。パージガスは不活性ガスが好ましく、特に安全性、コストなどの点から窒素であることが好ましい。ベルトコンベア方式など触媒基板10の入口が常時開口している場合は、パージガス噴射部としてパージガスを上下からシャワー状に噴射するガスカーテン装置とし、装置入口から外気が混入することを防止することが好ましい。後述するガス混入防止手段11のみでも炉内への外気混入を防止することは可能であるが、装置の安全性を高めるために入口パージ部1を備えていることが好ましい。
 (フォーメーションユニット2)
 フォーメーションユニット2とは、フォーメーション工程を実現するための装置一式のことであり、触媒基板10の表面に形成された触媒の周囲環境を還元ガス環境とすると共に、触媒と還元ガスとの少なくとも一方を加熱する機能を有する。具体的には、還元ガスを保持するためのフォーメーション炉2a、還元ガスを噴射するための還元ガス噴射部2b、フォーメーション炉2a内のガスを排気するための排気フード2d、触媒及び還元ガスの少なくとも一方を加熱するためのヒーター2cなどが挙げられる。ヒーター2cとしては400℃以上、1100℃以下の範囲で加熱することができるものが好ましく、例えば、抵抗加熱ヒーター、赤外線加熱ヒーター、電磁誘導式ヒーターなどが挙げられる。
 (成長ユニット3)
 成長ユニット3とは、成長工程を実現するための装置一式のことであり、フォーメーション工程によってCNT配向集合体の製造に好適な状態となった触媒の周囲環境を原料ガス環境とすると共に、触媒及び原料ガスの少なくとも一方を加熱することでCNT配向集合体を成長させる機能を有する。具体的には、原料ガス環境を保持するための成長炉3a、原料ガスを噴射するための原料ガス噴射部3b、成長炉3a内のガスを排気するための排気フード3d、触媒と原料ガスの少なくとも一方を加熱するためのヒーター3cなどが挙げられる。原料ガス噴射部3b及び排気フード3dはそれぞれ少なくとも1つ以上備えられており、全ての原料ガス噴射部3bから噴射される全ガス流量と、全ての排気フード3dから排気される全ガス流量は、ほぼ同量又は同量であることが好ましい。このようにすることが、原料ガスが成長炉3a外へ流出すること、及び成長炉3a外のガスを成長炉3a内に流入させることを防止する。後で述べるガス混入防止手段12を併用することによって、原料ガス及び/又は触媒賦活物質の触媒基板10上における濃度分布、流速分布、及び成長炉3a内におけるガスの流れパターンは、成長ユニット3の原料ガス噴射部3b及び排気フード3dの設計によって如何様にも制御することが可能になる。よって、CNT配向集合体の連続製造に好適な製造装置を実現できる。ヒーター3cとしては400℃から1100℃の範囲で加熱することができるものが好ましく、例えば、抵抗加熱ヒーター、赤外線加熱ヒーター、電磁誘導式ヒーターなどが挙げられる。さらに成長炉3a内に触媒賦活物質を添加するための触媒賦活物質添加手段を備えているとよい。
 このように、フォーメーション工程と成長工程を実現するユニットをそれぞれ別々に設けることは、フォーメーション炉2aの内壁に炭素汚れが付着することを防止することになるので、CNT配向集合体の製造にとってより好ましい。
 (搬送ユニット6)
 搬送ユニット6とは、少なくともフォーメーションユニット2から成長ユニット3まで触媒基板10を搬送するために必要な装置一式のことである。具体的には、ベルトコンベア方式におけるメッシュベルト6a、減速機付き電動モータを用いたベルト駆動部6bなどが挙げられる。
 (ガス混入防止手段11、12、13)
 ガス混入防止手段11、12、13とは、外気と製造装置100の炉内のガスが相互に混入すること、又は製造装置100内の炉(例えば、フォーメーション炉2a、成長炉3a、冷却炉4a)間でガス同士が相互に混入することを防止する機能を実現するための装置一式のことであり、触媒基板10の搬送のための出入口近傍、又は製造装置100内の空間と空間とを接続する接続部7、8、9に設置される。このガス混入防止手段11、12、13は、各炉における触媒基板10の入口及び出口の開口面に沿ってシールガスを噴出するシールガス噴射部11b、12b、13bと、主に噴射されたシールガス(及びその他近傍のガス)を各炉内に入らないように吸引して製造装置100の外部に排気する排気部11a、12a、13aとを、それぞれ少なくとも1つ以上を備えている。シールガスが炉の開口面に沿って噴射されることで、シールガスが炉の出入り口を塞ぎ、炉外のガスが炉内に混入することを防ぐ。また、当該シールガスを製造装置100外に排気することにより、当該シールガスが炉内に混入することを防ぐ。シールガスは不活性ガスであることが好ましく、特に安全性、コストなどの点から窒素であることが好ましい。シールガス噴射部11b、12b、13bと排気部11a、12a、13aの配置としては、1つのシールガス噴射部に隣接して1つの排気部を配置してもよいし、メッシュベルトを挟んでシールガス噴射部に対面するように排気部を配置してもよいが、ガス混入防止手段の全体の構成が、炉長方向に対称な構造となるようにシールガス噴射部及び排気部を配置することが好ましい。例えば、図1に示すように、1つの排気部の両端にシールガス噴射部を2つ配置し、排気部を中心にして炉長方向に対称な構造とするとよい。また、シールガス噴射部11b、12b、13bから噴射される全ガス流量と排気部から排気される全ガス流量はほぼ同量であることが好ましい。これによって、ガス混入防止手段11、12、13を挟んだ両側の空間からのガスが相互に混入することを防止するとともに、シールガスが両側の空間に流出することも防止することが可能になる。このようなガス混入防止手段12、13を成長炉3aの両端に設置することで、シールガスの流れと成長炉3a内のガスの流れが相互に干渉することを防止できる。よって、原料ガス及び/又は触媒賦活物質の触媒基板10上における濃度分布、流速分布、及び成長炉3a内におけるガスの流れパターンは、成長ユニット3の原料ガス噴射部3b及び排気フード3dの設計によって如何様にも制御することが可能になる。また、シールガスの成長炉3a内流入によるガス流れの乱れも防止されている。よって、CNT配向集合体の連続製造に好適な製造装置100を実現できる。
 ガス混入防止手段11、12、13によって防止されるガス混入の程度としては、CNT配向集合体の製造を阻害しない程度であることが好ましい。特に、フォーメーション工程を行なう場合は、フォーメーション炉2a内還元ガス環境中の炭素原子個数濃度を5×1022個/m以下、より好ましくは1×1022個/m以下に保つように、原料ガスがフォーメーション炉2a内へ混入することを、ガス混入防止手段11、12が防止することが好ましい。
 なお、本実施の形態におけるガス混入防止手段12、13は、本発明に係る製造装置が備える第1のガス混入防止手段として機能するものであり(つまり、排気部12a、13aが本発明における第1の排気部、シールガス噴射部12b、13bが本発明における第1のシールガス噴射部として機能するものである)、本実施の形態におけるガス混入防止手段11、12は、本発明に係る製造装置が備える第2のガス混入防止手段として機能するものである(つまり、排気部11a、12aが本発明における第2の排気部、シールガス噴射部11b、12bが本発明における第2のシールガス噴射部として機能するものである)。即ち、第1のガス混入防止手段と第2のガス混入防止手段とは同様の構成で実現できるため、一つのガス混入防止手段12が第1のガス混入防止手段及び第2のガス混入防止手段として機能するのである(同様に排気部12a、シールガス噴射部12bは、それぞれ、第1の排気部及び第2の排気部、第1のシールガス噴射部及び第2のシールガス噴射部として機能する)。
 (触媒賦活物質添加手段)
