WO2011001646A1 - 磁性粒子移送装置および磁性粒子移送方法 - Google Patents

磁性粒子移送装置および磁性粒子移送方法 Download PDF

Info

Publication number
WO2011001646A1
WO2011001646A1 PCT/JP2010/004218 JP2010004218W WO2011001646A1 WO 2011001646 A1 WO2011001646 A1 WO 2011001646A1 JP 2010004218 W JP2010004218 W JP 2010004218W WO 2011001646 A1 WO2011001646 A1 WO 2011001646A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
fluid
magnetic particles
particle transfer
microfluidic chip
Prior art date
Application number
PCT/JP2010/004218
Other languages
English (en)
French (fr)
Inventor
中村瑞木
窪田磨誉
Original Assignee
ベックマン コールター, インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ベックマン コールター, インコーポレイテッド filed Critical ベックマン コールター, インコーポレイテッド
Publication of WO2011001646A1 publication Critical patent/WO2011001646A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0668Trapping microscopic beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/043Moving fluids with specific forces or mechanical means specific forces magnetic forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/0098Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor involving analyte bound to insoluble magnetic carrier, e.g. using magnetic separation

Definitions

  • the present invention relates to a magnetic particle transfer device and a magnetic particle transfer method for a microfluidic chip for analyzing a minute amount of fluid.
  • automatic analyzers are known as techniques for automatically analyzing immune components contained in specimens such as blood and body fluids.
  • a sample is added to a reaction container containing a reagent, and a reaction occurring between the reagent and the reagent in the reaction container is optically detected.
  • the amount of reagent required for sample analysis by this automatic analyzer is as small as several ml (milliliter) to several tens of ml per sample, but from the viewpoint of cost, the amount of reagent used for analysis There is a long-awaited technology that can further reduce this.
  • the conventional automatic analyzer has a large amount of waste water for washing the dispensing nozzle for dispensing the sample and the reagent, and there is room for improvement in this point as well.
  • the present invention has been made in view of the above, and provides a magnetic particle transfer apparatus and a magnetic particle transfer method capable of reliably collecting and transferring magnetic particles in a fluid and performing highly accurate analysis.
  • the purpose is to do.
  • a magnetic particle transfer device is provided with a plurality of fluid storage units that store fluid containing magnetic particles, and a transfer channel that connects the fluid storage units.
  • the microfluidic chip at least one or more magnetic bodies that collect the magnetic particles, and the fluid container adjacent to the magnetic particles via the transfer flow path by relatively moving in the transfer flow path direction.
  • a magnetic particle transfer unit that moves the magnetic particle.
  • the magnetic particle transfer device further includes a chip placement section that places the microfluidic chip at a predetermined position, and a magnetic body placement section that is disposed near the chip placement section and places the magnetic body. And the magnetic particle transfer section moves the tip arrangement section and the magnetic body arrangement section relative to each other in the transfer flow path direction so that the magnetic particles are adjacent to each other via the transfer flow path. Move to.
  • the chip placement portion is connected to the magnetic particle transfer portion and guides the microfluid chip moving direction, and the chip gripping portion that grips the microfluidic chip.
  • the magnetic particle transfer unit moves the microfluidic chip relative to the magnetic body by moving the microfluidic chip along the guide via the chip gripping unit. Transport.
  • the magnetic particle transfer unit transfers the magnetic particles in the microfluidic chip by moving the magnetic body relative to the microfluidic chip.
  • the plurality of magnetic bodies are arranged in the transfer flow path direction.
  • the transfer flow path controls the flow of the fluid by a Laplace force.
  • the magnetic body is a permanent magnet.
  • the magnetic body is an electromagnet.
  • the apparatus of the present invention includes any one or more of the features described above.
  • the magnetic particle transfer method includes a magnetism collecting step in which a magnetic material is disposed in the vicinity of a fluid containing portion that contains a fluid containing magnetic particles, and a magnetic flux collecting process of the magnetic particles is performed.
  • the present invention is also a computer-readable recording medium on which a program for executing a method for transferring magnetic particles accommodated in a fluid accommodating portion to an adjacent fluid accommodating portion is recorded, the method comprising: A magnetic collecting step of arranging a magnetic body in the vicinity of a fluid containing portion containing a fluid containing magnetic particles and performing a magnetic flux collecting treatment of the magnetic particles; A transfer step of transferring the magnetic particles collected by the magnetic flux collection process to an adjacent fluid storage unit by relatively moving the microfluidic chip or the magnetic body; A recording medium is provided.
  • the present invention is also a program for executing a method for transferring magnetic particles accommodated in a fluid accommodating portion to an adjacent fluid accommodating portion, the method comprising: A magnetic collecting step of arranging a magnetic body in the vicinity of a fluid containing portion containing a fluid containing magnetic particles and performing a magnetic flux collecting treatment of the magnetic particles; A transfer step of transferring the magnetic particles collected by the magnetic flux collection process to an adjacent fluid storage unit by relatively moving the microfluidic chip or the magnetic body; A program including
  • the magnetic particles contained in the fluid containing part are transferred by the magnetic material to the adjacent fluid containing part via the transfer channel connecting the fluid containing parts. Therefore, there is an effect that the liquid and the magnetic particles can be reliably separated and transferred to perform analysis with high accuracy.
  • FIG. 1 is a schematic diagram showing a configuration of a magnetic particle transfer device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the microfluidic chip shown in FIG. 3 is a cross-sectional view showing a cross section taken along line AA of the microfluidic chip shown in FIG.
  • FIG. 4 is a schematic diagram showing magnetic particle transfer according to the embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing a conventional immunoassay process.
  • FIG. 6 is a cross-sectional view showing a microfluidic chip containing fluid.
  • FIG. 7 is a schematic diagram showing an immunoassay process according to the embodiment of the present invention.
  • FIG. 8 is a cross-sectional view showing a modification of the microfluidic chip shown in FIG.
  • FIG. 9 is a schematic view showing a modification of the magnetic body according to the embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing a magnetic particle transfer device 1 according to an embodiment of the present invention.
  • a magnetic particle transfer device 1 shown in FIG. 1 is configured by a chip mounting part 11 having guides 10a and 10b for mounting a microfluidic chip 2 and guiding the moving direction of the microfluidic chip 2, and gripping members 13a and 13b.
  • a chip holding unit 13 that holds the fluid chip 2 and places the microfluidic chip 2 at a predetermined position, a drive stage 14 that moves the chip holding unit 13 along the guides 10a and 10b, and a motor that drives the drive stage 14 15.
