WO2011001775A1 - センサおよびセンシング方法 - Google Patents

センサおよびセンシング方法 Download PDF

Info

Publication number
WO2011001775A1
WO2011001775A1 PCT/JP2010/059236 JP2010059236W WO2011001775A1 WO 2011001775 A1 WO2011001775 A1 WO 2011001775A1 JP 2010059236 W JP2010059236 W JP 2010059236W WO 2011001775 A1 WO2011001775 A1 WO 2011001775A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
frequency
wave
sensor
detection
Prior art date
Application number
PCT/JP2010/059236
Other languages
English (en)
French (fr)
Inventor
山下馨
Original Assignee
国立大学法人京都工芸繊維大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都工芸繊維大学 filed Critical 国立大学法人京都工芸繊維大学
Priority to US13/381,153 priority Critical patent/US20120099401A1/en
Priority to JP2011520840A priority patent/JP5485268B2/ja
Publication of WO2011001775A1 publication Critical patent/WO2011001775A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52003Techniques for enhancing spatial resolution of targets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/80Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
    • G01S3/802Systems for determining direction or deviation from predetermined direction
    • G01S3/808Systems for determining direction or deviation from predetermined direction using transducers spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/02Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones

Definitions

  • the present invention relates to a sensor for detecting the direction of a detection target and a sensing method for detecting the direction of the detection target.
  • Phased array sensing is an incident angle measurement method that utilizes the fact that the phase of a reaching wave shifts depending on the incident angle depending on the position of each element arranged as an array.
  • Patent Literature 1 describes sensing using a piezoelectric diaphragm type sensor.
  • the incoming wave used to detect the array diameter, the array element spacing (more accurately, the repetition period), and the detection target orientation The relationship with the wavelength is essentially important.
  • Non-Patent Document 1 the angular resolution is analyzed geometrically. No grating lobe is generated in the directivity pattern corresponding to the information on the low frequency wave. In addition, the directivity pattern corresponding to the information on the high-frequency wave shows a main lobe with little spread, and it can be understood that the resolution is high.
  • the array diameter must be increased to reduce the angular resolution” and “the element period to prevent the generation of grating lobes”. Need to be shortened, and a large number of elements are inevitably required. The presence of grating lobes can cause ghosts.
  • the half-width of the main lobe is inversely proportional to the array diameter, and the larger the array diameter, the finer the angular resolution.
  • the scanning angle range maximum scanning angle
  • the wavelength of the detection wave is ⁇
  • a grating lobe may occur when the element period exceeds ⁇ / (1 + sin ⁇ ).
  • a element size
  • b element period
  • q ⁇ sin ( ⁇ )
  • r ⁇ sin ( ⁇ ) It is.
  • FIG. 12 (a) is a chart showing a directivity pattern corresponding to information on low-frequency waves.
  • the radial axis indicates relative sensitivity, and the circumferential axis indicates azimuth ⁇ .
  • no grating lobe occurs in the directivity pattern corresponding to the information regarding the wave having a frequency smaller than a predetermined value.
  • the main lobe that is not sharp is shown in the directivity pattern corresponding to the information regarding the wave having a small frequency.
  • FIG. 12B is a chart showing a directivity pattern corresponding to information on high-frequency waves.
  • the radial axis indicates relative sensitivity, and the circumferential axis indicates azimuth ⁇ .
  • a sharp main lobe is shown in the directivity pattern corresponding to the information related to the wave having a large frequency.
  • a grating lobe occurs in the directivity pattern corresponding to the information regarding the wave having a frequency larger than a predetermined value.
  • a main lobe and a side lobe are shown according to the frequency. Further, a side lobe is defined as a grating lobe having a strength equal to or greater than that of the main lobe.
  • the present invention has been made in view of the above-mentioned problems, and in phased array sensing, ghosts based on grating lobes that occur greatly only at the higher frequency are reduced, and cannot be obtained only at the lower frequency.
  • An object is to provide a sensor and a sensing method capable of realizing sharp directivity (high resolution).
  • a characteristic configuration of a sensor according to the present invention for solving the above-described problem is a sensor that detects a direction of a detection target, a detection unit that detects a wave having a plurality of frequencies coming from the detection target, and the arrival of the wave
  • An information acquisition unit that acquires information about a direction; and a determination unit that determines a direction of a detection target.
  • the detection unit includes a first wave having at least a first frequency of a plurality of frequencies and a plurality of frequencies.
  • the second wave having the second frequency is detected, the information acquisition unit acquires first information related to the arrival direction of the first wave and second information related to the arrival direction of the second wave, and the determination unit includes at least the first wave
  • the purpose is to determine the direction of the detection target based on the first information and the second information.
  • a sharp main lobe is shown in the directivity pattern corresponding to information on high-frequency waves, and a large grating lobe is generated.
  • the directivity pattern corresponding to the information on the low-frequency wave shows a main lobe that does not generate a grating lobe but is not sharp (low resolution).
  • the first information on the arrival direction of the first wave is detected by detecting the first wave having at least the first frequency and the second wave having the second frequency among the plurality of frequencies.
  • the second information on the arrival direction of the second wave, and the direction of the detection target is determined based on at least the first information and the second information. Therefore, it is possible to realize a sensor having a sharp directivity (high resolution) that cannot be obtained with only a single lower frequency.
  • the influence of the grating lobe can be eliminated without narrowing the element interval by acquiring a plurality of information with a single sensor. Accordingly, the number of elements for obtaining the same angular resolution (that is, for forming an array having the same diameter) can be greatly reduced. In particular, when elements are arranged two-dimensionally in three-dimensional measurement, this reduction effect is also effective because it is effective in the square.
  • the configuration of the sensor of the present invention it is possible to perform a three-dimensional measurement without generating a ghost with a structure in which the number of elements is greatly reduced.
  • Application to main parts (three-dimensional sensor) is effective.
  • the detection unit may select the first frequency and the second frequency so that the information acquisition unit acquires second false information different from the first false information and the first false information.
  • the first false information is information indicating a direction different from the arrival direction of the first wave
  • the second false information is information indicating a direction different from the arrival direction of the second wave.
  • the first information includes first arrival direction information indicating the arrival direction of the first wave and first false information
  • the second information includes second arrival direction information indicating the arrival direction of the second wave and second information. Including false information.
  • the first false information and the second false information are different, it is possible to reliably generate a grating lobe by determining the direction of the detection target based on the first information and the second information. Can be suppressed and ghost reduction can be realized.
  • the determination unit may determine the direction of the detection target by at least one of an arithmetic product of a value indicating the first information and a value indicating the second information, and a minimum calculation. .
  • an arithmetic product of a value indicating the first information and a value indicating the second information By executing at least one of the arithmetic product and the minimum operation, it is possible to eliminate the influence of the grating lobe, so that ghost reduction can be realized. It is also possible to combine arithmetic products and minimum operations.
  • the arithmetic product and the minimum calculation can be obtained with a simple arithmetic circuit, a simple and inexpensive sensor structure can be constructed.
  • the first frequency and the second frequency are selected so that information corresponding to the grating lobe is included only in the second false information among the first false information and the second false information by performing geometric analysis in advance.
  • the first frequency corresponds to the low frequency
  • the second frequency corresponds to the high frequency.
  • the plurality of frequencies includes a plurality of resonance frequencies of the detection element, the first frequency corresponds to the first resonance frequency of the plurality of resonance frequencies, and the second frequency is the plurality of resonance frequencies. May correspond to the second resonance frequency.
  • the sensor element is a resonance type that resonates at a plurality of specific frequencies. Since a single pulse used for measurement has a wide frequency spectrum, a resonance type sensor receives such a pulse and vibrates at its own resonance frequency to generate an output waveform corresponding to the resonance frequency. As a result, the sensor of the present invention can be realized with a simple configuration without using a circuit for adjusting the frequency of the wave detected by the detection unit or a frequency filter.
  • the senor may further include a frequency adjustment unit that adjusts the frequency of the wave detected by the detection unit from the first frequency to the second frequency.
  • the frequency of the wave detected by the detection unit is set to those frequencies. Can be adjusted arbitrarily. As a result, it is possible to realize a sensor with the smallest ghost and the highest resolution.
  • the first frequency and the second frequency are recognized so that the information corresponding to the grating lobe is included only in the second false information of the first false information and the second false information by geometric analysis in advance. Then, the frequency detected by the detection unit can be adjusted to the first frequency and the second frequency by the frequency adjustment unit.
  • the first frequency corresponds to the low frequency
  • the second frequency corresponds to the high frequency.
  • a sensing method for solving the above problems is a sensing method for detecting a direction of a detection target, the detection step for detecting a wave having a plurality of frequencies coming from the detection target, and the arrival direction of the wave Including an information acquisition step for acquiring information on and a determination step for determining a direction of a detection target, wherein the detection step includes a first wave having at least a first frequency of a plurality of frequencies and a plurality of frequencies. Executed by detecting a second wave having the second frequency, and the information acquisition step is executed by acquiring first information regarding the arrival direction of the first wave and second information regarding the arrival direction of the second wave. The determination step is executed by determining the direction of the detection target based on at least the first information and the second information.
  • a first wave having at least a first frequency and a second wave having a second frequency are detected from among a plurality of frequencies, and the first information related to the arrival direction of the first wave and the first wave related to the arrival direction of the second wave. Since the direction of the detection target is determined based on at least the first information and the second information, the ghost based on the grating lobe that occurs greatly only at the higher frequency is reduced and low. It is possible to realize a sensor with a sharp directivity (high resolution) that cannot be obtained with only one frequency.
  • FIG. 1 It is a schematic diagram which shows the structure of the sensor of 1st Embodiment of this invention. It is sectional drawing which shows one of several detection elements.
  • a waveform diagram (a) showing a response waveform corresponding to a wave based on an ultrasonic wave detected by the first detection element, and a spectrum diagram (b) showing a spectrum of a response waveform obtained by Fourier transforming the waveform diagram (a) ).
  • the chart (a) showing the directivity pattern corresponding to the first information and the directivity pattern corresponding to the second information, and the directivity corresponding to the arithmetic product of the value indicating the first information and the value indicating the second information
  • Embodiments relating to the sensor and sensing method of the present invention will be described with reference to FIGS.
  • the present invention is not intended to be limited to the configurations described in the embodiments and drawings described below, and includes configurations equivalent to those configurations.
  • FIG. 1 is a schematic diagram showing a configuration of a sensor 100 according to the first embodiment of the present invention.
  • the sensor 100 is a sensor that detects the orientation of the detection target.
  • An ultrasonic wave generated from the ultrasonic wave generator 1 which is an example of a wave generation source reaches the detection target 2 and is reflected by the detection target 2.
  • the ultrasonic waves reflected by the detection target 2 arrive at the sensor 100 at an angle ⁇ with respect to the vertical direction of the incident surface of the sensor 100.
  • the sensor 100 detects the direction of the detection target 2.
  • the display unit 3 displays the detection result.