 触媒賦活物質添加手段(図示せず)は触媒賦活物質を添加するものであり、例えば、シールガス又は原料ガス中に添加したり、あるいは成長炉3a内の空間にある触媒の周囲環境に触媒賦活物質を直接添加したりするための装置一式のことである。触媒賦活物質の供給手段としては、特に限定されることはないが、例えば、バブラーによる供給、触媒賦活物質を含有した溶液を気化しての供給、気体そのままでの供給、及び固体触媒賦活物質を液化・気化しての供給などが挙げられ、気化器、混合器、攪拌器、希釈器、噴霧器、ポンプ、及びコンプレッサなどの各種の供給機器を用いた供給システムを構築することができる。触媒賦活物質添加手段はガス混入防止手段12及び/又は成長ユニット3に備えられており、それぞれ接続部8及び/又は成長炉3aと接続されている。触媒賦活物質添加手段はガス混入防止手段12及び成長ユニット3のうち、いずれか一方のみに備えてもよいが、CNT配向集合体の製造効率をより高くできるとの観点から、少なくとも成長ユニット3に備えることが好ましく、ガス混入防止手段12及び成長ユニット3の両方に備えることがより好ましい。このように、本発明に係る製造装置が備える成長炉、及び、成長炉の基材を入れる口の開口面に沿ってシールガスを噴射する第1のシールガス噴射部が触媒賦活物質添加手段を備える形態においては、触媒の賦活効果をより向上させることができる。なお、触媒賦活物質添加手段の構成としては、例えば、ガス混入防止手段12及び/又は成長ユニット3に触媒賦活物質を供給する供給機器及び接続するための供給管が挙げられる。この供給機器及び供給管はガス混入防止手段12及び成長ユニット3のそれぞれに設けてもよく、供給機器をガス混入防止手段12及び成長ユニット3で共用し、供給管を分岐させてガス混入防止手段12及び成長ユニット3のそれぞれに触媒賦活物質を添加する構成としてもよい。また、触媒賦活物質の供給管などに触媒賦活物質濃度の計測装置を設けていてもよい。この出力値を用いてフィードバック制御することにより、経時変化の少ない安定な触媒賦活物質の供給を行なうことができる。
 (炭素原子個数濃度)
 原料ガスがフォーメーション炉2a内空間に混入すると、CNTの成長に悪影響を及ぼす。フォーメーション炉2a内還元ガス環境中の炭素原子個数濃度を5×1022個/m以下、より好ましくは1×1022個/m以下に保つように、ガス混入防止手段11、12により原料ガスのフォーメーション炉2a内への混入を防止すると良い。ここで炭素原子個数濃度は、還元ガス環境中の各ガス種(i=1、2、・・・)に対して、濃度(ppmv)をD、D・・・、標準状態での密度(g/m)をρ、ρ・・・、分子量をM、M・・・、ガス分子1つに含まれる炭素原子数をC、C・・・、アボガドロ数をNとして下記数式(1)で計算している。
Figure JPOXMLDOC01-appb-M000001
 フォーメーション炉2a内における還元ガス環境中の炭素原子個数濃度を5×1022個/m以下に保つことによって、CNTの製造量及び品質を良好に保つことができる。炭素原子個数濃度が5×1022個/m以上となるとフォーメーション工程において、触媒の還元、触媒のCNTの成長に適合した状態の微粒子化促進、触媒の活性向上の少なくとも一つの効果が阻害され、成長工程におけるCNTの製造量減少、品質の劣化を引き起こす。
 (接続部7、8、9)
 各ユニットの炉内空間を空間的に接続し、触媒基板10がユニットからユニットへ搬送される時に、触媒基板10が外気に曝されることを防ぐための装置一式のことである。具体的には、触媒基板10の周囲環境と外気を遮断し、触媒基板10をユニットからユニットへ通過させることができる炉又はチャンバなどが挙げられる。
 (冷却ユニット4)
 冷却ユニット4とは、CNT配向集合体が成長した触媒基板10を冷却するために必要な装置一式のことである。成長工程後のCNT配向集合体、触媒、基材の酸化防止と冷却とを実現する機能を有する。具体的には、冷却ガスを保持するための冷却炉4a、水冷式の場合は冷却炉内空間を囲むように配置した水冷冷却管4c、空冷式の場合は冷却炉内空間に冷却ガスを噴射する冷却ガス噴射部4bなどが挙げられる。また、水冷方式と空冷方式とを組み合わせてもよい。
 (出口パージ部5)
 出口パージ部5とは触媒基板10の出口から装置炉内へ外気が混入することを防止するための装置一式のことである。触媒基板10の周囲環境をパージガス環境にする機能を有する。具体的には、パージガス環境を保持するための炉又はチャンバ、パージガスを噴射するための噴射部などが挙げられる。パージガスは不活性ガスが好ましく、特に安全性、コストなどの点から窒素であることが好ましい。ベルトコンベア方式など触媒基板10の出口が常時開口している場合は、パージガス噴射部としてパージガスを上下からシャワー状に噴射するガスカーテン装置とし、装置出口から外気が混入することを防止することが好ましい。ガス混入防止手段13のみでも炉内への外気混入を防止することは可能であるが、装置の安全性を高めるために出口パージ部5を備えていることが好ましい。
 (還元ガス、原料ガス、触媒賦活物質の噴射部)
 還元ガス、原料ガス、触媒賦活物質の噴射部として、触媒基板10の触媒形成面を臨む位置に設けられた複数の噴出孔を備えるシャワーヘッドを用いてもよい。臨む位置とは、各噴出孔の、噴射軸線が触媒基板10の法線と成す角が0以上90°未満となるように設けられている。つまりシャワーヘッドに設けられた噴出孔から噴出するガス流の方向が、触媒基板10に概ね直交するようにされている。
 還元ガスの噴射部としてこのようなシャワーヘッドを用いると、還元ガスを触媒基板10上に均一に散布することができ、効率良く触媒を還元することができる。結果、触媒基板10上に成長するCNT配向集合体の均一性を高めることができ、かつ還元ガスの消費量を削減することもできる。
 原料ガスの噴射部としてこのようなシャワーヘッドを用いると、原料ガスを触媒基板10上に均一に散布することができ、効率良く原料ガスを消費することができる。結果、触媒基板10上に成長するCNT配向集合体の均一性を高めることができ、かつ原料ガスの消費量を削減することもできる。
 触媒賦活物質の噴射部としてこのようなシャワーヘッドを用いると、触媒賦活物質を触媒基板10上に均一に散布することができ、触媒の活性が高まると共に寿命が延長するので、配向CNTの成長を長時間継続させることが可能となる。これは触媒賦活物質を原料ガスに添加し、噴射部としてシャワーヘッドを用いた場合でも同様である。
 (フォーメーション及び成長ユニットの排気フード)
 フォーメーションユニット2及び成長ユニット3の排気フード2d、3dとしては、還元ガス、又は原料ガス及び触媒賦活物質を、触媒基板10上から均一に排気することができる構造であることが好ましい。例えば、炉の両側壁に複数の排気孔を設けて、各排気孔から排気されるガスを1つの排気管へと集約するような排気フードを炉の両側面外側に設置してもよい。その場合、各排気孔から排気されるガス流量が炉長方向に均一になるように、排気フードの構造を設計することが好ましい。これによって、触媒基板10上のガスを均一に且つ速やかに排気することが可能になり、CNT配向集合体の連続製造に好適な製造装置を実現できる。
 次に、製造装置100全体の処理の流れを概説する。
 まず、メッシュベルト6aに載置された触媒基板10は装置入口から入口パージ部1の炉内へと搬送される。この入口パージ部1はパージガスを上下からシャワー状に噴射することで、入口から製造装置100の炉内へ外気が混入することを防止している。
 入口パージ部1とフォーメーションユニット2とは接続部7によって空間的に接続され、ガス混入防止手段11が配置されており、シールガス噴射部11bからシールガスを噴射するとともに排気部11aからシールガス及び近傍のガスを排気している。これにより、フォーメーション炉2a内空間へのパージガスの混入及び入口パージ部1側への還元ガスの混入が防止されるとともに、シールガスの入口パージ部1及びフォーメーション炉2aへの流入が防止される。触媒を担持された触媒基板10はメッシュベルト6aで搬送されながら、フォーメーション炉2a内にてフォーメーション工程を施される。