  • the guides 10 a and 10 b, the chip placement unit 11, and the chip gripping unit 13 as the chip placement unit place the microfluidic chip 2 at a predetermined position of the magnetic particle transfer device 1.
  • the chip mounting unit 11 is provided with a magnetic body arranging unit 12 in the mounting surface, and a plurality of magnetic bodies 12 a are arranged in the magnetic body arranging unit 12.
  • the arrangement of the magnetic body 12a is determined according to the transfer flow path formed in the microfluidic chip 2.
  • the magnetic body 12a is preferably arranged such that the distance from the magnetic particles accommodated in the microfluidic chip 2 is 2 mm or less.
  • what has the same magnetic force may be used for the magnetic force of a magnetic body, and a magnetic force may be changed in steps.
  • the drive stage 14 has a moving lane 14a in which the chip gripping portion 13 moves, and the chip gripping portion 13 moves along the moving lane 14a.
  • the gripping member 13b can be moved in the direction of the arrow in the figure by an elastic member provided inside the chip gripping portion 13, and the microfluidic chip 2 can be gripped by the elastic force of the elastic member.
  • the chip gripper 13 may be moved manually.
  • the above-described magnetic particle transfer apparatus 1 moves the microfluidic chip 2 held by the holding members 13a and 13b in the direction of the magnetic body arrangement unit 12 by moving the chip holding unit 13 on the driving stage 14, and thereby the magnetic body.
  • the inside of the microfluidic chip 2 can be transferred by collecting the magnetic particles accommodated in the microfluidic chip 2 by 12a.
  • the mounting surface on which the microfluidic chip 2 of the chip mounting unit 11 is placed may be movable, and the microfluidic chip 2 may be moved.
  • a microfluidic chip 2 can be moved by providing a belt that is movable in the direction of the transfer flow path on the chip mounting portion 11 and moving the belt by driving a motor or the like.
  • FIG. 2 is a schematic diagram showing a configuration of the microfluidic chip 2 according to the embodiment of the present invention
  • FIG. 3 is a cross-sectional view taken along line AA of the microfluidic chip 2 shown in FIG.
  • the main body 20 is formed using an optically transparent material that transmits 80% or more of light, for example, glass including heat-resistant glass, synthetic resin such as cyclic olefin, polystyrene, etc.
  • the fluid accommodation portions 21 and 22 that can be accommodated are connected by a transfer channel 23.
  • the fluid storage portions 21 and 22 may be formed so as to have a volume equal to or greater than a predetermined volume to be dispensed, and the shape may be circular or rectangular.
  • each of the fluid storage units 21 and 22 has sample introduction ports 24a and 24b and sample discharge ports 25a and 25b at both ends in the flow direction of the transfer channel.
  • the diameters of the sample inlets 24a and 24b and the sample outlets 25a and 25b may be any diameter as long as a probe for sucking and discharging fluid can be inserted.
  • FIG. 4 is a schematic diagram showing magnetic particle transfer according to the embodiment of the present invention.
  • FIG. 4A shows a state in which the fluid containing the magnetic particles B is dispensed from the sample introduction port 24 a and is accommodated in the fluid accommodating portion 21.
  • the microfluidic chip 2 is moved toward the magnetic body 12a (FIG. 4B).
  • the movement of the microfluidic chip 2 is stopped for a predetermined time, for example, 10 seconds, and magnetic particles in the fluid are collected on the magnetic body 12a ( FIG. 4 (c)).
  • the magnetic particles B collected by the magnetic body 12a are transferred to the microfluidic chip 2 in accordance with the relative position of the magnetic body 12a. It enters the inside (FIG. 4 (d)) and is transferred to the fluid accommodating part 22 connected via the transfer channel 23 (FIG. 4 (e)).
  • the magnetic particles B can be transferred to the adjacent fluid storage unit 22 by the series of processes described above.
  • the magnetic body 12a By using the magnetic body 12a, the magnetic particles can be efficiently captured and transferred, so that the analysis accuracy in the analysis process can be improved and high analysis accuracy can be maintained.
  • the sample introduction ports 24a and 24b and the sample discharge ports 25a and 25b may be sealed.
  • the member used for sealing is preferably a sealing member such as a cap formed of resin or the like or a sealing member.
  • a first reagent dispensing process is performed in which a first reagent containing antibody solid phase magnetic particles 51 is dispensed in a reaction container 40.
  • a sample dispensing process is performed in which a sample containing the antigen 52 to be analyzed is dispensed in the reaction container 40.
  • an antibody against the antigen 52 in the specimen is solid phased on a magnetic particle carrier.
  • a reaction product 54 in which the antigen 52 in the sample and the antibody solid phase magnetic particles 51 are combined is generated after a predetermined reaction time. Is done.
  • the first BF cleaning process for the first time in the BF cleaning mechanism is performed.
  • the reactant 54 and the antibody solid phase magnetic particles 51 are collected in the vicinity of the magnetic collecting mechanism 41 that collects the magnetic material.
  • the unreacted substance 53 in the reaction vessel 40 is removed.
  • the unreacted substance 53 is separated and removed in the reaction vessel 40, and the antibody solid phase magnetic particles 51 and the reactant 54 remain.
  • a second reagent dispensing process for dispensing a reagent containing the enzyme-labeled antibody 55 as the second reagent in the reaction container 40 after the first BF cleaning is performed. Done. As a predetermined reaction time elapses, an immune complex 56 in which the reaction product 54 and the enzyme-labeled antibody 55 are combined is generated as shown in FIG.
  • the second BF cleaning process for the second time in the BF cleaning mechanism is performed.
  • the cleaning liquid is injected and sucked by the BF cleaning nozzle 42 in a state where the magnetic material is collected in the vicinity of the magnetic flux collecting mechanism 41.
  • the reaction is performed by injecting and suctioning the cleaning liquid by the BF cleaning nozzle 42 in a state where the immune complex 56 and the antibody solid phase magnetic particles 51 are magnetized in the vicinity of the magnetic collecting mechanism 41. Unbound enzyme-labeled antibody 55 in the container 40 is removed.
  • the antibody solid phase magnetic particles 51 and the immune complex 56 remain in the reaction container 40.
  • the reaction container 40 is subjected to a substrate injection process in which a luminescent substrate solution containing a luminescent substrate 57 is dispensed as a third reagent and stirred again.
  • the enzyme in the immune complex 56 acts, and the luminescent substrate 57 emits light L1 in proportion to the amount of enzyme.
  • a measurement process is performed in which the enzyme in the immune complex 56 acts to measure the amount of light L1 emitted from the luminescent substrate 57, and the antigen is determined based on the luminescence amount of the luminescent substrate 57 measured in the measurement process. Calculation processing for obtaining the density of 52 is performed (FIG. 5 (7)).
  • the unreacted substance 53 and the enzyme-labeled antibody 55 that are not bound to the reaction product 54 in the specimen are removed by performing the BF washing process twice, and the immune complex that is the measurement target is removed. Only the body 56 is acquired and the measurement process is performed.