  • the sensor 100 includes a detection unit 102 that detects ultrasonic waves having a plurality of frequencies coming from the detection target 2, and an information processing unit 104 that processes the detected information.
  • a unit circuit including a plurality of delay circuits and addition circuits, or a CPU of a computer functions as the information processing unit 104.
  • the information processing unit 104 includes an information acquisition unit 106 that acquires information related to the arrival direction of ultrasonic waves, and a determination unit 108 that determines the direction of the detection target 2.
  • the detection unit 102 includes a plurality of detection elements (a first detection element 102a, a second detection element 102b, a third detection element 102c, and a fourth detection element 102d).
  • a piezoelectric diaphragm type microsensor functions as each of a plurality of sensing elements.
  • the length (diameter of the array) of the diaphragm portion is indicated by a length a
  • the element period (element interval) is indicated by a length b.
  • FIG. 2 is a cross-sectional view showing a piezoelectric diaphragm microsensor as an example of one of the plurality of sensing elements (first sensing element 102a).
  • the first sensing element 102a includes a Si substrate 202, a SiO 2 layer 204, a lower electrode layer 206, a piezoelectric layer 208, and an upper electrode layer 210.
  • the lower electrode layer 206 includes Pt and Ti.
  • a Pt / Ti electrode functions as the lower electrode layer 206.
  • the piezoelectric layer 208 is lead zirconate titanate (Pb (Zr, Ti) O 3 ): hereinafter referred to as “PZT”. )including.
  • PZT lead zirconate titanate
  • the PZT layer functions as the piezoelectric layer 208.
  • the upper electrode layer 210 contains Au.
  • the Au electrode functions as the upper electrode layer 210.
  • Each configuration of the second detection element 102b, the third detection element 102c, and the fourth detection element 102d is equivalent to the configuration of the first detection element 102a.
  • FIG. 3 shows a waveform diagram (a) showing a response waveform corresponding to a wave based on an ultrasonic wave detected by the first detection element 102a, and a spectrum of the response waveform obtained by Fourier transforming the waveform diagram (a). It is a spectrum figure (b) shown.
  • the vertical axis represents the output voltage
  • the horizontal axis represents time
  • the vertical axis represents the output voltage
  • the horizontal axis represents the frequency.
  • the first sensing element 102a corresponds to a resonance type sensing element.
  • the first sensing element 102a is sensitive to a plurality of resonance frequencies.
  • the detection unit 102 detects an ultrasonic wave having a unique first resonance frequency among a plurality of frequencies coming from a detection target and an ultrasonic wave having a unique second resonance frequency among the plurality of frequencies.
  • the first sensing element 102a resonates at a specific resonance frequency (for example, the first resonance frequency 141 kHz and the second resonance frequency 278 kHz).
  • the first sensing element 102a receives a pulse having a wide frequency spectrum, vibrates at a specific resonance frequency, and outputs an output waveform corresponding to the specific resonance frequency.
  • FIG. 4 is a schematic diagram showing the information acquisition unit 106.
  • the information acquisition unit 106 includes a plurality of variable delay devices (a first variable delay device 107a, a second variable delay device 107b, a third variable delay device 107c, and a fourth variable delay device 107d) and an adder 107e.
  • the information acquisition unit 106 for example, information on the arrival direction of the first ultrasonic wave having the first resonance frequency (first information), information on the arrival direction of the second ultrasonic wave having the second resonance frequency (second information), and To get.
  • the first information includes first direction information and first false information.
  • the second information includes second direction information and second false information.
  • the first direction information is information indicating the arrival direction of the first ultrasonic wave
  • the second direction information is information indicating the arrival direction of the second ultrasonic wave.
  • the first false information is information indicating a direction that is not the arrival direction of the first ultrasonic wave
  • the second false information is information indicating a direction that is not the arrival direction of the second ultrasonic wave. Further, at least the first false information and the second false information are different from each other.
  • the information acquisition unit 106 receives the first output waveform information corresponding to the first resonance frequency from each of the plurality of detection elements, adds them, and outputs the addition result (first information) to the determination unit 108.
  • a delay pattern corresponding to the scanning angle ⁇ is set in each of the plurality of variable delay devices.
  • the adder 107e adds a plurality of input waveform information and outputs the addition result.
  • the information acquisition unit 106 receives the second output waveform information corresponding to the second resonance frequency from each of the plurality of detection elements, adds them, and outputs the addition result (second information) to the determination unit 108.
  • FIG. 5A is a chart showing a directivity pattern corresponding to the first information and a directivity pattern corresponding to the second information.
  • the radial axis indicates relative sensitivity
  • the circumferential axis indicates azimuth ⁇ .
  • the directivity pattern indicated by the solid line is indicated corresponding to the first information
  • the directivity pattern indicated by the dotted line is indicated corresponding to the second information.
  • the directivity pattern appearing at the azimuth of 30 ° indicates a main lobe corresponding to the first direction information and the second direction information.
  • Directional patterns that appear in other directions indicate side lobes corresponding to the first false information and the second false information.
  • the directivity pattern appearing at the azimuth of ⁇ 30 ° shows a grating lobe.
  • the grating lobe is equal to or larger than the main lobe among the side lobes.
  • the frequency corresponding to the directivity pattern in which no grating lobe is shown corresponds to a low frequency
  • the frequency corresponding to the directivity pattern in which a grating lobe is shown corresponds to a high frequency.
  • the determination unit 108 determines the direction of the detection target 2 by, for example, an arithmetic product of a value indicating the first information and a value indicating the second information.
  • the detection unit 102 selects the first frequency and the second frequency so that the information acquisition unit 106 acquires second false information different from the first false information and the first false information by performing geometric analysis in advance. Can do. Since the first false information and the second false information are different from each other, ghost reduction can be surely realized by calculating based on the first information and the second information.
  • FIG. 5B is a chart showing a directivity pattern corresponding to the arithmetic product of the value indicating the first information and the value indicating the second information.
  • the radial axis indicates relative sensitivity
  • the circumferential axis indicates azimuth ⁇ .
  • the directivity pattern appearing at the azimuth of 30 ° indicates a main lobe sharpened by the arithmetic product of the value of the first direction information and the value of the second direction information. In other directions, the directivity pattern has almost disappeared due to the arithmetic product of the value of the first false information and the value of the second false information.
  • the azimuth angle range in which electronic scanning is performed that is, the range corresponding to the “field of view” of the array sensor is ⁇ 60 degrees
  • the ratio of the intensity of the maximum side lobe (including the grating lobe) to the intensity of the main lobe Referred to as “sidelobe level”.
  • the side lobe level reaches 192%.
  • two frequencies that is, a wave having a first frequency and a wave having a lower second frequency
  • the second frequency is used.
  • f L as f L 0.74f H
  • the f LL 0.42f H as a third frequency f LL respectively selecting, by taking the arithmetic product, sidelobe levels be reduced to 2.7% it can.
  • the side lobe level can be remarkably lowered, which is very effective for reducing the ghost and sharpening the main lobe.
  • FIG. 6 is a flowchart showing a sensing method using the sensor 100 according to the first embodiment of the present invention.
  • a sensing method using the sensor 100 of the first embodiment will be described with reference to FIGS. 1, 4, and 6.
  • Step 702 Send an ultrasonic wave from the ultrasonic wave generator 1.
  • the ultrasonic wave reaches the detection target 2 and is reflected by the detection target 2.
  • the ultrasonic wave reflected by the detection target 2 enters the sensor 100 at a predetermined angle with respect to the vertical direction of the incident surface of the sensor 100.
  • the predetermined angle can be, for example, an incident angle of 30 °.
  • Step 704 The sensor 100 receives the ultrasonic wave reflected by the detection target 2.
  • Step 706 The detection unit 102 detects a first ultrasonic wave having a first frequency among a plurality of frequencies and a second ultrasonic wave having a second frequency among the plurality of frequencies.
  • the plurality of sensing elements resonate at a specific resonance frequency (for example, a first resonance frequency of 141 kHz and a second resonance frequency of 278 kHz).
  • a specific resonance frequency for example, a first resonance frequency of 141 kHz and a second resonance frequency of 278 kHz.
  • each of the plurality of sensing elements receives a pulse having a wide frequency spectrum, vibrates at a specific resonance frequency, and outputs output waveform information corresponding to the resonance frequency to each of the plurality of variable delay elements.
  • the output waveform information output from each of the plurality of sensing elements is signal waveform information including the time delay of each of the plurality of sensing elements.
  • Step 708 Each of the plurality of variable delay devices delays the first output waveform information corresponding to the first resonance frequency, and outputs the delayed first output waveform information to the adder 107e.
  • the first variable delay unit 107a receives the first output waveform information output from the first detection element 102a, delays the first output waveform information, and outputs the delayed first output waveform information to the adder 107e.
  • the second variable delay device 107b, the third variable delay device 107c, and the fourth variable delay device 107d receive the first output waveform information output from the corresponding detection elements 102b, 102c, and 102d, and One output waveform information is delayed, and the delayed first output waveform information is output to the adder 107e.
  • the phase of the input waveform information to the adder 107e can be made uniform by processing the first output waveform information with a plurality of variable delay devices.
  • Step 710 Each of the plurality of variable delay devices delays the second output waveform information corresponding to the second resonance frequency, and outputs the delayed second output waveform information to the adder 107e.
  • the first variable delay unit 107a receives the second output waveform information output from the first detection element 102a, delays the second output waveform information, and outputs the delayed second output waveform information to the adder 107e.
  • the second variable delay unit 107b, the third variable delay unit 107c, and the fourth variable delay unit 107d receive the second output waveform information output from the corresponding detection elements 102b, 102c, and 102d, and The 2-output waveform information is delayed, and the delayed second output waveform information is output to the adder 107e.
  • the phase of the input waveform information to the adder 107e can be made uniform by processing the second output waveform information with a plurality of variable delay devices.
  • Step 712 The adder 107e adds (in-phase synthesis) the delayed first output waveform information output from each of the plurality of variable delay devices, and outputs the addition result (first information) to the determination unit 108. Further, the adder 107e adds (in-phase synthesis) the delayed second output waveform information output from each of the plurality of variable delay devices, and outputs the addition result (second information) to the determination unit 108.
  • the information acquisition unit 106 acquires first information regarding the arrival direction of the first ultrasonic wave and second information regarding the arrival direction of the second ultrasonic wave.
  • step 710 is executed after step 708 is executed.
  • step 708 the step of outputting the delayed first output waveform information to the adder 107e is executed.
  • the execution order of step 708 and step 710 is not limited.
  • step 708 and step 710 may be performed in parallel.
  • Step 713 Steps 708 to 712 are repeated a plurality of times over the scanning angle ( ⁇ ). Thereby, all the information in the scanning range can be acquired.
  • Step 714 The determination unit 108 determines the direction of the detection target based on the arithmetic product of the value indicating the first information and the value indicating the second information.
  • Step 716 The display unit 3 displays the detection result.
  • the detection unit 102 has been described as detecting an ultrasonic wave having a specific resonance frequency.
  • the ultrasonic wave to be detected is an ultrasonic wave having a specific resonance frequency.
  • the detection unit 102 includes a frequency filter as long as the information acquisition unit 106 can acquire information regarding the arrival direction of the ultrasonic wave having the first frequency and information regarding the arrival direction of the ultrasonic wave having the second frequency. obtain.
  • the frequency filter filters a desired first frequency and a desired second frequency different from the first frequency.