 フォーメーションユニット2と成長ユニット3とは接続部8によって空間的に接続され、ガス混入防止手段12が配置されており、シールガス噴射部12bからシールガスを噴射するとともに排気部12aからシールガス及び近傍のガスを排気している。これにより、フォーメーション炉2a内空間への原料ガスの混入及び成長炉3a内空間への還元ガスの混入が防止されるとともに、シールガスのフォーメーション炉2a及び成長炉3aへの流入が防止される。触媒を担持された触媒基板10はメッシュベルト6aで搬送されながら、成長炉3a内にて成長工程を施され、CNT配向集合体を成長させる。
 成長ユニット3と冷却ユニット4とは接続部9によって空間的に接続され、ガス混入防止手段13が配置されており、シールガス噴射部13bからシールガスを噴射するとともに排気部13aからシールガス及び近傍のガスを排気している。これにより、冷却炉4a内空間への原料ガスの混入及び成長炉3a内空間への冷却ガスの混入が防止されるとともに、シールガスの冷却炉4a及び成長炉3aへの流入が防止される。CNT配向集合体を成長させた触媒基板10はメッシュベルト6aで搬送されながら、冷却炉4a内にて200℃以下にまで冷却される。
 最後に、200℃以下にまで冷却されCNT配向集合体を成長させた触媒基板10はメッシュベルト6aに載置されて製造装置100外へと搬出される。装置出口には入口パージ部1と略同様の構造をした出口パージ部5が設けられており、パージガスを上下からシャワー状に噴射することで、出口から冷却炉4a内へ外気が混入することを防止している。
 図2に製造装置100の炉内におけるガス流れパターンの概念図を示す。図2の(a)は本発明に係るCNT配向集合体製造装置におけるガス流れパターンの概念図であり、比較例として図2の(b)にガス混入防止手段11、12、13が排気部11a、12a、13aを有さない場合のガス流れパターンの概念図を示す。本実施の形態の製造装置100では、シールガスを噴射するとともにシールガス及び近傍のガスを排気するガス混入防止手段12、13を成長炉3aの両端に設置している。よって、フォーメーション炉2aと成長炉3aとのガスの相互混入、及び成長炉3aと冷却炉4aとのガスの相互混入が防止されるとともに、成長炉3a内へのシールガスの流出も防止されている。成長炉3a内のガスはシールガスによって乱されることなく、成長ユニット3の原料ガス噴射部3b及び排気フード3dによって制御される。原料ガス噴射部3bとして、触媒基板10の触媒形成面を臨むように設けられた複数の噴出孔を備えたシャワーヘッドを用いるとともに、成長炉3a内のガスを炉の両側壁に設けられた複数の排気孔から均一に排気するように設計した排気フード3dを用いることで、原料ガス及び/又は触媒賦活物質の触媒基板10上における濃度分布、流速分布をCNTの製造に適した範囲内で均一に制御するとともに、CNTの成長に使われたガスを速やかに排気するようなガス流れパターンに制御している。よって、CNT配向集合体を連続的に製造するのに好適な製造装置が実現されている。
 比較例として、ガス混入防止手段11、12、13がシールガスの噴射のみによって行われる場合を図2の(b)に示す。ガス混入防止手段12、13から噴射したシールガスは成長炉3a内へと流入し、原料ガス噴射部3bから噴射された原料ガスと混合する。そのため、原料ガス及び/又は触媒賦活物質の触媒基板10上における濃度分布、流速分布は不均一化し、流入したシールガスが炉内のガスの流れを乱し、CNT配向集合体の連続製造は困難になる。
 (還元ガス又は原料ガスに曝される装置部品の材質)
 製造装置100におけるフォーメーション炉2a、還元ガス噴射部2b、フォーメーションユニット2の排気フード2d、成長炉3a、原料ガス噴射部3b、成長ユニット3の排気フード3d、メッシュベルト6a、ガス混入防止手段11、12、13のシールガス噴射部11b、12b、13b及び排気部11a、12a、13a、接続部7、8、9の炉などの各部品は還元ガス又は原料ガスに曝される。それら部品の材質としては、高温に耐えられ、加工の精度と自由度、コストの点から耐熱合金が好ましい。耐熱合金としては、耐熱鋼、ステンレス鋼、ニッケル基合金などが挙げられる。Feを主成分として他の合金濃度が50%以下のものが耐熱鋼と一般に呼ばれる。また、Feを主成分として他の合金濃度が50%以下であり、Crを約12%以上含有する鋼は一般にステンレス鋼と呼ばれる。また、ニッケル基合金としては、NiにMo、Cr及びFeなどを添加した合金が挙げられる。具体的には、SUS310、インコネル600、インコネル601、インコネル625、インコロイ800、MCアロイ、Haynes230アロイなどが耐熱性、機械的強度、化学的安定性、低コストなどの点から好ましい。
 耐熱合金を用いる際に、その表面を溶融アルミニウムめっき処理、若しくはその表面が算術平均粗さRa≦2μmとなるように研磨処理すると、高炭素環境下でCNTを成長させたときに壁面などに付着する炭素汚れを低減することができる。これらの処理は、CNT配向集合体の製造にとってより好ましい。
 (溶融アルミニウムめっき処理)
 溶融アルミニウムめっき処理とは、溶融アルミニウム浴中に被めっき材料を浸漬することによって被めっき材の表面にアルミニウム又はアルミニウム合金層を形成する処理をいう。具体的にその処理方法は、被めっき材(母材)の表面を洗浄した(前処理)後、約700℃溶融アルミニウム浴中に浸漬させることによって、母材表面中へ溶融アルミニウムの拡散を起こさせ、母材とアルミとの合金を生成し、浴より引上げ時にその合金層にアルミニウムを付着させる処理のことである。さらに、その後に、表層のアルミナ層並びにアルミ層を低温熱拡散処理し、その下のFe-Al合金層を露出させる処理を行ってもよい。
 (研磨処理)
 耐熱合金を算術平均粗さRa≦2μmにするための研磨処理方法としては、バフ研磨に代表される機械研磨、薬品を利用する化学研磨、電解液中にて電流を流しながら研磨する電解研磨、機械研磨と電解研磨を組み合わせた複合電解研磨などが挙げられる。
 (算術平均粗さ)
 算術平均粗さRaの定義は「JIS B 0601:2001」を参照されたい。
 以上、本発明の好ましい実施の形態を説明したが、本発明はこれらに限定されるものではなく、その要旨の範囲内で様々な変形及び変更が可能である。
 例えば、ガス原料、加熱温度などの製造条件を変更することにより、この製造装置で生産されるカーボンナノチューブを単層のもの又は多層のものに変更することも可能であるし、両者を混在生産させることも可能である。
 また、本実施の形態の製造装置100においては、製造装置100とは別の成膜装置によって基材表面への触媒の形成を行なうものとしたが、フォーメーションユニットの上流側に触媒成膜ユニットを設け、フォーメーションユニットに先立って触媒成膜ユニットを基材が通過するように製造装置100を構成してもよい。
 また、本実施の形態の製造装置100においては、フォーメーションユニット2、成長ユニット3、冷却ユニット4の順に各ユニットを設けて、接続部7、8、9にて各炉内空間を空間的に接続しているが、フォーメーション工程、成長工程、冷却工程以外の他の工程を実現するユニットをどこかに複数追加して、接続部にて各ユニットの炉内空間を空間的に接続してもよい。
 また、本実施の形態の製造装置100においては、搬送ユニット6として、ベルトコンベア方式で説明したが、それに制限されるものではなく、例えばロボットアーム方式、ターンテーブル方式、昇降方式などにしてもよい。