  • the transfer flow path 23 of the microfluidic chip 2 is formed with a flow path diameter to which a Laplace force is applied, and as shown in FIG. The flow is stopped by the Laplace force, and the fluid F does not enter the fluid containing portion 22. Using this property, immunoassay processing is performed.
  • the cross-sectional area in the vertical direction with respect to the flow direction of the transfer channel 23 is formed to be 1 mm 2 or less.
  • the processes shown in FIGS. 5 (1) to (4) are performed in the fluid container 21 to generate the immune complex 56 (FIG. 7 (a)).
  • the dispensed specimen and each reagent are stopped from flowing by the Laplace force applied to the transfer flow path 23 and do not enter the fluid storage unit 22.
  • the microfluidic chip 2 is moved, the magnetic body 12a is arranged at the lower part of the fluid storage unit 21, and the immune complex 56 is magnetized, and a fluid other than the immune complex 56 is sampled. It discharges
  • the buffer solution is dispensed from the sample introduction ports 24a and 24b (FIG. 7C).
  • the effect of the Laplace force of the transfer channel 23 is lost, and the fluid storage units 21 and 22 can flow through the transfer channel 23.
  • the microfluidic chip 2 may be moved to the magnetic body placement unit 12 to collect magnetism. Further, in some cases, unreacted antibody solid-phase magnetic particles 51 are also present in the fluid storage unit 21.
  • the immune complex 56 is also transferred from the fluid storage unit 21 through the transfer channel 23 to the fluid storage unit 22 in accordance with the change in the relative position of the magnetic body 12a (see FIG. 7 (d) to (e)).
  • the buffer solution is discharged from the sample discharge ports 25a and 25b (FIG. 7 (f)).
  • the luminescent substrate solution containing the luminescent substrate 57 is injected from the sample introduction port 24b by injecting the third reagent (FIG. 7 (g)), and the enzyme in the immune complex 56 acts to cause the luminescent substrate 57.
  • the fluid can be stirred by irradiating the microfluidic chip 2 with ultrasonic waves, and mixing of reagents and washing of magnetic particles are appropriately performed.
  • the measurement target substance that has completed the reaction can be subjected to a photometric process in a space that is not contaminated with a reagent or the like, so that the detection accuracy can be improved.
  • the measurement can correspond to an optical measurement.
  • the measurement target is fluorescence emission
  • the measurement can be performed by irradiating excitation light from the lower part of the fluid storage unit 22, and in the case of measuring Raman scattering, FIG. It is also possible to measure using the immune complex 56 collected in (g).
  • the optical measurement include fluorescence, chemiluminescence, colorimetry, and turbidity.
  • FIG. 8 is a cross-sectional view showing a modification of the microfluidic chip shown in FIG.
  • fluid housing portions 31 and 32 are formed in a main body portion 30, and the fluid housing portions 31 and 32 are connected by a transfer channel 33.
  • sample introduction ports 34a and 34b and sample discharge ports 35a and 35b are formed in the fluid storage portions 31 and 32, respectively, and the above-described magnetic particle transfer method can be applied.
  • the bottom of the fluid storage part 32 is formed lower than the bottoms of the fluid storage part 31 and the transfer flow path 33 to prevent the backflow of the magnetic particles transferred from the fluid storage part 31 to the fluid storage part 32. Can do.
  • the magnetic particles in the fluid storage unit may be transferred by moving the magnetic body 12a.
  • the magnetic particles can be transferred by moving the magnetic body arranging portion 12 shown in FIG. 1 in the direction of the microfluidic chip 2 by a motor or the like.
  • FIG. 9 is a schematic view showing a modification of the magnetic body 12a according to the embodiment of the present invention. As shown in FIG. 9, magnetic particles in the microfluidic chip 2 are moved by moving a magnetic body 12 a that has a tooth portion that can mesh with a gear 121 and is movable by the rotation of the gear 121. May be transferred.
  • the magnetic particles may be transferred using an electromagnet for magnetism.
  • the magnetic body may be moved to the vicinity of the microfluidic chip and may be energized to collect and transfer the magnetic material.
  • the magnetic particles may be transferred by repeating the current collection by conducting electricity.
  • the microfluidic chip and the magnetic material may be moved relative to each other. At this time, it is preferable that each moving speed is set so that the speed of the magnetic particles moving in the microfluidic chip is 10 mm / s or less.
  • the above-described magnetic particle transfer device and magnetic particle transfer method can reliably collect and transfer magnetic particles in a fluid, and can perform highly accurate analysis. Further, in the microfluidic chip, by using the Laplace force, even if the fluid container is connected via the transfer channel, the reaction process is performed without using one fluid container, and only the photometric process is not performed. Since the used fluid container can be used, contamination in photometric processing can be suppressed.
  • the above-described method of the present invention can be executed by a computer including a CPU in whole or in part.
  • the CPU is a method for transferring the magnetic particles accommodated in the fluid accommodating portion to the adjacent fluid accommodating portion, and (1) a magnetic body is disposed in the vicinity of the fluid accommodating portion for accommodating the fluid containing the magnetic particles.
  • a magnetic flux collecting step for performing a magnetic flux collecting process on the magnetic particles, and (2) an adjacent fluid housing portion for moving the magnetic particles collected by the magnetic flux collecting process by relatively moving the microfluidic chip or the magnetic body.
  • the program is stored in the memory.
  • the program may be installed in the memory before the computer is shipped, or may be installed in the memory after the computer is shipped.
  • the program may be installed in the memory by reading the program recorded on the recording medium, or the program downloaded via a network such as the Internet may be installed in the memory.
  • a magnetic collecting step for arranging a magnetic body in the vicinity of a fluid containing portion containing a fluid containing magnetic particles and collecting the magnetic particles, and (2) a microfluidic chip or the magnetic body A computer installed with a program for executing a method including a transfer step of transferring the magnetic particles collected by the magnetic flux collection process to an adjacent fluid storage unit by moving the magnetic particles relative to each other.
  • a magnetic particle transfer means or a magnetic particle transfer device including a transfer step of transferring the magnetic particles collected by the magnetic collection process to an adjacent fluid storage unit That.
  • any computer including a CPU that executes various programs and a memory that stores various data can be used.
  • All or part of the functions of the program described in detail above are not limited to being realized by software (for example, a program.
  • the functions of the above steps are realized by hardware (for example, a circuit, a board, a semiconductor chip). Alternatively, it may be realized by a combination of software and hardware.
  • the magnetic particle transfer device and the magnetic particle transfer method according to the present invention are useful for the process of transferring magnetic particles, and are particularly suitable for microanalysis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