  • the detector 102 is sensitive to the first frequency and the second frequency.
  • the frequency of the ultrasonic wave detected by the detection unit can be arbitrarily designed to those frequencies by the frequency filter. can do.
  • a ghost can be reduced most easily and a sensor with the highest resolution can be easily realized without performing special processing such as frequency conversion.
  • the first frequency and the second frequency are recognized so that the information corresponding to the grating lobe is included only in the second false information of the first false information and the second false information by geometric analysis in advance.
  • the ultrasonic frequency detected by the detection unit 102 can be designed to be the first frequency and the second frequency.
  • the first frequency corresponds to the low frequency
  • the second frequency corresponds to the high frequency.
  • the detection unit 102 does not show the first grating lobe indicating the directivity pattern corresponding to the first resonance frequency in the measurement scanning range, and the first grating lobe.
  • the first frequency and the second frequency may be selected so that the second grating lobe indicating the directivity pattern corresponding to the second resonance frequency does not have a common part.
  • the detection unit 102 detects a first ultrasonic wave having at least a first frequency and a second ultrasonic wave having a second frequency among a plurality of frequencies, and the arrival of the first ultrasonic wave. Since the first information on the direction and the second information on the arrival direction of the second ultrasonic wave are acquired and the direction of the detection target is determined based on at least the first information and the second information, the higher single It is possible to reduce a ghost that is largely generated only by the frequency, and to realize a sharp directivity (high resolution) sensor that cannot be obtained only by the lower single frequency.
  • the influence of the grating lobe can be eliminated without narrowing the element interval by acquiring a plurality of information with a single sensor. Accordingly, the number of elements for obtaining the same angular resolution (that is, for forming an array having the same diameter) can be greatly reduced. In particular, when elements are arranged two-dimensionally in three-dimensional measurement, this reduction effect is also effective because it is effective in the square.
  • the first information and the second information are The ghost reduction can be surely realized by determining the direction of the detection target based on the determination.
  • the arithmetic product of the value indicating the first information and the value indicating the second information is obtained, the influence of the grating lobe is eliminated. Therefore, ghost reduction can be realized. Since the arithmetic product can be obtained with a simple arithmetic circuit, a simple and inexpensive sensor structure can be constructed.
  • FIG. 7 is a schematic diagram showing a configuration of a sensor 800 according to the second embodiment of the present invention.
  • the sensor 800 includes a detection unit 802 that detects ultrasonic waves having a plurality of frequencies coming from the detection target 2, and the information processing unit 104.
  • the information processing unit 104 includes an information acquisition unit 106 and a determination unit 108.
  • the detection unit 802 includes a plurality of detection elements (a fifth detection element 802a, a sixth detection element 802b, a seventh detection element 802c, and an eighth detection element 802d).
  • the configuration of the sensor 800 is the same as the configuration of the sensor 100 of the first embodiment except for the detection unit 802.
  • a piezoelectric diaphragm type microsensor functions as each of a plurality of sensing elements.
  • the length (diameter of the array) of the diaphragm portion is indicated by a length a
  • the element period (element interval) is indicated by a length b.
  • FIG. 8 is a cross-sectional view showing a piezoelectric diaphragm type microsensor as an example of one of the plurality of sensing elements (fifth sensing element 802a).
  • the fifth sensing element 802a includes a Si substrate 202, a SiO 2 layer 204, a lower electrode layer 206, a piezoelectric layer 208, an upper electrode layer 210, an outer electrode 912, and a frequency adjustment unit 914.
  • the configuration of the fifth sensing element 802a is the same as the configuration of the first sensing element 102a of the first embodiment except for the outer electrode 912 and the frequency adjustment unit 914.
  • the outer electrode 912 contains Au.
  • the Au electrode functions as the outer electrode 912.
  • the frequency adjustment unit 914 adjusts the frequency of the ultrasonic wave detected by the fifth detection element 802a from the first frequency to the second frequency by applying a voltage to the outer electrode 912 and generating stress on the diaphragm by the inverse piezoelectric effect. To do.
  • each of the sixth detection element 802b, the seventh detection element 802c, and the eighth detection element 802d is equivalent to the configuration of the fifth detection element 802a.
  • FIG. 9 is a waveform diagram showing a response waveform corresponding to a wave based on an ultrasonic wave detected by the fifth detection element 802a.
  • the vertical axis represents the output voltage
  • the horizontal axis represents time.
  • (a) shows a response waveform when a voltage 0 v is applied to the outer electrode 912
  • (b) shows a response waveform when a voltage 5 v is applied to the outer electrode 912. Show.
  • the period of the response waveform changes due to voltage application.
  • FIG. 10 is a history diagram showing changes in the resonance frequency of the fifth sensing element 802a with respect to the voltage applied to the outer electrode 912.
  • FIG. The vertical axis represents the change in resonance frequency
  • the horizontal axis represents the voltage applied to the outer electrode.
  • the resonance frequency of the fifth sensing element 802a changes in a butterfly curve peculiar to the ferroelectric depending on the voltage applied to the outer electrode 912.
  • a frequency adjustment width close to 50% can be realized by applying 5v.
  • FIG. 11 is a flowchart showing a sensing method using the sensor 800 of the second embodiment of the present invention.
  • a sensing method using the sensor 800 of the second embodiment will be described with reference to FIG. 7, FIG. 8, and FIG.
  • the steps of the sensing method using the sensor 800 of the second embodiment are the same as the steps of the sensing method using the sensor 100 of the first embodiment except for Step 1205, Step 1206, Step 1209, Step 1210, and Step 1213. is there.
  • Step 1205 and Step 1206 are executed following Step 702 and Step 704.
  • Step 1205 The frequency adjustment unit 914 adjusts the frequency of the ultrasonic waves detected by the plurality of detection elements to the first frequency.
  • Step 1206 The detection unit 802 detects a first ultrasonic wave having a first frequency among a plurality of frequencies.
  • the plurality of sensing elements resonate at a specific resonance frequency (for example, a first resonance frequency of 141 kHz).
  • a specific resonance frequency for example, a first resonance frequency of 141 kHz.
  • each of the plurality of sensing elements receives a pulse having a wide frequency spectrum, vibrates at a specific resonance frequency, and outputs output waveform information corresponding to the resonance frequency to each of the plurality of variable delay elements.
  • the output waveform information output from each of the plurality of sensing elements is signal waveform information including the time delay of each of the plurality of sensing elements.
  • Step 708, Step 1209, and Step 1210 are executed following Step 1206.
  • Step 1209 The frequency adjustment unit 914 applies a voltage to the outer electrode 912 to adjust the frequency of the ultrasonic waves detected by the plurality of detection elements to the second frequency.
  • Step 1210 Generate ultrasonic waves from the ultrasonic generator 1.
  • the detection unit 802 detects the second ultrasonic wave.
  • Step 710 and step 1213 are executed following step 1210.
  • Step 1213 Steps 708 to 712 are repeated a plurality of times over the scanning angle ( ⁇ ).
  • Step 714 and step 716 are executed following step 1213.
  • the first information on the arrival direction of the first ultrasonic wave is detected by detecting the first ultrasonic wave having at least the first frequency and the second ultrasonic wave having the second frequency among the plurality of frequencies.
  • the second information on the arrival direction of the second ultrasonic wave, and the direction of the detection target is determined based on at least the first information and the second information.
  • the influence of the grating lobe can be eliminated without narrowing the element interval by acquiring a plurality of information with a single sensor. Therefore, the number of elements for obtaining the same angular resolution (that is, for forming an array having the same diameter) can be greatly reduced. In particular, when elements are arranged two-dimensionally in three-dimensional measurement, this reduction effect is also effective because it is effective in the square.
  • the frequency adjusting unit 914 is not limited to adjusting the voltage by applying a voltage to the outer electrode 912 as long as the first resonant frequency can be adjusted to a frequency different from the first resonant frequency.
  • the frequency adjustment unit 914 can adjust the frequency of the ultrasonic waves detected by the plurality of detection elements from the first frequency to the second frequency by applying external energy such as heat, magnetic field, and light to the plurality of detection elements.
  • the frequencies of the ultrasonic waves detected by the detection unit are those frequencies.
  • the frequency can be adjusted arbitrarily. As a result, it is possible to realize a sensor with the smallest ghost and the highest resolution.
  • the first frequency and the second frequency are recognized so that the information corresponding to the grating lobe is included only in the second false information of the first false information and the second false information by geometric analysis in advance. If so, the frequency detected by the detection unit 802 can be adjusted to the first frequency and the second frequency by the frequency adjustment unit 914. In this case, the first frequency corresponds to the low frequency, and the second frequency corresponds to the high frequency.
  • the first grating lobe and the second resonance frequency can be obtained without performing the first grating lobe indicating the directivity pattern corresponding to the first resonance frequency within the measurement scanning range by performing geometric analysis in advance.
  • the frequency adjustment unit 914 can adjust the first frequency and the second frequency detected by the detection unit 802 so that the second grating lobe indicating the directivity pattern corresponding to ⁇ has no common part.
  • the sensing element is assumed to be a piezoelectric diaphragm (four-sided fixed) type. However, as long as it can detect a wave having a plurality of frequencies coming from a detection target, the sensing element is a piezoelectric diaphragm (four-sided fixed) type. It is not limited. For example, a bridge (two sides fixed) type and a cantilever (one side fixed) type are also applicable.
  • the frequency is not limited to two as long as it is plural.
  • sensing may be performed using all the detected waves having three or more frequencies, or sensing may be performed by selecting any two waves from the detected waves.
  • the mode in which one is low frequency and the other is high frequency has been described. However, it is possible to envisage a mode in which both frequencies are low frequency and a mode in which both frequencies are high frequency. ghost reduction and / or at least one of the effects can be expected.
  • the determination unit 108 calculates the arithmetic product of the value indicating the first information and the value indicating the second information, but is not limited to the arithmetic product. For example, it may be calculated by a minimum operation, and furthermore, a calculation performed by combining an arithmetic product and a minimum operation is also within the scope of the present invention. For example, when there are three frequencies to be detected, an arithmetic product of a value indicating the first information and a value indicating the second information can be obtained, and further, a minimum operation of the arithmetic product and the value indicating the third information can be executed. . Note that the minimum calculation means selecting a minimum value from a plurality of values.
  • a wave mainly based on an ultrasonic wave is assumed as a wave. It is not limited to waves based on sound waves.
  • the incoming wave may be a wave based on electromagnetic waves (light, infrared rays, X-rays, etc.).
  • a photoelectric element can be adopted as the detection element.
  • the light generation unit (light emitting element) emits light toward the detection target. The light reaches the detection target and is reflected by the detection target. The light reflected by the detection target arrives at the sensor.
  • the photoelectric element detects a wave having a plurality of frequencies coming from the detection target.
  • a current flows through the photoelectric element.
  • the sensor detects the direction of the detection target based on the current.
  • a cadmium sulfide element (CdS element) can be adopted.
  • CdS element cadmium sulfide element
  • the resistance value of the CdS element can be changed, and the resistance value of the CdS element changes according to the brightness.
  • the resistance value of the CdS element is high, and almost no current flows through the CdS element.
  • the resistance value of the CdS element decreases, and a current flows through the CdS element.
  • a photo diode As the detection element, for example, a photo diode can be adopted. When light hits the PN junction of the photo diode, a potential difference is generated and a current flows through the photo diode.
  • the sensor and the sensing method according to the present invention can be widely used in the sensing field (for example, obstacle detection (garage entry, parallel parking, autonomous mobile robot), posture detection (preventing driver falling asleep, monitoring a cared person)). .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