 また、本実施の形態の製造装置100においては、フォーメーションユニット2、成長ユニット3、及び冷却ユニット4の各ユニットの配置について、直線状配置と環状配置の2つの方式で説明したが、それに制限されるものではなく、例えば鉛直方向に順次配置するなどしてもよい。
 (本発明に係る製造方法)
 本発明に係る製造方法は、表面に触媒を担持した基材上にカーボンナノチューブ配向集合体を成長させるカーボンナノチューブ配向集合体の製造方法であって、前記カーボンナノチューブ配向集合体を成長させる成長炉を含む成長ユニットと、前記成長炉外のガスが当該成長炉内のガスに混入することを防止する、第1のシールガス噴射部および第1の排気部を備えた第1のガス混入防止手段とを備える製造装置を用い、前記成長炉の前記基材を入れる口及び前記基材を取り出す口のうち少なくとも一つの口の開口面に沿って前記第1のシールガス噴射部からシールガスを噴射するとともに、当該シールガスが当該口から当該成長炉の中に入らないように吸引して前記製造装置の外部に前記第1の排気部から排気するガス混入防止工程と、前記成長ユニットにおいてカーボンナノチューブ配向集合体を成長させる成長工程とを、行なうことを含む。
 本発明に係る製造方法は、例えば、これまで説明した製造装置100を用いることで好適に実現できる。
 成長工程については既に説明したとおりであり、例えば、成長ユニット3を用いて好適に実現できる。
 ガス混入防止工程は、例えば、上述のガス混入防止手段12、13を用いて好適に実現できる。例えば、成長炉3aにおける触媒基板10を入れる口及び触媒基板10を取り出す口のうち少なくとも一つの口の開口面に沿ってシールガス噴射部12b、13bからシールガスを噴射するとともに、当該シールガスが成長炉3aの中に入らないように吸引して製造装置100の外部に排気部12a、13aから排気する。
 ガス混入防止工程は成長工程を行なっている間に並行して行なうことが好ましく、成長工程を行なう前からガス混入防止工程を開始することがより好ましい。
 また、本発明に係る製造方法では、フォーメーション工程を含むことがより好ましい。フォーメーション工程ついては既に説明したとおりであり、フォーメーションユニット2を用いて好適に実現できる。フォーメーション工程は前記成長工程の前に行なうとよい。
 また、成長工程において、成長炉内に触媒賦活物質を添加することがより好ましい。成長炉内への触媒賦活物質の添加は、成長炉3aに備えられた触媒賦活物質添加手段によって好適に実現できる。
 また、ガス混入防止手段12の中に、前記ガス混入防止工程において、触媒賦活物質を添加することがより好ましい。
 (付記事項)
 以上に説明したように、本発明に係るカーボンナノチューブ配向集合体の製造装置は、前記成長ユニットが、原料ガスを噴射する原料ガス噴射部と、成長炉内ガスを排気する排気フードとを備えることがより好ましい。
 また、基材に担持された触媒の周囲環境を還元ガス環境とすると共に、前記触媒及び前記還元ガスの少なくとも一方を加熱するためのフォーメーション炉を含むフォーメーションユニットをさらに備えることがより好ましい。
 また、前記フォーメーション炉外のガスが当該フォーメーション炉内のガスに混入することを防止する第2のガス混入防止手段を備え、前記第2のガス混入防止手段は、前記フォーメーション炉の前記基材を入れる口及び前記基材を取り出す口のうち少なくとも一つの口の開口面に沿ってシールガスを噴射する第2のシールガス噴射部と、当該シールガスが当該口から当該フォーメーション炉の中に入らないように吸引して前記製造装置の外部に排気する第2の排気部とを備えることがより好ましい。
 また、前記成長ユニットが、前記成長炉内に触媒賦活物質を添加するための触媒賦活物質添加手段を備えることがより好ましい。
 また、前記第1のガス混入防止手段が、前記成長炉の前記基材を入れる口の開口面に沿ってシールガスを噴射する第1のシールガス噴射部と、当該シールガスが当該口から当該成長炉の中に入らないように吸引して前記製造装置の外部に排気する第1の排気部とを備えるものであることがより好ましい。
 また、前記第1のシールガス噴射部が、触媒賦活物質を添加するための触媒賦活物質添加手段を備えることがより好ましい。
 また、本発明に係る製造方法では、基材に担持された触媒の周囲環境を還元ガス環境とすると共に、前記触媒及び前記還元ガスの少なくとも一方を加熱するためのフォーメーション炉を含むフォーメーションユニットを備える製造装置を用いて、前記基材に担持された触媒の周囲環境を還元ガス環境とすると共に、前記触媒及び前記還元ガスの少なくとも一方を加熱するフォーメーション工程を、前記成長工程の前に行なうことがより好ましい。
 前記成長工程において、前記成長炉内に触媒賦活物質を添加することがより好ましい。
 また、前記ガス混入防止工程が、前記成長炉の前記基材を入れる口の開口面に沿ってシールガスを噴射する第1のシールガス噴射部からシールガスを噴射するとともに、当該シールガスが当該口から当該成長炉の中に入らないように吸引して前記製造装置の外部に排気することを含むことがより好ましい。
 また、前記第1のシールガス噴射部から、シールガスとともに触媒賦活物質を添加することがより好ましい。
 以下に実施例を挙げて、本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。本発明における評価は以下の方法に従って行った。
 (比表面積測定)
 比表面積とは液体窒素の77Kでの吸脱着等温線を測定し、この吸脱着等温曲線からBrunauer,Emmett,Tellerの方法から計測した値のことである。比表面積は、BET比表面積測定装置((株)マウンテック製HM model-1210)を用いて測定した。
 (G/D比)
 G/D比とはCNTの品質を評価するのに一般的に用いられている指標である。ラマン分光装置によって測定されるCNTのラマンスペクトルには、Gバンド(1600cm-1付近)とDバンド(1350cm-1付近)と呼ばれる振動モードが観測される。GバンドはCNTの円筒面であるグラファイトの六方格子構造由来の振動モードであり、Dバンドは結晶欠陥由来の振動モードである。よって、GバンドとDバンドのピーク強度比(G/D比)が高いものほど、欠陥量が少なく品質の高いCNTと評価できる。
 本実施例においては、顕微レーザラマンシステム(サーモフィッシャーサイエンティフィック(株)製Nicolet Almega XR)を用い、基材中心部付近のCNT配向集合体を一部剥離し、CNT配向集合体の基材から剥離された面にレーザーを当てて、ラマンスペクトルを測定し、G/D比を求めた。
 [実施例1]
 触媒基板の製作条件を以下に説明する。基板として90mm角、厚さ0.3mmのFe-Ni-Cr合金YEF426(日立金属株式会社製、Ni42%、Cr6%)を使用した。レーザー顕微鏡を用いて表面粗さを測定したところ、算術平均粗さRa≒2.1μmであった。この基板の表裏両面にスパッタリング装置を用いて厚さ20nmのアルミナ膜を製膜し、次いで表面のみにスパッタリング装置を用いて厚さ1.0nmの鉄膜(触媒金属層)を製膜した。
 本実施例で用いた製造装置は上記実施の形態でも説明した図1に示す製造装置100である。製造装置100は入口パージ部1、フォーメーションユニット2、成長ユニット3、冷却ユニット4、出口パージ部5、搬送ユニット6、接続部7~9、ガス混入防止手段11~13から構成した。
 フォーメーション炉2a、成長炉3a、還元ガス噴射部2b、原料ガス噴射部3b、排気フード2d、3d、ガス混入防止手段11、12、13の排気部11a、12a、13a及びシールガス噴射部11b、12b、13b、メッシュベルト6a、接続部7、8、9の各材質はSUS310とし、その表面は溶融アルミニウムめっき処理を施した。