 本発明において、流体中の磁性粒子を確実に集磁・移送して、精度の高い分析を行うことができる磁性粒子移送装置および磁性粒子移送方法が提供される。 また、本発明において、磁性粒子を含む流体を収容する流体収容部を複数設け、各流体収容部を接続する移送流路を有するマイクロ流体チップ2を所定位置に配置するチップ把持部13と、チップ把持部13近傍に配置され、磁性粒子を集磁する少なくとも1以上の磁性体12aを配置する磁性体配置部12と、チップ把持部13と磁性体配置部12とを移送流路方向に相対移動させて、磁性粒子を、移送流路を介して隣接する流体収容部に移動させる駆動ステージ14とを備える装置が提供される。

Description

磁性粒子移送装置および磁性粒子移送方法
 本発明は、微少量の流体の分析を行うマイクロ流体チップの磁性粒子移送装置および磁性粒子移送方法に関する。
 従来、血液や体液等の検体に含まれる免疫成分などを自動的に分析する技術として自動分析装置が知られている。この自動分析装置は、試薬が入った反応容器に検体を加え、反応容器内の試薬との間で生じた反応を光学的に検出するものである。この自動分析装置による検体の分析に必要な試薬量は、一つの検体に対して数ml(ミリリットル)~数十ml程度と少量で済むが、コスト的な観点から見て、分析に用いる試薬量をさらに低減することのできる技術が待望されていた。また、従来の自動分析装置は、検体や試薬を分注する分注ノズルの洗浄に用いる洗浄水の廃液量も多く、この点においてもコスト面で改善の余地があった。
 このような状況を解決しうる技術として、検体の分析に必要な要素を微小なチップ上に集積化することによって流体の分離を行うことが可能なマイクロ流体チップを用いた分離方法がある(例えば、特許文献1参照)。この分離装置に関しては、チップの所定位置に収容された粒子を遠心分離によって、液体と粒子を分離するという技術も開示されている。
特開2007-212263号公報
 しかしながら、特許文献1に示すマイクロ流体チップは、遠心力によって、液体と磁性粒子とを分離しているが、各流体の密度により分散状態が異なり、すべての粒子を確実に分離することができず、分離後に粒子が拡散している場合があるという問題があった。特に、磁性粒子を用いた分析においては、反応物をすべて収集する必要があり、分離効率が低いと分析精度も低下してしまうおそれがあった。
 本発明は、上記に鑑みてなされたものであって、流体中の磁性粒子を確実に集磁・移送して、精度の高い分析を行うことができる磁性粒子移送装置および磁性粒子移送方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかる磁性粒子移送装置は、磁性粒子を含む流体を収容する流体収容部を複数設け、各流体収容部を接続する移送流路を有するマイクロ流体チップと、前記磁性粒子を集磁する少なくとも1以上の磁性体と、前記移送流路方向に相対移動させて、前記磁性粒子を、前記移送流路を介して隣接する前記流体収容部に移動させる磁性粒子移送部と、を備える。
 また、本発明にかかる磁性粒子移送装置は、前記マイクロ流体チップを所定位置に配置するチップ配置部と、前記チップ配置部近傍に配置され、前記磁性体を配置する磁性体配置部と、をさらに備え、前記磁性粒子移送部は、前記チップ配置部と前記磁性体配置部とを前記移送流路方向に相対移動させて、前記磁性粒子を、前記移送流路を介して隣接する前記流体収容部に移動させる。
 また、上記の本発明の磁性粒子移送装置において、前記チップ配置部は、前記マイクロ流体チップの移動方向を案内するガイドと、前記磁性粒子移送部に連結され、前記マイクロ流体チップを把持するチップ把持部と、を有し、前記磁性粒子移送部は、前記チップ把持部を介して前記マイクロ流体チップを前記ガイドに沿って移動させることによって、前記磁性体に対して相対移動させ、前記磁性粒子を移送させる。
 また、上記の本発明の磁性粒子移送装置において、前記磁性粒子移送部は、前記磁性体を前記マイクロ流体チップに対して相対移動させることによって、前記マイクロ流体チップ内の磁性粒子を移送させる。
 また、上記の本発明の磁性粒子移送装置において、複数の前記磁性体は、前記移送流路方向に配置される。
 また、上記の本発明の磁性粒子移送装置において、前記移送流路は、ラプラス力によって前記流体の流通を制御する。
 また、上記の本発明の磁性粒子移送装置において、前記磁性体は、永久磁石である。
 また、上記の本発明の磁性粒子移送装置において、前記磁性体は、電磁石である。
 種々の実施形態において、本発明の装置は、上記のいずれか一つまたは複数の特徴を含む。
 また、本発明にかかる磁性粒子移送方法は、磁性粒子を含む流体を収容する流体収容部近傍に磁性体を配置し、前記磁性粒子の集磁処理を行なう集磁ステップと、マイクロ流体チップまたは前記磁性体を相対移動させることで、前記集磁処理によって集磁された前記磁性粒子を隣接する流体収容部に移送する移送ステップと、を含む。
 本発明はまた、流体収容部に収容された磁性粒子を隣接する流体収容部へ移送する方法を実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体であって、該方法は、
 磁性粒子を含む流体を収容する流体収容部近傍に磁性体を配置し、前記磁性粒子の集磁処理を行なう集磁ステップと、
 マイクロ流体チップまたは前記磁性体を相対移動させることで、前記集磁処理によって集磁された前記磁性粒子を隣接する流体収容部に移送する移送ステップと、
 を含む、記録媒体を提供する。
 本発明はまた、流体収容部に収容された磁性粒子を隣接する流体収容部へ移送する方法を実行させるためのプログラムであって、該方法は、
 磁性粒子を含む流体を収容する流体収容部近傍に磁性体を配置し、前記磁性粒子の集磁処理を行なう集磁ステップと、
 マイクロ流体チップまたは前記磁性体を相対移動させることで、前記集磁処理によって集磁された前記磁性粒子を隣接する流体収容部に移送する移送ステップと、
 を含む、プログラムを提供する。
 本発明にかかるマイクロ流体チップは、流体収容部に収容された磁性粒子を磁性体によって、流体収容部間を接続する移送流路を介して隣接する流体収容部に磁性粒子を移送させるようにしたので、液体と磁性粒子とを確実に分離して移送し、精度の高い分析を行うことができるという効果を奏する。
図1は、本発明の実施の形態にかかる磁性粒子移送装置の構成を示す模式図である。 図2は、図1に示すマイクロ流体チップを示す断面図である。 図3は、図2に示すマイクロ流体チップのA-A線断面を示す断面図である。 図4は、本発明の実施の形態にかかる磁性粒子移送を示す模式図である。 図5は、従来の免疫分析処理を示す模式図である。 図6は、流体を収容したマイクロ流体チップを示す断面図である。 図7は、本発明の実施の形態にかかる免疫分析処理を示す模式図である。 図8は、図3に示すマイクロ流体チップの変形例を示す断面図である。 図9は、本発明の実施の形態にかかる磁性体の変形例を示す模式図である。
 以下、図面を参照して本発明のマイクロ流体チップを実施するための最良の形態について説明する。本発明は、以下に例示する実施の形態や変形例に限らず、本発明の趣旨を逸脱しない範囲であれば、種々の変形が可能である。また、図面の記載において、同一部分には同一符号を付している。
 図1は、本発明の実施の形態にかかる磁性粒子移送装置1を示す模式図である。図1に示す磁性粒子移送装置1は、マイクロ流体チップ2を載置し、マイクロ流体チップ2の移動方向を案内するガイド10a,10bを有するチップ載置部11と、把持部材13a,13bによってマイクロ流体チップ2を把持し、マイクロ流体チップ2を所定の位置に配置するチップ把持部13と、チップ把持部13をガイド10a,10bに沿って移動させる駆動ステージ14と、駆動ステージ14を駆動させるモータ15と、を備える。