 高い方の周波数だけでは大きく発生してしまうゴーストを低減化し、低い方の周波数だけでは得られない鋭い指向性を実現可能なセンサおよびセンシング方法を提供する。 検知対象の方向を検出するセンサ100であって、検知対象2から到来する複数の周波数を有する波動を検知する検知部102と、波動の到来方向に関する情報を取得する情報取得部106と、検知対象2の方向を判定する判定部108とを備え、検知部102は、複数の周波数のうちの少なくとも第1周波数を有する第1波動と複数の周波数のうちの第2周波数を有する第2波動とを検知し、情報取得部106は、第1波動の到来方向に関する第1情報と第2波動の到来方向に関する第2情報とを取得し、判定部108は、少なくとも第1情報と第2情報とに基づいて、検知対象2の方向を判定する。

Description

センサおよびセンシング方法
 本発明は、検知対象の方向を検出するセンサおよび検知対象の方向を検出するセンシング方法に関する。
 フェイズドアレイ・センシングは、「アレイとして並べた各素子の位置により入射角度に依存して到達波の位相がずれること」を利用した入射角度計測法である。例えば、特許文献1には、圧電ダイアフラム型センサを用いたセンシングについて記載されている。入射角度計測法による検知対象の方位検出の精度(角度分解能)を検討する際、アレイの直径およびアレイの素子間隔(正確には繰り返し周期)と、検知対象の方位を検出するために用いる到来波の波長との関係が本質的に重要である。
 非特許文献1では、角度分解能を幾何学的に分析している。低周波波動に関する情報に対応する指向性パターンにはグレーティングローブは生じない。また、高周波波動に関する情報に対応する指向性パターンには広がりの少ないメインローブが示され、高分解能であることが理解し得る。
特開2003-284182号公報
レビュー オブ プログレス イン クアンティテイティブ ノンデストラクティブ エバリュエイション 第17巻 プレナム プレス ニューヨーク 1998年 p.883~p.890(Review ofProgress in Quantitative Nondestructive Evaluation, vol.17, Plenum Press, NewYork (1998) 883-890)
 しかしながら、フェイズドアレイセンサを実現する場合、角度方向の高い精度を得ようとすると、「角度分解能を細かくするためアレイの直径を大きくする」ことと「グレーティングローブが生じないようにするために素子周期を短くする」ことが必要となり、必然的に多数の素子を必要とすることになる。グレーティングローブの存在は、ゴーストの原因になり得る。
 具体的には、素子数が十分大きければメインローブの半値幅はアレイの直径に反比例し、アレイの直径が大きいほど角度分解能は細かくなる。一方、走査角度範囲(最大走査角度)をθとし、検出波の波長をλとすると、素子周期がλ/(1+sinθ)を超えるとグレーティングローブが発生し得る。
 簡単のため、対象物までの距離がアレイ径に比べて十分大きく、入射波が平面波とみなせるとすると、φ方向にセンサを走査したときのθ方向の相対感度d(θ,φ)は、
 d(θ,φ)=cos(θ)|sinc(p)||sinn(N,q-r)|
で示し得る。ここで、
 aは素子サイズ
 bは素子周期
 α=a/λ
 β=b/λ
 sinc(p)=sin(p)/p
 p=παsin(θ)
 sinn(N,q)=sin(Nq)/(Nsin(q))
 q=πβsin(θ)
 r=πβsin(φ)
である。
 図12(a)は、低周波波動に関する情報に対応する指向性パターンを示すチャートである。半径軸は相対感度を示し、円周軸は方位θを示す。従来のセンサでは、所定の値より小さい周波数を有する波動に関する情報について、当該情報に対応する指向性パターンにはグレーティングローブは生じない。一方、小さい周波数を有する波動に関する情報について、当該情報に対応する指向性パターンには鋭くないメインローブが示される。
 図12(b)は、高周波波動に関する情報に対応する指向性パターンを示すチャートである。半径軸は相対感度を示し、円周軸は方位θを示す。従来のセンサでは、大きい周波数を有する波動に関する情報について、当該情報に対応する指向性パターンには鋭いメインローブが示される。一方、所定の値より大きい周波数を有する波動に関する情報について、当該情報に対応する指向性パターンにはグレーティングローブが生じる。
 なお、指向性パターンには、周波数に応じてメインローブとサイドローブとが示される。また、サイドローブのうち、メインローブと強度が同等かそれより大きいものをグレーティングローブと定義する。
 本発明は、上記課題に鑑みてなされたものであり、フェイズドアレイ・センシングにおいて、高い方の周波数だけでは大きく発生してしまうグレーティングローブに基づくゴーストを低減化し、低い方の周波数だけでは得られない鋭い指向性(高分解能)を実現することができるセンサおよびセンシング方法を提供することを目的とする。
 上記課題を解決するための本発明に係るセンサの特徴構成は、検知対象の方向を検出するセンサであって、検知対象から到来する複数の周波数を有する波動を検知する検知部と、波動の到来方向に関する情報を取得する情報取得部と、検知対象の方向を判定する判定部とを備え、検知部は、複数の周波数のうちの少なくとも第1周波数を有する第1波動と複数の周波数のうちの第2周波数を有する第2波動とを検知し、情報取得部は、第1波動の到来方向に関する第1情報と第2波動の到来方向に関する第2情報とを取得し、判定部は、少なくとも第1情報と第2情報とに基づいて、検知対象の方向を判定することにある。
 背景技術の項目で説明したように、従来のセンサでは、高周波波動に関する情報に対応する指向性パターンには、鋭いメインローブが示され、さらに、大きなグレーティングローブが生じる。低周波波動に関する情報に対応する指向性パターンには、グレーティングローブは生じないが鋭くないメインローブが示される(低分解能)。
 この点、本発明のセンサによれば、複数の周波数のうちの少なくとも第1周波数を有する第1波動と第2周波数を有する第2波動とを検知し、第1波動の到来方向に関する第1情報と第2波動の到来方向に関する第2情報とを取得し、少なくとも第1情報と第2情報とに基づいて、検知対象の方向を判定するので、高い方の単一の周波数だけでは大きく発生してしまうグレーティングローブを低減化し、低い方の単一の周波数だけでは得られない鋭い指向性(高分解能)なセンサを実現することができる。
 このように、本発明のセンサの構成によれば、単一のセンサで複数の情報を取得することにより、素子間隔を狭めることなくグレーティングローブの影響を無くすことができる。従って、同じ精度の角度分解能を得るため(すなわち、同じ径を持つアレイを構成するため)の素子数を大幅に削減できる。特に、三次元計測において素子を二次元に配置した場合は、この削減効果も二乗で効くのでさらに効果的である。
 本発明のセンサの構成によれば、素子数を大幅に削減した構造にてゴーストの生じない三次元計測が可能となり、医療用の診断装置(例えば、エコー診断装置)や自動車分野でのMEMS関連主要部品(三次元センサ)への適用が効果的である。
 本発明に係るセンサにおいて、検知部は、情報取得部が第1偽情報および第1偽情報と異なる第2偽情報を取得するように、第1周波数と第2周波数とを選択してもよい。ここで、第1偽情報は、第1波動の到来方向とは異なる方向を示す情報であり、第2偽情報は、第2波動の到来方向とは異なる方向を示す情報である。さらに、第1情報は、第1波動の到来方向を示す第1到来方向情報と第1偽情報とを含み、第2情報は、第2波動の到来方向を示す第2到来方向情報と第2偽情報とを含む。本発明のセンサの構成によれば、第1偽情報と第2偽情報とは異なるので、第1情報と第2情報とに基づいて検知対象の方向を判定することによって確実にグレーティングローブの発生を抑制しゴースト低減を実現し得る。
 本発明に係るセンサにおいて、判定部は、第1情報を示す値と第2情報を示す値との算術積、及びミニマム演算のうちの少なくとも一つによって、検知対象の方向を判定してもよい。算術積、及びミニマム演算のうちの少なくとも一つを実行することによりグレーティングローブの影響を無くすことができるため、ゴースト低減を実現し得る。算術積、及びミニマム演算を組み合わせることも可能である。また、算術積、及びミニマム演算は、簡易な演算回路で求め得るため、簡易且つ安価なセンサ構造を構築し得る。
 例えば、予め幾何学的に分析することによって第1偽情報と第2偽情報とのうち第2偽情報にのみグレーティングローブに対応する情報が含まれるよう第1周波数と第2周波数とを選択しておけば、算術積、及びミニマム演算のうちの少なくとも一つを実行することによりグレーティングローブの影響を無くすことができるため、ゴースト低減を実現し得る。この場合、第1周波数が低周波数に対応し、第2周波数が高周波数に対応する。
 本発明に係るセンサにおいて、複数の周波数は、検出素子が有する複数の共振周波数を含み、第1周波数は複数の共振周波数のうちの第1共振周波数に対応し、第2周波数は複数の共振周波数のうちの第2共振周波数に対応してもよい。
 本発明の構成によれば、例えば、センサ素子は、特定の複数の周波数で共振する共振型のものとする。計測に用いる単パルスは広い周波数スペクトルを持つので、共振型のセンサはそのようなパルスを受信して自分の共振周波数で振動し、その共振周波数に応じた出力波形を生じる。その結果、検知部が検知する波動の周波数を調整するための回路や、周波数フィルタを用いることなく簡易な構成で本発明のセンサを実現し得る。
 本発明に係るセンサにおいて、センサは、検知部が検知する波動の周波数を第1周波数から第2周波数に調整する周波数調整部をさらに含んでもよい。
 本発明の構成によれば、予め幾何学的に分析することによってゴースト低減効率のよい周波数と最も高分解である周波数とを認識しておれば、検知部が検知する波動の周波数をそれらの周波数に任意に調整することができる。その結果、ゴーストが最も低減化され、最も高分解能なセンサを実現し得る。