 上述のようにして作製した触媒基板をメッシュベルト6a上に載置し、メッシュベルト6aの搬送速度を変更しながら、各触媒基板10上にCNT配向集合体を製造した。
 製造装置100の入口パージ部1、フォーメーションユニット2、ガス混入防止手段11、12、13、成長ユニット3、冷却ユニット4、出口パージ部5の各条件は以下のように設定した。
 入口パージ部1
  ・パージガス:窒素60sLm
 フォーメーションユニット2
  ・炉内温度:830℃
  ・還元ガス:窒素11.2sLm、水素16.8sLm
  ・排気フード2d排気量:28sLm
  ・処理時間:28分
 成長ユニット3
  ・炉内温度:830℃
  ・原料ガス:窒素16.04sLm、エチレン1.8sLm、
        水蒸気含有窒素0.16sLm(水分量16000ppmv)
  ・排気フード3d排気量:18sLm
  ・処理時間:11分
 冷却ユニット4
  ・冷却水温度:30℃
  ・不活性ガス:窒素10sLm
  ・冷却時間:30分
 出口パージ部5
  ・パージガス:窒素50sLm
 ガス混入防止手段11
  ・排気部11a排気量:20sLm
  ・シールガス噴射部11b:窒素20sLm
 ガス混入防止手段12
  ・排気部12a排気量:25sLm
  ・シールガス噴射部12b:窒素25sLm
 ガス混入防止手段13
  ・排気部13a排気量:20sLm
  ・シールガス噴射部13b:窒素20sLm
 還元ガス噴射部2b及び原料ガス噴射部3bで噴射するガス量は、炉の体積に比例させてCNT配向集合体の製造に好適なガス量に設定した。また、フォーメーション炉2aと成長炉3aのガスの相互混入を強く防止するため、3つのガス混入防止手段11、12、13の中でガス混入防止手段12のシールガス量及び排気量は最も多く設定した。
 還元ガス噴射部2b付近に設置したガスサンプリングポートから、製造中の還元ガスをサンプリングし、成分分析をFTIR分析装置(サーモフィッシャーサイエンティフィックNicolet 6700 FT-IR)で実施した。その結果、ガス混入防止手段11、12によってフォーメーション炉2a内のエチレン濃度は50ppmvに抑えられていることが確認できた。炭素原子個数濃度に換算すると約3×1021個/mとなる。
 本実施例によって製造される、CNT配向集合体の特性は、密度:0.03g/cm、平均外径:2.9nm(半値幅:2nm)、炭素純度:99.9%、ヘルマンの配向係数:0.7、収量:2.0mg/cm、G/D比:6.3、BET比表面積:1100m/gであった。
 よって、本実施例の製造装置100によって、CNT配向集合体を製造することが可能であることが示された。
 [比較例1]
 実施例と同様の触媒基板10と同様の製造装置100を用い、入口パージ部1、フォーメーションユニット2、ガス混入防止手段11、12、13、成長ユニット3、冷却ユニット4、出口パージ部5の各条件を以下のように設定してCNT配向集合体の製造を試みた。
 入口パージ部1
  ・パージガス:窒素60sLm
 フォーメーションユニット2
  ・炉内温度:830℃
  ・還元ガス:窒素11.2sLm、水素16.8sLm
  ・排気フード2d排気量:28sLm
  ・処理時間:28分
 成長ユニット3
  ・炉内温度:830℃
  ・原料ガス:窒素16.04sLm、エチレン1.8sLm、
        水蒸気含有窒素0.16sLm(水分量16000ppmv)
  ・排気フード3d排気量:18sLm
  ・処理時間:11分
 冷却ユニット4
  ・冷却水温度:30℃
  ・不活性ガス:窒素10sLm
  ・冷却時間:30分
 出口パージ部5
  ・パージガス:窒素50sLm
 ガス混入防止手段11
  ・排気部11a排気量:0sLm
  ・シールガス噴射部11b:窒素20sLm
 ガス混入防止手段12
  ・排気部12a排気量:0sLm
  ・シールガス噴射部12b:窒素25sLm
 ガス混入防止手段13
  ・排気部13a排気量:0sLm
  ・シールガス噴射部13b:窒素20sLm
 ガス混入防止手段11、12、13におけるガス排気量を0とし、擬似的にガス混入防止手段が排気部を有していない装置と同等の装置とした。
 結果として、触媒基板表面が黒ずみ、基材上に若干のCNTの成長が認めたれた程度であった。よって、本実施例の製造装置のCNT配向集合体製造に対する優位性が示された。
 [実施例2]
 シールガス噴射部12bに触媒賦活物質添加手段を設けた他は実施例1と同様の製造装置100と触媒基板10を用い、入口パージ部1、フォーメーションユニット2、ガス混入防止手段11、12、13、成長ユニット3、冷却ユニット4、出口パージ部5の各条件を以下のように設定してCNT配向集合体の製造を行なった。
 入口パージ部1
  ・パージガス:窒素60sLm
 フォーメーションユニット2
  ・炉内温度:830℃
  ・還元ガス:窒素11.2sLm、水素16.8sLm
  ・排気フード2d排気量:28sLm
  ・処理時間:28分
 成長ユニット3
  ・炉内温度:830℃
  ・原料ガス:窒素16.04sLm、エチレン1.8sLm、
        水蒸気含有窒素0.16sLm(水分量16000ppmv)
  ・排気フード3d排気量:18sLm
  ・処理時間:11分
 冷却ユニット4
  ・冷却水温度:30℃
  ・不活性ガス:窒素10sLm
  ・冷却時間:30分
 出口パージ部5
  ・パージガス:窒素50sLm
 ガス混入防止手段11
  ・排気部11a排気量:20sLm
  ・シールガス噴射部11b:窒素20sLm
 ガス混入防止手段12
  ・排気部12a排気量:28.2sLm
  ・シールガス噴射部12b:窒素25sLm、
             水蒸気含有窒素3.2sLm(水分量16000ppmv)
 ガス混入防止手段13
  ・排気部13a排気量:20sLm
  ・シールガス噴射部13b:窒素20sLm
 還元ガス噴射部2b付近に設置したガスサンプリングポートから、製造中の還元ガスをサンプリングし、成分分析をFTIR分析装置(サーモフィッシャーサイエンティフィックNicolet 6700 FT-IR)で実施した。その結果、ガス混入防止手段11、12によってフォーメーション炉2a内のエチレン濃度は50ppmvに抑えられていることが確認できた。炭素原子個数濃度に換算すると約3×1021個/mとなる。
 本実施例によって製造される、CNT配向集合体の特性は、密度:0.03g/cm、平均外径:2.9nm(半値幅:2nm)、炭素純度:99.9%、ヘルマンの配向係数:0.7、収量:2.8mg/cm、G/D比:6.3、BET比表面積:1100m/gであった。
 ガス混入防止手段12のシールガス中に触媒賦活物質として水を添加することよって、実施例1と比較してCNT配向集合体の収量が1.4倍に向上する効果があることが示された。
 本発明は、高い製造効率でCNT配向集合体を製造できるので、電子デバイス材料、光学素子材料、導電性材料などの分野に好適に利用できる。
 2   フォーメーションユニット
 2a  フォーメーション炉
 2d  排気フード
 3   成長ユニット
 3a  成長炉
 3d  排気フード
 11  ガス混入防止手段(第2のガス混入防止手段)
 12  ガス混入防止手段(第1のガス混入防止手段・第2のガス混入防止手段)
 13  ガス混入防止手段(第1のガス混入防止手段)
 11a 排気部(第2の排気部)
 12a 排気部(第1の排気部・第2の排気部)
 13a 排気部(第1の排気部)
 11b シールガス噴射部(第2のシールガス噴射部)
 12b シールガス噴射部(第1のシールガス噴射部・第2のシールガス噴射部)
 13b シールガス噴射部(第1のシールガス噴射部)
 100 製造装置(カーボンナノチューブ配向集合体の製造装置)