 チップ配置部としてのガイド10a,10b、チップ載置部11およびチップ把持部13は、マイクロ流体チップ2を磁性粒子移送装置1の所定位置に配置する。また、チップ載置部11は、載置面内に磁性体配置部12を設け、磁性体配置部12には、複数の磁性体12aが配置される。磁性体12aは、マイクロ流体チップ2に形成される移送流路に応じて配置が決定される。特に、磁性体12aは、マイクロ流体チップ2に収容される磁性粒子との距離が2mm以下となるように配置されることが好ましい。また、磁性体の磁力は、同一の磁力を有するものを用いてもよく、段階的に磁力を変化させてもよい。
 駆動ステージ14は、チップ把持部13が移動する移動レーン14aを有し、チップ把持部13は、移動レーン14aに沿って移動する。また、把持部材13bは、チップ把持部13内部に設けられた弾性部材によって図中矢印方向に移動可能であり、弾性部材の弾性力によりマイクロ流体チップ2の把持が可能となる。モータ15による駆動のほか、手動によってチップ把持部13を移動させてもよい。
 上述した磁性粒子移送装置1は、チップ把持部13が駆動ステージ14上を移動することによって把持部材13a,13bに把持されているマイクロ流体チップ2を磁性体配置部12方向に移動させ、磁性体12aによってマイクロ流体チップ2に収容された磁性粒子を集磁することで、マイクロ流体チップ2内を移送させることができる。なお、チップ載置部11のマイクロ流体チップ2を載置する載置面を移動可能にし、マイクロ流体チップ2を移動させてもよい。チップ載置部11に移送流路方向に移動可能なベルトを設け、モータ等の駆動によりベルトを移動させることによってマイクロ流体チップ2を移動させることができる。
 図2は、本発明の実施の形態にかかるマイクロ流体チップ2の構成を示す模式図であり、図3は、図2に示すマイクロ流体チップ2のA-A線断面図である。マイクロ流体チップ2は、本体部20が、光の80%以上を透過する光学的に透明な素材、例えば、耐熱ガラスを含むガラス、環状オレフィンやポリスチレン等の合成樹脂を用いて形成され、流体を収容可能な流体収容部21,22が移送流路23によって連結されている。
 流体収容部21,22は、分注される所定体積以上の体積となるように形成されていればよく、形状は、円形でもよく、角形でもよい。
 また、各流体収容部21,22は、移送流路の流通方向の両端部に試料導入口24a,24bおよび試料排出口25a,25bを有する。試料導入口24a,24bおよび試料排出口25a,25bの径は、流体の吸排を行なうプローブ等が挿入可能であればよい。
 つぎに、マイクロ流体チップ2内における磁性粒子の移送について、図4を参照して説明する。図4は、本発明の実施の形態にかかる磁性粒子移送を示す模式図である。まず、図4(a)は、磁性粒子Bを含む流体が、試料導入口24aから分注され、流体収容部21に収容された状態である。ここで、マイクロ流体チップ2を磁性体12a方向に移動させる(図4(b))。磁性体12aに対してマイクロ流体チップ2を所定位置まで移動させた後、所定時間、たとえば、10秒間マイクロ流体チップ2の移動を停止させ、磁性体12aに流体中の磁性粒子を集磁する(図4(c))。
 所定時間経過後、再びマイクロ流体チップ2を移動させると、磁性体12aに集磁された磁性粒子Bは、マイクロ流体チップ2に対して、磁性体12aの相対位置に対応して移送流路23内に入り込み(図4(d))、移送流路23を介して連結された流体収容部22に移送される(図4(e))。
 上述した一連の処理によって、磁性粒子Bを隣接する流体収容部22に移送することが可能となる。磁性体12aを用いることによって、磁性粒子を効率的に捕捉し、移送することが可能となるため、分析処理における分析精度を向上させ、高い分析精度を維持することができる。また、必要な検体、試薬を分注後に、各試料導入口24a,24bおよび試料排出口25a,25bを封止してもよい。ここで、封止に用いる部材は、樹脂等で形成されたキャップ等の封止部材またはシール部材が好ましい。
 ここで、従来の免疫分析処理について説明する。従来の免疫分析処理は、図5(1)に示すように、反応容器40内に抗体固相磁性粒子51を含む第1試薬が分注される第1試薬分注処理が行なわれる。その後、図5(2)に示すように、反応容器40内に分析対象である抗原52を含む検体が分注される検体分注処理が行なわれる。なお、抗体固相磁性粒子51は磁性粒子担体に検体中の抗原52に対する抗体が固相されている。そして、図5(3)に示すように、反応容器40は、攪拌された後、所定の反応時間経過によって、検体中の抗原52と抗体固相磁性粒子51とが結合した反応物54が生成される。
 つぎに、従来の分析においては、BF洗浄機構における1回目の第1BF洗浄処理が行なわれる。第1BF洗浄処理においては、図5(3)に示すように、磁性体を集磁する集磁機構41近傍に反応物54および抗体固相磁性粒子51を集磁した状態でBF洗浄ノズル42による洗浄液の注入および吸引を行なうことによって、反応容器40内の未反応物質53が除去される。この結果、図5(4)に示すように、反応容器40内には、未反応物質53が分離除去され、抗体固相磁性粒子51と反応物54が残る。
 そして、従来の分析においては、図5(4)に示すように、第1BF洗浄後の反応容器40内に酵素標識抗体55を含む試薬を第2試薬として分注する第2試薬分注処理が行なわれる。所定の反応時間経過によって、図5(5)に示すように、反応物54と酵素標識抗体55とが結合した免疫複合体56が生成される。
 そして、従来の分析においては、図5(5)に示すように、BF洗浄機構における2回目の第2BF洗浄処理が行なわれる。第2BF洗浄処理においては、第1BF洗浄処理と同様に、集磁機構41近傍に磁性体を集磁した状態で、BF洗浄ノズル42による洗浄液の注入および吸引が行なわれる。言い換えると、第2BF洗浄処理においては、集磁機構41近傍に免疫複合体56と抗体固相磁性粒子51を集磁した状態で、BF洗浄ノズル42による洗浄液の注入および吸引を行なうことによって、反応容器40内の未結合の酵素標識抗体55が除去される。この結果、図5(6)に示すように、反応容器40内には、抗体固相磁性粒子51と免疫複合体56が残る。
 そして、反応容器40には、発光基質57を含む発光基質液が第3試薬として分注され再度攪拌される基質注入処理が行なわれる。反応容器40においては、免疫複合体56内の酵素が作用し発光基質57は酵素量に比例して光L1を発する。つぎに、免疫複合体56内の酵素が作用して発光基質57から発せられる光L1の光量を測定する測定処理が行なわれ、測定処理において測定された発光基質57の発光量をもとに抗原52の濃度を求める演算処理が行なわれる(図5(7))。
 このように、従来の分析においては、BF洗浄処理を2度行なうことによって、検体内の未反応物質53および反応物54と未結合である酵素標識抗体55を除去し、測定対象である免疫複合体56のみを取得して測定処理を行なっている。
 つぎに、本発明の実施の形態にかかるマイクロ流体チップ2を用いた免疫分析処理について説明する。ここで、マイクロ流体チップ2の移送流路23は、ラプラス力がかかるような流路径で形成され、図6に示すように、流体収容部21に収容された流体Fは、移送流路23によるラプラス力によって流通が止められ、流体Fは流体収容部22に浸入しない。この性質を用いて、免疫分析処理を行う。なお、移送流路23の流通方向に対して鉛直方向の断面積は、1mm以下となるように形成される。