 例えば、予め幾何学的に分析することによって第1偽情報と第2偽情報とのうち第2偽情報にのみグレーティングローブに対応する情報が含まれるよう第1周波数と第2周波数とを認識しておけば、周波数調整部によって検知部が検知する周波数を第1周波数と第2周波数とに調整し得る。この場合、第1周波数が低周波数に対応し、第2周波数が高周波数に対応する。
 上記課題を解決するための本発明に係るセンシング方法は、検知対象の方向を検出するセンシング方法であって、検知対象から到来する複数の周波数を有する波動を検知する検知ステップと、波動の到来方向に関する情報を取得する情報取得ステップと、検知対象の方向を判定する判定ステップとを包含し、検知ステップは、複数の周波数のうちの少なくとも第1周波数を有する第1波動と複数の周波数のうちの第2周波数を有する第2波動とを検知することにより実行され、情報取得ステップは、第1波動の到来方向に関する第1情報と第2波動の到来方向に関する第2情報とを取得することにより実行され、判定ステップは、少なくとも第1情報と第2情報とに基づいて、検知対象の方向を判定することにより実行される。
 本発明に係るセンシング方法によれば、上記説明した本発明のセンサと同様の作用効果を奏する。すなわち、複数の周波数のうちの少なくとも第1周波数を有する第1波動と第2周波数を有する第2波動とを検知し、第1波動の到来方向に関する第1情報と第2波動の到来方向に関する第2情報とを取得し、少なくとも第1情報と第2情報とに基づいて、検知対象の方向を判定するので、高い方の周波数だけでは大きく発生してしまうグレーティングローブに基づくゴーストを低減化し、低い方の周波数だけでは得られない鋭い指向性(高分解能)なセンサを実現することができる。
本発明の第1実施形態のセンサの構成を示す模式図である。 複数の検知素子のうちの1つを示す断面図である。 第1検知素子によって検知された超音波に基づく波動に対応する応答波形を示す波形図(a)、及び波形図(a)をフーリエ変換して得られた応答波形のスペクトルを示すスペクトル図(b)である。 情報取得部を示す模式図である。 第1情報に対応する指向性パターンと第2情報に対応する指向性パターンとを示すチャート(a)、及び第1情報を示す値と第2情報を示す値との算術積に対応する指向性パターンを示すチャート(b)である。 本発明の第1実施形態のセンサを用いたセンシング方法を示すフローチャートである。 本発明の第2実施形態のセンサの構成を示す模式図である。 複数の検知素子のうちの1つを示す断面図である。 第5検知素子によって検知された超音波に基づく波動に対応する応答波形を示す波形図である。 外側電極への印加電圧に対する第5検知素子の共振周波数変化を示す履歴図である。 本発明の第2実施形態のセンサを用いたセンシング方法を示すフローチャートである。 低周波波動に関する情報に対応する指向性パターンを示すチャート(a)、及び高周波波動に関する情報に対応する指向性パターンを示すチャート(b)である。
 図1から図11を参照して本発明のセンサおよびセンシング方法に関する実施形態を説明する。本発明は、以下に説明する実施形態や図面に記載される構成に限定されることを意図せず、当該構成と均等な構成も含む。
〔第1実施形態〕
 図1は、本発明の第1実施形態のセンサ100の構成を示す模式図である。センサ100は、検知対象の方位を検出するセンサである。波動発生源の一例である超音波発生部1から発生された超音波は、検知対象2に到達し、検知対象2で反射する。検知対象2で反射した超音波は、センサ100の入射面の鉛直方向に対して、角度θでセンサ100に到来する。センサ100は、検知対象2の方向を検出する。表示部3には、検出結果が表示される。
 センサ100は、検知対象2から到来する複数の周波数を有する超音波を検知する検知部102と、検知した情報を処理する情報処理部104とを備える。例えば、複数の遅延回路および加算回路を含むユニット回路、またはコンピュータのCPUが情報処理部104として機能する。情報処理部104は、超音波の到来方向に関する情報を取得する情報取得部106と、検知対象2の方向を判定する判定部108とを含む。検知部102は、複数の検知素子(第1検知素子102a、第2検知素子102b、第3検知素子102c、及び第4検知素子102d)を含む。なお、複数の検知素子の数は、任意に変更することができる。例えば、圧電ダイアフラム型マイクロセンサが複数の検知素子の各々として機能する。図1において、ダイアフラム部分の長さ(アレイの直径)を長さaで示し、素子周期(素子間隔)を長さbで示す。
 図2は、複数の検知素子のうちの1つ(第1検知素子102a)の例として圧電ダイアフラム型マイクロセンサを示す断面図である。第1検知素子102aは、Si基板202と、SiO層204と、下部電極層206と、圧電体層208と、上部電極層210とを含む。
 下部電極層206は、PtとTiとを含む。例えばPt/Ti電極が下部電極層206として機能する。圧電体層208は、ジルコニウム酸チタン酸鉛(Pb(Zr,Ti)O):以下、「PZT」と記す。)を含む。例えばPZT層が圧電体層208として機能する。上部電極層210は、Auを含む。例えば、Au電極が上部電極層210として機能する。第2検知素子102b、第3検知素子102c、及び第4検知素子102dの各々の構成は、第1検知素子102aの構成と等価である。
 図3は、第1検知素子102aによって検知された超音波に基づく波動に対応する応答波形を示す波形図(a)、及び波形図(a)をフーリエ変換して得られた応答波形のスペクトルを示すスペクトル図(b)である。波形図(a)の縦軸は出力電圧を示し、横軸は時間を示す。スペクトル図(b)の縦軸は出力電圧を示し、横軸は周波数を示す。
 第1検知素子102aは共振型検知素子に相当する。第1検知素子102aは、複数の共振周波数に感度を有する。検知部102は、検知対象から到来する複数の周波数のうちの固有の第1共振周波数を有する超音波と複数の周波数のうちの固有の第2共振周波数を有する超音波とを検知する。
 例えば、第1検知素子102aは固有の共振周波数(一例として、第1共振周波数141kHz、及び第2共振周波数278kHz)で共振する。第1検知素子102aは、広い周波数スペクトルを持つパルスを受信して固有の共振周波数で振動し、当該固有の共振周波数に応じた出力波形を出力する。
 図4は、情報取得部106を示す模式図である。情報取得部106は、複数の可変遅延器(第1可変遅延器107a、第2可変遅延器107b、第3可変遅延器107c、及び第4可変遅延器107d)と加算器107eとを含む。情報取得部106は、例えば、第1共振周波数を有する第1超音波の到来方向に関する情報(第1情報)と第2共振周波数を有する第2超音波の到来方向に関する情報(第2情報)とを取得する。
 第1情報は、第1方向情報と第1偽情報とを含む。第2情報は、第2方向情報と第2偽情報とを含む。第1方向情報は第1超音波の到来方向を示す情報であり、第2方向情報は第2超音波の到来方向を示す情報である。第1超音波の到来方向と第2超音波の到来方向とが同じ場合は、第1方向情報と第2方向情報とは同一であり、第1超音波の到来方向と第2超音波の到来方向とが異なる場合は、第1方向情報と第2方向情報とは異なる。第1偽情報は第1超音波の到来方向ではない方向を示す情報であり、第2偽情報は第2超音波の到来方向ではない方向を示す情報である。また、少なくとも第1偽情報及び第2偽情報は互いに異なる情報である。
 情報取得部106は、複数の検知素子の各々から第1共振周波数に応じた第1出力波形情報を受け取り、これらを加算し、判定部108に加算結果(第1情報)を出力する。複数の可変遅延器の各々には、走査角度φに対応する遅延パターンが設定されている。加算器107eは、入力された複数の波形情報を加算し、加算結果を出力する。
 更に、情報取得部106は、複数の検知素子の各々から第2共振周波数に応じた第2出力波形情報を受け取り、これらを加算し、判定部108に加算結果(第2情報)を出力する。
 図5(a)は、第1情報に対応する指向性パターンと第2情報に対応する指向性パターンとを示すチャートである。半径軸は相対感度を示し、円周軸は方位θを示す。実線で示された指向性パターンは、第1情報に対応して示され、点線で示された指向性パターンは、第2情報に対応して示される。このチャートでは、方位30°に発現する指向性パターンは、第1方向情報及び第2方向情報に対応してメインローブを示す。それ以外の方位に発現する指向性パターンは、第1偽情報及び第2偽情報に対応してサイドローブを示す。さらに、方位-30°に発現する指向性パターンはグレーティングローブを示す。グレーティングローブは、サイドローブのうち、メインローブと強度が同等かそれより大きい。なお、本発明において、グレーティングローブが示されない指向性パターンに対応する周波数は低周波数に相当し、グレーティングローブが示される指向性パターンに対応する周波数は高周波数に相当する。
 判定部108は、例えば、第1情報を示す値と第2情報を示す値との算術積によって、検知対象2の方向を判定する。
 予め幾何学的に分析することによって、情報取得部106が第1偽情報および第1偽情報と異なる第2偽情報を取得するように、検知部102は第1周波数と第2周波数とを選択し得る。第1偽情報と第2偽情報とは異なるので、第1情報と第2情報とに基づいて演算することによって確実にゴースト低減を実現し得る。
 図5(b)は、第1情報を示す値と第2情報を示す値との算術積に対応する指向性パターンを示すチャートである。半径軸は相対感度を示し、円周軸は方位θを示す。方位30°に発現する指向性パターンは、第1方向情報の値と第2方向情報の値との算術積が取られたことにより鋭くなったメインローブを示す。それ以外の方位では、指向性パターンは、第1偽情報の値と第2偽情報の値との算術積が取られたことによりほとんど消滅している。