Claims (12)

  1.  表面に触媒を担持した基材上にカーボンナノチューブ配向集合体を成長させる成長炉を含む成長ユニットを備えるカーボンナノチューブ配向集合体の製造装置において、
     前記成長炉外のガスが当該成長炉内のガスに混入することを防止する第1のガス混入防止手段を備え、
     前記第1のガス混入防止手段は、前記成長炉の前記基材を入れる口及び前記基材を取り出す口のうち少なくとも一つの口の開口面に沿ってシールガスを噴射する第1のシールガス噴射部と、当該シールガスが当該口から当該成長炉の中に入らないように吸引して前記製造装置の外部に排気する第1の排気部とを備えることを特徴とするカーボンナノチューブ配向集合体の製造装置。
  2.  前記成長ユニットが、原料ガスを噴射する原料ガス噴射部と、成長炉内ガスを排気する排気フードとを備えることを特徴とする請求項1に記載のカーボンナノチューブ配向集合体の製造装置。
  3.  基材に担持された触媒の周囲環境を還元ガス環境とすると共に、前記触媒及び前記還元ガスの少なくとも一方を加熱するためのフォーメーション炉を含むフォーメーションユニットをさらに備えることを特徴とする請求項1又は2に記載のカーボンナノチューブ配向集合体の製造装置。
  4.  前記フォーメーション炉外のガスが当該フォーメーション炉内のガスに混入することを防止する第2のガス混入防止手段を備え、
     前記第2のガス混入防止手段は、前記フォーメーション炉の前記基材を入れる口及び前記基材を取り出す口のうち少なくとも一つの口の開口面に沿ってシールガスを噴射する第2のシールガス噴射部と、当該シールガスが当該口から当該フォーメーション炉の中に入らないように吸引して前記製造装置の外部に排気する第2の排気部とを備えることを特徴とする請求項3に記載のカーボンナノチューブ配向集合体の製造装置。
  5.  前記成長ユニットが、前記成長炉内に触媒賦活物質を添加するための触媒賦活物質添加手段を備えることを特徴とする請求項1~4のいずれか1項に記載のカーボンナノチューブ配向集合体の製造装置。
  6.  前記第1のガス混入防止手段が、前記成長炉の前記基材を入れる口の開口面に沿ってシールガスを噴射する第1のシールガス噴射部と、当該シールガスが当該口から当該成長炉の中に入らないように吸引して前記製造装置の外部に排気する第1の排気部とを備えるものである請求項1~5のいずれか1項に記載のカーボンナノチューブ配向集合体の製造装置。
  7.  前記第1のシールガス噴射部が、触媒賦活物質を添加するための触媒賦活物質添加手段を備えることを特徴とする請求項6に記載のカーボンナノチューブ配向集合体の製造装置。
  8.  表面に触媒を担持した基材上にカーボンナノチューブ配向集合体を成長させるカーボンナノチューブ配向集合体の製造方法であって、
     前記カーボンナノチューブ配向集合体を成長させる成長炉を含む成長ユニットと、
     前記成長炉外のガスが当該成長炉内のガスに混入することを防止する、第1のシールガス噴射部および第1の排気部を備えた第1のガス混入防止手段とを備える製造装置を用い、
     前記成長炉の前記基材を入れる口及び前記基材を取り出す口のうち少なくとも一つの口の開口面に沿って前記第1のシールガス噴射部からシールガスを噴射するとともに、
     当該シールガスが当該口から当該成長炉の中に入らないように吸引して前記製造装置の外部に前記第1の排気部から排気するガス混入防止工程と、
     前記成長ユニットにおいてカーボンナノチューブ配向集合体を成長させる成長工程とを、
    行なうことを含むカーボンナノチューブ配向集合体の製造方法。
  9.  基材に担持された触媒の周囲環境を還元ガス環境とすると共に、前記触媒及び前記還元ガスの少なくとも一方を加熱するためのフォーメーション炉を含むフォーメーションユニットを用いて、前記基材に担持された触媒の周囲環境を還元ガス環境とすると共に、前記触媒及び前記還元ガスの少なくとも一方を加熱するフォーメーション工程を、前記成長工程の前に行なうことを特徴とする請求項8に記載のカーボンナノチューブ配向集合体の製造方法。
  10.  前記成長工程において、前記成長炉内に触媒賦活物質を添加することを特徴とする請求項8又は9に記載のカーボンナノチューブ配向集合体の製造方法。
  11.  前記ガス混入防止工程が、前記成長炉の前記基材を入れる口の開口面に沿ってシールガスを噴射する第1のシールガス噴射部からシールガスを噴射するとともに、
     当該シールガスが当該口から当該成長炉の中に入らないように吸引して前記製造装置の外部に排気することを含む請求項8~10のいずれか1項に記載のカーボンナノチューブ配向集合体の製造方法。
  12.  前記第1のシールガス噴射部から、シールガスとともに触媒賦活物質を添加することを特徴とする請求項11に記載のカーボンナノチューブ配向集合体の製造方法。
PCT/JP2010/061042 2009-07-01 2010-06-29 カーボンナノチューブ配向集合体の製造装置 WO2011001969A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011520925A JP5649225B2 (ja) 2009-07-01 2010-06-29 カーボンナノチューブ配向集合体の製造装置
CN201080028714.3A CN102471065B (zh) 2009-07-01 2010-06-29 取向碳纳米管集合体的制造装置
US13/381,034 US9227171B2 (en) 2009-07-01 2010-06-29 Device for manufacturing aligned carbon nanotube assembly
EP10794138.7A EP2450310B1 (en) 2009-07-01 2010-06-29 Device for manufacturing aligned carbon nanotube assembly
US14/949,697 US9682863B2 (en) 2009-07-01 2015-11-23 Method for producing aligned carbon nanotube assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009157226 2009-07-01
JP2009-157226 2009-07-01