 まず、図5(1)~(4)に示す処理を流体収容部21内で行い、免疫複合体56を生成する(図7(a))。このとき、分注される検体および各試薬は、移送流路23にかかるラプラス力によって流体の流通が止められ、流体収容部22には浸入しない。免疫複合体56が得られると、マイクロ流体チップ2を移動させて、磁性体12aを流体収容部21の下部に配置して免疫複合体56を集磁し、免疫複合体56以外の流体を試料排出口25aから排出する(図7(b))。流体収容部21内に免疫複合体56のみ在る状態において、試料導入口24a,24bから緩衝液を分注する(図7(c))。このとき、流体収容部22に緩衝液が収容されることによって、移送流路23のラプラス力の効力がなくなり、移送流路23を介して流体収容部21,22が流通可能となる。なお、流体収容部21内で行う図5(1)~(4)の処理において、マイクロ流体チップ2を磁性体配置部12に移動させて集磁を行なってもよい。また、流体収容部21内には、場合により未反応の抗体固相磁性粒子51も存在する。
 その後、マイクロ流体チップ2を移動させることによって、磁性体12aの相対位置の変化に従って、免疫複合体56も流体収容部21から移送流路23を通過して流体収容部22に移送される(図7(d)~(e))。マイクロ流体チップ2の移動が完了すると、試料排出口25a,25bから緩衝液を排出する(図7(f))。緩衝液を排出した後、試料導入口24bから発光基質57を含む発光基質液が第3試薬を注入処理し(図7(g))、免疫複合体56内の酵素が作用して発光基質57から発せられる光L2の光量を測定することで、免疫分析処理を行うことができる(図7(h))。また、マイクロ流体チップ2に超音波を照射することによって流体の攪拌が可能であり、試薬の混合および磁性粒子の洗浄を適宜行う。
 上述した免疫分析処理を行うことによって、反応が完了した測定対象物質を、試薬等により汚染されていない空間で測光処理を行うことができるため、検出の精度を向上させることが可能となる。
 なお、測定は、光学的測定に対応可能であり、測定対象が蛍光発光である場合は、励起光を流体収容部22下部から照射することによって測定でき、ラマン散乱を測定する場合は、図7(g)において集磁されている免疫複合体56を用いて測定することも可能である。光学的測定としては、蛍光発光、化学発光、比色、比濁等が挙げられる。
 ここで、本発明のマイクロ流体チップは、流体の流通方向の終端側流体収容部の底面の高さが、移送流路以下となるように形成してもよい。図8は、図3に示すマイクロ流体チップの変形例を示す断面図である。図8に示すマイクロ流体チップ3は、本体部30に流体収容部31,32が形成され、各流体収容部31,32が移送流路33によって連結されている。また、各流体収容部31,32には、それぞれ試料導入口34a,34b、試料排出口35a,35bが形成され、上述した磁性粒子移送方法を適用することができる。ここで、流体収容部32の底部は、流体収容部31および移送流路33の底部に対して低く形成され、流体収容部31から流体収容部32に移送された磁性粒子の逆流を防止することができる。
 また、磁性体12aを移動させて流体収容部内の磁性粒子を移送してもよい。モータ等によって、図1に示す磁性体配置部12をマイクロ流体チップ2方向に移動させることで磁性粒子の移送が可能である。ここで、図9は、本発明の実施の形態にかかる磁性体12aの変形例を示す模式図である。図9に示すように、ギア121と歯合可能な歯部を有し、ギア121の回転により移動可能なベルト122に配置された磁性体12aを移動させることによってマイクロ流体チップ2内の磁性粒子を移送させてもよい。
 さらに、磁性に電磁石を用いて磁性粒子の移送を行なってもよい。上述したように、磁性体をマイクロ流体チップ近傍に移動させ、通電して集磁・移送してもよく、複数の磁性体をマイクロ流体チップ近傍に配置し、磁性体を移送方向に対して段階的に電通させて集磁を繰り返すことによって、磁性粒子を移送させてもよい。
 また、マイクロ流体チップと磁性体とを相対的に移動させてもよい。このとき、マイクロ流体チップ内を移動する磁性粒子の速度が10mm/s以下となるように各移動速度が設定されることが好ましい。
 上述した磁性粒子移送装置および磁性粒子移送方法によって、流体中の磁性粒子を確実に集磁・移送することができ、精度の高い分析を行うことが可能となる。また、マイクロ流体チップにおいて、ラプラス力を用いることによって、移送流路を介して連結された流体収容部であっても、一方の流体収容部を使用せずに反応処理を行い、測光処理のみ未使用の流体収容部を用いることが可能なため、測光処理におけるコンタミネーションを抑制することができる。
 本発明の上記方法は、その全部または一部をCPUを備えるコンピュータに実行させることができる。この場合、CPUは、流体収容部に収容された磁性粒子を隣接する流体収容部へ移送する方法であって、(1)磁性粒子を含む流体を収容する流体収容部近傍に磁性体を配置し、前記磁性粒子の集磁処理を行なう集磁ステップと、(2)マイクロ流体チップまたは前記磁性体を相対移動させることで、前記集磁処理によって集磁された前記磁性粒子を隣接する流体収容部に移送する移送ステップと、を含む方法をコンピュータに実行させるためのプログラムを実行する。そのプログラムは、メモリに格納されている。プログラムは、コンピュータの出荷前にメモリにインストールされてもよいし、コンピュータの出荷後にメモリにインストールされてもよい。記録媒体に記録されたプログラムを読み出すことによってプログラムをメモリにインストールしてもよいし、インターネット等のネットワーク経由でダウンロードされたプログラムをメモリにインストールしてもよい。このように、(1)磁性粒子を含む流体を収容する流体収容部近傍に磁性体を配置し、前記磁性粒子の集磁処理を行なう集磁ステップと、(2)マイクロ流体チップまたは前記磁性体を相対移動させることで、前記集磁処理によって集磁された前記磁性粒子を隣接する流体収容部に移送する移送ステップと、を含む方法を実行させるためのプログラムがインストールされたコンピュータは、(1)磁性粒子を含む流体を収容する流体収容部近傍に磁性体を配置し、前記磁性粒子の集磁処理を行なう集磁ステップと、(2)マイクロ流体チップまたは前記磁性体を相対移動させることで、前記集磁処理によって集磁された前記磁性粒子を隣接する流体収容部に移送する移送ステップとを含む磁性粒子移送手段または磁性粒子移送装置として機能する。
 本発明において使用されうるコンピュータとしては、各種プログラムを実行するCPUと各種データを格納するメモリとを含む任意のコンピュータを使用することができる。
 上記に詳述したプログラムの全部または一部の機能は、ソフトウェア(例えば、プログラムによって実現されることに限定されない。上記各ステップの機能をハードウェア(例えば、回路、ボード、半導体チップ)によって実現してもよいし、ソフトウェアとハードウェアとの組み合わせによって実現してもよい。
 以上のように、本発明の好ましい実施形態を用いて本発明を例示してきたが、本発明は、この実施形態に限定して解釈されるべきものではない。本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、本発明の具体的な好ましい実施形態の記載から、本発明の記載および技術常識に基づいて等価な範囲を実施することができることが理解される。本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。
 本出願は、日本国出願特願2009-156248に対して優先権を主張するものであり、その全体の内容は、具体的に本明細書に記載されているのと同様に本明細書の一部を構成するものとして援用されるべきであることが理解される。
 以上のように、本発明にかかる磁性粒子移送装置および磁性粒子移送方法は、磁性粒子を移送する処理に有用であり、特に、微量分析に適している。
 1 磁性粒子移送装置
 2,3 マイクロ流体チップ
 10a,10b ガイド
 11 チップ載置部
 12 磁性体配置部
 12a 磁性体
 13 チップ把持部
 13a,13b 把持部材
 14 駆動ステージ
 15 モータ
 20,30 本体部
 21,22,31,32 流体収容部
 23,33 移送流路
 24a,24b,34a,34b 試料導入口
 25a,25b,35a,35b 試料排出口