 算術積を取った後の図示された指向性パターンから、方向情報と偽情報との差が顕著化され、高い方の周波数(第2周波数)だけでは大きく発生してしまうゴーストを低減化し、低い方の周波数(第1周波数)だけでは得られない鋭い指向性を実現していることが理解し得る。
 ところで、より鋭いメインローブを得るとともに、ゴーストをさらに低減するには、さらに多くの波動を上記算術積に追加適用することが有効である。一例として、第1周波数、第2周波数、及び第3周波数を夫々有する波動の算術積を取った演算について、基準周波数である第1周波数fのちょうど一波長の素子周期を持つ7素子のリニアアレイを用いた場合を例に挙げて説明する。
 ここでは、電子走査を行う方位角度範囲、すなわちアレイセンサの「視野」に相当する範囲を±60度として、メインローブの強度に対する最大のサイドローブ(グレーティングローブを含む)の強度の比(これを、「サイドローブレベル」と称する)をもってアレイの性能を評価する。
 一つの周波数(すなわち、第1周波数を有する波動)のみを用いた計測においては、サイドローブレベルは192%におよぶ。これに対し二つの周波数(すなわち、第1周波数を有する波動と、より低周波数の第2周波数を有する波動)を用いた場合は、当該第2周波数fとしてf=0.57fを選択すると、算術積を取ることにより、サイドローブレベルは17.3%に押さえられる。さらに、三つの周波数(すなわち、第1周波数を有する波動と、より低周波数の第2周波数を有する波動と、更により低周波数の第3周波数を有する波動)を用いた計測では、当該第2周波数fとしてf=0.74f、当該第3周波数fLLとしてfLL=0.42fを夫々選択すると、算術積を取ることにより、サイドローブレベルは2.7%まで低下させることができる。
 このように、算術積の対象となる波動の数を増加させると、サイドローブレベルを顕著に低下させることができるため、ゴーストの低減効果、及びメインローブの鋭化に非常に有効である。
 図6は、本発明の第1実施形態のセンサ100を用いたセンシング方法を示すフローチャートである。以下、図1と図4と図6とを参照して、第1実施形態のセンサ100を用いたセンシング方法を説明する。
 ステップ702:超音波発生部1から超音波を発信する。超音波は検知対象2に到達し、検知対象2で反射する。検知対象2で反射した超音波は、センサ100の入射面の鉛直方向に対して、所定の角度でセンサ100に入射する。所定の角度として、例えば、入射角30°とすることができる。
 ステップ704:センサ100は、検知対象2で反射した超音波を受信する。
 ステップ706:検知部102は、複数の周波数のうちの第1周波数を有する第1超音波と複数の周波数のうちの第2周波数を有する第2超音波とを検知する。
 複数の検知素子は固有の共振周波数(例えば、第1共振周波数141kHz、及び第2共振周波数278kHz)で共振する。例えば、複数の検知素子の各々は、広い周波数スペクトルを持つパルスを受信して固有の共振周波数で振動し、複数の可変遅延器の各々に共振周波数に応じた出力波形情報を出力する。複数の検知素子の各々から出力される出力波形情報は、複数の検知素子の各々の時間遅れを含む信号波形情報である。
 ステップ708:複数の可変遅延器の各々は、第1共振周波数に応じた第1出力波形情報を遅延し、遅延後の第1出力波形情報を加算器107eに出力する。
 以下、第1出力波形情報に関する複数の可変遅延器の機能を説明する。
 第1可変遅延器107aは、第1検知素子102aから出力された第1出力波形情報を受け取り、第1出力波形情報を遅延し、遅延後の第1出力波形情報を加算器107eに出力する。第2可変遅延器107b、第3可変遅延器107c、及び第4可変遅延器107dも同様に、夫々の対応する検知素子102b、102c、及び102dから出力された第1出力波形情報を受け取り、第1出力波形情報を遅延し、遅延後の第1出力波形情報を加算器107eに出力する。
 第1出力波形情報を複数の可変遅延器で処理することにより、加算器107eへの入力波形情報の位相を揃えることができる。
 ステップ710:複数の可変遅延器の各々は、第2共振周波数に応じた第2出力波形情報を遅延し、遅延後の第2出力波形情報を加算器107eに出力する。
 以下、第2出力波形情報に関する複数の可変遅延器の機能を説明する。
 第1可変遅延器107aは、第1検知素子102aから出力された第2出力波形情報を受け取り、第2出力波形情報を遅延し、遅延後の第2出力波形情報を加算器107eに出力する。第2可変遅延器107b、第3可変遅延器107c、及び第4可変遅延器107dも同様に、夫々の対応する検知素子102b、102c、及び102dから出力された第2出力波形情報を受け取り、第2出力波形情報を遅延し、遅延後の第2出力波形情報を加算器107eに出力する。
 第2出力波形情報を複数の可変遅延器で処理することにより、加算器107eへの入力波形情報の位相を揃えることができる。
 ステップ712:加算器107eは、複数の可変遅延器の各々から出力された遅延後の第1出力波形情報を加算(同相合成)し、判定部108に加算結果(第1情報)を出力する。さらに、加算器107eは、複数の可変遅延器の各々から出力された遅延後の第2出力波形情報を加算(同相合成)し、判定部108に加算結果(第2情報)を出力する。
 ステップ708~ステップ712を実行することによって、情報取得部106は、第1超音波の到来方向に関する第1情報と第2超音波の到来方向に関する第2情報とを取得する。
 なお、上記センシング方法の例では、ステップ708を実行した後にステップ710を実行する例を示したが、ステップ708で遅延後の第1出力波形情報を加算器107eに出力するステップを実行し、ステップ710で遅延後の第2出力波形情報を加算器107eに出力するステップを実行し得る限りは、ステップ708とステップ710との実行順は問わない。例えば、ステップ708とステップ710とは並行して実行し得る。
 ステップ713:ステップ708~ステップ712を走査角度(φ)に亘って複数回繰り返す。これにより、走査範囲における全ての情報を取得し得る。
 ステップ714:判定部108は、第1情報を示す値と第2情報を示す値との算術積によって、検知対象の方向を判定する。
 ステップ716:表示部3には、検出結果が表示される。
 以上、図1から図6を参照して本発明の第1実施形態のセンサ100およびセンシング方法を説明した。
 なお、第1実施形態のセンサ100では、検知部102は、固有の共振周波数を有する超音波を検知する形態を説明したが、検知する超音波が、固有の共振周波数を有する超音波であることに限定されない。情報取得部106が、第1周波数を有する超音波の到来方向に関する情報と第2周波数を有する超音波の到来方向に関する情報とを取得し得る限りは、例えば、検知部102は、周波数フィルタを備え得る。周波数フィルタは、例えば、所望の第1周波数と第1周波数とは異なる所望の第2周波数とをフィルタリングする。検知部102は、第1周波数と第2周波数とに感度を有する。
 予め幾何学的に分析することによってゴースト低減効率のよい周波数と最も高分解である周波数とを認識しておれば、周波数フィルタによって検知部が検知する超音波の周波数をそれらの周波数に任意に設計することができる。その結果、周波数変換等の特別な処理を行うことなく、ゴーストが最も低減化され、最も高分解能なセンサを容易に実現し得る。
 例えば、予め幾何学的に分析することによって第1偽情報と第2偽情報とのうち第2偽情報にのみグレーティングローブに対応する情報が含まれるよう第1周波数と第2周波数とを認識しておけば、検知部102が検知する超音波の周波数を第1周波数と第2周波数とに設計し得る。この場合、第1周波数が低周波数に対応し、第2周波数が高周波数に対応する。
 さらに、例えば、予め幾何学的に分析することによって、検知部102は、計測走査範囲内に第1共振周波数に対応する指向性パターンを示す第1グレーティングローブを示すことなく、かつ第1グレーティングローブと第2共振周波数に対応する指向性パターンを示す第2グレーティングローブとが共通部分を有さないように、第1周波数と第2周波数とを選択し得る。
 本発明のセンサによれば、検知部102は、複数の周波数のうちの少なくとも第1周波数を有する第1超音波と第2周波数を有する第2超音波とを検知し、第1超音波の到来方向に関する第1情報と第2超音波の到来方向に関する第2情報とを取得し、少なくとも第1情報と第2情報とに基づいて、検知対象の方向を判定するので、高い方の単一の周波数だけでは大きく発生してしまうゴーストを低減化し、低い方の単一の周波数だけでは得られない鋭い指向性(高分解能)なセンサを実現することができる。
 このように、本発明のセンサの構成によれば、単一のセンサで複数の情報を取得することにより、素子間隔を狭めることなくグレーティングローブの影響を無くすことができる。従って、同じ精度の角度分解能を得るため(すなわち、同じ径を持つアレイを構成するため)の素子数を大幅に削減できる。特に、三次元計測において素子を二次元に配置した場合は、この削減効果も二乗で効くのでさらに効果的である。
 また、上記第1実施形態で説明したように、第1偽情報と第2偽情報とが異なるように第1周波数と第2周波数とを選択した場合は、第1情報と第2情報とに基づいて検知対象の方向を判定することによって確実にゴースト低減を実現し得る。
 さらに、検知対象の方向を判定する際に、上記第1実施形態で説明したように、第1情報を示す値と第2情報を示す値との算術積を求めると、グレーティングローブの影響を無くすことができるため、ゴースト低減を実現し得る。なお、算術積は、簡易な演算回路で求め得るため、簡易且つ安価なセンサ構造を構築し得る。
〔第2実施形態〕
 図7は、本発明の第2実施形態のセンサ800の構成を示す模式図である。センサ800は、検知対象2から到来する複数の周波数を有する超音波を検知する検知部802と、情報処理部104とを備える。情報処理部104は、情報取得部106と、判定部108とを含む。検知部802は、複数の検知素子(第5検知素子802a、第6検知素子802b、第7検知素子802c、及び第8検知素子802d)を含む。センサ800の構成は、検知部802を除いて第1実施形態のセンサ100の構成と同一である。例えば、圧電ダイアフラム型マイクロセンサが複数の検知素子の各々として機能する。図7において、ダイアフラム部分の長さ(アレイの直径)を長さaで示し、素子周期(素子間隔)を長さbで示す。