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/381,034 A-371-Of-International US9227171B2 (en) 2009-07-01 2010-06-29 Device for manufacturing aligned carbon nanotube assembly
US14/949,697 Division US9682863B2 (en) 2009-07-01 2015-11-23 Method for producing aligned carbon nanotube assembly

Publications (1)

Publication Number Publication Date
WO2011001969A1 true WO2011001969A1 (ja) 2011-01-06

Family

ID=43411041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061042 WO2011001969A1 (ja) 2009-07-01 2010-06-29 カーボンナノチューブ配向集合体の製造装置

Country Status (6)

Country Link
US (2) US9227171B2 (ja)
EP (1) EP2450310B1 (ja)
JP (1) JP5649225B2 (ja)
KR (1) KR101621581B1 (ja)
CN (1) CN102471065B (ja)
WO (1) WO2011001969A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7811087B2 (en) 2002-02-13 2010-10-12 3M Innovative Properties Company Modular system for customized orthodontic appliances
JP2012166991A (ja) * 2011-02-15 2012-09-06 Taiyo Nippon Sanso Corp 原料ガス拡散抑制型カーボンナノ構造物製造装置
WO2012165514A1 (ja) 2011-05-31 2012-12-06 日本ゼオン株式会社 カーボンナノチューブ配向集合体の製造装置及び製造方法
CN103827024A (zh) * 2011-08-24 2014-05-28 日本瑞翁株式会社 取向碳纳米管集合体的制造装置及制造方法
WO2014097624A1 (ja) * 2012-12-20 2014-06-26 日本ゼオン株式会社 カーボンナノチューブの製造方法
EP2397440A4 (en) * 2009-02-10 2015-07-15 Zeon Corp SUPPORT MATERIAL FOR THE PRODUCTION OF AN ORIENTED CARBON NANOTUBE AGGREGATE AND PROCESS FOR PRODUCING AN ORIENTED CARBON NANOTUBE AGGREGATE
JP2016069212A (ja) * 2014-09-29 2016-05-09 日本ゼオン株式会社 カーボンナノチューブ配向集合体の製造装置
WO2022209831A1 (ja) * 2021-03-31 2022-10-06 日本ゼオン株式会社 炭素膜