Claims (11)

  1.  磁性粒子を含む流体を収容する流体収容部を複数設け、各流体収容部を接続する移送流路を有するマイクロ流体チップと、
     前記磁性粒子を集磁する少なくとも1以上の磁性体と、
     前記磁性粒子を前記移送流路方向に相対移動させて、前記移送流路を介して隣接する前記流体収容部に移動させる磁性粒子移送部と、
     を備える磁性粒子移送装置。
  2.  請求項1に記載の磁性粒子移送装置であって、該磁性粒子移送装置は、
     前記マイクロ流体チップを所定位置に配置するチップ配置部と、
     前記チップ配置部近傍に配置され、前記磁性体を配置する磁性体配置部と、
     をさらに備え、
     ここで、前記磁性粒子移送部は、前記チップ配置部と前記磁性体配置部とを前記移送流路方向に相対移動させて、前記磁性粒子を、前記移送流路を介して隣接する前記流体収容部に移動させる、磁性粒子移送装置。
  3.  請求項2に記載の磁性粒子移送装置であって、
     ここで、前記チップ配置部は、
     前記マイクロ流体チップの移動方向を案内するガイドと、
     前記磁性粒子移送部に連結され、前記マイクロ流体チップを把持するチップ把持部と、
     を有し、
     ここで、前記磁性粒子移送部は、前記チップ把持部を介して前記マイクロ流体チップを前記ガイドに沿って移動させることによって、前記磁性体に対して相対移動させ、前記磁性粒子を移送させる、
     磁性粒子移送装置。
  4.  前記磁性粒子移送部は、
     前記磁性体を前記マイクロ流体チップに対して相対移動させることによって、前記マイクロ流体チップ内の磁性粒子を移送させる、請求項1に記載の磁性粒子移送装置。
  5.  複数の前記磁性体は、前記移送流路方向に配置される、請求項1に記載の磁性粒子移送装置。
  6.  前記移送流路は、ラプラス力によって前記流体の流通を制御する、請求項1に記載の磁性粒子移送装置。
  7.  前記磁性体は、永久磁石である、請求項1に記載の磁性粒子移送装置。
  8.  前記磁性体は、電磁石である、請求項1に記載の磁性粒子移送装置。
  9.  磁性粒子を含む流体を収容する流体収容部近傍に磁性体を配置し、前記磁性粒子の集磁処理を行なう集磁ステップと、
     マイクロ流体チップまたは前記磁性体を相対移動させることで、前記集磁処理によって集磁された前記磁性粒子を隣接する流体収容部に移送する移送ステップと、
     を含む、磁性粒子移送方法。
  10.  流体収容部に収容された磁性粒子を隣接する流体収容部へ移送する方法を実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体であって、該方法は、
     磁性粒子を含む流体を収容する流体収容部近傍に磁性体を配置し、前記磁性粒子の集磁処理を行なう集磁ステップと、
     マイクロ流体チップまたは前記磁性体を相対移動させることで、前記集磁処理によって集磁された前記磁性粒子を隣接する流体収容部に移送する移送ステップと、
     を含む、記録媒体。
  11.  流体収容部に収容された磁性粒子を隣接する流体収容部へ移送する方法を実行させるためのプログラムであって、該方法は、
     磁性粒子を含む流体を収容する流体収容部近傍に磁性体を配置し、前記磁性粒子の集磁処理を行なう集磁ステップと、
     マイクロ流体チップまたは前記磁性体を相対移動させることで、前記集磁処理によって集磁された前記磁性粒子を隣接する流体収容部に移送する移送ステップと、
     を含む、プログラム。
PCT/JP2010/004218 2009-06-30 2010-06-24 磁性粒子移送装置および磁性粒子移送方法 WO2011001646A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009156248A JP2011013043A (ja) 2009-06-30 2009-06-30 磁性粒子移送装置および磁性粒子移送方法
JP2009-156248 2009-06-30

Publications (1)

Publication Number Publication Date
WO2011001646A1 true WO2011001646A1 (ja) 2011-01-06

Family

ID=43410734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004218 WO2011001646A1 (ja) 2009-06-30 2010-06-24 磁性粒子移送装置および磁性粒子移送方法

Country Status (2)

Country Link
JP (1) JP2011013043A (ja)
WO (1) WO2011001646A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9802807B2 (en) 2013-09-20 2017-10-31 Entegris, Inc. Apparatus and method for pressure dispensing of high viscosity liquid-containing materials
GB2566149A (en) * 2017-07-21 2019-03-06 Mast Group Ltd Apparatus for conducting an assay
EP3970858A1 (en) * 2015-07-24 2022-03-23 Novel Microdevices, Inc. Sample processing device comprising magnetic and mechanical actuating elements using linear or rotational motion and methods of use thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6036496B2 (ja) * 2012-07-24 2016-11-30 ソニー株式会社 微小粒子分取方法
US9623409B2 (en) 2013-03-11 2017-04-18 Cue Inc. Cartridges, kits, and methods for enhanced mixing for detection and quantification of analytes
EP3540444B1 (en) 2013-03-11 2022-10-26 Cue Health Inc. Systems and methods for detection and quantification of analytes
US10545161B2 (en) 2013-03-11 2020-01-28 Cue Health Inc. Systems and methods for detection and quantification of analytes
USD745423S1 (en) 2014-05-12 2015-12-15 Cue Inc. Automated analyzer test cartridge and sample collection device for analyte detection
EP3689466B1 (en) 2015-07-17 2024-06-05 Cue Health Inc. System for enhanced detection and quantification of analytes
WO2018140540A1 (en) 2017-01-25 2018-08-02 Cue Health Inc. Systems and methods for enhanced detection and quantification of analytes
KR102116728B1 (ko) 2018-10-25 2020-05-29 엘지전자 주식회사 반도체 발광소자의 자가조립 장치 및 방법
KR102160048B1 (ko) * 2018-10-30 2020-09-25 엘지전자 주식회사 반도체 발광소자의 자가조립 장치 및 방법
WO2022124455A1 (ko) * 2020-12-11 2022-06-16 엘지전자 주식회사 자석 모듈 및 이를 구비한 자가조립장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308668A (ja) * 2004-04-26 2005-11-04 Hitachi Maxell Ltd 反応装置
JP2007101428A (ja) * 2005-10-06 2007-04-19 Yokogawa Electric Corp 化学処理用カートリッジおよびその使用方法
JP2007521495A (ja) * 2003-12-15 2007-08-02 コミッサリア タ レネルジー アトミーク 磁気効果により生物学的試料を分割するための方法及びデバイス
JP2008064748A (ja) * 2006-08-08 2008-03-21 Sekisui Chem Co Ltd 微量液体秤取装置、それを有するマイクロチップ及び微量な液体の秤取方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007521495A (ja) * 2003-12-15 2007-08-02 コミッサリア タ レネルジー アトミーク 磁気効果により生物学的試料を分割するための方法及びデバイス
JP2005308668A (ja) * 2004-04-26 2005-11-04 Hitachi Maxell Ltd 反応装置
JP2007101428A (ja) * 2005-10-06 2007-04-19 Yokogawa Electric Corp 化学処理用カートリッジおよびその使用方法
JP2008064748A (ja) * 2006-08-08 2008-03-21 Sekisui Chem Co Ltd 微量液体秤取装置、それを有するマイクロチップ及び微量な液体の秤取方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9802807B2 (en) 2013-09-20 2017-10-31 Entegris, Inc. Apparatus and method for pressure dispensing of high viscosity liquid-containing materials
US10494250B2 (en) 2013-09-20 2019-12-03 Entegris, Inc. Apparatus and method for pressure dispensing of high viscosity liquid-containing materials
EP3970858A1 (en) * 2015-07-24 2022-03-23 Novel Microdevices, Inc. Sample processing device comprising magnetic and mechanical actuating elements using linear or rotational motion and methods of use thereof
EP4272860A3 (en) * 2015-07-24 2024-03-20 Novel Microdevices, Inc. Sample processing device comprising magnetic and mechanical actuating elements using linear or rotational motion
GB2566149A (en) * 2017-07-21 2019-03-06 Mast Group Ltd Apparatus for conducting an assay
GB2566149B (en) * 2017-07-21 2022-08-03 Mast Group Ltd Apparatus for conducting an assay

Also Published As

Publication number Publication date
JP2011013043A (ja) 2011-01-20

Similar Documents

Publication Publication Date Title
WO2011001646A1 (ja) 磁性粒子移送装置および磁性粒子移送方法
JP3142873B2 (ja) 磁性粒子の特異的結合による検定の方法および装置
AU2015243006B2 (en) Imaging analyzer for testing analytes
JP5322996B2 (ja) 試料の自動分析のための遠心力式マイクロ流体システムおよび方法
US10562039B2 (en) Automatic analysis device and separation and washing method
US20150198621A1 (en) Analyzing apparatus, solid-liquid separation device and solid-liquid separation method
JP2008209330A (ja) 磁気分離器およびそれを用いた分析装置
CN114258321B (zh) 即时浓度分析仪
JPWO2009151058A1 (ja) 磁性粒子を用いる分析装置
JP6576167B2 (ja) 免疫測定装置および免疫測定方法
US20130109106A1 (en) System for selectively proceeding a sample
JP6313977B2 (ja) 試料分析装置及び試料分析方法
JP7423722B2 (ja) 検体測定装置および検体測定方法
WO2019167514A1 (ja) Bf分離装置、試料分析装置およびbf分離方法
CN207036852U (zh) 一种全自动微流控芯片荧光免疫检测系统
CN106226540A (zh) 全自动蛋白质芯片分析仪
WO2011001647A1 (ja) 自動分析装置および測定方法
JP3239999B2 (ja) 磁性粒子の特異的結合による測定装置
JP3739953B2 (ja) 分注機を利用した定性/定量解析方法及びこの方法によって処理される各種装置
JP2005028201A (ja) 磁気分離器及びそれを用いた分析装置
JPH0829424A (ja) 免疫学的分析方法及び装置
JP4060468B2 (ja) 分注機を利用した磁性体の脱着制御方法及びこの方法によって処理される各種装置
WO2023233914A1 (ja) 検査装置
JP2008180537A (ja) 分析方法および分析装置
JP2010043913A (ja) 反応容器および分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10793820

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10793820

Country of ref document: EP

Kind code of ref document: A1