 図8は、複数の検知素子のうちの1つ(第5検知素子802a)の例として圧電ダイアフラム型マイクロセンサを示す断面図である。第5検知素子802aは、Si基板202と、SiO層204と、下部電極層206と、圧電体層208と、上部電極層210と、外側電極912と、周波数調整部914とを含む。第5検知素子802aの構成は、外側電極912と、周波数調整部914を除いて第1実施形態の第1検知素子102aの構成と同一である。
 外側電極912は、Auを含む。Au電極は、例えば、外側電極912として機能する。周波数調整部914は、外側電極912に電圧を印加して逆圧電効果によりダイアフラムに応力を発生させることによって、第5検知素子802aが検知する超音波の周波数を第1周波数から第2周波数に調整する。
 第6検知素子802b、第7検知素子802c、及び第8検知素子802dの各々の構成は、第5検知素子802aの構成と等価である。
 図9は、第5検知素子802aによって検知された超音波に基づく波動に対応する応答波形を示す波形図である。縦軸は出力電圧を示し、横軸は時間を示す。図9に示した二つの波形図のうち、(a)は外側電極912に電圧0vを印加した場合の応答波形を示し、(b)は外側電極912に電圧5vを印加した場合の応答波形を示す。電圧印加により応答波形の周期が変化している。
 図10は、外側電極912への印加電圧に対する第5検知素子802aの共振周波数変化を示す履歴図である。縦軸は共振周波数の変化を示し、横軸は外側電極への印加電圧を示す。
 第5検知素子802aの共振周波数が、外側電極912への印加電圧に応じて強誘電体特有のバタフライカーブを描いて変化している。外側電極912への電圧印加によって5v印加で50%近い周波数調整幅を実現し得る。
 図11は、本発明の第2実施形態のセンサ800を用いたセンシング方法を示すフローチャートである。以下、図7と図8と図11とを参照して、第2実施形態のセンサ800を用いたセンシング方法を説明する。第2実施形態のセンサ800を用いたセンシング方法のステップは、ステップ1205、ステップ1206、ステップ1209、ステップ1210、ステップ1213を除いて第1実施形態のセンサ100を用いたセンシング方法のステップと同一である。
 ステップ702、ステップ704に続いてステップ1205、ステップ1206を実行する。
 ステップ1205:周波数調整部914は、複数の検知素子が検知する超音波の周波数を第1周波数に調整する。
 ステップ1206:検知部802は、複数の周波数のうちの第1周波数を有する第1超音波を検知する。
 複数の検知素子は固有の共振周波数(例えば、第1共振周波数141kHz)で共振する。例えば、複数の検知素子の各々は、広い周波数スペクトルを持つパルスを受信して固有の共振周波数で振動し、複数の可変遅延器の各々に共振周波数に応じた出力波形情報を出力する。複数の検知素子の各々から出力される出力波形情報は、複数の検知素子の各々の時間遅れを含む信号波形情報である。
 ステップ1206に続いてステップ708、ステップ1209、ステップ1210を実行する。
 ステップ1209:周波数調整部914は、外側電極912に電圧を印加して複数の検知素子が検知する超音波の周波数を第2周波数に調整する。
 ステップ1210:超音波発生部1から超音波を発生する。検知部802は、第2超音波を検知する。
 ステップ1210に続いてステップ710、ステップ1213を実行する。
 ステップ1213:ステップ708~ステップ712を走査角度(φ)に亘って複数回繰り返す。
 ステップ1213に続いてステップ714、ステップ716を実行する。
 以上、図7から図11を参照して本発明の第2実施形態のセンサ800およびセンシング方法を説明した。
 本発明のセンサによれば、複数の周波数のうちの少なくとも第1周波数を有する第1超音波と第2周波数を有する第2超音波とを検知し、第1超音波の到来方向に関する第1情報と第2超音波の到来方向に関する第2情報とを取得し、少なくとも第1情報と第2情報とに基づいて、検知対象の方向を判定するので、高い方の単一の周波数だけでは大きく発生してしまうグレーティングローブに基づくゴーストを低減化し、低い方の単一の周波数だけでは得られない鋭い指向性(高分解能)なセンサを実現することができる。
 このように、本発明のセンサの構成によれば、単一のセンサで複数の情報を取得することにより、素子間隔を狭めることなくグレーティングローブの影響を無くすことができる。従って、同じ精度の角度分解能を得るため(すなわち同じ径を持つアレイを構成するため)の素子数を大幅に削減できる。特に、三次元計測において素子を二次元に配置した場合は、この削減効果も二乗で効くのでさらに効果的である。
 なお、周波数調整部914は、第1共振周波数を第1共振周波数とは異なる周波数に調整し得る限りは、外側電極912に電圧を印加することにより調整することに限定されない。例えば、周波数調整部914は、複数の検知素子に熱、磁場、光等の外部エネルギーを加えることによって複数の検知素子が検知する超音波の周波数を第1周波数から第2周波数に調整し得る。
 本発明の構成によれば、予め幾何学的に分析することによってゴースト低減効率のよい周波数と最も高分解である周波数とを認識しておれば、検知部が検知する超音波の周波数をそれらの周波数に任意に調整することができる。その結果、ゴーストが最も低減化され、最も高分解能なセンサを実現し得る。
 例えば、予め幾何学的に分析することによって第1偽情報と第2偽情報とのうち第2偽情報にのみグレーティングローブに対応する情報が含まれるよう第1周波数と第2周波数とを認識しておけば、周波数調整部914によって検知部802が検知する周波数を第1周波数と第2周波数とに調整し得る。この場合、第1周波数が低周波数に対応し、第2周波数が高周波数に対応する。
 さらに、例えば、予め幾何学的に分析することによって、計測走査範囲内に第1共振周波数に対応する指向性パターンを示す第1グレーティングローブを示すことなく、かつ第1グレーティングローブと第2共振周波数に対応する指向性パターンを示す第2グレーティングローブとが共通部分を有さないように、周波数調整部914は、検知部802が検知する第1周波数と第2周波数とを調整し得る。
 以上、図1から図11を参照して本発明のセンサおよびセンシング方法を説明した。
 なお、上記説明では、検知素子は、圧電ダイアフラム(四辺固定)型を想定しているが、検知対象から到来する複数の周波数を有する波動を検知し得る限りは、圧電ダイアフラム(四辺固定)型に限定されない。例えば、ブリッジ(二辺固定)型、カンチレバー(一辺固定)型でも適用可能である。
 さらに、上記説明では、検知部によって検知される波動が有する周波数は、2つを想定しているが複数であれば2つに限定されない。例えば、3つ以上の周波数を有する波動を検知することも、本発明の範囲である。この場合、検知した3つ以上の周波数を有する波動を全て利用してセンシングを行ってもよいし、検知したものの中から任意の2つの波動を選択してセンシングを行ってもよい。さらに、上記説明では一方が低周波数で他方が高周波数である形態を説明したが、両周波数が低周波数である形態、両周波数が高周波数である形態をも想定し得え、高分解能化とゴースト低減とうちの少なくとも一方の効果が見込まれ得る。
 さらに、上記説明では、判定部108は、第1情報を示す値と第2情報を示す値との算術積を算出したが、算術積に限定されない。例えば、ミニマム演算によって算出してもよく、さらには、算術積、及びミニマム演算を組み合わせて行った算出も、本発明の範囲である。例えば、検知する周波数が3つの場合には、第1情報を示す値と第2情報を示す値との算術積を求め、さらに算術積と第3情報を示す値とのミニマム演算を実行し得る。なお、ミニマム演算とは、複数の値の中から最小の値を選択することを意味する。
 さらに、上記説明では、波動として主に超音波に基づく波動を想定しているが、検知部が、検知対象から到来する複数の周波数を有する波動を検知し得る限りは、到来する波動は、超音波に基づく波動に限定されない。例えば、到来する波動が、電磁波(光、赤外線、X線等)に基づく波動でもよい。
 到来する波動が光に基づく波動である場合、検知素子として、例えば光電素子を採用し得る。光発生部(発光素子)は検知対象に向けて光を発する。光は、検知対象に到達し、検知対象で反射する。検知対象で反射した光は、センサに到来する。
 光電素子は、検知対象から到来する複数の周波数を有する波動を検知する。光電素子が光を受光することによって、光電素子に電流が流れる。センサは電流に基づいて検知対象の方向を検出する。
 上記光電素子としては、例えば硫化カドミウム素子(CdS素子)を採用し得る。CdS素子に到来する光の強弱を制御することにより、CdS素子の抵抗値を変更し得、明るさに応じてCdS素子の抵抗値が変化する。周囲が暗い時はCdS素子の抵抗値が高く、CdS素子にはほとんど電流が流れない。周囲が明るくなると、CdS素子の抵抗値が低くなり、CdS素子に電流が流れる。
 検知素子として、例えば、フォト・ダイオードを採用し得る。フォト・ダイオードのPN接合に光が当たると電位差が生じ、フォト・ダイオードに電流が流れる。
 本発明によるセンサおよびセンシング方法は、センシング分野(例えば、障害物検知(車庫入れ、縦列駐車、自律移動ロボット)、姿勢検知(ドライバの居眠り防止、被介護者のモニタリング))に広く利用可能である。
 100  センサ
 102  検知部
 102a 第1検知素子
 102b 第2検知素子
 102c 第3検知素子
 102d 第4検知素子
 104  情報処理部
 106  情報取得部
 108  判定部
 914  周波数調整部

Claims (6)

  1.  検知対象の方向を検出するセンサであって、
     前記検知対象から到来する複数の周波数を有する波動を検知する検知部と、
     前記波動の到来方向に関する情報を取得する情報取得部と、
     前記検知対象の方向を判定する判定部と
    を備え、
     前記検知部は、前記複数の周波数のうちの少なくとも第1周波数を有する第1波動と前記複数の周波数のうちの第2周波数を有する第2波動とを検知し、
     前記情報取得部は、前記第1波動の到来方向に関する第1情報と前記第2波動の到来方向に関する第2情報とを取得し、
     前記判定部は、少なくとも前記第1情報と前記第2情報とに基づいて、前記検知対象の方向を判定する、センサ。
  2.  前記検知部は、前記情報取得部が第1偽情報および第1偽情報と異なる第2偽情報を取得するように、前記第1周波数と前記第2周波数とを選択し、
     前記第1偽情報は、前記第1波動の到来方向とは異なる方向を示す情報であり、前記第2偽情報は、前記第2波動の到来方向とは異なる方向を示す情報であり、
     前記第1情報は、前記第1波動の到来方向を示す第1到来方向情報と前記第1偽情報と
    を含み、
     前記第2情報は、前記第2波動の到来方向を示す第2到来方向情報と前記第2偽情報とを含む、請求項1に記載のセンサ。
  3.  前記判定部は、前記第1情報を示す値と前記第2情報を示す値との算術積、及びミニマム演算のうちの少なくとも一つによって、前記検知対象の方向を判定する、請求項1又は2に記載のセンサ。
  4.  前記複数の周波数は、前記検出素子が有する複数の共振周波数を含み、
     前記第1周波数は前記複数の共振周波数のうちの第1共振周波数に対応し、
     前記第2周波数は前記複数の共振周波数のうちの第2共振周波数に対応する、請求項1~3の何れか一項に記載のセンサ。
  5.  前記センサは、
     前記検知部が検知する波動の周波数を前記第1周波数から前記第2周波数に調整する周波数調整部をさらに含む、請求項1~3の何れか一項に記載のセンサ。
  6.  検知対象の方向を検出するセンシング方法であって、
     前記検知対象から到来する複数の周波数を有する波動を検知する検知ステップと、
     前記波動の到来方向に関する情報を取得する情報取得ステップと、
     前記検知対象の方向を判定する判定ステップと
    を包含し、
     前記検知ステップは、前記複数の周波数のうちの少なくとも第1周波数を有する第1波動と前記複数の周波数のうちの第2周波数を有する第2波動とを検知することにより実行され、
     前記情報取得ステップは、前記第1波動の到来方向に関する第1情報と前記第2波動の到来方向に関する第2情報とを取得することにより実行され、
     前記判定ステップは、少なくとも前記第1情報と前記第2情報とに基づいて、前記検知対象の方向を判定することにより実行される、センシング方法。
PCT/JP2010/059236 2009-07-03 2010-06-01 センサおよびセンシング方法 WO2011001775A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/381,153 US20120099401A1 (en) 2009-07-03 2010-06-01 Sensor and sensing method
JP2011520840A JP5485268B2 (ja) 2009-07-03 2010-06-01 センサおよびセンシング方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009158329 2009-07-03
JP2009-158329 2009-07-03

Publications (1)

Publication Number Publication Date
WO2011001775A1 true WO2011001775A1 (ja) 2011-01-06

Family

ID=43410855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059236 WO2011001775A1 (ja) 2009-07-03 2010-06-01 センサおよびセンシング方法

Country Status (3)

Country Link
US (1) US20120099401A1 (ja)
JP (1) JP5485268B2 (ja)
WO (1) WO2011001775A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011191191A (ja) * 2010-03-15 2011-09-29 Furuno Electric Co Ltd 探知装置
WO2014147658A1 (en) 2013-03-18 2014-09-25 Hitachi, Ltd. Compound storage system and storage control method
WO2016002971A1 (ja) * 2014-07-04 2016-01-07 セイコーエプソン株式会社 超音波センサー
CN105849745A (zh) * 2013-12-30 2016-08-10 高通股份有限公司 使用超声签名的受托设备定位方案
CN110082741A (zh) * 2019-03-14 2019-08-02 哈尔滨工程大学 一种基于伪数据重构的超分辨波达角估计算法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015033436A1 (ja) * 2013-09-06 2015-03-12 楽天株式会社 距離測定装置
GB2542119B (en) 2015-09-07 2018-08-29 Jaguar Land Rover Ltd Multi-function transducer assembly and system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57125741A (en) * 1981-01-28 1982-08-05 Fujitsu Ltd Ultrasonic diagnostic apparatus
JPH02199994A (ja) * 1989-01-27 1990-08-08 Honda Electron Co Ltd 周波数可変振動子
JPH10127634A (ja) * 1996-11-06 1998-05-19 Aloka Co Ltd 超音波診断装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3889227A (en) * 1972-09-22 1975-06-10 Tokyo Shibaura Electric Co Ultrasonic wave receiving apparatus
US5861583A (en) * 1992-06-08 1999-01-19 Synaptics, Incorporated Object position detector
AUPO182396A0 (en) * 1996-08-23 1996-09-12 Austin Research Institute, The Improved nucleic acids for reducing carbohydrate epitopes
US6359444B1 (en) * 1999-05-28 2002-03-19 University Of Kentucky Research Foundation Remote resonant-circuit analyte sensing apparatus with sensing structure and associated method of sensing
KR100729870B1 (ko) * 2004-03-31 2007-06-18 혼다 기켄 고교 가부시키가이샤 이동체의 위치검지 시스템
CN102421349B (zh) * 2009-03-10 2015-08-12 奥林巴斯医疗株式会社 位置检测系统以及位置检测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57125741A (en) * 1981-01-28 1982-08-05 Fujitsu Ltd Ultrasonic diagnostic apparatus
JPH02199994A (ja) * 1989-01-27 1990-08-08 Honda Electron Co Ltd 周波数可変振動子
JPH10127634A (ja) * 1996-11-06 1998-05-19 Aloka Co Ltd 超音波診断装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011191191A (ja) * 2010-03-15 2011-09-29 Furuno Electric Co Ltd 探知装置
WO2014147658A1 (en) 2013-03-18 2014-09-25 Hitachi, Ltd. Compound storage system and storage control method
CN105849745A (zh) * 2013-12-30 2016-08-10 高通股份有限公司 使用超声签名的受托设备定位方案
WO2016002971A1 (ja) * 2014-07-04 2016-01-07 セイコーエプソン株式会社 超音波センサー
US10488370B2 (en) 2014-07-04 2019-11-26 Seiko Epson Corporation Ultrasound sensor with resonance frequency adjustment portion
CN110082741A (zh) * 2019-03-14 2019-08-02 哈尔滨工程大学 一种基于伪数据重构的超分辨波达角估计算法
CN110082741B (zh) * 2019-03-14 2022-07-15 哈尔滨工程大学 一种基于伪数据重构的超分辨波达角估计算法

Also Published As

Publication number Publication date
JP5485268B2 (ja) 2014-05-07
US20120099401A1 (en) 2012-04-26
JPWO2011001775A1 (ja) 2012-12-13

Similar Documents

Publication Publication Date Title
JP5485268B2 (ja) センサおよびセンシング方法
EP3353708B1 (en) Receive-side beam forming for an ultrasonic image sensor
Tian et al. Pulsed laser-scanning laser Doppler vibrometer (PL-SLDV) phased arrays for damage detection in aluminum plates
US11307285B2 (en) Apparatus, system and method for spatially locating sound sources
US9103908B2 (en) Security monitoring system using beamforming acoustic imaging and method using the same
JP2018535712A5 (ja)
WO2013094306A1 (ja) 電磁波可視化装置
US20150071030A1 (en) Ultrasonic measurement apparatus, ultrasonic imaging apparatus, and ultrasonic measurement method
US11706990B2 (en) Method for calibrating at least one sensor
JP2015053961A5 (ja)
Jia et al. Rigid and elastic acoustic scattering signal separation for underwater target
Kumar et al. Long-range measurement system using ultrasonic range sensor with high-power transmitter array in air
Xiang et al. Experimental validation of a coprime linear microphone array for high-resolution direction-of-arrival measurements
JP7150278B2 (ja) アレイ型近接覚センサ
JP2015051037A5 (ja)
JP2008107122A (ja) 超音波アレイセンサシステムおよび遅延加算処理方法
JP2008269169A (ja) 監視装置
TWI487888B (zh) 掃描式光柵光譜儀
CN113932908B (zh) Mems扫描振镜振动参数的测量系统和测量方法
JP4624046B2 (ja) センシング装置
JP6829801B2 (ja) 超音波アレイセンサシステム
US10866149B1 (en) System and method for nondestructive detection of structural irregularities using a directional magnetostrictive phased array sensor with a comb-shaped magnetostrictive patch
JP4682577B2 (ja) 超音波画像化方法及び超音波画像化装置
FR3009090A1 (fr) Capteur piezo-electrique multi-element optimise
JP2005049303A (ja) 超音波画像化装置及び画像化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10793946

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011520840

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13381153

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10793946

Country of ref document: EP

Kind code of ref document: A1