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3013061B1 (fr) * 2013-11-14 2018-03-02 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de fabrication au defile et en continu de nanostructures alignees sur un support et dispositif associe
CN103628041A (zh) * 2013-11-21 2014-03-12 青岛赛瑞达电子科技有限公司 常压cvd薄膜连续生长炉
JP6020483B2 (ja) * 2014-02-14 2016-11-02 トヨタ自動車株式会社 表面処理装置と表面処理方法
FR3050449B1 (fr) * 2016-04-25 2018-05-11 Nawatechnologies Installation pour la fabrication d'un materiau composite comprenant des nanotubes de carbone, et procede de mise en oeuvre de cette installation
CA3073689A1 (en) 2017-08-22 2019-02-28 Ntherma Corporation Methods and devices for synthesis of carbon nanotubes
CA3073661A1 (en) 2017-08-22 2019-02-28 Ntherma Corporation Graphene nanoribbons, graphene nanoplatelets and mixtures thereof and methods of synthesis
KR20210002675A (ko) 2018-04-30 2021-01-08 아익스트론 에스이 탄소-함유 코팅으로 기판을 코팅하기 위한 디바이스
US20240150891A1 (en) 2019-10-30 2024-05-09 Aixtron Se Apparatus and method for depositing carbon-containing structures
CN110937592B (zh) * 2019-11-08 2022-03-22 深圳烯湾科技有限公司 碳纳米管批量连续化生产设备及其制备方法
CN110937591B (zh) * 2019-11-08 2022-03-22 深圳烯湾科技有限公司 碳纳米管批量连续化生产设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10226824A (ja) * 1997-02-14 1998-08-25 Nisshin Steel Co Ltd 光輝焼鈍炉における入側シール方法及び装置
JP2001220674A (ja) * 1999-12-02 2001-08-14 Ricoh Co Ltd カーボンナノチューブ及びその作製方法、電子放出源
JP2003238125A (ja) * 2002-02-13 2003-08-27 Toray Ind Inc カーボンナノチューブの連続製造方法および製造装置
JP2003252613A (ja) * 2001-12-26 2003-09-10 Toray Ind Inc カーボンナノチューブの製造方法および製造装置
JP2008128619A (ja) * 2006-11-24 2008-06-05 Nippon Steel Engineering Co Ltd シール装置用セラミックファイバーブロックおよび当該ブロックを適用した連続焼鈍炉のシール装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7160531B1 (en) * 2001-05-08 2007-01-09 University Of Kentucky Research Foundation Process for the continuous production of aligned carbon nanotubes
JP3768867B2 (ja) 2001-12-03 2006-04-19 株式会社リコー カーボンナノチューブの作製方法
JP2004332093A (ja) 2003-05-08 2004-11-25 Hiroshi Ashida 連続cvd製造装置
KR100664545B1 (ko) * 2005-03-08 2007-01-03 (주)씨엔티 탄소나노튜브 대량합성장치 및 대량합성방법
JP5443756B2 (ja) * 2005-06-28 2014-03-19 ザ ボード オブ リージェンツ オブ ザ ユニバーシティ オブ オクラホマ カーボンナノチューブを成長および収集するための方法
JP4832046B2 (ja) 2005-09-30 2011-12-07 日立造船株式会社 連続熱cvd装置
JP2007091556A (ja) 2005-09-30 2007-04-12 Hitachi Zosen Corp カーボン系薄膜の連続製造装置
JP4113545B2 (ja) 2005-12-05 2008-07-09 富士通株式会社 カーボンナノチューブの形成装置及び方法
JP5309317B2 (ja) 2006-09-08 2013-10-09 古河電気工業株式会社 カーボンナノ構造体の製造方法及び製造装置
WO2008096699A1 (ja) * 2007-02-05 2008-08-14 National Institute Of Advanced Industrial Science And Technology 配向カーボンナノチューブの製造装置および製造方法
US8709374B2 (en) * 2007-02-07 2014-04-29 Seldon Technologies, Llc Methods for the production of aligned carbon nanotubes and nanostructured material containing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10226824A (ja) * 1997-02-14 1998-08-25 Nisshin Steel Co Ltd 光輝焼鈍炉における入側シール方法及び装置
JP2001220674A (ja) * 1999-12-02 2001-08-14 Ricoh Co Ltd カーボンナノチューブ及びその作製方法、電子放出源
JP2003252613A (ja) * 2001-12-26 2003-09-10 Toray Ind Inc カーボンナノチューブの製造方法および製造装置
JP2003238125A (ja) * 2002-02-13 2003-08-27 Toray Ind Inc カーボンナノチューブの連続製造方法および製造装置
JP2008128619A (ja) * 2006-11-24 2008-06-05 Nippon Steel Engineering Co Ltd シール装置用セラミックファイバーブロックおよび当該ブロックを適用した連続焼鈍炉のシール装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2450310A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7811087B2 (en) 2002-02-13 2010-10-12 3M Innovative Properties Company Modular system for customized orthodontic appliances
EP2397440A4 (en) * 2009-02-10 2015-07-15 Zeon Corp SUPPORT MATERIAL FOR THE PRODUCTION OF AN ORIENTED CARBON NANOTUBE AGGREGATE AND PROCESS FOR PRODUCING AN ORIENTED CARBON NANOTUBE AGGREGATE
JP2012166991A (ja) * 2011-02-15 2012-09-06 Taiyo Nippon Sanso Corp 原料ガス拡散抑制型カーボンナノ構造物製造装置
EP2716600A4 (en) * 2011-05-31 2015-03-04 Zeon Corp APPARATUS AND METHOD FOR MANUFACTURING AN ORIENTED CARBON NANOTUBE AGGREGATE
CN103562131A (zh) * 2011-05-31 2014-02-05 日本瑞翁株式会社 取向碳纳米管集合体的制造装置及制造方法
WO2012165514A1 (ja) 2011-05-31 2012-12-06 日本ゼオン株式会社 カーボンナノチューブ配向集合体の製造装置及び製造方法
CN103827024A (zh) * 2011-08-24 2014-05-28 日本瑞翁株式会社 取向碳纳米管集合体的制造装置及制造方法
JPWO2013027797A1 (ja) * 2011-08-24 2015-03-19 日本ゼオン株式会社 カーボンナノチューブ配向集合体の製造装置及び製造方法
JP2016094342A (ja) * 2011-08-24 2016-05-26 日本ゼオン株式会社 カーボンナノチューブ配向集合体の製造装置及び製造方法
US10046969B2 (en) 2011-08-24 2018-08-14 Zeon Corporation Device for manufacturing and method for manufacturing oriented carbon nanotube aggregates
WO2014097624A1 (ja) * 2012-12-20 2014-06-26 日本ゼオン株式会社 カーボンナノチューブの製造方法
JPWO2014097624A1 (ja) * 2012-12-20 2017-01-12 日本ゼオン株式会社 カーボンナノチューブの製造方法
JP2016069212A (ja) * 2014-09-29 2016-05-09 日本ゼオン株式会社 カーボンナノチューブ配向集合体の製造装置
WO2022209831A1 (ja) * 2021-03-31 2022-10-06 日本ゼオン株式会社 炭素膜

Also Published As

Publication number Publication date
JP5649225B2 (ja) 2015-01-07
US9682863B2 (en) 2017-06-20
KR101621581B1 (ko) 2016-05-16
CN102471065B (zh) 2014-03-26
JPWO2011001969A1 (ja) 2012-12-13
EP2450310A4 (en) 2015-02-18
KR20120099573A (ko) 2012-09-11
US20120107220A1 (en) 2012-05-03
EP2450310B1 (en) 2017-06-14
US20160075558A1 (en) 2016-03-17
EP2450310A1 (en) 2012-05-09
CN102471065A (zh) 2012-05-23
US9227171B2 (en) 2016-01-05

Similar Documents

Publication Publication Date Title
JP5649225B2 (ja) カーボンナノチューブ配向集合体の製造装置
JP4581146B2 (ja) カーボンナノチューブ配向集合体の製造装置及び製造方法
JP5590603B2 (ja) カーボンナノチューブ配向集合体の製造装置
JP5574265B2 (ja) カーボンナノチューブ配向集合体の製造装置
JP5574264B2 (ja) カーボンナノチューブ配向集合体生産用基材及びカーボンナノチューブ配向集合体の製造方法
JP5622101B2 (ja) カーボンナノチューブ配向集合体の製造方法
WO2012165514A1 (ja) カーボンナノチューブ配向集合体の製造装置及び製造方法
JP5505785B2 (ja) カーボンナノチューブ配向集合体の製造装置
JP5700819B2 (ja) カーボンナノチューブ配向集合体の製造方法
JP2012126598A (ja) 噴出装置、カーボンナノチューブ配向集合体の製造装置及び製造方法
JP6458594B2 (ja) カーボンナノチューブを含む炭素ナノ構造体の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080028714.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10794138

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011520925

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117031054

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2010794138

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13381034

Country of ref document: US

Ref document number: 2010794138

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE